Response and tolerance of apple rootstocks to low nitrogen stress
-
摘要:目的
明确低氮胁迫对7种苹果砧木生长及生理生化特性的影响,为耐低氮苹果砧木的选育和氮高效吸收利用生理机制的研究提供理论依据。
方法沙培试验以改良1/2 Hoagland营养液为基础,设定硝态氮含量正常水平(NN,5 mmol/L NO3–)和低氮胁迫(LN,0.5 mmol/L NO3–)两个处理,供试苹果砧木包括矮化砧T337、Nic29、Pajam2、B9、71-3-150和半矮化砧青砧2号、乔化砧山定子(Malus baccata L. Borkh.),均为一年生健康苗。处理60天后,测定砧木新稍生长、物质积累、根系形态、叶片和根系硝酸还原酶活性、植株氮累积量,利用隶属函数模糊评价法比较不同苹果砧木的耐低氮能力。
结果在正常供氮条件下,乔化砧山定子的植株总干重和氮利用效率明显高于其他5种矮化砧;矮化砧中Pajam2的植株干物质积累量最大,B9的根冠比最高;矮化砧Nic29的新梢生长速率和叶片硝酸还原酶(NR)活性显著高于其余6种砧木;半矮化砧青砧2号的根系NR活性显著高于其余砧木,有利于植株的氮累积。与正常供氮相比,低氮条件下,T337、Nic29和山定子的新稍生长均受到显著抑制;B9、Pajam2和青砧2号的新稍生长未受明显影响;而71-3-150的新稍生长速率提高,叶面积增大,根系中干物质积累量增加,植株根冠比显著增大,为正常供氮处理的2.59倍。低氮条件下,T337、B9、Pajam2和山定子根系总表面积和总根长均显著降低,T337降幅最大;而71-3-150的根系总表面积、总根长、根系总体积、根尖数等根系参数显著升高;Nic29的根系总表面积、总根长和根总体积升高,但根尖数减少,根系分枝数也升高。低氮胁迫条件下,苹果砧木叶片NR活性减小,B9、Nic29、Pajam2和山定子根系中NR活性较正常供氮分别提高了3.70、5.16、2.85和5.14倍。低氮条件下,T337、B9、Pajam2和青砧2号的叶片、茎干和根系中氮累积量均趋于降低,植株氮累积量减小,青砧2号降幅最大,但B9、Nic29、Pajam2和青砧2号的氮利用效率均显著提高,青砧2号的增幅最大;而71-3-150的根系和植株氮累积量均显著升高。基于7种苹果砧木生长、根系参数、氮代谢酶活性、氮累积量和氮利用效率等19个指标的耐低氮胁迫指数,结合隶属函数模糊评价法和聚类分析将7种砧木分为3种耐性类型:第Ⅰ类为耐性强的砧木(71-3-150);第Ⅱ类为耐性较弱的砧木(Nic29、山定子、B9和青砧2号);第Ⅲ类为耐性最弱的砧木(Pajam2和T337)。
结论在正常供氮条件下,乔化砧木山定子和半矮化砧青砧2号在植株干物质积累、根系发育和养分吸收利用等方面均强于矮化砧,但其对低氮胁迫适应性较弱。低氮条件下,苹果砧木通过提高氮利用效率适应养分亏缺,耐性强的砧木植株生长受抑制程度较小,并通过调节自身生理特性,增加根系中的物质和养分积累,提高植株根冠比,以适应低氮环境。
Abstract:ObjectivesThe tolerance of seven apple rootstocks to low nitrogen stress was studied for the selection and breeding of apple rootstocks.
MethodsUsing the sand culture method,1/2 Hoagland nutrient solution as basic nutrient solution, normal N supply (NN, 5 mmol/L NO3–) and low N stress (LN, 0.5 mmol/L NO3–) were imposed. Seven annual apple rootstocks were tested―dwarf root stocks T337, Nic29, Pajam2, B9, 71-3-150; semi-dwarf rootstock Qingzhen 2, and vigorous stock (Malus baccata L. Borkh.). After the rootstocks were treated for 60 days, the growth of new shoot, biomass accumulation, root morphology, nitrate reductase activity of leaf and root, as well as nitrogen accumulation were measured. The tolerance to low nitrogen stress in apple rootstocks was evaluated by membership function fuzzy evaluation method.
