• ISSN 1008-505X
  • CN 11-3996/S

不同来源有机肥释放的溶解有机质粒径分布与光谱特征

李财生, 吴月颖, 陈丽铭, 吴治澎, 侯正伟, 黄成, 吉恒宽, 符传良, 吴蔚东

李财生, 吴月颖, 陈丽铭, 吴治澎, 侯正伟, 黄成, 吉恒宽, 符传良, 吴蔚东. 不同来源有机肥释放的溶解有机质粒径分布与光谱特征[J]. 植物营养与肥料学报, 2022, 28(6): 961-971. DOI: 10.11674/zwyf.2021541
引用本文: 李财生, 吴月颖, 陈丽铭, 吴治澎, 侯正伟, 黄成, 吉恒宽, 符传良, 吴蔚东. 不同来源有机肥释放的溶解有机质粒径分布与光谱特征[J]. 植物营养与肥料学报, 2022, 28(6): 961-971. DOI: 10.11674/zwyf.2021541
LI Cai-sheng, WU Yue-ying, CHEN Li-ming, WU Zhi-peng, HOU Zheng-wei, HUANG Cheng, JI Heng-kuan, FU Chuan-liang, WU Wei-dong. Size fraction distribution and spectral characteristics of dissolved organic matter derived from different organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 961-971. DOI: 10.11674/zwyf.2021541
Citation: LI Cai-sheng, WU Yue-ying, CHEN Li-ming, WU Zhi-peng, HOU Zheng-wei, HUANG Cheng, JI Heng-kuan, FU Chuan-liang, WU Wei-dong. Size fraction distribution and spectral characteristics of dissolved organic matter derived from different organic fertilizers[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 961-971. DOI: 10.11674/zwyf.2021541

不同来源有机肥释放的溶解有机质粒径分布与光谱特征

基金项目: 海南省自然科学基金项目(322MS017);海南省基础与应用基础研究计划(自然科学领域)高层次人才基金项目(2019RC022)。
详细信息
    作者简介:

    李财生 E-mail: 3185656388@qq.com

    通讯作者:

    吴治澎 E-mail: peter@hainanu.edu.cn

Size fraction distribution and spectral characteristics of dissolved organic matter derived from different organic fertilizers

  • 摘要:
    目的 

    研究不同来源有机肥释放的溶解有机质 (DOM) 的粒径分布与光谱特征,为有机肥在农业生产中的应用及DOM后续环境行为的研究提供理论指导。

    方法 

    本研究选择海藻、羊粪、虾肽以及小麦秸秆生物炭4种有机肥,提取有机肥中的DOM (<0.7 µm)。利用超滤分级技术对提取的DOM进一步区分为 <1 kDa、1~100 kDa、100 kDa~0.2 μm和0.2~0.7 μm 4个粒级,使用总有机碳 (TOC) 分析仪测定各粒径DOM的含量并使用傅里叶变换红外光谱 (FTIR)、紫外‒可见吸收光谱 (UV-Vis) 和三维荧光光谱 (3D-EEM) 进行光谱表征。

    结果 

    从全量 (粒径<0.7 µm) 溶解有机碳(DOC)来看,小麦秸秆生物炭 (308 mg/kg)<虾肽 (1060 mg/kg)<海藻 (1266 mg/kg)<羊粪 (2989 mg/kg)。供试有机肥中不同粒径的DOC所占比例和含量差异明显,均以最小粒径 (<1 kDa) 所占比例最高,除海藻为47%外,其余有机肥处理皆达到50%及以上。4种不同来源有机肥DOM的紫外和荧光特征值表明,4种有机肥的荧光指数 (FI) 和自生源指数(BIX)随着DOM粒径的减小而增大,而SUVA254、SUVA260和腐殖化指数 (HIX)随着DOM粒径的减小而减小。虾肽DOM各粒径的类蛋白组分含量高且主要为内源DOM,自生来源有机质丰富,生物可利用性高;羊粪DOM各粒径受人类活动影响较大;而小麦秸秆生物炭的DOM大粒径(>100 kDa)组分的FI<1.4,表明其大粒径DOM主要为外源性的,自身生产和微生物活动贡献相对较低。此外,尽管海藻、羊粪和虾肽各粒径的DOM的HIX值随着粒径的减小而逐渐减小,除虾肽DOM的<1 kDa组分外,其腐殖化程度依旧较高 (HIX>10),而小麦秸秆生物炭小粒径DOM的HIX<4,表明小麦秸秆生物炭的小粒径DOM疏水组分含量高,腐殖化程度相对较低。荧光组分和红外光谱表明了4种不同来源有机肥DOM以类腐殖质物质为主,且含有大量氨基酸N—H键、O—H键和C—O键等官能团。

    结论 

    依据有机肥释放的DOM的粒径分布和光谱特征,海藻、羊粪、虾肽有机肥中的DOM主要以小粒径为主,其腐殖化程度高,蛋白组分含量较低。小麦秸秆生物炭DOM的生物稳定性要高于其他有机肥,生物可利用性较低,因此,施加过量的生物炭不利于微生物对土壤DOM的降解利用;而虾肽来源有机肥的DOM类蛋白组分贡献最大,生物可利用性高,施用虾肽有机肥可能有利于微生物对土壤DOM的降解利用。

    Abstract:
    Objectives 

    The size fraction distribution and spectral characteristics of dissolved organic matter (DOM) released from different sources of organic fertilizers were studied to guide the application of organic fertilizer in agricultural production and the subsequent environmental effect of DOM.

    Methods 

    The DOM in the aqueous solution of the different organic fertilizers (i.e., wheat straw biochar, shrimp peptide, seaweed and sheep manure) was classified by ultrafiltration classification technology. The content of each size fraction was determined by total organic carbon (TOC) analyzer, and the spectra were characterized by Fourier transformed infrared spectroscopy (FTIR), ultraviolet visible absorption spectroscopy (UV-Vis) and three-dimensional fluorescence spectroscopy (3D-EEM).

    Results 

    In terms of total (<0.7 µm) dissolved organic carbon (DOC), the results were in order of wheat straw biochar (308 mg/kg) < shrimp peptide (1060 mg/kg)<seaweed (1266 mg/kg)<sheep manure (2989 mg/kg). The proportion of DOC in the smallest particle size (<1 kDa) was the highest, except for algae, which accounted for 47%, the other organic fertilizers reached 50% or more. The fluorescence index (FI) and autochthonous index (BIX) of the four organic fertilizers increased with the decrease of DOM size fractions, while the SUVA254, SUVA260 and humification index (HIX) decreased with the decrease of DOM size fractions. The protein-like fractions of shrimp peptide DOM were high in each size fraction and mainly endogenous DOM, rich in organic matter from autochthonous sources and highly bioavailable. The size fractions of sheep manure DOM were greatly affected by human activities, however, the FI<1.4 for wheat straw biochar DOM in the larger size fraction (>100 kDa) indicated that its DOM in the larger size fraction was mainly exogenous with relatively low contribution from autochthonous production and microbial activities. In addition, although the HIX value of DOM of each size fraction of seaweed, sheep manure and shrimp peptide gradually decreased with the decrease of size fraction, except for the <1 kDa component of shrimp peptide DOM, the degree of humification was still high (HIX>10). While the HIX<4 of the small size fraction DOM of the wheat straw biochar indicated that the small size fraction DOM of the wheat straw biochar had a high content of hydrophobic components and a relatively low degree of humification. The fluorescence fractions and infrared spectra showed that the DOM of the four different organic fertilizers was dominated by humic substances and contained a large number of functional groups such as amino acid N―H, O―H and C―O.

    Conclusions 

    Based on the size fractions distribution and spectral characteristics of organic fertilizers, DOM in seaweed, sheep manure, and shrimp peptide was mainly small size fraction, which was highly humified and has low protein content. The biostability of wheat straw biochar DOM was higher than other organic fertilizers, and the bioavailability was lower; therefore, the application of excessive biochar did not promote the microbial degradation and utilization of soil DOM; while the organic fertilizer of shrimp peptide source had the largest contribution of DOM protein-like fraction and high bioavailability. The application of shrimp peptide organic fertilizer may facilitate the degradation and utilization of soil DOM by microorganisms.

