Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

基于设施番茄生产效益的最佳灌水量和控释氯化钾用量组合

郝淼, 曲兆鸣, 李兵, 牛国梁, 王龙林, 李成亮

郝淼, 曲兆鸣, 李兵, 牛国梁, 王龙林, 李成亮. 基于设施番茄生产效益的最佳灌水量和控释氯化钾用量组合[J]. 植物营养与肥料学报, 2022, 28(5): 894-905. DOI: 10.11674/zwyf.2021500
引用本文: 郝淼, 曲兆鸣, 李兵, 牛国梁, 王龙林, 李成亮. 基于设施番茄生产效益的最佳灌水量和控释氯化钾用量组合[J]. 植物营养与肥料学报, 2022, 28(5): 894-905. DOI: 10.11674/zwyf.2021500
HAO Miao, QU Zhao-ming, LI Bing, NIU Guo-liang, WANG Long-lin, LI Cheng-liang. The optimum combination of controlled-release potassium chloride and irrigation for efficient greenhouse tomato production[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 894-905. DOI: 10.11674/zwyf.2021500
Citation: HAO Miao, QU Zhao-ming, LI Bing, NIU Guo-liang, WANG Long-lin, LI Cheng-liang. The optimum combination of controlled-release potassium chloride and irrigation for efficient greenhouse tomato production[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(5): 894-905. DOI: 10.11674/zwyf.2021500

基于设施番茄生产效益的最佳灌水量和控释氯化钾用量组合

基金项目: 国家重点研发计划项目 (2016YFD0201202)。
详细信息
    作者简介:

    郝淼 E-mail:haomiao_11@163.com

    通讯作者:

    李成亮 E-mail:chengliang_li11@163.com

The optimum combination of controlled-release potassium chloride and irrigation for efficient greenhouse tomato production

  • 摘要:
    目的 

    水、肥是影响作物生产效益的两个重要因素,过量施肥是导致设施栽培土壤盐渍危害的主要原因。为获得番茄优质高产并降低钾肥投入量,我们探究了灌水与控释氯化钾的适宜用量组合。

    方法 

    盆栽试验在设施大棚内进行,供试番茄品种为‘罗拉’。设置常规灌溉 (W100) 下不施钾肥 (CK) 和施用全量普通氯化钾 (K2O 0.95 g/kg,CF) 2个对照;设置3个控释氯化钾水平,分别为常规K2O施用量的100% (K100)、80% (K80,K2O 0.76 g/kg) 和60% (K60,K2O 0.57 g/kg);设置3个灌水梯度,分别为田间持水量的90%~100% (W100)、72%~80% (W80)、54%~60% (W60),共11个处理。在番茄主要生育期,测定了叶片光合效率和土壤pH、电导率(EC)值,调查了果实产量和品质。

    结果 

    K80处理的平均果实产量和水分利用效率显著高于K100 处理,K100处理又显著高于K60处理,且K80较K100和K60处理的总吸钾量 (植株和果实) 提高了3.4%~7.8%,Vc含量增加了3.4%~3.9%,可溶性糖含量增加了2.2%~6.5%,可溶性固形物含量增加了3.5%~7.4%,净光合速率提高了4.3%~10.9%,气孔导度提高了6.5%~11.9%,蒸腾速率提高了3.6%~9.5%。W80处理的平均产量较W100和W60处理显著增加9.8%~16.0%,钾肥利用效率提高了6.3~7.1个百分点,Vc含量增加了6.8%~24.0%,可溶性糖含量增加了5.6%~8.8%,可溶性固形物含量增加了6.6%~9.2%,净光合速率提高了4.1%~10.3%,蒸腾速率提高了8.4%~16.6%,开花期、果实膨大期和成熟期的SPAD值分别增加了4.8%~12.0%、1.7%~9.4%和4.6%~14.5%,土壤pH提高了0.9%~2.1%,电导率下降了4.9%~8.2%。在9个水钾组合处理中,除K60W100和K60W60处理外的其他处理均获得了显著高于CK和CF的产量及水分利用效率,K80W80处理的产量、品质最高,水、钾利用效率也处于较高水平。

    结论 

    灌水与控释氯化钾对提高番茄的产量品质和光合效率有显著的正交互作用,二者最佳的用量组合是减少灌溉量至72%~80% (W80)与减少20%的K2O投入量并一次性基施,可提升番茄的光合效率,同时提高了土壤pH,降低了EC值,因而增加了番茄产量、品质,提高了水分和钾肥利用效率。

    Abstract:
    Objectives 

    Fertilizer and water are the two important inputs for efficient crop production. Excessive fertilization is the main cause of soil salinization under facility cultivation. Here, we studied the potential of reducing potassium input using controlled-release potassium chloride fertilizer (CR-KCl) and a matching irrigation level.

    Methods 

    A pot experiment was conducted in a greenhouse, using tomato cultivar ‘Luo la’ as test material. The two controls were no K application and conventional KCl (K2O 0.95 g/kg) application under 90%–100% field capacity irrigation (CK, CF). The nine fertilizer and water combination treatments comprised three CR-KCl dosages [100% (K100), 80% (K80), and 60% (K60) of CF)] and three irrigation levels [90%–100% (W100), 72%–80% (W80), and 54%–60% (W60) of the field capacity]. Leaf photosynthetic efficiency, soil pH, and soil EC were measured during the main growth stages of tomato. Also, the tomato yield and quality were investigated.

    Results 

    The average fruit yield and water efficiency of tomato were K80>K100>K60. Compared with K100 and K60, K80 (P<0.05) increased tomato K uptake (plant and fruit) by 3.4%–7.8%, Vc by 3.4%–3.9%, soluble sugar content by 2.2%–6.5%, soluble solid by 3.5%–7.4%, enhanced the net photosynthetic rate by 4.3%–10.9%, stomatal conductance by 6.5%–11.9%, and transpiration rate by 3.6%–9.5%. Compared with W100 and W60, W80 (P<0.05) increased tomato yield by 9.8%–16.0%, K utilization efficiency by 6.3–7.1 percentage points, Vc by 6.8%–24.0%, soluble sugar by 5.6%–8.8%, soluble solid by 6.6%–9.2%, net photosynthetic rate by 4.1%–10.3%, transpiration rate by 8.4%–16.6%, SPAD value at flowering, fruit enlargement, and ripening stage by 4.8%–12.0%, 1.7%–9.4% and 4.6%–14.5%, soil pH value by 0.9%–2.1%, and EC value decreased by 4.9%–8.2%. Among the 9 CR-KCl and irrigation combinations, except for K60W100 and K60W60, tomato fruit yield and water use efficiency were (P<0.05) higher in other treatments than CK and CF, K80W80 achieved the highest yield and quality, and K and water use efficiencies were also high.

    Conclusions 

    CR-KCl and irrigation affected tomato yield, quality, and photosynthetic efficiency. The optimum combination of CR-KCl and irrigation was 20% less K2O dosage in the one-time basal application and irrigation level of 72%–80% field water capacity (W80). This combination had the highest fruit yield and quality, improved soil pH, reduced EC value, and had high fertilizer and water use efficiency.

  • 番茄是我国北方地区设施栽培的主要蔬菜之一,同时也是世界上最受欢迎的蔬菜之一,其营养价值和保健功效深受广大消费者青睐[1]。随着经济的快速发展,人们对番茄的需求量逐年增加,为温室种植创造了巨大空间[2]。农民为了获得高产普遍采用大水和大肥,不仅浪费水肥资源[3],引起土壤酸化及次生盐渍化[4],还降低了作物产量和品质[5-7]。研究表明,水分与肥料在作物生长中具有显著的交互作用[8-10]。Hamzei[11]研究指出,适宜的灌水量和施氮量组合可以显著提高油菜产量和水氮利用效率。唐宏亮等[12]通过对比玉米根系生长参数发现,水分影响磷肥的吸收利用率,适量的磷素营养也能提高植株的水分利用效率,合理的水磷调控决定着作物生长以及对干旱的适应性。钾作为植物细胞中最重要和最丰富的阳离子,直接参与了与植物耐旱胁迫相关的许多生理过程,包括气孔开闭、渗透调节和酶激活[13-14]等,在植物水分代谢中起着不可或缺的作用。

    常规钾肥多为水溶性肥料,钾素释放速度快,易于淋失,在设施番茄生产中,需要多次追施以满足对钾素的需求[15]。控释氯化钾作为一种新型钾肥,降低了钾素的释放速度,在棉花[16-17]等作物生长初期一次性施入即可满足作物对钾素的需求,极大节省了劳动力投入。我们通过番茄盆栽试验,探究了控释氯化钾及灌水的最佳用量组合,为优化水肥管理、实现高产优质高效的设施番茄生产提供理论指导。

    盆栽试验在山东省泰安市山东农业大学“土肥高效利用国家工程研究中心”温室内进行,供试土壤为棕壤,pH 7.65 (水土比2.5∶1)、有机质13.52 g/kg、硝态氮68.86 mg/kg、铵态氮7.82 mg/kg、有效磷23.20 mg/kg、速效钾68.53 mg/kg。供试番茄品种为‘罗拉’,在华北平原广泛栽培。试验所用尿素 (N 46%)、重过磷酸钙 (P2O5 46%) 和普通氯化钾 (K2O 60%),由山东金正大生态工程集团股份有限公司提供。控释氯化钾由国家缓控释肥料工程技术研究中心提供,含K2O 54%,释放期4个月,肥料颗粒表面的包膜材料由0.5%石蜡和4.5%聚氨酯组成[18]。控释氯化钾25℃静水释放特征,依据中华人民共和国化工行业标准《控释肥料》“HG/T 4215—2011”[19]中规定方法测定;土壤中养分释放特征采用埋袋称重法[20]测定。

