Effects of intercropping and nitrogen application on protein and starch contents of wheat grain and faba bean seeds
-
摘要:目的
探明小麦/蚕豆间作下作物籽粒淀粉和蛋白质含量的变化特征及其对氮肥施用的响应。
方法小麦/蚕豆间作田间试验于2019和2020年在云南昆明进行,供试小麦品种为云麦52 (Triticum aestivum L.),蚕豆品种为玉溪大粒豆(Vicia faba L.)。种植模式包括小麦单作、蚕豆单作、小麦蚕豆间作。每个种植模式均设4个施氮水平,小麦分别为N 0、90、180、270 kg/hm2,蚕豆分别为N 0、45、90、135 kg/hm2。成熟期测定了小麦和蚕豆籽粒淀粉和蛋白质含量。
结果随着氮肥施用量的增加,单作、间作小麦籽粒的淀粉含量均显著降低。在4个施氮水平下,2019和2020年间作小麦较单作小麦籽粒总淀粉含量分别提高了10%和22%,支链淀粉含量分别提高了5%和18%,直链淀粉含量分别提高了18%和28%。间作蚕豆相较于单作蚕豆显著降低了籽粒支链、直链和总淀粉含量,且年际间变异较大。2019和2020年间作小麦籽粒总蛋白含量较单作小麦分别提高了5%和6%,醇溶蛋白含量分别提高了9%和15%;蚕豆间作也较单作提高了两年的蚕豆籽粒球蛋白含量和2019年的醇溶蛋白含量,但对蚕豆籽粒总蛋白及其它蛋白组分含量无明显影响。
结论小麦蚕豆间作有利于提高小麦籽粒蛋白质和淀粉含量,而对蚕豆籽粒蛋白质含量几乎无影响,因此,间作是一种具有品质优势的种植模式。
Abstract:ObjectivesWe assessed the characteristics of grain starch and protein content of wheat and faba bean under intercropping and nitrogen (N) application.
MethodsThe wheat and faba bean intercropping field trial was conducted in Kunming, Yunnan in 2019 and 2020. The tested cultivar for wheat was Triticum aestivum L, and that of faba bean was Vicia faba L. The cropping pattern treatments included mono-wheat (MW), mono-faba bean (MF), and wheat and faba bean intercropping (W/F). Four N levels were setup under each cropping pattern. The four N application levels for wheat were N 0, 90, 180, 270 kg/hm2, and those of faba bean were N 0, 45, 90, 135 kg/hm2. The protein and starch content of wheat grains and faba bean seeds were determined at maturity stage.
ResultsThe total starch content in both inter- and mono-cropped wheat grains decreased with increasing N application rates. In 2019 and 2020, intercropping increased wheat total starch by10% and 22%, amylopectin by 5% and 18%, and amylose by 18% and 28%, as compared to mono-wheat. N application levels did not affect the starch content of faba beans over the two years. Compared to mono-faba bean, intercropping decreased amylopectin, amylose and total starch contents of faba bean seeds in 2019. Regardless of N application levels, intercropping increased the total protein and gliadin contents of wheat grains by 5% and 9% in 2019, and 6% and 15% in 2020, respectively, as compared to MW. Intercropping increased globulin and gliadin contents of faba bean seed in 2019, but did not have effect on the content of gliadin in 2020.
ConclusionsWheat and faba bean intercropping increased wheat grain protein and starch contents, and showed little influence on those of faba bean seeds. Hence, wheat and faba bean intercropping is a promising planting pattern for high quality wheat production.
-
豆科禾本科间作可提高土地利用率、促进农业可持续发展[1-2],还可改善土壤肥力、减轻病害、增产、改善作物营养状况[3-7]。与豆科作物间作是广泛接受的一个成功栽培模式[8]。由于豆科作物具有生物固氮特性,对豆科间作从作物种间互作、地上地下部互作等角度系统进行了氮的固定、转移及氮肥合理施用等研究[3-8]。淀粉和蛋白质是作物籽粒的重要组成成分,也是衡量籽粒品质的关键指标[9]。氮素与作物品质的形成密切相关,氮肥运筹是调控作物品质的有效措施之一[10]。籽粒淀粉和蛋白质含量及其组分特性存在品种、基因型差异,也不同程度地受到施肥的影响[11]。有研究发现,增施氮肥会显著降低弱筋、强筋小麦直链淀粉含量,而支链淀粉含量主要取决于小麦品种特性[12-13]。代新俊等[11]发现,高氮肥水平有利于总淀粉、直链淀粉、支链淀粉含量的提高,且酰胺态氮肥的效果高于其它形态氮肥。小麦籽粒蛋白质含量与施氮量呈正相关[10,14-15],其中清蛋白、球蛋白、谷醇比(谷蛋白/醇溶蛋白)均随施氮量的增加而提高[11]。吴培金等[16]研究表明,随施氮量的增加醇溶蛋白的含量变化幅度最大,其次是谷蛋白、清蛋白,球蛋白最小。蚕豆试验也发现,氮肥可以提高蚕豆籽粒蛋白质含量,且不同蛋白质组分对施肥量的响应不同[17]。
作物籽粒淀粉和蛋白质含量也受种植模式的调控。在不施氮条件下,玉米/花生、玉米/大豆间作对玉米籽粒淀粉含量无明显影响,但显著提高了籽粒蛋白质含量;而在施肥条件下,间作玉米籽粒淀粉和蛋白质含量均有所提高[7]。蔡明等[18]研究则表明,在一定施氮范围内,间作模式下的马铃薯淀粉、蛋白质含量高于单作,但施氮水平与种植模式的交互作用对蛋白质含量影响并不显著。上述研究结果均表明,施氮和种植模式对籽粒蛋白质和淀粉含量都有一定的影响,且存在一定程度的交互作用。
小麦与蚕豆间作是西南地区普遍采用的小春作物种植模式[19],该模式能有效降低病害发生[20-22],并具有增产[23]和减肥减药潜力[21],能最大限度地提高系统生产力。在欧洲的一些研究证实,小麦和蚕豆短期间作可以提高小麦籽粒蛋白质含量[24-25]。由于中国西南地区小麦和蚕豆几乎同种同收,在较长的共生期下间作和氮肥施用量在调控作物产量的同时是否会影响小麦和蚕豆籽粒蛋白质、淀粉含量尚不清楚。因此,我们通过田间试验,系统研究了不同氮水平下小麦与蚕豆间作对籽粒蛋白质和淀粉含量的影响,为实现该间作系统的最大产量、生态和质量效益提供参考,促进该区域的农业可持续发展。
1. 材料与方法
1.1 试验地概况与试验材料
田间定位试验于2014年10月起在云南省昆明市寻甸县大河桥村云南农业大学现代农业教育科研基地(N 23°32′,E 103°13′)进行,该地区为亚热带季风气候,年降水量达1040 mm,年平均温度为14.7℃。试验开始前为水稻土,土壤为熟化程度较高的红壤,有机质35.05 g/kg、全氮1.42 g/kg、碱解氮80 mg/kg、速效钾146 mg/kg、速效磷17 mg/kg、pH 7.18。小麦和蚕豆每年10月中旬至下旬播种,次年4月中旬收获,收获后将秸秆移出试验田,5月至9月份保持休耕。
供试材料:小麦品种为云麦52 (Triticum aestivum L.),蚕豆品种为玉溪大粒豆(Vicia faba L.)。
1.2 试验设计
试验采用两因素完全随机区组设计。因素A为种植模式,即:小麦单作、蚕豆单作、小麦蚕豆间作(包括间作小麦和间作蚕豆);因素B为施氮量,设置4个氮水平,小麦的4个施氮量依次为N 0、90、180 和270 kg/hm2,分别记作 N0、N90、N180和N270处理,蚕豆的4个施氮量依次为N 0、45、90、135 kg/hm2,分别记作 N0、N45、N90和N135处理。其中,N180和N90处理均为常规推荐施用量。每个处理3次重复,小区面积为32.4 m2 (5.4 m×6 m)。供试肥料为尿素 (N 46.0%)、过磷酸钙(P2O5 16.0%)和硫酸钾 (K2O 50.0%)。