  • 有机肥在农业生产过程中具有肥效周期长、促进微生物活动、改良土壤结构等优点,有机肥与化肥配施不仅能够弥补单独使用化肥造成的微量元素不足的问题,还可以促进作物生长,减少化肥的用量与损失[1-2]。溶解有机质 (dissolved organic matter, DOM)通常被定义为能通过0.7 µm、0.45 µm或0.2 µm等微米滤膜的一类有机化合物[3-5],其具有较高的反应活性、移动性,在调节土壤呼吸、植物生长、微生物代谢及养分循环中起着重要作用[6-7]。有机肥在施入土壤后,会带入土壤大量的DOM,DOM较高的反应活性会影响土壤的性质。由于不同有机肥释放的DOM不同,进而影响土壤DOM的性质及其环境行为[8-9]。因此,有必要研究不同有机肥释放的DOM的组成性质。

    DOM是一种多分散、高度复杂和非均相的混合物,其结构复杂,因此很难在分子水平上完全表征其组成[10]。然而,DOM含有大量的光吸收和发光基团,使光谱学成为跟踪其固有性质的有效工具[11-12]。国内外的研究者已经使用各种光谱法研究DOM,例如傅里叶变换红外光谱 (FTIR)、紫外‒可见吸收光谱 (UV-Vis)、三维荧光光谱 (3D-EEM)、核磁共振波谱仪 (NMR)和高效液相色谱质谱 (HPLC-MS)等[13-14]。杨银等[15]研究发现,由于不同的空间位置及周围环境,会影响不同水源地DOM的荧光组分。李婉秋等[16]研究表明,不同秸秆生物炭的DOM因原料不同其含量和性质存在差异,与Cu2+的络合能力和亲和力也不同。DOM的来源影响DOM的含量以及组成,进而影响DOM的各种性质。大量研究表明,不同有机肥的DOM的光谱特征差异明显[17-19]。不同粒径的DOM光谱性质有着明显的差异,Tareq等[20]研究发现,地下水和地表水DOM中具有相对较高的小分子百分比,高分子量的NOM的荧光强度可能低于低分子量的DOM,小分子具有更强的荧光活性。很多研究都集中在水环境的DOM[21-23],但针对有机肥不同粒径的DOM的含量组成以及光谱特征的研究较少。

    因此,本研究采用超滤分级技术,综合使用FTIR、UV-Vis和3D-EEM结合平行因子分析,研究4种不同来源有机肥释放的溶解有机质的粒径分布和光谱特征,为有机肥在农业生产中的应用提供理论指导。

    在前期研究[24]的基础上,选择符合国家标准 (NY 525―2012) 的4种具有代表性商品有机肥,包括海藻有机肥 (青岛明月蓝海生物科技有限公司)、羊粪有机肥 (海口南渝农资有限公司)、虾肽有机肥 (湛江博泰生物有限公司)和小麦秸秆生物炭肥 (南京智融联科技有限公司,制备温度500℃)。

    有机肥DOM溶液的提取主要依据Huang等[25]的方法,所有样品均风干,研磨通过1 mm筛,然后用于提取DOM,简言之,称取20 g有机肥,用超纯水以1/10的固/液比 (干重) 提取,所有样品在220 r/min和25℃下振荡24 h,并使用离心机在4000 r/min下离心30 min,上清液储存在4℃下直到使用。

    使用上清液提取有机肥中的DOM (粒径<0.7 µm),并用超滤装置进行分级,具体地说,DOM溶液依次通过装有孔径大小为0.7 μm、0.2 μm、100 kDa、1 kDa的滤膜的密闭超滤杯,通入氮气加压,用棕色瓶盛装滤好的DOM溶液,分别为粒径 <1 kDa、1~100 kDa、100 kDa~0.2 μm、0.2~0.7 μm下的滤液,不同孔径下的滤液即代表不同分子量的DOM溶液,将滤液保存于4℃冰箱,用于后续的实验。采用岛津TOC-L型总有机碳 (TOC) 分析仪测定各粒径总碳及无机碳含量,两者的差值为溶解性有机碳 (DOC)。

    将4种不同粒径下的 DOM 溶液分别进行FTIR、UV-Vis、3D-EEM的测定,并计算SUVA254[26]、SUVA260[27]、腐殖化指数(humification index, HIX)[28]、荧光指数 (fluorescence index, FI)[29]和自生源指数 (autochthonous index, BIX)[30],具体方法以及指标含义如下:

    红外光谱:将DOM溶液冷冻干燥,压片,采用傅里叶变换红外光谱仪 (Spectrum 65,珀金埃尔默公司,美国) 扫描,扫描波数范围 4000~450 cm–1,使用Origin 9.0 对各特征峰积分,计算各对应官能团的相对含量[31]

    紫外可见光谱:采用紫外可见分光光度计 Lambda 25 UV spectrometer (PerKinEImer) 测定,设定扫描范围:起始波长 800 nm,终止波长 220 nm,时间间隔 1 nm。

    三维荧光光谱:采用 F-320 荧光光谱分析仪 (天津港东科技),150 W 氙灯为激发光源,光电倍增电压为 700 V,扫描波长范围为激发波长 Ex=200~450 nm,发射波长Em=230~650 nm,激发波长和发射波长增量均设为5 nm,狭缝宽度为10 nm,扫描间隔为1 nm,扫描速度为2400 nm/min。

    SUVA254:254 nm处UV的吸光系数与DOC浓度之比 (SUVA254 = UVA254/DOC),示踪DOM的芳香性,其值越大,表明芳香化程度越高,有机物越难被分解和利用。

    SUVA260:260 nm处UV的吸光系数与DOC的浓度之比,表示DOM中疏水性组分的含量,值越大,DOM疏水组分所占比例越高。

    腐殖化指数(humification index, HIX):254 nm激发波长下,荧光发射光谱中435~480 nm区域与300~345 nm区域的峰面积比值。值越高,表明腐殖化程度越高,DOM 较稳定。HIX<4,表明DOM腐殖化程度较低;HIX>10,则腐殖化特征强。

    荧光指数 (fluorescence index, FI):荧光激发波长370 nm 时,450 nm与500 nm处发射光谱强度的比值,用来区分DOM的主要来源。FI>1.9,主要为微生物活动所产生的内源DOM,自生源特征明显;FI<1.4,主要为以陆源输入的外源性 DOM,自身生产力和微生物活动等贡献相对较低。

    自生源指数 (autochthonous index, BIX):310 nm激发波长下,发射波长380 nm与430 nm处荧光强度的比值,反映DOM自生源相对贡献,BIX值越大,自生源特征越明显,类蛋白组分贡献越大,生物可利用性越高。BIX在0.6~0.7,DOM自生组分较少,代表陆源输入或受人类影响较大;BIX>1时,类蛋白组分贡献大,代表生物或细菌引起的自生来源且有机质为新近产生,生物可利用性高。

    采用Excel 2016和SPSS 23.0软件对数据进行统计分析。所有试验测定3个重复,试验数据均为3个平行样品测定的数据的平均值±标准差。使用单因素方差分析作显著性检验,邓肯 (Duncan) 测验用于多重比较 (α = 0.05),并运用Origin 9.0作图。

    采用Matlab 2016b软件对EEM光谱数据进行平行因子分析,将原始EEM光谱数据进行转化矫正并扣除空白,数据归一化处理后提取模型得到2~7个组分,经裂半分析、核心一致性分析和随机初始化方法,最终确定出各有机肥的荧光组分为3~4个。

    从总量上看,4种有机肥DOC的含量以羊粪最高,达到2989 mg/kg,其次为海藻和虾肽,分别为1266和1060 mg/kg,而小麦秸秆生物炭的含量最低,仅为308 mg/kg (图1)。4种有机肥各粒径间释放的DOC含量差异明显。从各粒径含量来看,4种有机肥提取的DOC含量随着粒径的减小呈波动变化趋势,在粒径<1 kDa时DOC含量达到最高。4种有机肥各粒径DOC含量各不相同,但都以最小粒径 (<1 kDa) 所占比例最高,除海藻为47%外其余有机肥处理皆达到50%及以上,其大小顺序为:海藻 (47%)<虾肽 (53%)<小麦秸秆生物炭 (57%)<羊粪 (70%)。

    图  1  有机肥中各粒径溶解性有机碳的含量及其百分比
    注:图例为DOC 4个组分的粒径范围。柱上不同小写字母表示同一有机肥各粒径间差异显著 (P<0.05)
    Figure  1.  Concentration and percentage of dissolved organic carbon (DOC) with different size fractions in organic fertilizers
    Note: The legends shows the size range of the four fractions of DOC. Different lowercase letters above the bars indicate significant difference among size fractions of the same organic fertilizer (P< 0.05)