    试验设置控释氯化钾和灌水2个因素,控释氯化钾施用量设3个水平,具体为常规施肥量 (K2O施入总量为804.0 kg/hm2) 的100% (K100)、80% (K80,K2O 643.2 kg/hm2)、60% (K60,K2O 482.4 kg/hm2);灌水量设3个梯度为高灌 (W100,90%~100%田间持水量)、中灌 (W80,72%~80%田间持水量)、低灌 (W60,54%~60%田间持水量);另设常规灌溉但不施钾肥对照 (CK) 和常规灌溉和施用全量普通氯化钾对照 (CF)。每个处理重复4次。每个处理N和P2O5投入总量分别为570.0、625.5 kg/hm2。尿素50%作为基肥,其余50%分4次追肥,按苗期∶开花期∶果实膨大期∶果实成熟期为1∶1∶2∶1的比例追施。重过磷酸钙一次性基施。CF处理中普通氯化钾20%作为基肥,其余80%同样分4次追肥,按苗期∶开花期∶果实膨大期∶果实成熟期为1∶3∶3∶1的比例追施。施用控释氯化钾的处理均做基肥一次施入。

    本试验选用直径30 cm、高36 cm,盆底有一个排水孔的陶土盆。每盆先加5 kg沙子在底部,土壤和肥料充分混匀后再装入盆中,每盆装30 kg风干土。2020年4月21日移栽4叶1心番茄幼苗,每盆一株,定植后当天浇水至田间持水量。7天后 (4月28日),按各自处理灌溉量进行灌溉。试验期间用TDR 300土壤水分监测仪测定土壤含水量,用自来水维持土壤含水量 (TDR值∶W100,44.3%~46.7%体积含水量;W80,40.5%~42.1%体积含水量;W60,36.9%~38.2%体积含水量)。W100、W80和W60灌水梯度下番茄生长季的灌水总量分别为141.0、115.0和86.8 L (图1)。在番茄株高30~40 cm时进行吊蔓,出现5穗果时打顶。根据当地农民的习惯进行杂草和病虫害防治。

    图  1  番茄苗期移栽后每周的灌水量
    Figure  1.  Weekly irrigation rate after tomato seedling transplantation

    采用日本Minolta公司生产的SPAD-502叶绿素仪,在开花期 (2020年5月13日)、果实膨大期 (2020年6月8日) 和果实成熟期 (2020年7月5日),随机抽取展开的10片功能叶测量叶片SPAD值。同时,采用美国LI-COR公司生产的LI-6800型便携式光合仪,于果实膨大期,在晴朗、光照充足的上午9:00—11:00测定叶片净光合速率、气孔导度、蒸腾速率等光合参数。

    在果实成熟期,从每个处理中选择3个大小、色泽及发育状况一致的果实,用榨汁机榨取果汁,将果汁通过0.8 mm的筛子,把种子和表皮从汁液中分离出来后,选用均匀的番茄汁测定各品质指标。Vc含量采用2,6-二氯靛酚滴定法测定,可溶性糖和可溶性固形物的含量分别用蒽酮比色法和折光率仪测定。

    番茄果实成熟后,利用电子天平称量每盆果实产量。2020年8月23日试验结束后,从每个处理中取除果实外植株地上部分和完整根系,用去离子水清洗,在105℃下杀青30 min,65℃烘干至恒重,记录干物质量后,再用小型磨样机粉碎,H2SO4–H2O2联合消解,火焰光度法测定植株全钾浓度。果实中全钾浓度的测定方法同上。

    在开花期 (2020年5月25日)、果实膨大期 (2020年6月28日)、果实成熟期 (2020年7月31日) 和采收期 (2020年8月23日) 分别取土壤样品,取样时距根系10 cm处用土钻 (Φ = 3 cm) 对称取2钻土,取土过程中挑出被带出的控释肥料颗粒,然后放回钻孔中并覆土,取出土样后立即放入自封袋中,取样深度为0—20 cm。带回实验室待样品自然风干后,磨细过2 mm筛,供分析化验用。

    土壤性质按照土壤农业化学标准分析方法测定:土壤速效钾含量用1 mol/L NH4Ac (pH = 7) 浸提—火焰光度法测定;土壤pH使用pH计测定 (水土比5∶1);土壤电导率 (EC) 使用电导率仪测定 (水土比5∶1)。

    番茄整个生育期内的总耗水量采用水量平衡法[21]来计算:

    ET = Pr+I+URD–ΔW

    式中,ET为作物蒸腾量即耗水量 (mm);Pr为有效降雨量 (mm);I为灌水量 (mm);U为地下水补给量 (mm);R为地表径流损失量 (mm);D为深层渗漏量 (mm);ΔW为试验初期到末期土壤储水量的变化量 (用TDR 300土壤水分仪测定土壤含水量,进而计算得出),单位为mm。由于试验地点位于温室内,室外降雨不会产生影响,故Pr = 0,又因为设计的单次灌水量较少,不足以形成深层渗漏,所以整个试验过程中没有水从盆中渗出,故RD都可以忽略不计,盆栽试验不涉及地下水位,即U = 0。

    因此,总耗水量公式可简化为:

    ET=IΔW

    式中,I为灌水量,ΔW为试验初期到末期土壤储水量的变化量。

    水分利用效率 (WUE) 为植株单位蒸腾耗水量所生产的果实鲜质量,WUE (kg/m3) = Y/ET,其中Y为果实产量 (g/pot)。

    钾素吸收量 (g/pot) = 植株钾含量×干物质量

    钾肥利用效率(%) = (施钾处理植物吸钾量–不施钾处理植物吸钾量) / 钾施用量×100

    采用Microsoft Excel 2010软件对数据进行处理分析,SAS 8.0统计软件进行方差分析 (ANOVA) 和Duncan’s检验 (P<0.05),并使用Origin 2021软件作图。

    番茄产量和WUE受控释氯化钾和灌水的影响,且达到极显著 (P<0.01) 水平 (表1)。同时,施肥与灌溉对番茄产量和WUE存在极显著 (P<0.01) 的交互作用。K80施钾水平较K100和K60的番茄产量分别提高了4.3%和10.6%,WUE分别提高了4.0%和10.6%。W80灌水梯度较W100和W60显著提高了番茄产量,增产9.8%~16.0%。WUE随灌水量的减少而增加,与W100相比,W80的WUE提高了34.6%。K80W80处理番茄产量最高,比其它施钾处理增产5.5%~29.4%,同时具有较高的WUE。

    表  1  不同处理番茄产量和水分利用效率
    Table  1.  Tomato yield and water use efficiency (WUE) under different treatments
    处理
    Treatment
    产量 Yield
    (g/pot)
    水分利用效率 WUE
    (kg/m3)
    CK1536±22 g10.89±0.16 h
    CF2780±73 e19.72±0.52 g
    K100W1002983±54 c21.16±0.38 f
    K100W803215±47 b27.95±0.41 d
    K100W602873±47 d33.09±0.54 a
    K80W1003143±34 b22.29±0.24 e
    K80W803392±36 a29.49±0.32 c
    K80W602927±35 cd33.72±0.41 a
    K60W1002771±55 e19.65±0.39 g
    K60W803161±70 b27.49±0.61 d
    K60W602621±61 f30.19±0.70 b
    K1003023±155 b27.40±5.12 b
    K803154±201 a28.50±4.94 a
    K602851±245 c25.78±4.70 c
    W1002966±165 b21.03±1.17 c
    W803256±113 a28.31±0.99 b
    W602807±146 c32.34±1.68 a
    P P value
    施肥 Fertilization (K)<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001
    K×W 0.0036 0.0013
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表2可知,控释氯化钾对番茄果实可溶性固形物含量有极显著 (P<0.01) 影响,灌水对Vc (P<0.01)、可溶性糖 (P<0.05) 和可溶性固形物 (P<0.01) 含量均有不同程度的影响。Vc、可溶性糖、可溶性固形物含量随水钾用量的升高均先增后降。K80施钾水平较K100和K60的Vc含量提高了3.4%~3.9%,可溶性糖含量提高了2.2%~6.5%,可溶性固形物含量提高了3.5%~7.4%。W80灌水梯度较W100和W60的Vc含量增加了6.8%~24.0%,可溶性糖含量增加了5.6%~8.8%,可溶性固形物含量增加了6.6%~9.2%。与其他施钾处理相比,K80W80的Vc、可溶性糖和可溶性固形物含量分别增加了5.1%~32.4%、0.3%~15.2%和4.4%~17.8%。

    表  2  不同处理番茄果实品质指标
    Table  2.  Tomato fruit quality index under different treatments
    处理
    Treatment
    Vc
    (g/100 g)
    可溶性糖
    Soluble sugar
    (g/100 g)
    可溶性固形物
    Soluble solids
    (%)
    CK9.95±0.47 e2.14±0.07 d4.30±0.01 gh
    CF13.44±0.40 c2.62±0.08 abc4.50±0.01 e
    K100W10013.63±0.64 bc2.68±0.16 abc4.60±0.08 d
    K100W8014.45±0.40 ab2.87±0.19 ab4.81±0.07 b
    K100W6011.75±0.44 d2.61±0.07 abc4.44±0.07 ef
    K80W10013.75±0.29 bc2.80±0.24 abc4.68±0.04 cd
    K80W8015.19±0.51 a2.88±0.28 a5.02±0.09 a
    K80W6012.25±0.23 d2.68±0.12 abc4.63±0.02 d
    K60W10013.81±0.36 bc2.55±0.09 bc4.36±0.07 fg
    K60W8014.34±0.56 abc2.76±0.14 abc4.73±0.05 bc
    K60W6011.47±0.66 d2.50±0.20 c4.26±0.05 h
    K10013.28±1.28 a2.72±0.17 ab4.62±0.17 b
    K8013.73±1.31 a2.78±0.21 a4.78±0.19 a
    K6013.21±1.40 a2.61±0.17 b4.45±0.22 c
    W10013.73±0.41 b2.68±0.19 ab4.55±0.16 b
    W8014.66±0.58 a2.83±0.19 a4.85±0.14 a
    W6011.82±0.53 c2.60±0.14 b4.44±0.16 c
    PP value
    施肥 Fertilization (K) 0.13820.1097<0.0001
    灌水 Irrigation (W)<0.00010.0322<0.0001
    K×W 0.62860.9635 0.1408
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among different treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    在番茄生长的3个关键时期,控释氯化钾和灌水对叶片SPAD值均产生了极显著 (P<0.01) 影响。如图2所示,在相同生育期,由同一施钾水平下3个不同灌水量处理的SPAD平均值可得,叶片SPAD值开花期大小顺序为K80>K100>K60,果实膨大期和成熟期大小顺序均为K100>K80>K60。与W100和W60相比,W80在开花期、果实膨大期和成熟期的SPAD值分别增加了4.8%~12.0%、1.7%~9.4%和4.6%~14.5%。与CF处理相比,K80W80在开花期、果实膨大期和成熟期的SPAD值分别增加了26.1%、2.1%和9.7%。