1.3 田间管理
小麦蚕豆分别于2018、2019年10月20―22日播种,于次年的4月20日收获。小麦条播,行距0.2 m;蚕豆点播,行距0.3 m,株距0.10 m。小麦蚕豆间作种植模式按照当地推荐种植模式,小区分为3个种植条带,小麦蚕豆行数比例为3∶1,即为6行小麦–2行蚕豆–6行小麦–2行蚕豆–6行小麦–2行蚕豆;单作小麦每个小区共27行;单作蚕豆每小区共18行。间作小麦和蚕豆播种密度同单作。
试验处理磷、钾肥施用量均为90 kg/hm2,作为基肥一次性施入。小麦的氮肥施用分2次,1/2作为基肥施入,1/2在小麦拔节期作为追肥施入。蚕豆不追氮肥,一次施入,田间试验日常管理参照当地田间常规管理。
1.4 样品采集与测定
于2019和2020年4月底,小麦和蚕豆收获后,将籽粒自然风干后去除杂质,磨样、过筛,测定籽粒淀粉和蛋白质含量。小麦和蚕豆籽粒直链淀粉和支链淀粉含量采用试剂盒(碘比色法)进行测定,试剂盒由苏州格锐思生物技术有限公司(www.geruisi-bio.com)提供,支链淀粉测定波长为540和740 nm;直链淀粉测定波长为620 nm,总淀粉为直链淀粉与支链淀粉之和。小麦和蚕豆籽粒蛋白质含量测定:采用Foss蛋白质定氮仪(KJELTEC8400,瑞典)测定各样品全氮含量,籽粒蛋白质含量按全氮量的5.7倍换算[26]。籽粒蛋白组分(清蛋白、球蛋白、醇溶蛋白和谷蛋白)测定采用分步提取法[27]。
1.5 数据处理与分析
利用Excel 2013进行原始数据处理、绘图;利用SPSS 20.0进行独立性T检验、单因素、双因素方差分析。
2. 结果与分析
2.1 不同氮水平下间作对小麦和蚕豆籽粒淀粉含量的影响
2.1.1 对小麦籽粒淀粉含量的影响
如表1所示,氮水平与种植模式互作对2019年小麦籽粒直链淀粉和2020年的小麦籽粒总淀粉含量无显著影响,对2019年小麦籽粒支链淀粉、总淀粉和2020年籽粒支链、直链淀粉含量均有显著影响。
表 1 氮水平与种植模式对小麦淀粉含量影响的显著性分析Table 1. Significance analysis of effect of N application level and cropping pattern on wheat starch content项目
Item2019 2020 支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch氮水平 N level (N) *** *** *** *** *** *** 种植模式 Cropping pattern (C) *** *** *** *** *** *** N×C * * ** *** *—P<0.05; **—P<0.01; ***— P<0.001. 如图1A所示,4个氮水平下,小麦蚕豆间作较单作均显著提高了小麦籽粒总淀粉含量(2020年N180处理除外)。不考虑氮水平,相对于单作,间作平均提高了小麦总淀粉含量10%~22%;在N0、N90、N180、N270处理下,间作小麦籽粒总淀粉含量相对于单作分别提了14%~18%、6%~25%、4%~29%、13%~19%,单作和间作小麦籽粒总淀粉含量均随施氮量的增加而降低。
图 1 不同氮水平下单作和间作小麦总淀粉、支链淀粉和直链淀粉含量注:M—单作;I—间作。方柱上不同小写、大写字母分别表示同一年份单作、间作处理不同氮水平间差异显著 (P<0.05)。*表示相同氮水平下单作与间作处理间差异显著(P<0.05)Figure 1. Contents of total starch, amylopectin and amylose in monocropping and intercropping wheat under different N levelsNote: M—Monocropping; I—Intercropping. Different small and capital letters above the bars indicate significant difference among nitrogen levels under monocropping and intercropping pattern in the same year, respectively. * indicates significant difference between intercropping and monocropping patterns under the same N level (P<0.05)如图1B所示,在不同氮水平下,相对于单作,间作平均提高小麦籽粒支链淀粉含量5%~18%;在N0、N90、N180处理下2019年增幅分别为14%、23%、33%;2020年,在N0处理下单间作无差异,在N90、N180、N270处理下增幅分别为4%、4%、18%;且从图中可以看到,随着氮肥用量的增加,小麦籽粒支链淀粉含量在逐渐下降。
如图1C所示,在不同氮水平下,与单作相比,间作提高小麦籽粒的直链淀粉含量18%~28%。2019年,在N180和N270处理下,间作分别提高直链淀粉含量27%和31%。2020年,N0、N180、N270水平下,间作分别提高了直链淀粉含量55%、18%、16%。随着施氮量的增加,单间作小麦籽粒的直链淀粉含量逐渐降低。
2.1.2 不同氮水平下间作对蚕豆籽粒淀粉含量的影响
如表2所示,两年试验结果均得出氮水平对蚕豆籽粒支链、直链、总淀粉含量有显著影响。种植模式对蚕豆籽粒直链淀粉和总淀粉含量的影响在年际间存在差异;氮水平和种植模式交互对直链淀粉具有显著影响,而支链淀粉和总淀粉含量在年际间存在差异。
表 2 氮水平和种植模式对蚕豆淀粉含量影响的显著性分析Table 2. Significance analysis of effect of N level and cropping pattern on starch content of faba bean项目
Item2019 2020 支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch氮水平 N level (N) *** *** *** *** *** *** 种植模式 Cropping pattern (C) *** *** *** *** N×C *** ** * *** *—P<0.05; **—P<0.01; ***— P<0.001. 如图2A所示,在不同氮水平下,蚕豆籽粒总淀粉含量在年际间存在差异,但在N90处理下总淀粉含量均达到最大值。2019年,4个氮水平下间作较单作均降低了蚕豆总淀粉含量,N0、N45、N90、N135处理下间作较单作分别降低36%、42%、24%、27%;2020年,N135处理下间作蚕豆总淀粉含量较单作显著降低14%,其他氮水平下单、间作无明显差异。
图 2 不同氮水平下单作和间作蚕豆总淀粉、支链淀粉和直链淀粉含量注:M—单作;I—间作。方柱上不同小写、大写字母分别表示同一年份单作、间作处理不同氮水平间差异显著 (P<0.05)。*表示相同氮水平下单作与间作处理间差异显著(P<0.05)Figure 2. Contents of total starch, amylopectin and amylose in monocropping and intercropping faba bean under different N levelsNote: M—Monocropping; I—Intercropping. Different small and capital letters above the bars indicate significant difference among nitrogen levels under monocropping and intercropping pattern in the same year, respectively. * indicates significant difference between intercropping and monocropping patterns under the same N level (P<0.05)如图2B所示,与单作相比,间作降低了蚕豆籽粒支链淀粉含量。而2019年与2020年结果存在一定的差异,2019年,在N0、N45、N90、N135处理下,与单作相比间作蚕豆籽粒支链淀粉含量分别降低了39%、48%、34%、31%;2020年,仅在N135处理下,间作显著降低了蚕豆籽粒支链淀粉含量,其余几个氮肥处理下间作对蚕豆支链淀粉含量均无显著影响。随着氮肥用量的变化,单间作蚕豆籽粒支链淀粉含量所呈现出来的趋势也不同。单、间作蚕豆籽粒支链淀粉含量均是先增加后降低,但2019年单作的蚕豆籽粒支链淀粉最大含量出现在N45处理,间作的最大含量则出现在N90处理,而2020年单间作最大含量均出现在N90处理。
如图2C所示,与单作相比,2019年在N0、N45处理下间作显著降低蚕豆籽粒直链淀粉含量,分别降低了30%、20%;但是在N90、N135处理时,单、间作无明显差异。2020年,在N0、N135水平下间作分别提高蚕豆直链淀粉含量33%和19%;但在N90处理下间作显著降低了蚕豆的直链淀粉含量。单、间作直链淀粉含量均在N90时达到最大值。
2.2 不同氮水平下间作对作物籽粒总蛋白及蛋白组分含量的影响
2.2.1 不同氮水平下间作对小麦籽粒总蛋白及蛋白组分含量的影响