    为了解不同来源有机肥各粒径DOM的光谱特征,本研究对DOM的紫外可见光谱 (SUVA254和SUVA260) 和荧光光谱特征值 (BIX、FI和HIX) 进行分析 (表1)。随着粒径的减小,不同有机肥DOM的SUVA254和SUVA260值逐渐减小,其芳香化程度和疏水性组分含量逐渐降低。小麦秸秆生物炭的DOM在0.2~0.7 μm粒径下的SUVA254和SUVA260要高于其他3种有机肥,其他3个粒径的SUVA254和SUVA260均低于其他有机肥,表明其芳香组分和疏水组分主要为大粒径分子。从各个粒径上看,不同有机肥DOM的BIX值和FI值随着粒径的减小逐渐增大,其自生源成分逐渐减小,蛋白成分逐渐增多,受微生物的影响逐渐减小,以陆源输入为主的外源性DOM的组分增加。虾肽DOM各个粒径的BIX >1,这表明其类蛋白组分含量高,自生来源有机质丰富,生物可利用性高;羊粪DOM各粒径的BIX介于0.6~0.7,表明其受人类影响较大。虾肽DOM各个粒径的FI>1.9,表明其主要为内源DOM;而小麦秸秆生物炭的DOM的0.2~0.7 μm和100 kDa~0.2 μm粒径组分的FI<1.4,这表明其DOM的较大粒径组分主要为外源性,自身生产和微生物活动贡献相对较低。不同有机肥DOM的HIX值随着粒径的减小而减小,随着粒径的减小DOM的腐殖化程度逐渐降低,此外,尽管HIX的值逐渐减小,海藻、羊粪和虾肽(虾肽DOM的<1 kDa组分除外,其HIX为7.17)多数粒径的DOM腐殖化程度依旧较高 (HIX>10),而小麦秸秆生物炭1~100 kDa和<1 kDa粒径组分的腐殖化程度低 (HIX<4)。

    表  1  不同来源有机肥各粒径DOM的紫外–可见光谱和荧光光谱特征值
    Table  1.  Characteristic values of UV-Vis and fluorescence spectra of DOM with different size fractions of different organic fertilizers
    有机肥
    Organic fertilizer
    粒径大小
    Size fraction
    SUVA254SUVA260荧光指数
    FI
    自生源指数
    BIX
    腐殖化指数
    HIX
    海藻
    Seaweed
    0.2~0.7 μm0.81±0.00 a0.79±0.00 a1.55±0.22 b0.86±0.01 c96.67±5.48 a
    100 kDa~0.2 μm0.79±0.01 a0.71±0.02 b1.67±0.01 a0.92±0.03 b63.36±3.51 b
    1~100 kDa0.73±0.02 b0.62±0.04 c1.68±0.02 a1.03±0.01 a20.35±2.32 c
    <1 kDa0.63±0.04 c0.44±0.00 d1.69±0.01 a1.04±0.01 a11.79±0.24 d
    羊粪
    Sheep manure
    0.2~0.7 μm1.06±0.09 a1.00±0.09 a1.42±0.01 a0.61±0.00 c120.56±2.02 a
    100 kDa~0.2 μm1.05±0.00 ab0.99±0.00 a1.51±0.00 b0.66±0.01 b77.62±2.52 b
    1~100 kDa0.93±0.07 ab0.88±0.07 ab1.52±0.01 b0.69±0.01 a30.55±1.97 c
    <1 kDa0.91±0.00 b0.77±0.02 b1.55±0.01 b0.70±0.01 a24.18±0.17 d
    虾肽
    Shrimp peptide
    0.2~0.7 μm0.59±0.02 a0.56±0.02 a1.91±0.00 b1.00±0.01 c76.32±1.33 a
    100 kDa~0.2 μm0.58±0.01 a0.51±0.05 a2.15±0.01 a1.07±0.03 b62.33±4.67 b
    1~100 kDa0.53±0.05 a0.38±0.06 b2.15±0.01 a1.15±0.01 a24.85±2.84 c
    <1 kDa0.48±0.08 a0.38±0.02 b2.16±0.02 a1.16±0.00 a7.17±0.12 d
    小麦秸秆生物炭
    Wheat straw biochar
    0.2~0.7 μm1.36±0.12 a1.52±0.07 a1.11±0.01 c0.80±0.00 b7.39±0.52 a
    100 kDa~0.2 μm0.50±0.15 b0.44±0.14 b1.29±0.02 b0.84±0.02 b5.27±0.93 b
    1~100 kDa0.40±0.05 b0.34±0.08 b1.42±0.02 a0.85±0.01 b1.20±0.04 c
    <1 kDa0.34±0.02 b0.26±0.00 b1.43±0.01 a0.96±0.06 a0.91±0.04 c
    注:同列数据后不同小写字母表示同一种有机肥各粒径间差异显著 (P<0.05)。
    Note:FI—Fluorescence index; BIX—Autochthonous index; HIX—Humification index. Values followed by different lowercase letters in a column indicate significant difference among size fractions of the same organic fertilizer (P<0.05).
    下载: 导出CSV 
    | 显示表格

    利用Matlab平行因子分析,表2列出了海藻、羊粪和虾肽有机肥DOM识别出的4个组分,分别为C1、C2、C3和C4;小麦秸秆生物炭肥DOM则识别出C1、C2和C3这3个组分 (表3)。

    表  2  3种有机肥(海藻、羊粪和虾肽)的荧光组分特征
    Table  2.  Characteristics of fluorescent components in three organic fertilizers (seaweed, sheep manure and shrimp peptides)
    组分 Component激发波长/发射波长 Ex/Em组分描述 Component description
    C1340/417类腐殖质;陆源的氧化醌类物质[32]
    Humus-like substances; oxidized quinones of terrestrial origin
    C2380/513类腐殖质荧光组分,还原半醌类物质,与较高级的植物材料和芳香族碳含量有关,具有较高的分子量[33]
    Humic-like fluorescent component, reduced semi-quinones, associated with higher plant material and aromatic carbon content, with higher molecular weight
    C3325, 425/415类腐殖质荧光组分,还原半醌类物质,由微生物转化而来[34]
    Humic-like fluorescent component, reduced semi-quinones, transformed by microorganisms
    C4315/380色氨酸类物质,内源性的氨基酸,游离或结合在蛋白质中,较难降解的物质[35-36]
    Tryptophan-like substances, endogenous amino acids, free or bound in proteins, more difficult to degrade
    下载: 导出CSV 
    | 显示表格
    表  3  小麦秸秆生物炭的荧光组分特征
    Table  3.  Characteristics of fluorescent components in wheat straw biochar
    组分 Component激发波长/发射波长 Ex/Em组分说明 Component description
    C1370/480类腐殖质荧光组分,富含脂肪族碳的生物不稳定有机物质[37]
    Humus-like fluorescent fraction, biologically unstable organic matter rich in aliphatic carbon
    C2310/417类腐殖质荧光组分,降解的半醌类物质[34,38]
    Humic-like fluorescent component, degraded semiquinones
    C3275/478类腐殖质荧光组分,氧化醌类物质,较低的大型植物贡献[37]
    Humic-like fluorescent component, oxidized quinones, lower macrophyte contribution
    下载: 导出CSV 
    | 显示表格

    由不同来源有机肥各粒径DOM三维荧光组分分布(图2)可知,4种有机肥的DOM各粒径的组分差异明显,除小麦秸秆生物碳的DOM在1~100 kDa C2组分占比最低外,4种有机肥的DOM皆以C2组分的含量最高,除羊粪和秸秆生物炭以外,4种有机肥的DOM以C4组分含量最低,这表明这4种有机肥的DOM主要以类腐殖质荧光物质为主,而色氨酸等类蛋白成分较少。从各粒径上来看,随着粒径的减小,C1和C2组分的含量呈波动变化,多在<100 kDa时含量最低,而在 <1 kDa时含量最大(羊粪和小麦秸秆有机肥除外)。

    图  2  不同来源有机肥各粒径DOM组分分布
    Figure  2.  DOM component distribution of different organic fertilizers with different size fractions