    图  2  不同处理番茄叶片SPAD值
    注:柱上不同小写字母表示不同处理间差异显著 (P<0.05)。
    Figure  2.  Tomato leaf SPAD value under different treatments
    Note: Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

    控释氯化钾和灌水对番茄叶片各光合性能指标均有极显著 (P<0.01) 影响,两者的交互作用也达到极显著水平 (表3)。K80较K100和K60的净光合速率、气孔导度和蒸腾速率分别显著增加了4.3%~10.9%、6.5%~11.9%和3.6%~9.5%。W80较W100和W60的净光合速率和蒸腾速率分别显著提高了4.1%~10.3%和8.4%~16.6%,气孔导度随灌水量的增加而增加。与其他施钾处理相比,K80W80净光合速率提高了2.8%~25.7%,蒸腾速率提高了6.9%~41.4%。

    表  3  不同处理番茄光合指标
    Table  3.  Tomato photosynthetic indexes under different treatments
    处理
    Treatment
    净光合速率
    Net photosynthetic rate
    [μmol/(m2·s)]
    气孔导度
    Stomatal conductance
    [mol/(m2·s)]
    蒸腾速率
    Transpiration rate
    [mmol/(m2·s)]
    CK14.83±0.79 g0.54±0.02 d6.19±0.26 f
    CF23.40±0.45 e0.66±0.03 b8.46±0.23 e
    K100W10024.67±0.76 cd0.67±0.02 b10.49±0.16 c
    K100W8026.00±0.22 ab0.61±0.01 c11.19±0.30 b
    K100W6023.93±0.54 de0.60±0.02 c9.92±0.29 d
    K80W10025.93±0.51 ab0.71±0.03 a10.49±0.27 c
    K80W8026.73±1.17 a0.66±0.02 b11.96±0.48 a
    K80W6025.17±0.45 bc0.61±0.01 c10.29±0.22 cd
    K60W10024.00±0.37 de0.61±0.02 c10.27±0.50 cd
    K60W8024.87±0.21 cd0.59±0.01 c10.76±0.50 bc
    K60W6021.27±0.62 f0.56±0.02 d8.85±0.31 e
    K10024.87±1.02 b0.62±0.03 b10.53±0.59 b
    K8025.94±0.97 a0.66±0.05 a10.91±0.84 a
    K6023.38±1.65 c0.59±0.03 c9.96±0.94 c
    W10024.86±0.98 b0.66±0.05 a10.42±0.33 b
    W8025.87±1.02 a0.62±0.03 b11.30±0.65 a
    W6023.46±1.77 c0.59±0.03 c9.69±0.69 c
    PP value
    施肥 (K)
    Fertilization
    <0.0001<0.0001<0.0001
    灌水 (W)
    Irrigation
    <0.0001<0.0001<0.0001
    K×W 0.0074 0.0072 0.0082
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表4结果表明,除果实生物量外,控释氯化钾和灌水对各项指标均产生了极显著 (P<0.01) 影响,在植株生物量和钾肥利用效率上二者的交互作用达显著水平 (P<0.05)。在施钾水平上,K80较K100和K60的植株生物量、果实全钾含量和总吸钾量 (植株和果实) 分别显著提高了3.1%~6.0%、1.5%~3.8%和3.4%~7.8%,钾肥利用效率随控释氯化钾施用量的减少而增加,水分管理方面,W80整体表现最佳,与W100和W60相比,钾肥利用效率显著提高了6.3~7.1个百分点;与其它施钾处理相比,K80W80植株生物量、果实全钾含量和总吸钾量分别提高了4.2%~13.3%、0.7%~7.8%和3.5%~25.1%。

    表  4  不同处理番茄生物量及钾素的吸收和利用效率
    Table  4.  Tomato biomass, K uptake and utilization efficiency under different treatments
    处理
    Treatment
    生物量 Biomass
    (g/pot)
    钾含量 K content
    (g/kg)
    总吸钾量
    K uptake
    (g/pot)
    钾肥利用效率
    K use efficiency
    (%)
    植株 Plant果实 Fruit植株 Plant果实 Fruit
    CK171±5 f65±0 h9.06±0.27 g23.95±0.35 g2.91±0.05 h
    CF254±4 cd120±16 g25.76±0.14 ab34.99±0.27 e10.48±0.52 g32.11±2.21 g
    K100W100255±3 cd134±7 f25.87±0.21 a35.83±0.29 bc11.58±0.38 e36.80±1.61 f
    K100W80263±3 b159±3 abc25.62±0.12 ab36.26±0.33 ab12.67±0.11 b41.43±0.45 e
    K100W60252±3 d150±3 bcd25.16±0.24 cd34.99±0.28 e11.54±0.11 e36.65±0.46 f
    K80W100265±5 b141±11 def25.61±0.11 ab36.36±0.41 a12.09±0.34 cd48.72±1.81 d
    K80W80276±3 a160±11 ab25.45±0.14 bc36.63±0.15 a13.11±0.41 a54.14±2.17 c
    K80W60255±2 cd149±4 cd25.02±0.22 de35.74±0.26 c11.77±0.17 de47.01±0.89 d
    K60W100247±3 e137±3 ef25.23±0.33 cd35.26±0.36 de11.04±0.12 f57.53±0.81 b
    K60W80259±3 c165±4 a24.78±0.31 e35.54±0.19 cd12.31±0.16 bc66.49±1.16 a
    K60W60244±2 e146±4 de24.35±0.27 f33.97±0.35 f10.98±0.16 f57.08±1.16 b
    K100257±6 b148±12 a25.55±0.36 a35.70±0.61 b11.93±0.59 b38.30±2.49 c
    K80265±10 a150±12 a25.36±0.30 a36.24±0.47 a12.33±0.67 a49.95±3.53 b
    K60250±7 c149±13 a24.85±0.40 b34.92±0.76 c11.44±0.65 c60.37±4.63 a
    W100256±9 b137±7 c25.57±0.35 a35.82±0.57 b11.57±0.52 b47.68±8.97 b
    W80266±8 a161±7 a25.28±0.42 b36.14±0.52 a12.70±0.42 a54.02±10.76 a
    W60250±5 c148±4 b24.91±0.35 c34.90±0.80 c11.43±0.37 b46.91±8.75 b
    PP value
    施肥 Fertilization (K)<0.00010.6670<0.0001<0.0001<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
    K×W 0.0402 0.4870 0.7755 0.2939 0.7264 0.0209
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    在25℃静水浸提条件下,控释氯化钾钾素释放曲线 (图3) 呈“S”型,前21天为养分缓慢释放的迟滞期,该时间段内钾素累积释放12.1%;随后22~91天进入钾素释放的加速期,70天内累积64.6%的钾素被释放;92~119天为钾素减速释放的减衰期,该时间段内钾素累积释放8.4%。缓控释肥料行业评价标准 (GB/T 23348—2009) 规定“释放期内肥料养分释放总量不能低于80%”,该控释氯化钾在105天内已累积释放钾素82.4%,符合要求。

    图  3  控释氯化钾在25℃静水和埋于不同灌水梯度下土壤中释放特征曲线
    Figure  3.  Release characteristic curves of controlled-release potassium chloride in 25℃ water and soil under different irrigation gradients

    田间条件下的养分释放特征更能反映肥料实际供肥速率与肥效长短。控释氯化钾在不同灌水梯度土壤中的钾素释放特征曲线 (图3) 均呈“S”型。在W100、W80、W60灌水梯度下,前21天钾素分别累积释放19.0%、10.4%、8.8%;22~91天钾素分别累积释放69.2%、70.5%、60.9%;92~119天钾素分别累积释放2.3%、3.7%、9.9%;试验结束时,钾素分别累积释放90.5%、84.6%、79.6%。

    在番茄生长的4个时期中,表层 (0—20 cm) 土壤速效钾含量受控释氯化钾和灌水的极显著 (P<0.01) 影响。在果实膨大期和采收期,施肥与灌溉对土壤速效钾含量有极显著 (P<0.01) 的交互作用。由图4可知,在相同生育期,由同一施钾水平下3个不同灌水量处理的土壤速效钾平均含量可得,开花期、果实膨大期、果实成熟期和采收期4个时期的土壤速效钾含量大小顺序均为K100>K80>K60。与W100和W60相比,W80在果实膨大期、成熟期和采收期土壤速效钾含量显著提高了3.4%~17.7%、7.4%~13.3%和10.7%~20.7%。

    图  4  不同处理土壤速效钾含量的动态变化
    Figure  4.  Dynamics of soil available potassium content under different treatments

    控释氯化钾和灌水对土壤pH和电导率均产生了极显著影响 (P<0.01),二者的交互作用对pH (P<0.01) 和电导率 (P<0.05) 影响程度不同 (表5)。在不同施钾水平下,pH和电导率表现出的规律不同。pH方面,K80显著高于K100和K60施钾水平,而电导率与施钾水平表现出明显的正相关性。W80灌水梯度下pH提高了0.9%~2.1%,电导率降低了4.9%~8.2%。K80W80与其它施钾处理相比,pH增加了0.6%~4.5%;K80W80处理较其它控释氯化钾处理的电导率降低了0.4%~18.0%。