如表3所示,氮水平和种植模式交互对小麦籽粒中总蛋白质含量及各蛋白组分无显著影响(2020年的醇溶蛋白含量除外)。当只考虑种植模式时,间作相比单作显著提高了小麦醇溶蛋白和总蛋白含量,醇溶蛋白提高了9%~15%,总蛋白提高了5%~6%;其余几个蛋白组分含量在单、间作间无显著差异(2019年清蛋白、谷蛋白除外)。当只考虑氮肥施用量时,施用氮肥显著影响了小麦籽粒各蛋白组分及总蛋白含量。提高氮肥的用量能够显著增加小麦总蛋白含量,与N0相比,在N90、N180、N270处理下,两年分别提高了1%、19%、26% (2019年)与8%、20%、42% (2020年)。从表3中可以看出,在N0和N90处理下,小麦籽粒总蛋白及谷蛋白组分间无显著差异(除2019年谷蛋白外),N180、N270处理与N0相比总蛋白及各蛋白组分含量显著增加(2019年球蛋白除外),清蛋白含量提高了10%~18%,球蛋白提高了11%~35%,醇溶蛋白提高了19%~41%,谷蛋白提高了16%~39%,总蛋白提高了24%~40%。综上可以发现,随着施氮量的增加,小麦籽粒醇溶蛋白、谷蛋白、总蛋白含量、谷醇比随之增加,但是除了谷蛋白和2019年的球蛋白之外,N180和N270水平间各蛋白质组分含量几乎无差异。
表 3 不同氮水平下单间作小麦籽粒蛋白质和各蛋白组分含量(%)及谷醇比Table 3. Protein contents (%) and glutenin/gliadin in grains of monocropping and intercropping wheat under different N levels氮水平
N level种植模式
Cropping pattern2019 2020 清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein谷醇比
Glu/Gli清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein谷醇比
Glu/GliN0 M 1.26 a 0.53 a 0.99 a 2.36 a 7.64 a 2.37 a 1.19 a 0.48 a 0.85 e 2.16 a 5.31 a 2.16a I 1.34 a 0.56 a 1.06 a 2.50 a 7.74 a 2.42 a 1.23 a 0.49 a 0.94 d 2.26 a 5.47 a 2.17a N90 M 1.28 a 0.54 a 0.86 a 2.68 a 7.34 a 2.99 a 1.33 a 0.53 a 1.07 c 1.94 a 5.54 a 2.07a I 1.37 a 0.60 a 1.10 a 2.73 a 8.25 a 2.84 a 1.29 a 0.53 a 1.10 c 2.16 a 6.08 a 1.96a N180 M 1.43 a 0.60 a 1.19 a 2.63 a 9.06 a 2.87 a 1.36 a 0.55 a 1.18 b 2.35 a 6.28 a 2.30a I 1.47 a 0.62 a 1.28 a 3.01 a 9.26 a 3.01 a 1.50 a 0.59 a 1.35 a 2.24 a 7.68 a 2.26a N270 M 1.37 a 0.66 a 1.44 a 3.09 a 9.41 a 2.83 a 1.40 a 0.64 a 1.08 c 2.83 a 7.51 a 2.57a I 1.50 a 0.66 a 1.46 a 3.13 a 10.00 a 3.52 a 1.39 a 0.65 a 1.41 a 2.65 a 7.75 a 2.39a 平均值 Average N0 1.30 b 0.55 bc 1.03 c 2.43 d 7.69 c 2.40 c 1.21 c 0.48 c 0.90 c 2.21 c 5.39 c 2.17b N90 1.33 b 0.57 b 0.98 c 2.70 c 7.79 c 2.92 b 1.31 b 0.53 b 1.08 b 2.05 c 5.81 c 2.01b N180 1.45 a 0.61 b 1.23 a 2.82 b 9.16 b 2.94 b 1.43 a 0.57 a 1.26 a 2.29 b 6.48 b 2.28b N270 1.43 a 0.66 a 1.45 a 3.11 a 9.71 a 3.17 a 1.39 a 0.65 a 1.25 a 2.74 a 7.63 a 2.48a M 1.33 b 0.59 a 1.12 b 2.69 b 8.36 b 2.76 b 1.31 a 0.55 a 1.05 b 2.32 a 6.16 b 2.28a I 1.42 a 0.61 a 1.22 a 2.84 a 8.81 a 2.95 a 1.36 a 0.57 a 1.20 a 2.33 a 6.50 a 2.20b 氮水平 N level (N) ** * *** *** *** *** *** *** *** *** *** *** 种植模式 Cropping pattern (C) * ** * ** ** *** *** * N×C ** 注:M—单作;I—间作。同列数据后不同字母表示不同处理间差异显著(双因素方差分析, P<0.05) . *—P<0.05;**—P<0.01;***— P<0.001。 Note: M—Monocropping; I—Intercropping. Values followed by different letters in the same column mean significant difference among treatments (two-way ANOVA, P<0.05). ***— P<0.001; **—P<0.01; *— P<0.05. 2.2.2 不同氮水平下间作对蚕豆籽粒总蛋白及蛋白组分含量的影响
表4所示,氮水平与种植模式的交互作用对蚕豆的蛋白组分及总蛋白含量均无显著影响。此外,氮水平及种植模式对蚕豆总蛋白含量均无影响。从各个蛋白组分含量来看,2019年,间作相比单作提高了球蛋白和醇溶蛋白含量,增幅分别为8%和10%。2020年,间作相比单作提高球蛋白含量6%。当只考虑氮水平时,施氮量水平对两年的蚕豆籽粒总蛋白含量均无显著影响;对蚕豆籽粒的清蛋白和球蛋白含量无显著影响(2020年球蛋白除外);但对醇溶蛋白和谷蛋白含量有显著影响,且在N90、N135处理下的蚕豆籽粒醇溶蛋白含量显著高于N0处理。
表 4 不同氮水平下单间作蚕豆籽粒蛋白质和各蛋白组分含量(%)Table 4. Protein contents (%) in grains of monocropping and intercropping faba bean under different N levels氮水平
N level种植模式
Cropping pattern2019 2020 清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude proteinN0 M 20.64 a 1.05 a 0.17 a 1.01 a 23.42 a 16.10 a 1.03 a 0.08 a 0.86 a 18.83 a I 19.71 a 1.20 a 0.19 a 0.94 a 22.61 a 15.29 a 1.14 a 0.10 a 0.99 a 18.71 a N45 M 19.54 a 1.06 a 0.20 a 0.82 a 22.47 a 17.24 a 1.13 a 0.10 a 1.26 a 20.97 a I 18.98 a 1.13 a 0.20 a 0.84 a 21.63 a 15.39 a 1.17 a 0.11 a 0.97 a 18.33 a N90 M 21.25 a 1.05 a 0.18 a 0.66 a 24.90 a 14.64 a 1.18 a 0.11 a 1.22 a 18.81 a I 19.64 a 1.15 a 0.21 a 0.61 a 22.90 a 15.59 a 1.24 a 0.11 a 1.02 a 18.88 a N135 M 20.58 a 1.02 a 0.18 a 0.87 a 23.04 a 15.89 a 1.15 a 0.12 a 1.20 a 19.14 a I 19.13 a 1.04a 0.20 a 0.80a 22.81 a 16.49 a 1.20 a 0.12 a 1.02 a 19.10 a 平均值 Average N0 20.17 a 1.12 a 0.17 b 0.97 a 23.01 a 15.69 a 1.09 b 0.09 c 0.93 b 18.77 a N45 19.26 a 1.10 a 0.20 a 0.83 b 22.05 a 16.32 a 1.15 ab 0.10 c 1.11 a 19.65 a N90 20.45 a 1.10 a 0.19 a 0.63 c 23.90 a 15.11 a 1.21 a 0.11 b 1.12 a 18.85 a N135 19.85 a 1.03 a 019 a 0.83 b 22.92 a 16.19 a 1.18 a 0.12 a 1.11 a 19.12 a M 20.50 a 1.04 b 0.18 b 0.84 a 23.46 a 15.97 a 1.12 b 0.10 a 1.14 a 19.44 a I 19.37 a 1.13 a 0.20 a 0.80 a 22.49 a 15.69 a 1.19 a 0.11 a 1.00 a 18.76 a 氮水平 N level (N) * * ** *** *** 种植模式 Cropping pattern (C) * ** ** N×C 注:M—单作; I—间作。同列数据后不同字母表示不同处理间差异显著 (双因素方差分析, P<0.05);*— P<0.05;**—P<0.01;***— P<0.001. Note: M—Mono-cropping; I—Intercropping. Values followed by different letters in the same column mean significant difference among treatments (two-way ANOVA, P<0.05); *— P< 0.05; **—P< 0.01; ***— P<0.001. 3. 讨论