ResultsUnder normal N supply, the dry weight of total plant, root/shoot ratio, and nitrogen use efficiency of the vigorous stock M. baccata L. Borkh. were significantly higher than those of the five dwarf rootstocks, Pajam 2 had the highest dry matter accumulation in total plant and B9 had the highest root/shoot ratio among the dwarf rootstocks. The growth rate of new shoot and leaf NR activity of Nic29, a dwarf rootstock, were significantly higher than that of the remaining six rootstocks. The root nitrate reductase activity of the semi-dwarf Qingzhen 2 was significantly higher than that of the other rootstocks, which facilitated the nitrogen accumulation in root and plant.Compared with the normal N supply, the growth of new shoot in T337, Nic29 and M. baccata L. Borkh. was significantly inhibited under sub optimum nitrogen condition; the growth of new shoot in B9, Pajam2 and Qingzhen 2 was not significantly affected; while the growth of new shoot in 71-3-150 was significantly higher, the leaf area increased, the root biomass accumulation increased and the ratio of root/shoot increased significantly, reaching 2.59 times that of the control. Under N deficiency condition, all root parameters of T337, B9, Pajam2 and M. baccata L. Borkh. were significantly reduced, with T337 exhibiting drastic decrease, while root parameters such as total root surface area, total root length, total root volume and number of root tips increased significantly in 71-3-150, and total root surface area, total root length, root volume and root branches increased in Nic29, but the number of root tips decreased in Nic29. The leaf nitrate reductase activity of apple rootstocks decreased under nitrogen deficiency condition, and increased by 3.70, 5.16, 2.85 and 5.14-times in root of B9, Nic29, Pajam2 and M. baccata L. Borkh., respectively, compared with normal nitrogen supply. Under nitrogen deficiency condition, nitrogen accumulation in leaves, stems, and roots of T337, B9, Pajam2 and Qingzhen 2 decreased, so as nitrogen accumulation in total plant decreased, with the largest decrease in Qingzhen 2. However, nitrogen use efficiency of B9, Nic29, Pajam2 and Qingzhen 2 all increased significantly, with the largest increase in Qingzhen 2, and nitrogen accumulation in both root and plant of 71-3-150 all increased significantly. The seven apple rootstocks were classified into three tolerance types based on tolerance index to nitrogen deficiency of above nineteen indicators, including the growth rate of new shoot, root parameters, nitrate reductase activity, nitrogen accumulation and nitrogen use efficiency, combined with the fuzzy evaluation method of the affiliation function and cluster analysis: Class I was the most tolerant rootstock (71-3-150); Class II was the less tolerant rootstock (Nic29, M. baccata L. Borkh., B9 and Qingzhen 2); Class III was the least tolerant rootstocks (Pajam2 and T337).
ConclusionsUnder normal nitrogen supply, the vigorous stock M. baccata L. Borkh. and the semi-dwarf Qingzhen 2 outperformed the dwarf rootstocks in terms of biomass accumulation, root development and nutrient uptake and utilization, but they were less adaptable to nitrogen deficiency condition. Apple rootstocks adapt to nitrogen deficiency by increasing nitrogen use efficiency, of which the tolerant rootstocks were less inhibited in growth and adapt to nitrogen deficiency conditions by regulating their own physiological characteristics, increasing biomass and nutrient accumulation in root, and improving the ratio of root/shoot.