    图3显示了4种不同来源有机肥在粒径 <0.7 μm和粒径 <1 kDa下DOM的红外吸收光谱。不同有机肥来源的DOM在两种粒径下的红外吸收曲线特征峰类似。694 cm–1附近出现的信号峰表明烯烃CH2―存在,1100 cm–1附近出现的信号峰表明醇、多糖中C—O伸缩振动的存在[39],1400 cm–1附近出现的信号峰表明脂肪烃和含―CH3化合物C―H对称弯曲振动的存在[40],1635 cm–1附近出现的信号峰表明芳香烃中C=C键的振动、烯烃中 C=C 键、羧酸盐中―COO以及酰胺中C=O官能团的不对称伸缩以及氨基酸氨基N―H的伸缩振动的吸收[41],3400 cm–1附近出现的信号峰表明氨基酸盐中的N―H、醇、酚以及羧酸中羟基O―H存在[26]

    图  3  不同来源有机肥两种粒径DOM的红外光谱
    Figure  3.  FTIR spectrum of DOM with two size fractions of different organic fertilizers

    从4种不同来源有机肥在粒径 <0.7 μm和粒径 <1 kDa下 DOM 的红外吸收光谱各官能团的相对含量(表4)可以看出,在全量 (<0.7 μm) 上,4种有机肥各个官能团相对含量不同,当粒径 <1 kDa时,各个官能团相对含量显著降低。在粒径为 <0.7 μm时,4种有机肥以氨基酸盐中的N―H或羟基O―H含量最高,以烯烃CH2―含量最少,其次是C―O 键(除羊粪外,羊粪含有丰富的甲基―CH3、C―H键),这表明4种有机肥的DOM均含有较多的醇、酚、多糖和碳水化合物。在粒径 <1 kDa时,虽然各官能团的相对含量显著降低,但其含量大小顺序不变,仍以氨基酸N―H键和羟基O―H含量最高,其次是芳香烃的C=C双键和甲基―CH3、C―H键,而虾肽和小麦秸秆生物炭的DOM还含有较多C―O键。

    表  4  不同来源有机肥两种粒径DOM各官能团的相对含量(cmol/kg)
    Table  4.  Relative contents of functional groups of DOM with two size fractions in different organic fertilizers
    有机肥
    Organic fertilizer
    官能团
    Functional group
    粒径 Size fractions
    < 0.7 μm<1 kDa
    海藻
    Seaweed
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    671.28441.16
    C=C (芳香烃 aromatic hydrocarbon)77.9327.85
    ―CH3、C―H (脂肪族 aliphatic)80.4233.36
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)134.4516.97
    CH2―(烯烃 alkene)41.3622.75
    羊粪
    Sheep manure
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    405.46184.02
    C=C (芳香烃 aromatic hydrocarbon)116.9135.67
    ―CH3、C―H (脂肪族 aliphatic)152.4443.49
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)135.7915.94
    CH2―(烯烃 alkene)35.1320.83
    虾肽
    Shrimp peptide
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    755.09481.45
    C=C (芳香烃 aromatic hydrocarbon)63.1638.56
    ―CH3、C―H (脂肪族 aliphatic)54.6134.08
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)254.01137.80
    CH2―(烯烃 alkene)51.0640.12
    小麦秸秆生物炭
    Wheat straw biochar
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    305.18270.28
    C=C (芳香烃 aromatic hydrocarbon)71.6246.15
    ―CH3、C―H (脂肪族 aliphatic)82.2795.41
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)131.7297.63
    CH2― (烯烃 alkene)4.762.33
    下载: 导出CSV 
    | 显示表格

    由DOC各粒径的含量分布及百分比 (图1)看,4种有机肥DOC各粒径含量存在明显差异,且DOC主要分布在小粒径 (<1 kDa)。从全量 (粒径<0.7 μm) 上看,小麦秸秆生物炭的DOC含量最低,这是因为生物炭中易分解的纤维素、半纤维组分的含量相对较低,溶解性有机物释放减少[42]。田腾等[43]研究发现,从水稻秸秆、猪粪、鸡粪和牛粪中提取的DOC的含量顺序为猪粪>鸡粪>牛粪>水稻秸秆。不同有机物料其蛋白质、糖分、纤维素等组分比例不同,因而DOC含量会存在差异,其DOC的各粒径分布也会存在差异。张丰松等[18]研究发现,不同种类的动物粪便及其堆肥不同分子量的DOC含量存在明显差异,且猪粪的DOC小分子量部分占比高。Guo等[44]在研究密西西比河的DOC时发现,高分子量部分(粒径0.2 μm~1 kDa) 占比均在40%左右;Xu等[22]在研究水环境中的DOM时发现,低分子量 (粒径<1 kDa) 的DOM含量 (41.2 %)小于高分子量 (粒径0.45 μm~1 kDa) 的含量 (58.8 %),这与本研究的结果相反。不同的分级方式会影响DOC的粒径分布,由于DOC是非均质混合物,使用不同系列孔径的滤膜提取DOC,其粒径分布可能会不同,因此,DOC的粒径分布不仅与源相关,也可能与使用的特定膜的孔径有关[21]

    本研究中,4种有机肥各粒径的DOM紫外光谱特征值中,虾肽、海藻和羊粪差异并不明显,但小麦秸秆生物炭的大粒径 (0.2~0.7 μm) 和小粒径间差异显著,且各有机肥的SUVA254和SUVA260随着粒径的减小而减小。小麦秸秆生物炭DOM在粒径0.2~0.7 μm的SUVA254和SUVA260最大,其芳香化程度最高,分子量大且疏水性成分含量高,即小麦秸秆生物炭DOM含有较多的大分子量的腐殖质物质 (如酚类物质等),研究表明,生物质中的不稳定有机化合物 (如半纤维素和纤维素) 比稳定的化合物更有可能在低于500℃的温度下降解,导致生物炭中DOM向更稳定的芳香结构富集[45]。4种有机肥各粒径的SUVA254和SUVA260具有同样的变化趋势,研究表明,SUVA254和SUVA260存在正相关关系,芳香结构和疏水性存在密切关系,即芳香性结构主要存在于疏水组分中[46],吴月颖等[13]在研究不同水稻土各粒径DOM时也有类似发现。

    4种有机肥各粒径的HIX差异显著,且随着粒径的减小而减小,有机肥的腐熟过程中,其腐殖化程度不断增加,多肽和糖类等转化为大分子的腐殖质[18,47],Nebbioso等[48]将DOM分子划分为氨基酸等小分子量部分(粒径<1 kDa)与腐植酸等大分子量部分(>1 kDa),因此,4种有机肥大粒径的HIX要高于小粒径。研究表明,生物炭经过高温后,多酚和其他芳香结构组成的类腐殖酸物质在生物炭的制备过程中可能被热解[19, 49],因此小麦秸秆生物炭的腐殖化程度最低。小麦秸秆生物炭0.2~0.7 μm和100 kDa~0.2 μm粒径DOM的FI<1.4,且BIX<1,这表明小麦秸秆生物炭以外源性DOM为主,受人类活动影响大且自身生产力和微生物活动等贡献相对较低,研究表明,裂解后生物炭DOM的生物活性出现明显下降,裂解过程提高了生物炭稳定性[42];而虾肽的FI和BIX表明其以内源性DOM为主,自生来源和微生物活动影响明显,类蛋白组分含量高,生物可利用性强。4种有机肥的FI和BIX随着粒径的减小而增大,这与SUVA254、SUVA260和HIX的变化趋势相反,Xu等[21]发现这些荧光指数的变化对DOM的粒径大小具有依赖性,所有样品的HIX值均随粒径的减小而减小,FI和BIX值随粒径的减小而增大,陈雪霜等[50]也有类似的发现,这表明DOM的小粒径成分腐殖化程度较低,蛋白质等微生物活动产生的内源成分含量较多。4种有机肥各粒径的三维荧光组分皆以C1和C2组分为主,即DOM主要为降解的半醌类物质和疏水性的高分子物质,类蛋白成分相对较少。余旭芳等[51]发现在堆肥生产过程中,类蛋白成分 (C3) 减少,C1和C2组分增加。各粒径的荧光组分 (C1和C2) 变化类似,在粒径1~100 kDa最小,在粒径<1 kDa时最大,He等[11]利用尺寸排阻色谱–有机碳检测器(为SEC–OCD)将DOM分为大分子部分(粒径>10 kDa,非腐殖质高分子量亲水性生物大分子,如蛋白质和一些多糖) 和小分子部分(粒径<1 kDa的腐殖质和低分子量有机质,如醛、酮、羧酸等),这与本研究的结果一致。