间作和施氮水平显著影响着作物的淀粉含量。在本研究中,间作提高了小麦淀粉含量,降低了蚕豆籽粒淀粉含量,张向前等[7]在玉米/花生、玉米/大豆间作体系中也证实间作提高了玉米的淀粉含量。籽粒淀粉含量受碳、氮供应以及淀粉关键合成酶的影响[28-29],小麦籽粒支直链淀粉含量均与蔗糖合成酶、可溶性蔗糖合成酶、腺苷二磷酸葡萄糖焦磷酸化酶等呈正相关[29],可以推测间作小麦籽粒淀粉的提高可能与这些酶活性有关,但具体机制尚待研究。
小麦籽粒蛋白质各组分含量及比例与面粉品质密切相关[30]。本试验条件下,间作显著提高了小麦籽粒总蛋白含量和蛋白组分中醇溶蛋白的含量(表3),Tosti等[24]和Stefanis等[25]也证实小麦与蚕豆短期间作可以提高小麦籽粒总蛋白质含量和谷蛋白含量。值得注意的是,间作对谷醇比的影响存在年际差异,2020年发现间作提高了醇溶蛋白含量,但对谷蛋白含量无影响,导致谷/醇降低。小麦籽粒蛋白质含量受生态环境条件等因素的影响[31],基于Meta分析的结果也表明,小麦籽粒蛋白质含量随灌浆中期的总日照时数升高而升高,随播种—孕穗、灌浆前中期的总降水量增加而降低[32]。本研究中,在播种—分蘖期(10―11月)、灌浆—成熟期(2―4月),两年的温度和降雨变异较大,这或许与年际变异有关。此外,本试验条件下,小麦籽粒蛋白质含量(5%~10%)略低于西南地区小麦籽粒蛋白质含量的平均水平(11.7%),且存在年际差异也可能与土壤、气象因素等有关。
在本研究中,除球蛋白和2019年的醇溶蛋白外,间作对蚕豆籽粒的总蛋白及蛋白组分无影响,说明相较于小麦和蚕豆单一种植,小麦蚕豆间作更有利于提高小麦蛋白质含量。蛋白质的积累依赖于氮的吸收和同化,而氮的同化受谷氨酸合成酶(GOGAT)和谷氨酰胺合成酶(GS)等几种酶的调控[33]。在焦念元等[34]的研究中,发现玉米花生间作提高了叶片中硝酸还原酶(NR)和GS的活性,从而提高了玉米花生籽粒中蛋白质的含量。刘振洋[35]发现在小麦灌浆期,间作也显著提高了叶片GS和Fd-GOGAT (铁氧还蛋白依赖型–谷氨酸合成酶)、NADH-GODAT (烟酰胺腺嘌呤=核苷酸–谷氨酸合成酶)的活性和基因表达量;增加施氮量使小麦叶片中GS、Fd-GOGAT、NADH-GODAT的活性增加。这些关键酶活性和相关基因表达量的提高,都可能促使间作小麦籽粒总蛋白以及蛋白组分含量增加。在小麦蚕豆间作体系中,间作小麦对氮素的吸收竞争力强于蚕豆,导致蚕豆产量降低[36]。本研究未发现间作和施氮对蚕豆籽粒蛋白质含量有影响,但间作对蛋白质产量的影响尚需深入分析。
前人研究证实小麦蚕豆间作具有产量优势[37],本研究则证实间作在提高小麦籽粒产量的同时还能提高小麦籽粒蛋白和淀粉含量,且对蚕豆蛋白质和淀粉含量几乎无影响。因此,我们认为小麦蚕豆间作是一种兼具产量和品质优势的种植模式。
氮素对作物籽粒蛋白质含量具有重要影响,适宜的氮肥水平可以提高作物籽粒各蛋白组分含量[16,38]。在本研究中,施氮提高了单作和间作小麦的总蛋白含量和各蛋白组分含量。Xiao等[37]在本试验条件下发现,在减氮1/2的条件下间作可以维持与单作一致的产量。但是在供试土壤供氮能力偏低的条件下(有效氮含量80 mg/kg),当施氮量低于常规水平(180 kg/hm2)时,间作虽然提高了小麦籽粒蛋白质含量,但仍然低于常规氮肥供应水平下的蛋白质含量。而且即使提高了氮肥水平(N270、N135),单、间作小麦和蚕豆的淀粉含量也显著低于常规推荐施氮量(N180、N90)处理,小麦可能是由于氮素的同化消耗了碳水化合物,减少了碳水化合物在籽粒中的积累。蚕豆淀粉含量下降则可能是小麦对氮素的竞争影响了其氮素营养,进而降低了碳的同化量,也影响了其蛋白质的积累。因此,还需要继续研究适宜的氮肥投入量,以调控间作作物的相互作用,最大限度发挥间作的产量和品质优势。
4. 结论
无论氮水平高低,小麦与蚕豆间作可显著提高小麦籽粒淀粉含量和蛋白含量,间作降低了蚕豆籽粒淀粉含量,但年际间变异较大,间作同时提高了蚕豆籽粒球蛋白含量和2019年的醇溶蛋白含量,但对蚕豆籽粒总蛋白质含量无显著影响。因此,小麦与蚕豆间作是高品质小麦生产的优势种植制度。
-
图 1 不同氮水平下单作和间作小麦总淀粉、支链淀粉和直链淀粉含量
注:M—单作;I—间作。方柱上不同小写、大写字母分别表示同一年份单作、间作处理不同氮水平间差异显著 (P<0.05)。*表示相同氮水平下单作与间作处理间差异显著(P<0.05)
Figure 1. Contents of total starch, amylopectin and amylose in monocropping and intercropping wheat under different N levels
Note: M—Monocropping; I—Intercropping. Different small and capital letters above the bars indicate significant difference among nitrogen levels under monocropping and intercropping pattern in the same year, respectively. * indicates significant difference between intercropping and monocropping patterns under the same N level (P<0.05)
图 2 不同氮水平下单作和间作蚕豆总淀粉、支链淀粉和直链淀粉含量
注:M—单作;I—间作。方柱上不同小写、大写字母分别表示同一年份单作、间作处理不同氮水平间差异显著 (P<0.05)。*表示相同氮水平下单作与间作处理间差异显著(P<0.05)
Figure 2. Contents of total starch, amylopectin and amylose in monocropping and intercropping faba bean under different N levels
Note: M—Monocropping; I—Intercropping. Different small and capital letters above the bars indicate significant difference among nitrogen levels under monocropping and intercropping pattern in the same year, respectively. * indicates significant difference between intercropping and monocropping patterns under the same N level (P<0.05)
表 1 氮水平与种植模式对小麦淀粉含量影响的显著性分析
Table 1 Significance analysis of effect of N application level and cropping pattern on wheat starch content
项目
Item2019 2020 支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch氮水平 N level (N) *** *** *** *** *** *** 种植模式 Cropping pattern (C) *** *** *** *** *** *** N×C * * ** *** *—P<0.05; **—P<0.01; ***— P<0.001. 表 2 氮水平和种植模式对蚕豆淀粉含量影响的显著性分析
Table 2 Significance analysis of effect of N level and cropping pattern on starch content of faba bean
项目
Item2019 2020 支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch支链淀粉
Amylopectin直链淀粉
Amylase总淀粉
Total starch氮水平 N level (N) *** *** *** *** *** *** 种植模式 Cropping pattern (C) *** *** *** *** N×C *** ** * *** *—P<0.05; **—P<0.01; ***— P<0.001. 表 3 不同氮水平下单间作小麦籽粒蛋白质和各蛋白组分含量(%)及谷醇比
Table 3 Protein contents (%) and glutenin/gliadin in grains of monocropping and intercropping wheat under different N levels
氮水平
N level种植模式
Cropping pattern2019 2020 清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein谷醇比
Glu/Gli清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein谷醇比