    表  5  不同处理的土壤pH和电导率
    Table  5.  Soil pH and EC under different treatments
    处理 TreatmentpH电导率 EC (μS/cm)
    CK6.23±0.05 d311.22±8.32 f
    CF6.34±0.05 c373.97±15.67 e
    K100W1006.37±0.03 c515.29±5.97 a
    K100W806.40±0.06 bc471.67±11.41 bc
    K100W606.36±0.07 c528.80±16.34 a
    K80W1006.47±0.03 ab457.45±25.31 cd
    K80W806.51±0.03 a433.84±15.59 d
    K80W606.38±0.05 c487.73±10.91 b
    K60W1006.33±0.02 c437.11±29.18 d
    K60W806.45±0.07 ab435.73±7.00 d
    K60W606.23±0.03 d445.09±10.53 d
    K1006.38±0.05 b505.25±27.68 a
    K806.45±0.07 a459.67±28.36 b
    K606.34±0.10 c439.31±17.16 c
    W1006.39±0.07 b469.95±40.16 b
    W806.45±0.07 a447.08±21.11 c
    W606.32±0.09 c487.21±37.55 a
    PP value
    施肥 Fertilization (K)<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001
    K×W0.00920.0360
    注:土壤pH和电导率于采收期 (2020年8月23日) 测定。同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Soil pH and EC were measured at the harvest time (August 23, 2020). Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    Oweis等[22]和王新等[23]通过水氮耦合研究表明,在一定范围内增加施肥量和灌水量能提高棉花和番茄产量。本研究发现,在番茄增产上,K80和W80分别是钾肥和灌水的最佳用量,K80W80处理产量可达3392 g/pot。作物一定时期的营养状况可通过生物量侧面反映。本试验结果显示,中高灌水量和控释氯化钾施用量有效提高了番茄植株生物量,而果实生物量则是中低量的水分和钾肥优势明显,这应该是由番茄自身遗传因素和生活环境所致,过量的水钾供应使前期植株生长旺盛,但是后期果实却得不到必需的水分和养分,而适宜的水肥协作可以同时兼顾二者,这也体现了植物的可塑性分配[24]。秦启杰等[25]研究指出,中水中肥的组合显著促进了紫甘蓝对各养分的吸收,同时产量也是最高,说明适宜的水肥供应有利于作物对水分和养分的吸收,进而提高产量[26]。本研究发现,番茄产量与总吸钾量以及果实全钾含量随水钾用量的变化规律一致,而植株全钾含量随水钾用量的增加而增加,可见植株对环境的变化非常敏感。水肥互作的关键在于以水促肥、以肥调水[27],通过水肥间的促进效应达到作物增产的效果,对于设施蔬菜高产高效生产具有十分重要的意义。

    Vc、可溶性糖和可溶性固形物含量是衡量果实内在营养品质的重要指标[28]。杜少平等[29]研究表明,种植密度和施氮量均显著影响西瓜品质,但两者互作效应不显著。孔庆波等[30]3年研究结果显示,在滴灌条件下,施钾量为常规用量的80%可以改善香蕉品质,多则无益。武云霞等[31]在稻米水氮耦合研究中指出,灌水量和施氮量对于提高作物品质均存在最大值。本试验发现,控释氯化钾和灌水的交互作用对番茄果实品质的影响不显著 (P>0.05),品质变化幅度与水钾供给水平密切相关。因Vc、可溶性糖、可溶性固形物含量均随水钾用量的增加呈先升后降的趋势,说明适宜用量可提高作物品质,重度水分或养分胁迫下则使品质不再提高甚至下降。由表2可知,影响Vc和可溶性糖含量的环境因子的大小顺序为灌水>控释氯化钾>水钾交互作用,说明灌水量是调控果实品质的主导因素。控释氯化钾对可溶性糖含量影响不显著 (P>0.05),而对可溶性固形物含量的影响达到极显著 (P<0.01) 水平,说明控释氯化钾和可溶性固形物的其他组成物质之间可能存在作用,这还需后期进行研究。

    水分和钾素是影响养分吸收利用的两大环境因素。本试验结果显示,K80、W80的总吸钾量较其它施钾水平和灌水梯度分别有不同程度的提高,可见土壤过干或过涝、施肥量过多或过少均制约着作物对养分的吸收[32]。盆栽番茄根系较浅,养分吸收能力远不及大田作物,这就要求番茄应遵从“少量多次”的施肥模式,而控释氯化钾一次性基施便可达到此效果。胡晓辉等[33]和Bhattacharyya等[34]研究指出,灌水量和养分浓度对肥料利用效率影响显著且均存在阈值,本试验仅灌水量得出相同结论,钾肥利用效率随土壤钾素含量的升高反而降低,其原因可能是作物存在养分需求上限,当番茄积累足够的养分后,多余的钾肥对番茄吸收钾素无显著促进作用,所以随着施肥量的增多,肥料利用效率呈下降趋势。在本研究中,控释氯化钾处理的总吸钾量和钾肥利用效率均显著高于普通氯化钾处理,可见施用控释氯化钾不仅提高了养分的吸收与利用,而且有效优化了施肥模式,减少了人工投入。同时,水钾互作也在影响着水分利用效率。本研究显示,水分利用效率(WUE)随施肥量的增加呈先上升后下降的趋势,在K60到K80之间正增长,K80到K100之间负增长,可见多施肥不能提高WUE,只会造成肥料浪费,WUE随灌水量的增加显著下降。王鹏勃等[35]通过建立水、肥与WUE回归方程可知,WUE随施钾水平的增加呈抛物线趋势,与灌水梯度呈向下的线性关系。栗丽等[36]对冬小麦研究指出,在生育期灌水的条件下,氮肥用量0~210.0 kg/hm2提高了WUE,超过210.0 kg/hm2就会产生负效应,而灌水量与WUE呈正比关系,与本研究结果相反的原因可能是研究对象不同,番茄是一种需水量较大的作物,但根系又承受不了过度的水分胁迫,大量灌水也只会浪费水资源。

    光合作用是植株有机物生产与积累的基本过程,其性能关系到作物产量高低[37]。李生秀等[38]研究表明,施肥可以改善叶片光合能力,增加同化物含量。叶林等[39]研究指出,甜瓜叶片的净光合速率随施肥量的增加先增加,达到峰值后降低。李邵等[40]发现,水肥耦合对黄瓜叶片净光合速率和蒸腾速率影响规律相同,但是不同水分胁迫下随施肥量的变化规律不一致。本试验结果显示,随施钾水平的增加,净光合速率和蒸腾速率呈“低—高—低”的趋势。另外,番茄全生育期叶片SPAD值呈先升后降的趋势,K100始终维持在较高水平,净光合速率和蒸腾速率却是K80优势明显,说明增施肥料有利于提高SPAD值,但是对作物增产并无实际贡献。水肥对光合性能的影响是不同的。土壤水分作为影响植物生长速率的关键性因子,是通过引起叶片气孔开关以及限制新陈代谢功能来调节植株的光合作用[41]。陈华斌等[42]研究发现,叶片气孔导度随灌水量的增加而增加。马瑾等[43]认为,土壤水分过高或过低都会抑制作物蒸腾速率,只有水分维持在中等水平才会使蒸腾速率最大化。通过本研究还可以从另一方面解释WUE变化的原因,灌水量不同时,番茄蒸腾速率增加或降低幅度均大于果实增产或减产幅度,所以WUE随灌水量的增加而降低。水肥互作对作物光合特性的影响机制比较复杂,有待今后的系统研究。

    土壤速效养分是反映土壤肥力的重要指标,表征可被当季作物吸收利用的养分含量[44]。在盆栽试验中,土壤钾素的消耗主要是作物吸收,补给主要来自肥料[45]。本试验条件下,番茄幼苗移栽时平均气温26.8℃,有利于控释氯化钾释放钾素。本研究发现,W100仅在开花期土壤速效钾含量最高,之后3个时期均是W80显著高于W100和W60灌水梯度。Qu等[28]研究表明,高灌处理下控释氯化钾受水分和温度综合调控快速释放钾素 (图3),导致土壤速效钾含量迅速升高,迫使植株在前期过度吸收养分。然而等到作物最大养分利用期,控释氯化钾钾素释放缓慢,致使土壤缺钾,植株对钾素的吸收相应减少[46]。由于W60长期处于缺水状态,使得控释氯化钾钾素释放速率最慢 (图3),土壤速效钾含量始终最低。土壤速效钾含量在果实膨大期到成熟期急剧下降,说明该阶段是番茄钾素吸收高峰期 (图4),吴建繁等[47]研究也证明了这一规律,W80下控释氯化钾养分释放速率早期缓慢,恰在这一阶段达到顶峰 (图3),由此推测出在W80灌水梯度下控释氯化钾钾素释放与番茄吸收需求相契合。

    相关研究表明[48-49],土壤酸化是土壤退化的重要方面之一,同时严重影响着作物的产量和品质,表征为pH降低。钾肥通过释放交换性盐基离子 (K+) 替代土壤胶体上吸附的交换性氢离子 (H+) 从而降低了土壤pH,赵晶等[50] (纯钾)、马凌云等[51] (氯化钾) 和崔光芬等[52] (硫酸钾) 分别施用不同含钾肥料皆证实了这一观点。本试验结果与之相反,原因可能是控释氯化钾在释放K+的同时,也在同步释放Cl,由于Cl的存在,很大程度抵消了替代作用[53],pH不降反增,但番茄是忌氯作物,实际生产中不宜过多投入控释氯化钾。电导率能反映土壤溶液中可溶性离子浓度,也能在一定程度上表示土壤盐渍化程度[54],以水控盐、以肥控盐是防止土壤退化的重要手段。本研究中,W80灌溉梯度下电导率最小,这可能是由于在适宜的灌水量和养分状况下,植物从土壤中吸收大量养分,导致土壤中养分离子浓度降低,最终土壤表现为较低的电导率。缑兆辉等[55]认为,在施肥量越多,灌溉量越小的情况下,土壤电导率增加就越显著,这也在一定程度上印证了本试验结果。