    4种不同来源有机肥在粒径 <0.7 μm和粒径 <1 kDa下 DOM 的红外吸收曲线特征峰类似,但各官能团的相对含量不同。4种有机肥皆以N―H和O―H键为主,说明4种有机肥含有较多的多糖和碳水化合物,研究表明,有机肥中含有较多的含氧官能团(羧基和羰基)[52]。吴景贵等[53]发现不同有机肥腐解形成的水溶性胡敏酸含有的官能团种类没有显著差别,且随着腐解的进行,其烷基的含量升高,脂族性增强,而且糖类等碳水化合物含量增加。4种有机肥在粒径 <1 kDa时C=C和O―H的含量减少,表明其芳香结构、蛋白质和多糖含量减少,这与SUVA254和HIX在最小粒径出现最小值相对应。小麦秸秆生物炭的两种粒径的官能团相对含量最小,在热解过程中,生物炭的结合水脱离,导致羟基峰下降,进而生物炭DOM中的羟基含量也降低[54-55]

    DOM的生物可利用性与DOM的分子量、极性组分含量有关,分子量越大,极性组分含量越低,其越难被降解[17],因此,4种有机肥其大粒径组分的SUVA254、SUVA260和HIX要大于小粒径组分,与粒径大小呈现出正相关关系,表明大粒径的DOM芳香化程度、腐殖化程度和疏水组分高,难被降解,生物可利用性低,这也对应了红外光谱4种有机肥在小粒径时C=C和O―H的含量减少,其醇、酚和芳香类物质含量减少;而FI和BIX与粒径大小呈现出负相关关系,表明小粒径类蛋白组分 (C4) 含量高且易被降解。

    供试4种有机肥各粒径DOC含量差异明显,除海藻外,其余有机肥粒径<1 kDa的组分所占比例皆达到50%及以上。4种有机肥DOM中大粒径组分的SUVA254、SUVA260和HIX值高于小粒径,而FI和BIX值低于小粒径组分。有机肥各粒径DOM主要由降解的半醌类物质和疏水性的高分子物质 (C1和C2组分)组成,类蛋白成分相对较少。小粒径DOM腐殖化程度低,醇、酚和芳香类物质含量少。有机肥的光谱特征表明,小麦秸秆生物炭DOM的生物稳定性要高于其他有机肥,过量施用不利于微生物对土壤有机质的降解利用;而虾肽来源有机肥DOM中的类蛋白组分含量高,生物可利用性高,施用虾肽有机肥可能有利于微生物对土壤DOM的降解利用。

  • 图  1   有机肥中各粒径溶解性有机碳的含量及其百分比

    注:图例为DOC 4个组分的粒径范围。柱上不同小写字母表示同一有机肥各粒径间差异显著 (P<0.05)

    Figure  1.   Concentration and percentage of dissolved organic carbon (DOC) with different size fractions in organic fertilizers

    Note: The legends shows the size range of the four fractions of DOC. Different lowercase letters above the bars indicate significant difference among size fractions of the same organic fertilizer (P< 0.05)

    图  2   不同来源有机肥各粒径DOM组分分布

    Figure  2.   DOM component distribution of different organic fertilizers with different size fractions

    图  3   不同来源有机肥两种粒径DOM的红外光谱

    Figure  3.   FTIR spectrum of DOM with two size fractions of different organic fertilizers

    表  1   不同来源有机肥各粒径DOM的紫外–可见光谱和荧光光谱特征值

    Table  1   Characteristic values of UV-Vis and fluorescence spectra of DOM with different size fractions of different organic fertilizers

    有机肥
    Organic fertilizer
    粒径大小
    Size fraction
    SUVA254SUVA260荧光指数
    FI
    自生源指数
    BIX
    腐殖化指数
    HIX
    海藻
    Seaweed
    0.2~0.7 μm0.81±0.00 a0.79±0.00 a1.55±0.22 b0.86±0.01 c96.67±5.48 a
    100 kDa~0.2 μm0.79±0.01 a0.71±0.02 b1.67±0.01 a0.92±0.03 b63.36±3.51 b
    1~100 kDa0.73±0.02 b0.62±0.04 c1.68±0.02 a1.03±0.01 a20.35±2.32 c
    <1 kDa0.63±0.04 c0.44±0.00 d1.69±0.01 a1.04±0.01 a11.79±0.24 d
    羊粪
    Sheep manure
    0.2~0.7 μm1.06±0.09 a1.00±0.09 a1.42±0.01 a0.61±0.00 c120.56±2.02 a
    100 kDa~0.2 μm1.05±0.00 ab0.99±0.00 a1.51±0.00 b0.66±0.01 b77.62±2.52 b
    1~100 kDa0.93±0.07 ab0.88±0.07 ab1.52±0.01 b0.69±0.01 a30.55±1.97 c
    <1 kDa0.91±0.00 b0.77±0.02 b1.55±0.01 b0.70±0.01 a24.18±0.17 d
    虾肽
    Shrimp peptide
    0.2~0.7 μm0.59±0.02 a0.56±0.02 a1.91±0.00 b1.00±0.01 c76.32±1.33 a
    100 kDa~0.2 μm0.58±0.01 a0.51±0.05 a2.15±0.01 a1.07±0.03 b62.33±4.67 b
    1~100 kDa0.53±0.05 a0.38±0.06 b2.15±0.01 a1.15±0.01 a24.85±2.84 c
    <1 kDa0.48±0.08 a0.38±0.02 b2.16±0.02 a1.16±0.00 a7.17±0.12 d
    小麦秸秆生物炭
    Wheat straw biochar
    0.2~0.7 μm1.36±0.12 a1.52±0.07 a1.11±0.01 c0.80±0.00 b7.39±0.52 a
    100 kDa~0.2 μm0.50±0.15 b0.44±0.14 b1.29±0.02 b0.84±0.02 b5.27±0.93 b
    1~100 kDa0.40±0.05 b0.34±0.08 b1.42±0.02 a0.85±0.01 b1.20±0.04 c
    <1 kDa0.34±0.02 b0.26±0.00 b1.43±0.01 a0.96±0.06 a0.91±0.04 c
    注:同列数据后不同小写字母表示同一种有机肥各粒径间差异显著 (P<0.05)。
    Note:FI—Fluorescence index; BIX—Autochthonous index; HIX—Humification index. Values followed by different lowercase letters in a column indicate significant difference among size fractions of the same organic fertilizer (P<0.05).
    下载: 导出CSV

    表  2   3种有机肥(海藻、羊粪和虾肽)的荧光组分特征

    Table  2   Characteristics of fluorescent components in three organic fertilizers (seaweed, sheep manure and shrimp peptides)

    组分 Component激发波长/发射波长 Ex/Em组分描述 Component description
    C1340/417类腐殖质;陆源的氧化醌类物质[32]
    Humus-like substances; oxidized quinones of terrestrial origin
    C2380/513类腐殖质荧光组分,还原半醌类物质,与较高级的植物材料和芳香族碳含量有关,具有较高的分子量[33]
    Humic-like fluorescent component, reduced semi-quinones, associated with higher plant material and aromatic carbon content, with higher molecular weight
    C3325, 425/415类腐殖质荧光组分,还原半醌类物质,由微生物转化而来[34]
    Humic-like fluorescent component, reduced semi-quinones, transformed by microorganisms
    C4315/380色氨酸类物质,内源性的氨基酸,游离或结合在蛋白质中,较难降解的物质[35-36]
    Tryptophan-like substances, endogenous amino acids, free or bound in proteins, more difficult to degrade
    下载: 导出CSV

    表  3   小麦秸秆生物炭的荧光组分特征

    Table  3   Characteristics of fluorescent components in wheat straw biochar

    组分 Component激发波长/发射波长 Ex/Em组分说明 Component description
    C1370/480类腐殖质荧光组分,富含脂肪族碳的生物不稳定有机物质[37]
    Humus-like fluorescent fraction, biologically unstable organic matter rich in aliphatic carbon
    C2310/417类腐殖质荧光组分,降解的半醌类物质[34,38]
    Humic-like fluorescent component, degraded semiquinones
    C3275/478类腐殖质荧光组分,氧化醌类物质,较低的大型植物贡献[37]
    Humic-like fluorescent component, oxidized quinones, lower macrophyte contribution
    下载: 导出CSV