Glu/GliN0 M 1.26 a 0.53 a 0.99 a 2.36 a 7.64 a 2.37 a 1.19 a 0.48 a 0.85 e 2.16 a 5.31 a 2.16a I 1.34 a 0.56 a 1.06 a 2.50 a 7.74 a 2.42 a 1.23 a 0.49 a 0.94 d 2.26 a 5.47 a 2.17a N90 M 1.28 a 0.54 a 0.86 a 2.68 a 7.34 a 2.99 a 1.33 a 0.53 a 1.07 c 1.94 a 5.54 a 2.07a I 1.37 a 0.60 a 1.10 a 2.73 a 8.25 a 2.84 a 1.29 a 0.53 a 1.10 c 2.16 a 6.08 a 1.96a N180 M 1.43 a 0.60 a 1.19 a 2.63 a 9.06 a 2.87 a 1.36 a 0.55 a 1.18 b 2.35 a 6.28 a 2.30a I 1.47 a 0.62 a 1.28 a 3.01 a 9.26 a 3.01 a 1.50 a 0.59 a 1.35 a 2.24 a 7.68 a 2.26a N270 M 1.37 a 0.66 a 1.44 a 3.09 a 9.41 a 2.83 a 1.40 a 0.64 a 1.08 c 2.83 a 7.51 a 2.57a I 1.50 a 0.66 a 1.46 a 3.13 a 10.00 a 3.52 a 1.39 a 0.65 a 1.41 a 2.65 a 7.75 a 2.39a 平均值 Average N0 1.30 b 0.55 bc 1.03 c 2.43 d 7.69 c 2.40 c 1.21 c 0.48 c 0.90 c 2.21 c 5.39 c 2.17b N90 1.33 b 0.57 b 0.98 c 2.70 c 7.79 c 2.92 b 1.31 b 0.53 b 1.08 b 2.05 c 5.81 c 2.01b N180 1.45 a 0.61 b 1.23 a 2.82 b 9.16 b 2.94 b 1.43 a 0.57 a 1.26 a 2.29 b 6.48 b 2.28b N270 1.43 a 0.66 a 1.45 a 3.11 a 9.71 a 3.17 a 1.39 a 0.65 a 1.25 a 2.74 a 7.63 a 2.48a M 1.33 b 0.59 a 1.12 b 2.69 b 8.36 b 2.76 b 1.31 a 0.55 a 1.05 b 2.32 a 6.16 b 2.28a I 1.42 a 0.61 a 1.22 a 2.84 a 8.81 a 2.95 a 1.36 a 0.57 a 1.20 a 2.33 a 6.50 a 2.20b 氮水平 N level (N) ** * *** *** *** *** *** *** *** *** *** *** 种植模式 Cropping pattern (C) * ** * ** ** *** *** * N×C ** 注:M—单作;I—间作。同列数据后不同字母表示不同处理间差异显著(双因素方差分析, P<0.05) . *—P<0.05;**—P<0.01;***— P<0.001。 Note: M—Monocropping; I—Intercropping. Values followed by different letters in the same column mean significant difference among treatments (two-way ANOVA, P<0.05). ***— P<0.001; **—P<0.01; *— P<0.05. 表 4 不同氮水平下单间作蚕豆籽粒蛋白质和各蛋白组分含量(%)
Table 4 Protein contents (%) in grains of monocropping and intercropping faba bean under different N levels
氮水平
N level种植模式
Cropping pattern2019 2020 清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude protein清蛋白
Albumin球蛋白
Globulin醇溶蛋白
Gliadin谷蛋白
Glutenin总蛋白
Crude proteinN0 M 20.64 a 1.05 a 0.17 a 1.01 a 23.42 a 16.10 a 1.03 a 0.08 a 0.86 a 18.83 a I 19.71 a 1.20 a 0.19 a 0.94 a 22.61 a 15.29 a 1.14 a 0.10 a 0.99 a 18.71 a N45 M 19.54 a 1.06 a 0.20 a 0.82 a 22.47 a 17.24 a 1.13 a 0.10 a 1.26 a 20.97 a I 18.98 a 1.13 a 0.20 a 0.84 a 21.63 a 15.39 a 1.17 a 0.11 a 0.97 a 18.33 a N90 M 21.25 a 1.05 a 0.18 a 0.66 a 24.90 a 14.64 a 1.18 a 0.11 a 1.22 a 18.81 a I 19.64 a 1.15 a 0.21 a 0.61 a 22.90 a 15.59 a 1.24 a 0.11 a 1.02 a 18.88 a N135 M 20.58 a 1.02 a 0.18 a 0.87 a 23.04 a 15.89 a 1.15 a 0.12 a 1.20 a 19.14 a I 19.13 a 1.04a 0.20 a 0.80a 22.81 a 16.49 a 1.20 a 0.12 a 1.02 a 19.10 a 平均值 Average N0 20.17 a 1.12 a 0.17 b 0.97 a 23.01 a 15.69 a 1.09 b 0.09 c 0.93 b 18.77 a N45 19.26 a 1.10 a 0.20 a 0.83 b 22.05 a 16.32 a 1.15 ab 0.10 c 1.11 a 19.65 a N90 20.45 a 1.10 a 0.19 a 0.63 c 23.90 a 15.11 a 1.21 a 0.11 b 1.12 a 18.85 a N135 19.85 a 1.03 a 019 a 0.83 b 22.92 a 16.19 a 1.18 a 0.12 a 1.11 a 19.12 a M 20.50 a 1.04 b 0.18 b 0.84 a 23.46 a 15.97 a 1.12 b 0.10 a 1.14 a 19.44 a I 19.37 a 1.13 a 0.20 a 0.80 a 22.49 a 15.69 a 1.19 a 0.11 a 1.00 a 18.76 a 氮水平 N level (N) * * ** *** *** 种植模式 Cropping pattern (C) * ** ** N×C 注:M—单作; I—间作。同列数据后不同字母表示不同处理间差异显著 (双因素方差分析, P<0.05);*— P<0.05;**—P<0.01;***— P<0.001. Note: M—Mono-cropping; I—Intercropping. Values followed by different letters in the same column mean significant difference among treatments (two-way ANOVA, P<0.05); *— P< 0.05; **—P< 0.01; ***— P<0.001. -
[1] Chapagain T, Riseman A. Barley-pea intercropping: Effects on land productivity, carbon and nitrogen transformations[J]. Field Crops Research, 2014, 166: 18–25. DOI: 10.1016/j.fcr.2014.06.014
[2] Bedoussac L, Journet E P, Henrik H, et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review[J]. Agronomy for Sustainable Development, 2015, 35(3): 911–935. DOI: 10.1007/s13593-014-0277-7
[3] 肖靖秀, 郑毅. 间套作系统中作物的养分吸收利用与病虫害控制[J]. 中国农学通报, 2005, 21(3): 150–154. Xiao J X, Zheng Y. Nutrients uptake and pests and diseases control of crops in intercropping system[J]. Chinese Agricultural Science Bulletin, 2005, 21(3): 150–154. DOI: 10.3969/j.issn.1000-6850.2005.03.041 Xiao J X, Zheng Y. Nutrients uptake and pests and diseases control of crops in intercropping system[J]. Chinese Agricultural Science Bulletin, 2005, (3): 150‒154. DOI: 10.3969/j.issn.1000-6850.2005.03.041