    与全量普通氯化钾多次施用相比,全量控释氯化钾减少20%且一次性施用与72%~80%田间持水量,在促进设施番茄生长、提高水钾利用效率及改善土壤性质方面具有显著的交互效应,合理的水钾协同作用保证了叶片在关键生育期内光合性能和SPAD值维持在较高水平,为高产奠定基础;增加了果实中Vc、可溶性糖和可溶性固形物含量,进一步改善果实品质;促进了番茄对水分、养分的利用,实现番茄生产节水减肥;提高了土壤pH,降低了电导率,减轻了设施生产中土壤酸化和盐渍化。由于控释氯化钾的存在,显著提高了土壤速效钾含量,尤其保证了需钾高峰期养分的持续供应。在本试验条件下,综合番茄产量、品质和水肥利用效率,当田间持水量为72%~80%,K2O用量为0.76 g/kg时表现最佳,可作为设施番茄栽培中灌水和施肥的最优推荐量,同时本研究为设施番茄水肥一体化技术的推广应用提供了技术参数。

  • 图  1   番茄苗期移栽后每周的灌水量

    Figure  1.   Weekly irrigation rate after tomato seedling transplantation

    图  2   不同处理番茄叶片SPAD值

    注:柱上不同小写字母表示不同处理间差异显著 (P<0.05)。

    Figure  2.   Tomato leaf SPAD value under different treatments

    Note: Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).

    图  3   控释氯化钾在25℃静水和埋于不同灌水梯度下土壤中释放特征曲线

    Figure  3.   Release characteristic curves of controlled-release potassium chloride in 25℃ water and soil under different irrigation gradients

    图  4   不同处理土壤速效钾含量的动态变化

    Figure  4.   Dynamics of soil available potassium content under different treatments

    表  1   不同处理番茄产量和水分利用效率

    Table  1   Tomato yield and water use efficiency (WUE) under different treatments

    处理
    Treatment
    产量 Yield
    (g/pot)
    水分利用效率 WUE
    (kg/m3)
    CK1536±22 g10.89±0.16 h
    CF2780±73 e19.72±0.52 g
    K100W1002983±54 c21.16±0.38 f
    K100W803215±47 b27.95±0.41 d
    K100W602873±47 d33.09±0.54 a
    K80W1003143±34 b22.29±0.24 e
    K80W803392±36 a29.49±0.32 c
    K80W602927±35 cd33.72±0.41 a
    K60W1002771±55 e19.65±0.39 g
    K60W803161±70 b27.49±0.61 d
    K60W602621±61 f30.19±0.70 b
    K1003023±155 b27.40±5.12 b
    K803154±201 a28.50±4.94 a
    K602851±245 c25.78±4.70 c
    W1002966±165 b21.03±1.17 c
    W803256±113 a28.31±0.99 b
    W602807±146 c32.34±1.68 a
    P P value
    施肥 Fertilization (K)<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001
    K×W 0.0036 0.0013
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  2   不同处理番茄果实品质指标

    Table  2   Tomato fruit quality index under different treatments

    处理
    Treatment
    Vc
    (g/100 g)
    可溶性糖
    Soluble sugar
    (g/100 g)
    可溶性固形物
    Soluble solids
    (%)
    CK9.95±0.47 e2.14±0.07 d4.30±0.01 gh
    CF13.44±0.40 c2.62±0.08 abc4.50±0.01 e
    K100W10013.63±0.64 bc2.68±0.16 abc4.60±0.08 d
    K100W8014.45±0.40 ab2.87±0.19 ab4.81±0.07 b
    K100W6011.75±0.44 d2.61±0.07 abc4.44±0.07 ef
    K80W10013.75±0.29 bc2.80±0.24 abc4.68±0.04 cd
    K80W8015.19±0.51 a2.88±0.28 a5.02±0.09 a
    K80W6012.25±0.23 d2.68±0.12 abc4.63±0.02 d
    K60W10013.81±0.36 bc2.55±0.09 bc4.36±0.07 fg
    K60W8014.34±0.56 abc2.76±0.14 abc4.73±0.05 bc
    K60W6011.47±0.66 d2.50±0.20 c4.26±0.05 h
    K10013.28±1.28 a2.72±0.17 ab4.62±0.17 b
    K8013.73±1.31 a2.78±0.21 a4.78±0.19 a
    K6013.21±1.40 a2.61±0.17 b4.45±0.22 c
    W10013.73±0.41 b2.68±0.19 ab4.55±0.16 b
    W8014.66±0.58 a2.83±0.19 a4.85±0.14 a
    W6011.82±0.53 c2.60±0.14 b4.44±0.16 c
    PP value
    施肥 Fertilization (K) 0.13820.1097<0.0001
    灌水 Irrigation (W)<0.00010.0322<0.0001
    K×W 0.62860.9635 0.1408
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among different treatments (P<0.05).
    下载: 导出CSV

    表  3   不同处理番茄光合指标

    Table  3   Tomato photosynthetic indexes under different treatments

    处理
    Treatment
    净光合速率
    Net photosynthetic rate
    [μmol/(m2·s)]
    气孔导度
    Stomatal conductance
    [mol/(m2·s)]
    蒸腾速率
    Transpiration rate
    [mmol/(m2·s)]
    CK14.83±0.79 g0.54±0.02 d6.19±0.26 f
    CF23.40±0.45 e0.66±0.03 b8.46±0.23 e
    K100W10024.67±0.76 cd0.67±0.02 b10.49±0.16 c
    K100W8026.00±0.22 ab0.61±0.01 c11.19±0.30 b
    K100W6023.93±0.54 de0.60±0.02 c9.92±0.29 d
    K80W10025.93±0.51 ab0.71±0.03 a10.49±0.27 c
    K80W8026.73±1.17 a0.66±0.02 b11.96±0.48 a
    K80W6025.17±0.45 bc0.61±0.01 c10.29±0.22 cd
    K60W10024.00±0.37 de0.61±0.02 c10.27±0.50 cd
    K60W8024.87±0.21 cd0.59±0.01 c10.76±0.50 bc
    K60W6021.27±0.62 f0.56±0.02 d8.85±0.31 e
    K10024.87±1.02 b0.62±0.03 b10.53±0.59 b
    K8025.94±0.97 a0.66±0.05 a10.91±0.84 a
    K6023.38±1.65 c0.59±0.03 c9.96±0.94 c
    W10024.86±0.98 b0.66±0.05 a10.42±0.33 b
    W8025.87±1.02 a0.62±0.03 b11.30±0.65 a
    W6023.46±1.77 c0.59±0.03 c9.69±0.69 c
    PP value
    施肥 (K)
    Fertilization
    <0.0001<0.0001<0.0001
    灌水 (W)
    Irrigation
    <0.0001<0.0001<0.0001
    K×W 0.0074 0.0072 0.0082
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  4   不同处理番茄生物量及钾素的吸收和利用效率

    Table  4   Tomato biomass, K uptake and utilization efficiency under different treatments

    处理
    Treatment
    生物量 Biomass
    (g/pot)
    钾含量 K content
    (g/kg)
    总吸钾量
    K uptake
    (g/pot)
    钾肥利用效率
    K use efficiency
    (%)
    植株 Plant果实 Fruit植株 Plant果实 Fruit
    CK171±5 f65±0 h9.06±0.27 g23.95±0.35 g2.91±0.05 h
    CF254±4 cd120±16 g25.76±0.14 ab34.99±0.27 e10.48±0.52 g32.11±2.21 g
    K100W100255±3 cd134±7 f25.87±0.21 a35.83±0.29 bc11.58±0.38 e36.80±1.61 f
    K100W80263±3 b159±3 abc25.62±0.12 ab36.26±0.33 ab12.67±0.11 b41.43±0.45 e
    K100W60252±3 d150±3 bcd25.16±0.24 cd34.99±0.28 e11.54±0.11 e36.65±0.46 f
    K80W100265±5 b141±11 def25.61±0.11 ab36.36±0.41 a12.09±0.34 cd48.72±1.81 d
    K80W80276±3 a160±11 ab25.45±0.14 bc36.63±0.15 a13.11±0.41 a54.14±2.17 c
    K80W60255±2 cd149±4 cd25.02±0.22 de35.74±0.26 c11.77±0.17 de47.01±0.89 d
    K60W100247±3 e137±3 ef25.23±0.33 cd35.26±0.36 de11.04±0.12 f57.53±0.81 b
    K60W80259±3 c165±4 a24.78±0.31 e35.54±0.19 cd12.31±0.16 bc66.49±1.16 a
    K60W60244±2 e146±4 de24.35±0.27 f33.97±0.35 f10.98±0.16 f57.08±1.16 b
    K100257±6 b148±12 a25.55±0.36 a35.70±0.61 b11.93±0.59 b38.30±2.49 c
    K80265±10 a150±12 a25.36±0.30 a36.24±0.47 a12.33±0.67 a49.95±3.53 b
    K60250±7 c149±13 a24.85±0.40 b34.92±0.76 c11.44±0.65 c60.37±4.63 a
    W100256±9 b137±7 c25.57±0.35 a35.82±0.57 b11.57±0.52 b47.68±8.97 b
    W80266±8 a161±7 a25.28±0.42 b36.14±0.52 a12.70±0.42 a54.02±10.76 a
    W60250±5 c148±4 b24.91±0.35 c34.90±0.80 c11.43±0.37 b46.91±8.75 b
    PP value
    施肥 Fertilization (K)<0.00010.6670<0.0001<0.0001<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001<0.0001<0.0001<0.0001<0.0001
    K×W 0.0402 0.4870 0.7755 0.2939 0.7264 0.0209
    注:同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  5   不同处理的土壤pH和电导率