    表  4   不同来源有机肥两种粒径DOM各官能团的相对含量(cmol/kg)

    Table  4   Relative contents of functional groups of DOM with two size fractions in different organic fertilizers

    有机肥
    Organic fertilizer
    官能团
    Functional group
    粒径 Size fractions
    < 0.7 μm<1 kDa
    海藻
    Seaweed
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    671.28441.16
    C=C (芳香烃 aromatic hydrocarbon)77.9327.85
    ―CH3、C―H (脂肪族 aliphatic)80.4233.36
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)134.4516.97
    CH2―(烯烃 alkene)41.3622.75
    羊粪
    Sheep manure
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    405.46184.02
    C=C (芳香烃 aromatic hydrocarbon)116.9135.67
    ―CH3、C―H (脂肪族 aliphatic)152.4443.49
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)135.7915.94
    CH2―(烯烃 alkene)35.1320.83
    虾肽
    Shrimp peptide
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    755.09481.45
    C=C (芳香烃 aromatic hydrocarbon)63.1638.56
    ―CH3、C―H (脂肪族 aliphatic)54.6134.08
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)254.01137.80
    CH2―(烯烃 alkene)51.0640.12
    小麦秸秆生物炭
    Wheat straw biochar
    氨基酸盐中的N―H或羟基O―H (醇、酚以及羧酸)
    N―H in amino acid salts or O―H (alcohols, phenols and carboxylic acids)
    305.18270.28
    C=C (芳香烃 aromatic hydrocarbon)71.6246.15
    ―CH3、C―H (脂肪族 aliphatic)82.2795.41
    C―O (醇、多糖、碳水化合物 alcohols, polysaccharides, carbohydrates)131.7297.63
    CH2― (烯烃 alkene)4.762.33
    下载: 导出CSV
  • [1] 陈贵, 赵国华, 张红梅, 等. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响[J]. 中国土壤与肥料, 2017, (1): 92–97. Chen G, Zhao G H, Zhang H M, et al. Effect of long-term organic fertilizers application on rice yield, nitrogen and phosphorus use efficiency[J]. Soil and Fertilizer Sciences in China, 2017, (1): 92–97. DOI: 10.11838/sfsc.20170116

    Chen G, Zhao G H, Zhang H M, et al. Effect of long-term organic fertilizers application on rice yield, nitrogen a phosphorus use efficiency [J]. Soil and Fertilizer Sciences in China, 2017, (1): 92–97. DOI: 10.11838/sfsc.20170116

    [2] 吴金栋, 何勇, 朱祝军. 有机肥部分替代化肥对露地茄生长及品质的影响[J]. 浙江农林大学学报, 2021, 38(6): 1195–1202. Wu J D, He Y, Zhu Z J. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195–1202.

    Wu J D, He Y, Zhu Z J. Effects of partial substitution of chemical fertilizer with organic fertilizer on growth and quality of Solanum melongena in open field[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1195–1202.

    [3]

    Osburn C L, Handsel L T, Mikan M P, et al. Fluorescence tracking of dissolved and particulate organic matter quality in a river-dominated estuary[J]. Environmental Science & Technology, 2012, 46(16): 8628–8636.

    [4]

    Devilbiss S E, Zhou Z, Klump J V, et al. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA[J]. Science of the Total Environment, 2016, 565: 742–757. DOI: 10.1016/j.scitotenv.2016.05.015

    [5] 吉恒宽, 吴月颖, 符佩娇, 等. 热带滨海区不同土地利用背景下土壤溶解性有机氮的组成与粒径分布特征[J]. 生态环境学报, 2020, 29(3): 525–535. Ji H K, Wu Y Y, Fu P J, et al. Composition and size distribution characteristics of soil dissolved organic nitrogen under different land use types in tropical coastal areas[J]. Ecology and Environmental Sciences, 2020, 29(3): 525–535.

    Ji H K, Wu Y Y, Fu P J, et al. Composition and size distribution characteristics of soil dissolved organic nitrogen under different land use types in tropical coastal areas [J]. Ecology and Environmental Sciences, 2020, 29(3): 525–535.

    [6]

    Wang J J, Liu Y, Bowden R D, et al. Long-term nitrogen addition alters the composition of soil–derived dissolved organic matter[J]. ACS Earth and Space Chemistry, 2019, 4(2): 189–201.

    [7] 席北斗, 王燕, 檀文炳, 等. 土壤中溶解性有机质对不同类型堆肥的响应差异[J]. 环境科学, 2021, 42(7): 3565–3576. Xi B D, Wang Y, Tan W B, et al. Different responses of soil dissolved organic matter to different types of compost[J]. Environmental Science, 2021, 42(7): 3565–3576.

    Xi B D, Wang Y, Tan W B, et al. Different responses of soil dissolved organic matter to different types of compost [J]. Environmental Science, 2021, 42(7): 3565–3576.

    [8] 陈武荣, 刘勤, 禹洪双, 等. 长期不同施肥处理水稻土溶解性有机质组分含量及其特性研究[J]. 水土保持学报, 2010, 24(6): 111–116. Chen W R, Liu Q, Yu H S, et al. Fractions and characteristics of dissolved organic matter in long-term fertilization paddy soils[J]. Journal of Soil and Water Conservation, 2010, 24(6): 111–116.

    Chen W R, Liu Q, Yu H S, et al. Fractions and characteristics of dissolved organic matter in long-termfertilization paddy soils [J]. Journal of Soil and Water Conservation, 2010, 24(6): 111–116.

    [9] 谢军, 赵亚南, 陈轩敬, 等. 长期不同施肥对土壤溶解性有机质含量及其结构特征的影响[J]. 光谱学与光谱分析, 2018, 38(7): 2250–2255. Xie J, Zhao Y N, Chen X J, et al. Effect on soil DOM content and structure characteristics in different soil layers by long-term fertilizations[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2250–2255.

    Xie J, Zhao Y N, Chen X J, et al. Effect on soil DOM content and structure characteristics in different soil layers by long-term fertilizations [J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2250–2255.

    [10]

    Filella M. Freshwaters: Which NOM matters?[J]. Environmental Chemistry Letters, 2009, 7(1): 21–35. DOI: 10.1007/s10311-008-0158-x

    [11]

    He W, Choi I, Lee J J, et al. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland[J]. Science of the Total Environment, 2016, 544: 525–534. DOI: 10.1016/j.scitotenv.2015.12.008

    [12]

    Xu H, Yan M, Li W, et al. Dissolved organic matter binding with Pb(II) as characterized by differential spectra and 2D UV-FTIR hetero spectral correlation analysis[J]. Water Research, 2018, 144: 435–443. DOI: 10.1016/j.watres.2018.07.062

    [13] 吴月颖, 吉恒宽, 吴蔚东, 等. 海南北部滨海区不同土地利用模式下土壤DOM粒径分布与光谱特性[J]. 农业资源与环境学报, 2020, 37(5): 654–665. Wu Y Y, Ji H K, Wu W D, et al. Size fractionation and optical properties of DOM under different land use types in the coastal area of northern Hainan Island[J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 654–665.

    Wu Y Y, Ji H K, Wu W D, et al. Size fractionation and optical properties of DOM under different land use types in the coastal area of northern Hainan Island [J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 654–665.

    [14] 黄成, 吴月颖, 吉恒宽, 等. 海南典型水稻土厌氧铁还原特征对DOM分子特性的响应[J]. 生态环境学报, 2021, 30(5): 957–967. Huang C, Wu Y Y, Ji H K, et al. Response of iron reduction characteristics to DOM molecular properties under anaerobic conditions in typical paddy soils of Hainan Island[J]. Ecology and Environmental Sciences, 2021, 30(5): 957–967.

    Huang C, Wu Y Y, Ji H K, et al. Response of iron reduction characteristics to DOM molecular properties under anaerobic conditions in typical paddy soils of Hainan Island [J]. Ecology and Environmental Sciences, 2021, 30(5): 957–967.

    [15] 杨银, 丰桂珍, 江立文. 不同水源原水溶解性有机物特性分析[J]. 生态与农村环境学报, 2021, 37(6): 801–807. Yang Y, Feng G Z, Jiang L W. Characteristic analysis of dissolved organic matter in different surface waters[J]. Journal of Ecology and Rural Environment, 2021, 37(6): 801–807.