[4] 刘振洋, 柏文恋, 黄少欣, 等. 间作对不同氮水平下小麦产量优势形成的影响[J]. 华北农学报, 2020, 35(5): 185–194. Liu Z Y, Bai W L, Huang S X, et al. Effect of intercropping on yield advantage formation of wheat under different nitrogen levels[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 185–194. DOI: 10.7668/hbnxb.20190813 Liu Z Y, Bai W L, Huang S X, et al. Effect of intercropping on yield advantage formation of wheat under different nitrogenlevels[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(5): 185‒194. DOI: 10.7668/hbnxb.20190813
[5] 肖焱波, 段宗颜, 金航, 等. 小麦/蚕豆间作体系中的氮节约效应及产量优势[J]. 植物营养与肥料学报, 2007, 13(2): 267–271. Xiao Y B, Duan Z Y, Jin H, et al. Spared N response and yields advantage of intercropped wheat and faba bean[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 267–271. DOI: 10.3321/j.issn:1008-505X.2007.02.014 Xiao Y B, Duan Z Y, Jin H, et al. Spared N response and yields advantage of intercropped wheat and faba bean[J]. Journal of Plant Nutrition Fertilizers, 2007, 14(2): 267‒271. DOI: 10.3321/j.issn:1008-505X.2007.02.014
[6] Dai J, Qiu W, Wang N, et al. From leguminosae/gramineae intercropping systems to see benefits of intercropping on iron nutrition[J]. Frontiers in Plant Science, 2019, 10: 605. DOI: 10.3389/fpls.2019.00605
[7] 张向前, 黄国勤, 卞新民, 等. 间作对玉米品质、产量及土壤微生物数量和酶活性的影响[J]. 生态学报, 2012, 32(22): 7082–7090. Zhang X Q, Huang G Q, Bian X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils[J]. Acta Ecologica Sinica, 2012, 32(22): 7082–7090. DOI: 10.5846/stxb201110151526 Zhang X Q, Huang G Q, Bian X M, et al. Effects of intercropping on quality and yield of maize grain, microorganism quantity, and enzyme activities in soils[J]. Acta Ecologica Sinica, 2012, 32(22): 7082‒7090. DOI: 10.5846/stxb201110151526
[8] Martinguay M O, Paquette A, Dupras J, et al. The new Green Revolution: Sustainable intensification of agriculture by intercropping[J]. Science of the Total Environment, 2018, 615: 767–772. DOI: 10.1016/j.scitotenv.2017.10.024
[9] 闫艳艳, 胡晨曦, 樊永惠, 等. 冬春季夜间增温对冬小麦植株氮代谢和籽粒蛋白质形成的影响[J]. 麦类作物学报, 2018, 38(2): 203–212. Yan Y Y, Hu C X, Fan Y H, et al. Effect of night warming in winter and spring seasons on plant nitrogen metabolism and grain protein formation in winter wheat[J]. Journal of Triticeae Crops, 2018, 38(2): 203–212. DOI: 10.7606/j.issn.1009-1041.2018.02.12 Yan Y Y, Hu C X, Fan Y H, et al. Effect of night warming in winter and spring seasons on plant nitrogen metabolism and grain protein formation in winter wheat[J]. Journal of Triticeae Crops, 2018, 38(2): 203‒212. DOI: 10.7606/j.issn.1009-1041.2018.02.12
[10] 张秀, 朱文美, 代兴龙, 等. 施氮量对强筋小麦产量、氮素利用率和品质的影响[J]. 麦类作物学报, 2018, 38(8): 963–969. Zhang X, Zhu W M, Dai X L, et al. Effect of nitrogen application rate on grain yield, nitrogen use efficiency and grain quality of strong gluten wheat[J]. Journal of Triticeae Crops, 2018, 38(8): 963–969. DOI: 10.7606/j.issn.1009-1041.2018.08.12 Zhang X, Zhu W M, Dai X L, et al. Effect of nitrogen application rate on grain yield, nitrogen use efficiency and grain quality of strong gluten wheat[J]. Journal of Triticeae Crops, 2018, 38(8): 963‒969. DOI: 10.7606/j.issn.1009-1041.2018.08.12
[11] 代新俊, 杨珍平, 陆梅, 等. 不同形态氮肥及其用量对强筋小麦氮素转运、产量和品质的影响[J]. 植物营养与肥料学报, 2019, 25(5): 710–720. Dai X J, Yang Z P, Lu M, et al. Effects of nitrogen forms and amounts on nitrogen translocation, yield and quality of strong-gluten wheat[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 710–720. DOI: 10.11674/zwyf.18220 Dai X J, Yang Z P, Lu M, et al. Effects of nitrogen forms and amounts on nitrogen trans location, yield and quality of strong-gluten wheat[J]. Journal of Plant Nutrition Fertilizers, 2019, 25(5): 710‒720. DOI: 10.11674/zwyf.18220
[12] 严美玲, 殷岩, 姜鸿明, 等. 氮肥用量对小麦籽粒粒重及淀粉含量的影响[J]. 麦类作物学报, 2008, 28(6): 1011–1015. Yan M L, Yin Y, Jiang H M, et al. Effect of nitrogen amount on grains weight and amylose, amylopection content of wheat[J]. Journal of Triticeae Crops, 2008, 28(6): 1011–1015. Yan M L, Yin Y, Jiang H M, et al. Effect of nitrogen amount on grains weight and amylose, amylopectioncontent of wheat[J]. Journal of Triticeae Crops, 2008, 28(6): 1011‒1015.