-
氮是植物生长发育的必需营养元素之一,在氨基酸、蛋白质、核酸和激素等植物大分子物质的代谢途径中起关键作用,是植物生长发育的重要调控因子[1-3],且在植物适应逆境过程中发挥积极作用。苹果是重要的温带落叶果树之一,在其生长发育过程中对氮素有较大需求,土壤氮素亏缺会造成植物叶片黄化,叶绿素含量降低,光合能力减弱,阻碍植物的生长发育;此外,植物氮吸收量减少,会降解体内蛋白质以重新利用氮素,往往会导致叶片加速衰老,生物量积累降低[4]。生产中多因氮肥施用不当如施肥量不合理、施肥时期不科学等,造成氮肥利用率低、资源浪费及环境污染等问题[5]。因此,利用植物自身遗传特性,挖掘其自身养分利用潜力,在适度减氮条件下筛选耐低氮和氮高效吸收利用的砧木对苹果产业可持续发展具有重要意义。研究表明,与铵态氮(NH4+)、尿素等形态相比,硝态氮(NO3–)在促进果树营养生长中的作用更为显著[6]。NO3–不易被土壤胶体吸附,移动性较高,可被植株通过根的表皮和皮层细胞从土壤中迅速吸收利用[7]。因此,根系的形态可塑性反应影响植株对氮的吸收、积累与分配[8-9],而土壤氮素含量对根系构型也具有显著影响。在对玉米[10]、油菜[11]、糜子[12]等的研究中发现,低氮处理使得植株总根长、根表面积及根体积等均显著高于正常供氮处理,根冠比显著升高,且不同品种或基因型对低氮的响应存在差异[13-14]。此外,依靠硝酸还原酶(NR)等的作用实现NO3–在植物体内的高效转运和利用,以供植物生长发育所需,因此,NR活性能反映植株的营养状况以及NO3–同化水平[15]。砧木作为果树的重要组成部分,为其提供根系,直接影响果树对养分的吸收及对逆境的适应能力。有研究报道,柑橘不同砧木间以及嫁接接穗后树体养分吸收及抗逆性均存在较大差异[16-17]。康晓育[18]比较了山定子、八棱海棠、平邑甜茶等5种苹果乔化砧后发现,低氮条件下山定子的根冠比增幅较大,而平邑甜茶和八棱海棠的氮利用效率较高。近年来利用从国外引进的T337、B9、Pajam2等矮化自根砧栽培模式在各苹果主产区逐步推广,该模式相较于过去国内常用的乔化砧、矮化中间砧栽培模式,具有矮化效果显著、苗木整齐度高、节省劳动力、早果丰产性好等显著优势,然而国外引进砧木在国内的适应能力有待考究[19-20],同时国内自育的部分矮化砧木对低氮胁迫的响应尚不明确。植物对低氮胁迫的响应往往从植物生长发育、生理生化过程等多方面进行。适宜的多指标综合评价方法可全面反映作物不同品种耐低氮胁迫的能力。目前,这类报道主要集中在小麦、玉米、水稻等大田作物上,有关苹果砧木特别是矮化砧对低氮胁迫的适应性评价则少有研究[21-23]。本研究以7种苹果砧木为材料,通过盆栽沙培试验的方法,研究在正常供氮和低氮胁迫条件下树体生长、根系形态及其对氮素的累积及代谢的特征,利用隶属函数综合评价方法比较砧木间适应能力的差异,以期为耐低氮苹果砧木的选育及苹果高效吸收利用氮素生理机制的研究提供理论支撑。
1. 材料和方法
1.1 试验材料
供试一年生苹果砧木共7种,其中,矮化砧包括T337、Nic29、Pajam2、B9、71-3-150,半矮化砧为青砧2号(Qingzhen 2)和乔化砧为山定子(Malus baccata L. Borkh.)。2019年秋季定植于上口径36 cm、下口径32 cm、高29 cm的黑色加仑盆中,栽培基质为洗净的河沙(25 kg),放置在辽宁省兴城市中国农业科学院果树研究所温泉试验基地苹果栽培示范园避雨棚内,定期浇灌改良1/2 Hoagland营养液以确保植株正常生长。
1.2 试验设计
试验于2020年秋梢生长期(7月1日)开始,每种砧木选择40株长势基本一致的健康植株进行试验处理,每个处理20株,单株重复。处理采用浇灌改良1/2 Hoagland营养液的方法进行,正常供氮处理(NN,5 mmol/L NO3–)的营养成分为Ca (NO3)2·4H2O 2 mmol/L、KNO3 1 mmol/L;低氮胁迫处理(LN,0.5 mmol/L NO3–)的营养成分为KNO30.5 mmol/L。其他中量元素(MgSO4·7H2O 2 mmol/L),微量元素(EDTA-Fe 0.05 mmol/L、MnSO4·H2O 0.5 mmol/L、CuSO4·5H2O 0.0005 mmol/L、ZnSO4·7H2O 0.15 mmol/L、H3BO3 0.5 mmol/L、Na2MoO4·4H2O 0.005 mmol/L),调节pH为5.9~6.5。低氮处理下,其他成分不变,缺少的Ca2+用CaCl2补足,缺少的K+用KCl补足。每隔15 天浇透水一次(1.5 L/盆),持续处理60 天。常规管理,保证其他试验条件一致。