    Table  5   Soil pH and EC under different treatments

    处理 TreatmentpH电导率 EC (μS/cm)
    CK6.23±0.05 d311.22±8.32 f
    CF6.34±0.05 c373.97±15.67 e
    K100W1006.37±0.03 c515.29±5.97 a
    K100W806.40±0.06 bc471.67±11.41 bc
    K100W606.36±0.07 c528.80±16.34 a
    K80W1006.47±0.03 ab457.45±25.31 cd
    K80W806.51±0.03 a433.84±15.59 d
    K80W606.38±0.05 c487.73±10.91 b
    K60W1006.33±0.02 c437.11±29.18 d
    K60W806.45±0.07 ab435.73±7.00 d
    K60W606.23±0.03 d445.09±10.53 d
    K1006.38±0.05 b505.25±27.68 a
    K806.45±0.07 a459.67±28.36 b
    K606.34±0.10 c439.31±17.16 c
    W1006.39±0.07 b469.95±40.16 b
    W806.45±0.07 a447.08±21.11 c
    W606.32±0.09 c487.21±37.55 a
    PP value
    施肥 Fertilization (K)<0.0001<0.0001
    灌水 Irrigation (W)<0.0001<0.0001
    K×W0.00920.0360
    注:土壤pH和电导率于采收期 (2020年8月23日) 测定。同列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
    Note: Soil pH and EC were measured at the harvest time (August 23, 2020). Values followed by different lowercase letters in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV
  • [1]

    Gao Y M, Tian P, Li J, et al. Transcriptional changes during tomato ripening and influence of brackish water irrigation on fruit transcriptome and sugar content[J]. Plant Physiology and Biochemistry, 2019, 145(5): 21–33.

    [2] 贺会强, 陈凯利, 邹志荣, 李丽霞. 不同施肥水平对日光温室番茄产量和品质的影响[J]. 西北农林科技大学学报(自然科学版), 2012, 40(7): 135–140. He H Q, Chen K L, Zou Z R, Li L X. Effects of different fertilization levels on yield and quality of greenhouse tomato[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(7): 135–140.

    He H Q, Chen K L, Zhou Z R, Li L X. Effects of different fertilization levels on yield and quality of greenhouse tomato[J]. Journal of Northwest A&F University (Natural Science Edition), 2012, 40(7): 135-140.

    [3] 金辉, 侯东颖, 张曼, 等. 水肥耦合对大棚西瓜产量、品质及养分吸收的影响[J]. 中国土壤与肥料, 2021(2): 141–148. Jin H, Hou D Y, Zhang M, et al. Effects of water and fertilizer combinations on yield, quality and nutrient absorption of watermelon in greenhouse[J]. Soil and Fertilizer Sciences in China, 2021(2): 141–148. DOI: 10.11838/sfsc.1673-6257.20059

    Jin H, Hou D Y, Zhang M, et al. Effects of water and fertilizer combinations on yield, quality and nutrient absorption of watermelon in greenhouse[J]. Soils and Fertilizers Sciences in China, 2021(2): 141-148. DOI: 10.11838/sfsc.1673-6257.20059

    [4] 黄绍文, 王玉军, 金继运, 唐继伟. 我国主要菜区土壤盐分、酸碱性和肥力状况[J]. 植物营养与肥料学报, 2011, 17(4): 906–918. Huang S W, Wang Y J, Jin J Y, Tang J W. Status of salinity, pH and nutrients in soil in main vegetable production regions in China[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 906–918. DOI: 10.11674/zwyf.2011.1104

    Huang S W, Wang Y J, Jin J Y, Tang J W. Status of salinity, pH and nutrients in soil in main vegetable production regions in China [J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 906-918. DOI: 10.11674/zwyf.2011.1104

    [5] 袁宇霞, 张富仓, 张燕, 索岩松. 滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响[J]. 干旱地区农业研究, 2013, 31(1): 76–83. Yuan Y X, Zhang F C, Zhang Y, Suo Y S. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 76–83. DOI: 10.3969/j.issn.1000-7601.2013.01.015

    Yuan Y X, Zhang F C, Zhang Y, Suo Y S. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse [J]. Agricultural Research in the Arid Areas, 2013, 31(1): 76-83. DOI: 10.3969/j.issn.1000-7601.2013.01.015

    [6] 韦彩会, 董文斌, 何永群, 等. 新型有机肥料对连作西瓜生长、产量及品质的影响[J]. 北方园艺, 2017(8): 20–24. Wei C H, Dong W B, He Y Q, et al. Effects of new organic fertilizer on growth and yield and quality of watermelon[J]. Northern Horticulture, 2017(8): 20–24.

    Wei C H, Dong W B, He Y Q, et al. Effects of new organic fertilizer on growth and yield and quality of watermelon[J]. Northern Horticulture, 2017, (8): 20-24.

    [7] 付秋萍. 黄土高原冬小麦水氮高效利用及优化耦合研究[D]. 北京: 中国科学院大学博士学位论文, 2013.

    Fu Q P. Study of water and fertilizer efficient utilization and coupling on winter wheat of the Loess Plateau [D]. Beijing: PhD Dissertation of University of Chinese Academy of Sciences, 2013.

    [8] 张文元, 郭晓敏, 涂淑萍, 胡冬南. 水肥对高产无性系油茶果实产量的影响[J]. 土壤学报, 2015, 52(4): 768–775. Zhang W Y, Guo X M, Tu S P, Hu D N. Effect of water and fertilizer on fruit yield of high-yielding clonal Camellia oleifera abel[J]. Acta Pedologica Sinica, 2015, 52(4): 768–775.

    Zhang W Y, Guo X M, Tu S P, Hu D N. Effect of water and fertilizer on fruit yield of high-yielding clonal camellia oleifera abel [J]. Acta Pedologica Sinica, 2015, 52(4): 768-775.

    [9] 刘小飞, 费良军, 孟兆江, 等. 水分养分协同对冬小麦干物质运转和氮吸收利用的影响[J]. 植物营养与肥料学报, 2018, 24(4): 905–914. Liu X F, Fei L J, Meng Z J, et al. Interactive effects of water and fertilization on biomass translocation and nitrogen uptake and utilization of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 905–914. DOI: 10.11674/zwyf.17399

    Liu X F, Fei L J, Meng Z J, et al. Interactive effects of water and fertilization on biomass translocation and nitrogen uptake and utilization of winter wheat [J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 905-914. DOI: 10.11674/zwyf.17399

    [10]

    Gutiérrez-Boem F H, Thomas G W. Phosphorus nutrition and water deficits in field-grown soybeans[J]. Plant and Soil, 1998, 207(1): 87–96. DOI: 10.1023/A:1004469403667

    [11]

    Hamzei J. Seed, oil, and protein yields of canola under combinations of irrigation and nitrogen application[J]. Agronomy Journal, 2011, 103(4): 1152–1158. DOI: 10.2134/agronj2011.0018

    [12] 唐宏亮, 马领然, 张春潮, 段霄霄. 水分和磷对苗期玉米根系形态和磷吸收的耦合效应[J]. 中国生态农业学报, 2016, 24(5): 582–589. Tang H L, Ma L R, Zhang C C, Duan X X. Coupled effect of water and phosphorus on root growth and phosphorus uptake of maize at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 582–589.

    Tang H L, Ma L R, Zhang C C, Duan X X. Coupled effect of water and phosphorus on root growth and phosphorus uptake of maize at seedling stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(5): 582-589.

    [13]

    Besford R T, Maw G A. Effect of potassium nutrition on tomato plant growth and fruit development[J]. Plant and Soil, 1975, 42(2): 395–412. DOI: 10.1007/BF00010015

    [14]

    Chen J L, Kang S Z, Du T S, et al. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition[J]. Agricultural Water Management, 2014, 146(5): 131–148.

    [15]

    Qu Z M, Chen Q, Feng H J, et al. Interactive effect of irrigation and blend ratio of controlled release potassium chloride and potassium chloride on greenhouse tomato production in the Yellow River Basin of China[J]. Agricultural Water Management, 2022, 261: 107346. DOI: 10.1016/j.agwat.2021.107346

    [16] 耿计彪, 马强, 张民, 等. 包膜氯化钾一次基施对棉花生长周期钾素供应、产量及品质的影响[J]. 植物营养与肥料学报, 2016, 22(4): 1064–1070. Geng J B, Ma Q, Zhang M, et al. Effects of complete basal application of coated potassium chloride on yield, fiber quality and soil available potassium of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1064–1070. DOI: 10.11674/zwyf.15139

    Geng J B, Ma Q, Zhang M, et al. Effects of complete basal application of coated potassium chloride on yield, fiber quality and soil available potassium of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 1064–1070. DOI: 10.11674/zwyf.15139

    [17]

    Yang X Y, Li C L, Zhang Q, et al. Effects of polymer-coated potassium chloride on cotton yield, leaf senescence and soil potassium[J]. Field Crops Research, 2017, 212: 145–152. DOI: 10.1016/j.fcr.2017.07.019

    [18]

    Chen Q, Li Z L, Qu Z M, et al. Maize yield and root morphological characteristics affected by controlled-release diammonium phosphate and Paecilomyces variotii extracts[J]. Field Crops Research, 2020, 255: 107862. DOI: 10.1016/j.fcr.2020.107862

    [19] HG/T4215—2011, 缓释肥料[S].

    HG/T4215—2011, Slow release fertilizer[S].

    [20]

    Gao X, Li C L, Zhang M, et al. Controlled release urea improved the nitrogen use efficiency, yield and quality of potato (Solanum tuberosum L. ) on silt loamy soil[J]. Field Crops Research, 2015, 181: 60–68. DOI: 10.1016/j.fcr.2015.07.009

    [21] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.