    Yang Y, Feng G Z, Jiang L W. Characteristic analysis of dissolved organic matter in different surface waters [J]. Journal of Ecology and Rural Environment, 2021, 37(6): 801-807.

    [16] 李婉秋, 施暖暖, Drosos M, 等. 秸秆生物质炭DOM光谱特征及其与Cu2+的相互作用[J]. 中国环境科学, 2021, 41(8): 3714–3722. Li W Q, Shi N N, Drosos M, et al. DOM spectral characteristics of straw biochar and its interaction with Cu2+[J]. China Environmental Science, 2021, 41(8): 3714–3722. DOI: 10.3969/j.issn.1000-6923.2021.08.028

    Li W Q, Shi N N, Drosos M, et al. DOM spectral characteristics of straw biochar and its interaction with Cu2+ [J]. China Environmental Science, 2021, 41(8): 3714–3722. DOI: 10.3969/j.issn.1000-6923.2021.08.028

    [17] 占新华, 周立祥, 卢燕宇. 农业常用有机物料中水溶性有机物的理化性质特征[J]. 中国环境科学, 2010, 30(5): 619–624. Zhan X H, Zhou L X, Lu Y Y. Fractionation and characterization of dissolved organic matter derived from different organic material commonly applied in agriculture[J]. China Environmental Science, 2010, 30(5): 619–624.

    Zhan X H, Zhou L X, Lu Y Y. Fractionation and characterization of dissolved organic matter derived from different organic material commonly applied in agriculture [J]. China Environmental Science, 2010, 30(5): 619–624.

    [18] 张丰松, 李艳霞, 杨明, 等. 畜禽粪便堆肥溶解态有机质三维荧光光谱特征及Cu络合[J]. 农业工程学报, 2011, 27(1): 314–319. Zhang F S, Li Y X, Yang M, et al. Change of three-dimentional excitation emission matrix fluorescence spectroscopic characterization of manure dissolved organic matter after composting and influence on its complexation with Cu[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 314–319. DOI: 10.3969/j.issn.1002-6819.2011.01.051

    Zhang F S, Li Y X, Yang M, et al. Change of three-dimentional excitation emission matrix fluorescence spectroscopic characterization of manure dissolved organic matter after composting and influence on its complexation with Cu [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 314–319. DOI: 10.3969/j.issn.1002-6819.2011.01.051

    [19] 闫代红, 马亚培, 宋凯悦, 等. 原料和热解温度对生物炭中可溶性有机质的影响[J]. 环境科学, 2021, 42(10): 5030–5036. Yan D H, Ma Y P, Song K Y, et al. Effects of feedstock materials and pyrolysis temperature on dissolved organic matter in biochars[J]. Environmental Science, 2021, 42(10): 5030–5036.

    Yan D H, Ma Y P, Song K Y, et al. Effects of feedstock materials and pyrolysis temperature on dissolved organic matter in biochars [J]. Environmental Science, 2020, 42(10): 5030–5036.

    [20]

    Tareq S M, Maruo M, Ohta K. Characteristics and role of groundwater dissolved organic matter on arsenic mobilization and poisoning in Bangladesh[J]. Physics and Chemistry of the Earth (Parts A/B/C), 2013, 58–60: 77–84.

    [21]

    Xu H, Guo L. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters[J]. Water Research, 2017, 117: 115–126. DOI: 10.1016/j.watres.2017.04.006

    [22]

    Xu H, Ji L, Kong M, et al. Molecular weight-dependent adsorption fractionation of natural organic matter on ferrihydrite colloids in aquatic environment[J]. Chemical Engineering Journal, 2019, 363: 356–364. DOI: 10.1016/j.cej.2019.01.154

    [23]

    Zhang X, Kang J, Chu W, et al. Spectral and mass spectrometric characteristics of different molecular weight fractions of dissolved organic matter[J]. Separation and Purification Technology, 2020, 253: 117390. DOI: 10.1016/j.seppur.2020.117390

    [24] 潘运舟, 兰天, 赵文, 等. 海南省商品有机肥的组成与养分状况研究[J]. 西南农业学报, 2017, 30(4): 853–860. Pan Y Z, Lan T, Zhao W, et al. Research on composition and nutrient status of commercial organic fertilizer in Hainan Province[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(4): 853–860.

    Pan Y Z, Lan T, Zhao W, et al. Research on composition and nutrient status of commercial organic fertilizer in Hainan Province [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(4): 853–860.

    [25]

    Huang M, Li Z, Huang B, et al. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM–PARAFAC combined with two-dimensional FTIR correlation analyses[J]. Journal of Hazardous Materials, 2018, 344: 539–548. DOI: 10.1016/j.jhazmat.2017.10.022

    [26]

    Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701–5710.

    [27]

    Dunalska J A. Impact of morphometric and catchment variables on summer organic carbon richness in deep temperate lakes[J]. Knowledge and Management of Aquatic Ecosystems, 2011, 403: 3.

    [28]

    Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742–746.

    [29]

    Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38–48. DOI: 10.4319/lo.2001.46.1.0038

    [30]

    Wilson H F, Xenopoulos M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature Geoscience, 2008, 2(1): 37–41.

    [31] 郑延云, 张佳宝, 谭钧, 等. 不同来源腐殖质的化学组成与结构特征研究[J]. 土壤学报, 2019, 56(2): 386–397. Zheng Y Y, Zhang J B, Tan J, et al. Chemical composition and structure of humus relative to sources[J]. Acta Pedologica Sinica, 2019, 56(2): 386–397. DOI: 10.11766/trxb201805070241

    Zheng Y Y, Zhang J B, Tan J, et al. Chemical composition and structure of humus relative to sources [J]. Acta Pedologica Sinica, 2019, 56(2): 386–397. DOI: 10.11766/trxb201805070241

    [32]

    Wu Z, Wu W, Lin C, et al. Deciphering the origins, composition and microbial fate of dissolved organic matter in agro-urban headwater streams[J]. Science of the Total Environment, 2019, 659: 1484–1495. DOI: 10.1016/j.scitotenv.2018.12.237

    [33]

    Bai Y, Cui Z, Su R, et al. Influence of DOM components, salinity, pH, nitrate, and bicarbonate on the indirect photodegradation of acetaminophen in simulated coastal waters[J]. Chemosphere, 2018, 205: 108–117. DOI: 10.1016/j.chemosphere.2018.04.087

    [34]

    Heinz M, Graeber D, Zak D, et al. Comparison of organic matter composition in agricultural versus forest affected headwaters with special emphasis on organic nitrogen[J]. Environmental Science & Technology, 2015, 49(4): 2081–2090.

    [35]

    Fellman J B, Hood E, Spencer R G M. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review[J]. Limnology and Oceanography, 2010, 55(6): 2452–2462. DOI: 10.4319/lo.2010.55.6.2452

    [36] 李艳, 白杨, 魏丹, 等. 不同比例有机无机肥配施条件下黑土富里酸荧光光谱特征[J]. 光谱学与光谱分析, 2021, 41(11): 3518–3523. Li Y, Bai Y, Wei D, et al. Fluorescence spectrum characteristics of fulvic acid in black soil under different proportions of organic-inorganic fertilizers[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3518–3523.

    Li Y, Bai Y, Wei D, et al. Fluorescence spectrum characteristics of fulvic acid in black soil under different proportions of organic-inorganic fertilizers [J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3518–3523.

    [37]

    Ishii S K, Boyer T H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review[J]. Environmental Science & Technology, 2012, 46(4): 2006–2017.

    [38]

    Osburn C L, Boyd T J, Montgomery M T, et al. Optical proxies for terrestrial dissolved organic matter in estuaries and coastal waters[J]. Frontiers in Marine Science, 2016, 2: 127.

    [39] 盛浩, 宋迪思, 周萍, 等. 土地利用变化对花岗岩红壤底土溶解性有机质数量和光谱特征的影响[J]. 生态学报, 2017, 37(14): 4676–4685. Sheng H, Song D S, Zhou P, et al. Effects of land-use change on dissolved organic matter in subsoil derived from granite: Quantity and spectrum characteristics[J]. Acta Ecologica Sinica, 2017, 37(14): 4676–4685.