[13] 蔡瑞国, 尹燕枰, 张敏, 等. 氮素水平对藁城8901和山农1391籽粒品质的调控效应[J]. 作物学报, 2007, 33(2): 304–310. Cai R G, Yin Y P, Zhang M, et al. Effects of nitrogen application rate on grain quality in wheat cultivars GC8901 and SN1391[J]. Acta Agronomica Sinica, 2007, 33(2): 304–310. DOI: 10.3321/j.issn:0496-3490.2007.02.020 Cai R G, Yin Y P, Zhang M, et al. Effects of nitrogen application rate on grain quality in wheat cultivars GC8901 and SN1391[J]. Acta Agronomica Sinica, 2007, (2): 304‒310. DOI: 10.3321/j.issn:0496-3490.2007.02.020
[14] 姜丽娜, 刘佩, 齐冰玉, 等. 不同施氮量及种植密度对小麦开花期氮素积累转运的影响[J]. 中国生态农业学报, 2016, 24(2): 131–141. Jiang L N, Liu P, Qi B Y, et al. Effects of different nitrogen application amounts and seedling densities on nitrogen accumulation and transport in winter wheat at anthesis stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2): 131–141. Jiang L N, Liu P, Qi B Y, et al. Effects of different nitrogen application amounts and seedling densities on nitrogen accumulation and transport in winter wheat at anthesis stage[J]. Chinese Journal of Eco-Agriculture, 2016, 24(2): 131‒141.
[15] 张文静, 江东国, 黄正来, 等. 氮肥施用对稻茬小麦冠层结构及产量、品质的影响[J]. 麦类作物学报, 2018, 38(2): 164–174. Zhang W J, Jiang D G, Huang Z L, et al. Effects of nitrogen fertilizer application on canopy structure traits, grain yield and quality of wheat after rice[J]. Journal of Triticeae Crops, 2018, 38(2): 164–174. DOI: 10.7606/j.issn.1009-1041.2018.02.07 Zhang W J, Jiang D G, Huang Z L, et al. Effects of nitrogen fertilizer application on canopy structure traits, grain yield and quality of wheat after rice [J]. Journal of Triticeae Crops, 2018, 38(2): 164‒174. DOI: 10.7606/j.issn.1009-1041.2018.02.07
[16] 吴培金, 闫素辉, 邵庆勤, 等. 施氮量对弱筋小麦籽粒品质形成的影响[J]. 麦类作物学报, 2020, 40(10): 1232–1238. Wu P J, Yan S H, Shao Q Q, et al. Effects of nitrogen rate on grain quality of weak gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(10): 1232–1238. DOI: 10.7606/j.issn.1009-1041.2020.10.10 Wu P J, Yan S H, Shao Q Q, et al. E ffects of nitrogen rate on grain quality of weak gluten wheat [J]. Journal of Triticeae Crops, 2020, 40(10): 1232‒1238. DOI: 10.7606/j.issn.1009-1041.2020.10.10
[17] El Fiel H E A, El Tinay A H, Elsheikh E A E. Effect of nutritional status of faba bean (Vicia faba L. ) on protein solubility profiles[J]. Food Chemistry, 2002, 76(2): 219–223. DOI: 10.1016/S0308-8146(00)00314-9
[18] 蔡明, 刘吉利, 杨亚亚, 等. 马铃薯燕麦间作和施氮对马铃薯干物质累积、产量及品质的影响[J]. 西北农业学报, 2020, 29(3): 354–362. Cai M, Liu J L, Yang Y Y, et al. Effects of nitrogen application and potato-oats intercropping on dry matter accumulation, yield and quality of potato[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2020, 29(3): 354–362. DOI: 10.7606/j.issn.1004-1389.2020.03.005 Cai M, Liu J L, Yang Y Y, et al. Effects of nitrogen application and potato-oats intercropping on dry matter accumulation, yield and quality of potato[J]. Acta Agriculture Boreali-Occidentalis Sinica, 2020, 29(3): 354‒362. DOI: 10.7606/j.issn.1004-1389.2020.03.005
[19] Xiao J X, Yin X H, Ren J B, et al. Complementation drives higher growth rate and yield of wheat and saves nitrogen fertilizer in wheat and faba bean intercropping[J]. Field Crops Research, 2018, 221: 119–129. DOI: 10.1016/j.fcr.2017.12.009
[20] 肖靖秀, 周桂夙, 汤利, 等. 小麦/蚕豆间作条件下小麦的氮、钾营养对小麦白粉病的影响[J]. 植物营养与肥料学报, 2006, 12(4): 517–522. Xiao J X, Zhou G S, Tang L, et al. Effects of nitrogen and potassium nutrition on the occurence of Blumeria graminis (DC). Speer of wheat in wheat and faba bean intercropping[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(4): 517–522. DOI: 10.3321/j.issn:1008-505X.2006.04.010 Xiao J X, Zhou G S, Tang L, et al. Effects of nitrogen and potassium nutrition on the occurence of Blumeriagraminis(DC). Speer of wheat in wheat and faba bean intercropping [J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(4): 517‒522. DOI: 10.3321/j.issn:1008-505X.2006.04.010
[21] 马连坤, 董坤, 朱锦惠, 等. 小麦蚕豆间作及氮肥调控对蚕豆赤斑病和锈病复合危害及产量损失的影响[J]. 植物营养与肥料学报, 2019, 25(8): 1383–1392. Ma L K, Dong K, Zhu J H, et al. Effect of nitrogen management on the combined damage of chocolate spot and rust diseases and yield loss of faba bean in wheat–faba bean intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1383–1392. DOI: 10.11674/zwyf.18364 Ma L K, Dong K, Zhu J H, et al. Effect of nitrogen management on the combined damage of chocolate spot and rust diseases and yield loss of faba bean in wheat–faba bean intercropping system [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1383‒1392. DOI: 10.11674/zwyf.18364
[22] 朱锦惠, 董艳, 肖靖秀, 等. 小麦与蚕豆间作系统氮肥调控对小麦白粉病发生及氮素累积分配的影响[J]. 应用生态学报, 2017, 28(12): 3985–3993. Zhu J H, Dong Y, Xiao J X, et al. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3985–3993. Zhu J H, Dong Y, Xiao J X, et al. Effects of N application on wheat powdery mildew occurrence, nitrogen accumulation and allocation in intercropping system[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3985‒3993.
[23] 任家兵, 张梦瑶, 肖靖秀, 等. 小麦| | 蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文), 2020, 28(12): 1890–1900. Ren J B, Zhang M Y, Xiao J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890–1900. Ren J B, Zhang M Y, Xiao J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen [J]. Chinese Journal of Eco-agriculture, 2020, 28(12): 1890‒1900.
[24] Tosti G, Guiducci M. Durum wheat–faba bean temporary intercropping: Effects on nitrogen supply and wheat quality[J]. European Journal of Agronomy, 2010, 33(3): 157–165. DOI: 10.1016/j.eja.2010.05.001
[25] Stefanis D E, Sgrulletta D, Pucciarmati S, et al. Influence of durum wheat‒faba bean intercrop on specific quality traits of organic durum wheat[J]. Biological Agriculture & Horticulture, 2017, 33(1): 28–39.