    [22]

    Oweis T Y, Farahani H J, Hachum A Y. Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria[J]. Agricultural Water Management, 2011, 98(8): 1239–1248. DOI: 10.1016/j.agwat.2011.02.009

    [23] 王新, 马富裕, 刁明, 等. 不同施氮水平下加工番茄植株生长和氮素积累与利用率的动态模拟[J]. 应用生态学报, 2014, 25(4): 1043–1050. Wang X, Ma F Y, Diao M, et al. Dynamics simulation of plant growth, N accumulation and utilization of processing tomato at different N application rates[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1043–1050.

    Wang X, Ma F Y, Diao M, et al. Dynamics simulation of plant growth, N accumulation and utilization of processing tomato at different N application rates[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 1043–1050.

    [24]

    Geng Y P, Pan X Y, Xu C Y, et al. Phenotypic plasticity of invasive alternanthera philoxeroides in relation to different water availability compared to its native congener[J]. Acta Oecologica, 2006, 30(3): 380–385. DOI: 10.1016/j.actao.2006.07.002

    [25] 秦启杰, 吕剑, 冯致, 等. 高原夏季露地紫甘蓝产量、品质及养分吸收对不同水肥组合的响应[J]. 甘肃农业大学学报, 2020, 55(5): 56–65,72. Qin Q J, Lü J, Feng Z, et al. Response of yield, quality and nutrient absorption of purple cabbage to different irrigation and fertilizer combinations[J]. Journal of Gansu Agricultural University, 2020, 55(5): 56–65,72.

    Qin Q J, Lv J, Feng Z, et al. Response of yield, quality and nutrient absorption of purple cabbage to different irrigation and fertilizer combinations[J]. Journal of Gansu Agricultural University, 2020, 55(5): 56–65, 72.

    [26]

    Badr M A, Hussein S, El-Tohamy W A, Gruda N. Nutrient uptake and yield of tomato under various methods of fertilizer application and levels of fertigation in arid lands[J]. Gesunde Pflanzen, 2010, 62(1): 11–19. DOI: 10.1007/s10343-010-0219-5

    [27]

    Hebbar S S, Ramachandrappa B K, Nanjappa H V, Prabhakar M. Studies on NPK drip fertigation in field-grown tomato (Lycopersicon esculentum Mill. )[J]. European Journal of Agronomy, 2004, 21(1): 117–127. DOI: 10.1016/S1161-0301(03)00091-1

    [28]

    Qu Z M, Qi X C, Liu Y L, et al. Interactive effect of irrigation and polymer-coated potassium chloride on tomato production in a greenhouse[J]. Agricultural Water Management, 2020, 235: 106149. DOI: 10.1016/j.agwat.2020.106149

    [29] 杜少平, 马忠明, 薛亮. 密度、氮肥互作对旱砂田西瓜产量、品质及氮肥利用率的影响[J]. 植物营养与肥料学报, 2013, 19(1): 150–157. Du S P, Ma Z M, Xue L. Effects of interaction between density and nitrogen on the yield, quality and nitrogen use efficiency of watermelon in gravel-mulched field[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 150–157.

    Du S P, Ma Z M, Xue L. Effects of interaction between density and nitrogen on the yield, quality and nitrogen use efficiency of watermelon in gravel-mulched field[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 150–157.

    [30] 孔庆波, 栗方亮, 张青. 滴灌条件下减量施钾对香蕉产量及土壤钾素平衡的影响[J]. 植物营养与肥料学报, 2021, 27(2): 312–321. Kong Q B, Li F L, Zhang Q. Effect of potassium fertilizer reduction on banana yield and soil potassium balance under dripping irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 312–321. DOI: 10.11674/zwyf.20369

    Kong Q B, Li F L, Zhang Q. Effect of potassium fertilizer reduction on banana yield and soil potassium balance under dripping irrigation [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 312–321. DOI: 10.11674/zwyf.20369

    [31] 武云霞, 刘芳艳, 孙永健, 等. 水氮互作对直播稻产量及稻米品质的影响[J]. 四川农业大学学报, 2019, 37(5): 604–610,622. Wu Y X, Liu F Y, Sun Y J, et al. Effect of water and nitrogen interaction on yield and quality of direct seeding rice[J]. Journal of Sichuan Agricultural University, 2019, 37(5): 604–610,622.

    Wu Y X, Liu F Y, Sun Y J, et al. Effect of water and nitrogen interaction on yield and quality of direct seeding rice [J]. Journal of Sichuan Agricultural University, 2019, 37(5): 604–610, 622.

    [32] 马彦霞, 张玉鑫, 王晓巍. 河西绿洲区大棚甘蓝产量、品质和养分吸收对不同水肥组合的响应[J]. 水土保持学报, 2018, 32(5): 270–276. Ma Y X, Zhang Y X, Wang X W. Response of yield, quality and nutrient absorption of greenhouse cabbage to different combinations of water and fertilizer in Hexi Oasis[J]. Journal of Soil and Water Conservation, 2018, 32(5): 270–276.

    Ma Y X, Zhang Y X, Wang X W. Response of yield, quality and nutrient absorption of greenhouse cabbage to different combinations of water and fertilizer in Hexi Oasis[J]. Journal of Soil and Water Conservation, 2018, 32(5): 270–276.

    [33] 胡晓辉, 高子星, 马永博, 等. 基于产量品质及水肥利用率的袋培辣椒水肥耦合方案[J]. 农业工程学报, 2020, 36(17): 81–89. Hu X H, Gao Z X, Ma Y B, et al. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 81–89. DOI: 10.11975/j.issn.1002-6819.2020.17.010

    Hu X H, Gao Z X, Ma Y B, et al. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 81–89. DOI: 10.11975/j.issn.1002-6819.2020.17.010

    [34]

    Bhattacharyya K, Das T, Ray K, et al. Yield and nutrient-water use by maize exposed to moisture stress and K fertilizers in an inceptisol of West Bengal, India[J]. Agricultural Water Management, 2018, 206: 31–41. DOI: 10.1016/j.agwat.2018.04.038

    [35] 王鹏勃, 李建明, 丁娟娟, 等. 水肥耦合对温室袋培番茄品质、产量及水分利用效率的影响[J]. 中国农业科学, 2015, 48(2): 314–323. Wang P B, Li J M, Ding J J, et al. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag[J]. Scientia Agricultura Sinica, 2015, 48(2): 314–323. DOI: 10.3864/j.issn.0578-1752.2015.02.11

    Wang P B, Li J M, Ding J J, et al. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag [J]. Scientia Agricultura Sinica, 2015, 48(2): 314–323. DOI: 10.3864/j.issn.0578-1752.2015.02.11

    [36] 栗丽, 洪坚平, 王宏庭, 等. 水氮处理对冬小麦生长、产量和水氮利用效率的影响[J]. 应用生态学报, 2013, 24(5): 1367–1373. Li L, Hong J P, Wang H T, et al. Effects of watering and nitrogen fertilization on the growth, grain yield, and water and nitrogen use efficiency of winter wheat[J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1367–1373.

    Li L, Hong J P, Wang H T, et al. Effects of watering and nitrogen fertilization on the growth, grain yield, and water and nitrogen use efficiency of winter wheat [J]. Chinese Journal of Applied Ecology, 2013, 24(5): 1367–1373.

    [37] 王进斌, 谢军红, 李玲玲, 等. 氮肥运筹对陇中旱农区玉米光合特性及产量的影响[J]. 草业学报, 2019, 28(1): 60–69. Wang J B, Xie J H, Li L L, et al. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China[J]. Acta Prataculturae Sinica, 2019, 28(1): 60–69. DOI: 10.11686/cyxb2018096

    Wang J B, Xie J H, Li L L, et al. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China [J]. Acta Prataculturae Sinica, 2019, 28(1): 60–69. DOI: 10.11686/cyxb2018096

    [38] 李生秀, 李世清, 高亚军, 等. 施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J]. 干旱地区农业研究, 1994(1): 38–46. Li S X, Li S Q, Gao Y J, et al. The mechanism and effects of N fertilization in increasing water use efficiency[J]. Agricultural Research in the Arid Areas, 1994(1): 38–46. DOI: 10.3321/j.issn:1000-7601.1994.01.014

    Li S X, Li S Q, Gao Y J, et al. The mechanism and effects of N fertilization in increasing water use efficiency [J]. Agricultural Research in the Arid Areas, 1994, (1): 38–46. DOI: 10.3321/j.issn:1000-7601.1994.01.014

    [39] 叶林, 赵霞, 纳学伟, 等. 水肥耦合对日光温室厚皮甜瓜光合速率及产量的影响[J]. 北方园艺, 2016(1): 34–38. Ye L, Zhao X, Na X W, et al. Effects of water-fertilizer coupling on muskmelon photosynthesis and yield in greenhouse[J]. Northern Horticulture, 2016(1): 34–38.

    Ye L, Zhao X, Na X W, et al. Effects of water-fertilizer coupling on muskmelon photosynthesis and yield in greenhouse [J]. Northern Horticulture, 2016(1): 34–38.

    [40] 李邵, 薛绪掌, 郭文善, 等. 水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响[J]. 植物营养与肥料学报, 2010, 16(2): 376–381. Li S, Xue X Z, Guo W S, et al. Effects of water and fertilizer coupling on yield and water use efficiency in greenhouse potted cucumber[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 376–381. DOI: 10.11674/zwyf.2010.0217

    Li S, Xue X Z, Guo W S, et al. Effects of water and fertilizer coupling on yield and water use efficiency in greenhouse potted cucumber [J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(2): 376-381. DOI: 10.11674/zwyf.2010.0217

    [41] 王培娟, 马玉平, 霍治国, 等. 土壤水分对冬小麦叶片光合速率影响模型构建[J]. 应用气象学报, 2020, 31(3): 267–279. Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat[J]. Journal of Applied Meteorological Science, 2020, 31(3): 267–279. DOI: 10.11898/1001-7313.20200302

    Wang P J, Ma Y P, Huo Z G, et al. Construction of the model for soil moisture effects on leaf photosynthesis rate of winter wheat [J]. Journal of Applied Meteorological Science, 2020, 31(3): 267–279. DOI: 10.11898/1001-7313.20200302

    [42] 陈华斌, 田军仓, 李王成, 沈晖. 基于水肥耦合的滴灌西兰花光合-产量-品质试验及综合评价[J]. 水土保持学报, 2021, 35(6): 235–242. Chen H B, Tian J C, Li W C, Shen H. Experiment and comprehensive evaluation of photosynthesis, yield and quality of broccoli under drip irrigation based on water and fertilizer coupling[J]. Journal of Soil and Water Conservation, 2021, 35(6): 235–242.