    Sheng H, Song D S, Zhou P, et al. Effects of land–use change on dissolved organic matter in subsoil derived from granite: quantity and spectrum characteristics [J]. Acta Ecologica Sinica, 2017, 37(14): 4676–4685.

    [40]

    Cui M, Sun X, Hu C, et al. Effective mitigation of nitrate leaching and nitrous oxide emissions in intensive vegetable production systems using a nitrification inhibitor, dicyandiamide[J]. Journal of Soils and Sediments, 2011, 11(5): 722–730. DOI: 10.1007/s11368-011-0357-0

    [41]

    Plaza C, Brunetti G, Senesi N, et al. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy[J]. Environmental Science & Technology, 2006, 40(3): 917–923.

    [42] 赵敏, 陈丙法, 冯慕华, 等. 不同裂解温度下生物炭释放溶解性有机质的光谱特征分析[J]. 光谱学与光谱分析, 2020, 40(8): 2505–2511. Zhao M, Chen B F, Feng M H, et al. Spectral characteristics of dissolved organic matter released from biochar at different pyrolysis temperatures[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2505–2511.

    Zhao M, Chen B F, Feng M H, et al. Spectral characteristics of dissolved organic matter released from biochar at different pyrolysis temperatures [J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2505–2511.

    [43] 田腾, 颜蒙蒙, 曾希柏, 等. 不同来源可溶性有机质对稻田土壤中砷甲基化的影响[J]. 农业环境科学学报, 2020, 39(3): 511–520. Tian T, Yan M M, Zeng X B, et al. Effect of dissolved organic matter from different sources on arsenic methylation in paddy soils[J]. Journal of Agro-Environment Science, 2020, 39(3): 511–520. DOI: 10.11654/jaes.2019-1098

    Tian T, Yan M M, Zeng X B, et al. Effect of dissolved organic matter from different sources on arsenic methylation in paddy soils[J]. Journal of Agro-environment Science, 2020, 39(3): 511–520. DOI: 10.11654/jaes.2019-1098

    [44]

    Guo L, White D M, Xu C, et al. Chemical and isotopic composition of high-molecular-weight dissolved organic matter from the Mississippi River plume[J]. Marine Chemistry, 2009, 114(3–4): 63–71. DOI: 10.1016/j.marchem.2009.04.002

    [45]

    Wei S, Zhu M, Fan X, et al. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge[J]. Chemosphere, 2019, 218: 624–631. DOI: 10.1016/j.chemosphere.2018.11.177

    [46] 李璐璐, 江韬, 闫金龙, 等. 三峡库区典型消落带土壤及沉积物中溶解性有机质(DOM)的紫外–可见光谱特征[J]. 环境科学, 2014, 35(3): 933–941.

    Li L L, Jiang T, Yan J L, et al. Ultraviolet–visible (UV–Vis) spectral characteristics of dissolved organic matter (DOM) in soils and sediments of typical water-level fluctuation zones of Three Gorges Reservoir Areas [J]. Environmental Science, 2014, 35(3): 933–941.

    [47] 崔东宇, 何小松, 席北斗, 等. 牛粪堆肥过程中水溶性有机物演化的光谱学研究[J]. 中国环境科学, 2014, 34(11): 2897–2904. Cui D Y, He X S, Xi B D, et al. Spectrum analysis on the evolution of dissolved organic matter during cattle manure composting[J]. China Environmental Science, 2014, 34(11): 2897–2904.

    Cui D Y, He X S, Xi B D, et al. Spectrum analysis on the evolution of dissolved organic matter during cattle manure composting [J]. China Environmental Science, 2014, 34(11): 2897–2904.

    [48]

    Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): A critical review[J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 109–124. DOI: 10.1007/s00216-012-6363-2

    [49]

    Rajapaksha A U, Ok Y S, El–Naggar A, et al. Dissolved organic matter characterization of biochars produced from different feedstock materials[J]. Journal of Environmental Management, 2019, 233: 393–399.

    [50] 陈雪霜, 江韬, 卢松, 等. 三峡库区消落带水体DOM不同分子量组分三维荧光特征[J]. 环境科学, 2016, 37(3): 884–892.

    Chen X S, Jiang T, Lu S, et al. Three-dimensional fluorescence spectral characteristics of different molecular weight fractionations of dissolved organic matter in the water-level fluctuation zones of Three Gorges Reservoir Areas[J]. Environmental Science, 2016, 37(3): 884–892.

    [51] 余旭芳, 周俊, 任兰天, 等. 小麦秸秆堆肥水溶性有机物的结构和组成演变[J]. 光谱学与光谱分析, 2021, 41(4): 1199–1204. Yu X F, Zhou J, Ren L T, et al. Compositional and structural evolutions of dissolved organic matter in wheat straw[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1199–1204.

    Yu X F, Zhou J, Ren L T, et al. Compositional and structural evolutions of dissolved organic matter in wheat straw [J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1199–1204.

    [52] 李章海, 朱凯, 彭宇, 等. 不同原料堆制有机肥腐殖酸的化学组成与结构特征[J]. 中国烟草科学, 2016, 37(3): 40–44. Li Z H, Zhu K, Peng Y, et al. Chemical composition and structural characteristics of humic acids extracted from organic fertilizers composted by different materials[J]. Chinese Tobacco Science, 2016, 37(3): 40–44.

    Li Z H, Zhu K, Peng Y, et al. Chemical composition and structural characteristics of humic acids extracted from organic fertilizers composted by different materials [J]. Chinese Tobacco Science, 2016, 37(3): 40–44.

    [53] 吴景贵, 吕岩, 王明辉, 等. 有机肥腐解过程的红外光谱研究[J]. 植物营养与肥料学报, 2004, 10(3): 259–266. Wu J G, Lü Y, Wang M H, et al. Study on decomposition of organic fertilizers by FTIR[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(3): 259–266. DOI: 10.3321/j.issn:1008-505X.2004.03.008

    Wu J G, Lü Y, Wang M H, et al. Study on decomposition of organic fertilizers by FTIR [J]. Plant Nutrition and Fertilizer Science, 2004, 10(3): 259–266. DOI: 10.3321/j.issn:1008-505X.2004.03.008

    [54] 李飞跃, 桂向阳, 许吉宏, 等. 生物炭中溶解性有机质的光谱分析[J]. 光谱学与光谱分析, 2019, 39(11): 3475–3481. Li F Y, Gui X Y, Xu J H, et al. Spectral analysis of dissolved organic matter in biochar[J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3475–3481.

    Li F Y, Gui X Y, Xu J H, et al. Spectral analysis of dissolved organic matter in biochar [J]. Spectroscopy and Spectral Analysis, 2019, 39(11): 3475–3481.

    [55]

    Xu Y, Liu Y, Liu S, et al. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes)[J]. Environmental Science and Pollution Research, 2016, 23(23): 23606–23618. DOI: 10.1007/s11356-016-7572-6

  • 期刊类型引用(5)

    1. 雷琬莹,滕培基,盛明,王博,李娜. 黑土区不同种类有机物料腐解过程中的溶解性有机质特征. 应用生态学报. 2025(02): 513-525 . 百度学术
    2. 梁以豪,倪才英,黎衍亮,肖罗长,简敏菲. 稻田土壤溶解性有机质组成及其与Cd~(2+)络合过程研究. 土壤学报. 2025(01): 153-164 . 百度学术
    3. 徐鏊雪,聂明华,晏彩霞,汪王宇,邓思维,丁明军. 基于PARAFAC及SOM的鄱阳湖湿地植物生物炭不同分子量DOM光谱特征分析. 环境科学学报. 2024(08): 393-404 . 百度学术
    4. 梁栋,周巧林,张辉,马洪波,宁运旺,张永春,徐聪,焦加国,汪吉东. 生物质炭和有机肥配施对水稻土溶解性有机质光谱学特征的影响. 土壤学报. 2024(04): 1123-1133 . 百度学术
    5. 康敏,聂园军,张晨阳,王媛. 有机肥施用对黄瓜产量影响的整合分析. 中国瓜菜. 2023(10): 57-64 . 百度学术

    其他类型引用(5)

图(3)  /  表(4)
计量
  • 文章访问数:  2440
  • HTML全文浏览量:  1261
  • PDF下载量:  157
  • 被引次数: 10
出版历程
  • 收稿日期:  2021-10-28
  • 录用日期:  2022-04-27
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-06-24

目录

/

返回文章
返回