[26] Longobardi F, Sacco, D, Casiello G, et al. Chemical profile of the Carpino broad bean by conventional and innovative physicochemical analyses[J]. Food Quality, 2015, 38: 273–284. DOI: 10.1111/jfq.12143
[27] 黄志连, 付开举, 彭芍丹, 等. 辣木籽渣组分蛋白的理化与功能性质研究[J]. 热带作物学报, 2021, 42(1): 247–253. Huang Z L, Fu K J, Peng S D, et al. Physicochemical and functional properties of component proteins from moringa seed residue[J]. Chinese Journal of Tropical Crops, 2021, 42(1): 247–253. Huang Z L, Fu K J, Peng S D, et al. Physicochemical and functional properties of component proteins from moringa seed residue [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 247‒253.
[28] 张敏. 高温和外源碳氮供应对小麦籽粒蛋白质和淀粉形成的生理影响[D]. 江苏南京: 南京农业大学硕士学位论文, 2006. Zhang M. Physiological effects of high temperature and sucrose & glutamate supply on protein and starch formation of wheat in detached ear cultured in vivo[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2006.
[29] 李孟洁, 李红兵, 张丽娟, 等. 小麦灌浆期子粒淀粉合成关键酶活性对不同水氮条件的响应[J]. 作物杂志, 2015, (5): 128–133. Li M J, Li H B, Zhang L J, et al. Effects of different water and nitrogen treatments on activities of enzymes involved in starch synthesis in wheat grains[J]. Crops, 2015, (5): 128–133. Li M J, Li H B, Zhang L J, et al . Effects of different water and nitrogen treatments on activities of enzymes involved in starch synthesis in wheat grains [J]. Crops, 2015, (5): 128‒133.
[30] 石玉, 张永丽, 于振文. 小麦籽粒蛋白质组分含量及其与加工品质的关系[J]. 作物学报, 2009, 35(7): 1306–1312. Shi Y, Zhang Y L, Yu Z W. Contents of grain protein components and their relationships to processing quality in wheat[J]. Acta Agronomica Sinica, 2009, 35(7): 1306–1312. DOI: 10.3724/SP.J.1006.2009.01306 Shi Y, Zhang Y L, Yu Z W. Contents of grain protein components and their relationships to processing quality in wheat[J]. Acta Agronomica Sinica, 2009, 35(7): 1306‒1312. DOI: 10.3724/SP.J.1006.2009.01306
[31] 姜东, 仲迎鑫, 蔡剑, 等. 小麦籽粒品质空间分布异质性及其形成机制研究进展[J]. 南京农业大学学报, 2021, 44(6): 1013–1023. Jiang D, Zhong Y X, Cai J, et al. Advances of spatial distribution heterogeneity of wheat grain quality and the underlying mechanisms[J]. Journal of Nanjing Agricultural University, 2021, 44(6): 1013–1023. Jiang D, Zhong Y X, Cai J, et al. Advances of spatial distribution heterogeneity of wheat grain quality and the underlying mechanisms[J]. Journal of Nanjing Agricultural University. 2021, 44(6): 1013‒1023.
[32] 夏树凤, 江广帅, 赵鸿, 等. 基于Meta分析和气象因子驱动的苏豫皖小麦籽粒蛋白质含量地理空间分布特征[J]. 麦类作物学报, 2021, 41(8): 1033–1043. Xia S F, Jiang G S, Zhao H, et al. Study on spatial distribution characteristics of wheat grain protein content based on Meta-analysis and meteorological factors in Jiangsu, Anhui and Henan[J]. Journal of Triticcac Crops, 2021, 41(8): 1033–1043. DOI: 10.7606/j.issn.1009-1041.2021.08.13 Xia S F, Jiang G S, Zhao H, et al. Study on spatial distribution characteristics of wheat grain protein content based on Meta-analysis and meteorological factors in Jiangsu, Anhui and Henan[J]. Journal of Triticcac Crops. 2021, 1(8): 1033‒1043. DOI: 10.7606/j.issn.1009-1041.2021.08.13
[33] Good A G, Shrawat A K, Muench D G. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production?[J]. Trends in Plant Science, 2004, 9(12): 597–605. DOI: 10.1016/j.tplants.2004.10.008
[34] 焦念元, 李吉明, 汪江涛, 等. 氮磷对玉米花生间作蛋白质与氮代谢特点的影响[J]. 作物杂志, 2014, (6): 99–105. Jiao N Y, Li J M, Wang J T, et al. Effects of nitrogen and phosphorus on protein and nitrogen metabolism characteristics in maize peanut intercropping system[J]. Crops, 2014, (6): 99–105. Jiao N Y, Li J M, Wang J T, et al. Effects of nitrogen and phosphorus on protein and nitrogen metabolism characteristics in maize peanut intercropping system[J]. Crops, 2014, (6): 99-105.
[35] 刘振洋. 小麦蚕豆间作调控小麦氮素吸收同化的机制及其对白粉病的响应[D]. 云南昆明: 云南农业大学硕士学位论文, 2020. Liu Z Y. Mechanism of wheat and faba bean intercropping regulated wheat nitrogen acquisition and assimilation and its response to wheat powdery mildew[D]. Kunming, Yunnan: MS Thesis of Yunnan Agricultural University, 2020.
[36] 刘振洋, 吴鑫雨, 汤利, 等. 小麦蚕豆间作体系氮素吸收累积动态及其种间氮素竞争关系[J]. 植物营养与肥料学报, 2020, 26(7): 1284–1294. Liu Z Y, Wu X Y, Tang L, et al. Dynamics of N acquisition and accumulation and its interspecific N competition in a wheat‒faba bean intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1284–1294. DOI: 10.11674/zwyf.19462 Liu Z Y, Wu X Y, Tang L, et al. Dynamics of N acquisition and accumulation and its interspecific N competition in a wheat‒faba bean intercropping system [J]. Journal of Plant Nutrition and Fertilizerss, 2020, 26(7): 1284‒1294. DOI: 10.11674/zwyf.19462
[37] Xiao J X, Zhu Y A, Bai W L, et al. Yield performance and optimal nitrogen and phosphorus application rates in wheat and faba bean intercropping[J]. Journal of Integrative Agriculture, 2021, 20(11): 3012–3025. DOI: 10.1016/S2095-3119(20)63489-X
[38] 陆增根, 戴廷波, 姜东, 等. 不同施氮水平和基追比对弱筋小麦籽粒产量和品质的影响[J]. 麦类作物学报, 2006, 26(6): 75–80. Lu Z G, Dai T B, Jiang D, et al. Effects of different nitrogen rates and dressing ratios on grain yield and quality in weak-gluten wheat[J]. Journal of Triticeae Crops, 2006, 26(6): 75–80. DOI: 10.3969/j.issn.1009-1041.2006.06.017 Lu Z G, Dai Y B, Jiang D, et al. Effects of different nitrogen rates and dressing ratios on grain yield and quality in weak-gluten wheat [J]. Journal of Triticeae Crops, 2006, (6): 75‒80. DOI: 10.3969/j.issn.1009-1041.2006.06.017
-
期刊类型引用(3)
1. 何鹏亮,刘小春,唐艳仪,朱宁静,揭红东,邢虎成,揭雨成. 湖南西部地区饲用蚕豆的生产性能比较研究. 作物研究. 2024(04): 287-292 . 百度学术
2. 刘哲文,郭丹丹,常旭虹,王德梅,杨玉双,刘希伟,王玉娇,王艳杰,赵广才. 追氮对弱筋小麦干物质、氮素积累及产量的影响. 麦类作物学报. 2023(08): 1029-1038 . 百度学术
3. 张树航,郭燕,张馨方,李颖,刘欢,王广鹏. 土壤主要矿质元素与板栗总糖和淀粉含量的关联性研究. 云南农业大学学报(自然科学). 2023(05): 816-822 . 百度学术
其他类型引用(2)