    Chen H B, Tian J C, Li W C, Shen H. Experiment and comprehensive evaluation of photosynthesis, yield and quality of broccoli under drip irrigation based on water and fertilizer coupling[J]. Journal of Soil and Water Conservation, 2021, 35(6): 235-242.

    [43] 马瑾, 罗珠珠, 牛伊宁. 水分和氮素水平对春小麦光合特性和水分利用的影响[J]. 作物研究, 2020, 34(4): 308–314. Ma J, Luo Z Z, Niu Y N. Effects of water and nitrogen levels on photosynthetic characteristics and water utilization of spring wheat[J]. Crop Research, 2020, 34(4): 308–314.

    Ma J, Luo Z Z, Niu Y N. Effects of water and nitrogen levels on photosynthetic characteristics and water utilization of spring wheat [J]. Crop Research, 2020, 34(4): 308–314.

    [44] 陆欣. 土壤肥料学(第2版)[M]. 北京: 中国农业大学出版社, 2011.

    Lu X. Soil and fertilizer science (2nd edition)[M]. Beijing: China Agricultural University Press, 2011.

    [45] 郭新送, 丁方军, 陈士更, 王焕喜. 不同用量包膜氯化钾对马铃薯产量、品质及土壤钾供应的影响[J]. 水土保持学报, 2017, 31(6): 296–301. Guo X S, Ding F J, Chen S G, Wang H X. Effects of different polymer-coated potassium chloride dosages on potato yield, quality and soil potassium supply[J]. Journal of Soil and Water Conservation, 2017, 31(6): 296–301.

    Guo X S, Ding F J, Chen S G, Wang H X. Effects of different polymer-coated potassium chloride dosages on potato yield, quality and soil potassium supply [J]. Journal of Soil and Water Conservation, 2017, 31(6): 296–301.

    [46]

    Yang Y C, Zhang M, Li C Y, et al. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield[J]. Soil Science Society of America Journal, 2012, 76(6): 2307–2317. DOI: 10.2136/sssaj2012.0173

    [47] 吴建繁, 王运华, 贺建德, 等. 京郊保护地番茄氮磷钾肥料效应及其吸收分配规律研究[J]. 植物营养与肥料学报, 2000, 6(4): 409–416. Wu J F, Wang Y H, He J D, et al. Study on the effect, absorption and distribution of NPK on tomato in greenhouse of Beijing suburbs[J]. Journal of Plant Nutrition and Fertilizers, 2000, 6(4): 409–416. DOI: 10.3321/j.issn:1008-505X.2000.04.008

    Wu J F, Wang Y H, He J D, et al. Study on the effect, absorption and distribution of NPK on tomato in greenhouse of Beijing suburbs [J]. Journal of Plant Nutrition and Fertilizers, 2000, (4): 409-416. DOI: 10.3321/j.issn:1008-505X.2000.04.008

    [48] 唐继伟, 李娟, 车升国, 等. 长期单施不同量化肥和有机肥后盐化潮土pH和EC的变化[J]. 植物营养与肥料学报, 2019, 25(8): 1300–1307. Tang J W, Li J, Che S G, et al. Changes in pH and EC of salinized fluvo-aquic soil after long-term application of chemical or organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1300–1307. DOI: 10.11674/zwyf.18512

    Tang J W, Li J, Che S G, et al. Changes in pH and EC of salinized fluvo-aquic soil after long-term application of chemical or organic fertilizers [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1300–1307. DOI: 10.11674/zwyf.18512

    [49] 李庆军, 林英, 李俊良, 等. 土壤pH和不同酸化土壤改良剂对苹果果实品质的影响[J]. 中国农学通报, 2010, 26(14): 209–213. Li Q J, Lin Y, Li J L, et al. Effects of soil pH and some meliorators of acidified soil on fruit qualities of apples (Mulus domestica)[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 209–213.

    Li Q J, Lin Y, Li J L, et al. Effects of soil pH and some meliorators of acidified soil on fruit qualities of apples (Mulus domestica) [J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 209–213.

    [50] 赵晶, 冯文强, 秦鱼生, 等. 不同氮磷钾肥对土壤pH和镉有效性的影响[J]. 土壤学报, 2010, 47(5): 953–961. Zhao J, Feng W Q, Qin Y S, et al. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability[J]. Acta Pedologica Sinica, 2010, 47(5): 953–961. DOI: 10.11766/trxb200904070151

    Zhao J, Feng W Q, Qin Y S, et al. Effects of application of nitrogen, phosphorus and potassium fertilizers on soil pH and cadmium availability [J]. Acta Pedologica Sinica, 2010, 47(5): 953–961. DOI: 10.11766/trxb200904070151

    [51] 马凌云, 王月, 蔡芳芳, 等. 长期施用含氯化肥对棕壤硝化作用及氨氧化微生物的影响[J]. 植物营养与肥料学报, 2019, 25(5): 824–831. Ma L Y, Wang Y, Cai F F, et al. Effects of long-term application of chlorinated fertilizer on nitrification and ammonia oxidizing microorganisms in brown soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 824–831. DOI: 10.11674/zwyf.18328

    Ma L Y, Wang Y, Cai F F, et al. Effects of long-term application of chlorinated fertilizer on nitrification and ammonia oxidizing microorganisms in brown soil [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 824–831. DOI: 10.11674/zwyf.18328

    [52] 崔光芬, 杜文文, 吴学尉, 等. 氮磷钾施肥水平对百合切花与籽球品质的影响[J]. 中国农学通报, 2021, 37(19): 65–70. Cui G F, Du W W, Wu X W, et al. Effects of fertilization levels of nitrogen, phosphorus and potassium on the quality of cut flowers and bulb-lets of lily[J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 65–70. DOI: 10.11924/j.issn.1000-6850.casb2020-0451

    Cui G F, Du W W, Wu X W, et al. Effects of fertilization levels of nitrogen, phosphorus and potassium on the quality of cut flowers and bulb-lets of lily [J]. Chinese Agricultural Science Bulletin, 2021, 37(19): 65–70. DOI: 10.11924/j.issn.1000-6850.casb2020-0451

    [53] 宋文峰, 王超, 陈荣府, 等. 长期不同施肥下小麦离子吸收对土壤酸化贡献能力的比较[J]. 土壤, 2017, 49(1): 7–12. Song W F, Wang C, Chen R F, et al. Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization[J]. Soils, 2017, 49(1): 7–12.

    Song W F, Wang C, Chen R F, et al. Comparison of contribution of wheat ionic uptake to soil acidification under long-term different fertilization[J]. Soils, 2017, 49(1): 7-12.

    [54] 辛明亮, 何新林, 吕廷波, 等. 土壤可溶性盐含量与电导率的关系实验研究[J]. 节水灌溉, 2014(5): 59–-61. Xin M L, He X L, Lü T B, et al. Experimental research on relationship between content of soluble salt in soil and electrical conductivity[J]. Water Saving Irrigation, 2014(5): 59–-61. DOI: 10.3969/j.issn.1007-4929.2014.05.016

    Xin M L, He X L, Lv T B, et al. Experimental research on relationship between content soluble salt in soil and electrical conductivity [J]. Water Saving Irrigation, 2014, (5): 59–-61. DOI: 10.3969/j.issn.1007-4929.2014.05.016

    [55] 缑兆辉, 秦启杰, 吕剑, 等. 不同水肥组合对高原夏季露地紫甘蓝产量和土壤理化性状的影响[J]. 干旱地区农业研究, 2021, 39(3): 137–144. Gou Z H, Qin Q J, Lü J, et al. Effects of different water and fertilizer combinations on yield of purple cabbage and soil physical and chemical properties on plateau in summer[J]. Agricultural Research in the Arid Areas, 2021, 39(3): 137–144. DOI: 10.7606/j.issn.1000-7601.2021.03.17

    Gou Z H, Qin Q J, Lv J, et al. Effects of different water and fertilizer combinations on yield of purple cabbage and soil physical and chemical properties on plateau in summer [J]. Agricultural Research in the Arid Areas, 2021, 39(3): 137–144. DOI: 10.7606/j.issn.1000-7601.2021.03.17

  • 期刊类型引用(3)

    1. 宋挚,郭新送,范仲卿,乔佳乐,尹静,孙晓,刘同信,洪丕征,丁方军,杨永成. 灌溉水量与腐殖酸用量对番茄产量、品质及水分利用的影响. 浙江农业科学. 2025(02): 336-343 . 百度学术
    2. 李艳,潘乾,郑振浩,刘海军,陈雨. 不同水分处理对樱桃番茄各穗产量的影响. 北京水务. 2024(05): 14-19 . 百度学术
    3. 张靖,谢忠清,贾蕊鸿,刘强,王祎,赵玺,张亚萍. 施钾对甜叶菊糖苷跃变期生理指标和产量品质的影响. 寒旱农业科学. 2023(02): 148-154 . 百度学术

    其他类型引用(7)

图(4)  /  表(5)
计量
  • 文章访问数:  1946
  • HTML全文浏览量:  788
  • PDF下载量:  74
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-10-07
  • 录用日期:  2022-02-10
  • 网络出版日期:  2022-05-08
  • 刊出日期:  2022-05-24

目录

/

返回文章
返回