1.3 样品采集及测定
1.3.1 植株生长势和生物量积累
在试验处理前期(ti),在供试植株中部选择3个长势中庸、无分枝的当年生新稍作为观测枝,标记后使用卷尺(精确度0.1 cm)测定长度(Hi),在处理60 天(tf)后再次测量长度(Hf),分别计算新稍生长速率(Ah)=(Hf–Hi) / (tf–ti),式中,Hf代表处理结束时新稍长度,Hi代表处理前新稍长度,(tf–ti)表示处理时间间隔[24]。之后,在不同供氮条件下各砧木分别选择5株具有代表性的植株进行株解,用去离子水反复冲洗干净后用吸水纸吸干表面水分,使用千分之一天平分别测定植株叶片、茎干及根系鲜重。
1.3.2 根系形态分析
待根系鲜重测定后,用EPSON扫描仪及WinRHIZO根系图像分析软件(Regent Instruments Inc.,加拿大)获取根系形态的相关指标,如根系总表面积、总根长、根系总体积、根尖数、根系平均直径和根系分枝数等。
1.3.3 氮含量测定
植株形态指标测定后将植株于105℃杀青30 min,80℃烘干至恒重,用万分之一天平测定植株各器官干重用于计算根冠比,之后用不锈钢磨样机将样品粉碎,过0.18 mm筛后保存备用。取烘干过筛后的样品0.3 g经H2O2‒H2SO4法消煮后,使用K9860全自动凯氏定氮仪(海能,中国)测定植株氮含量;以各器官氮含量与干重的乘积计算各器官氮累积量;以单株总干物质量与氮总累积量的比值衡量氮利用效率[25]。
1.3.4 耐低氮能力评价
耐低氮胁迫指数(Xj)=低氮胁迫下性状表型值/正常供氮水平下性状表型值[21] (1)
不同砧木各指标的隶属函数值计算:
μ(Xj)=(Xj−Xmin)/(Xmax−Xmin),j=1,2,3,⋯,n (2)
式中,µ(Xj)表示第j个指标的隶属函数值,Xj表示第j个指标的耐低氮胁迫指数;Xmax表示第j个指标的耐低氮胁迫指数的最大值,Xmin表示第j个指标的耐低氮胁迫指数的最小值。
利用熵值法计算各指标权重系数:
Wj=Pj/n∑j=1Pj,j=1,2,3,⋯,n (3)
式中,Wj表示第j个指标在指标中的重要程度,即权重;Pj为各品种第j个综合指标的方差贡献率。
综合评价值(I)=n∑j=1[μ(Xj)×Wj],j=1,2,3,⋯,n (4)
式中,I表示在低氮条件下各砧木耐低氮能力的综合评价值[26],Xj、Wj同上。
1.4 数据处理与分析
用Excel 2010和SAS 9.0进行数据处理分析及图表制作。使用单因素方差分析(One-way ANOVA)比较样本间的差异,对差异显著者采用Duncan’s多重检验(P <0.05为显著)比较,使用类平均法进行聚类分析。
2. 结果与分析
2.1 不同供氮条件对苹果砧木生长的影响
在正常供氮条件下,7种苹果砧木的新梢生长速率大小依次为Nic29>T337>71-3-150>B9>山定子>Pajam2>青砧2号(图1-A),由此可知,Nic29的新梢长势强于山定子、青砧2号和其余矮化砧。与正常供氮相比,低氮条件下,T337、Nic29和山定子的新稍生长均受到显著抑制;B9、Pajam2和青砧2号的新稍生长未受显著影响;而71-3-150的新稍生长速率增幅最大,其新稍生长速率显著高于其余砧木。由图1-B可知,在正常供氮条件下,7种苹果砧木中Pajam2的平均叶面积最大,而71-3-150最小。与正常供氮相比,低氮条件下,Pajam2和山定子的叶面积显著减小,而T337、B9、71-3-150显著增大。
图 1 不同供氮条件下苹果砧木新梢生长和平均叶面积的差异注:NN—正常供氮水平;LN—低氮胁迫。柱上不同小写字母表示同一砧木不同处理即正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)Figure 1. Shoot growth and leaf area of apple rootstocks under different nitrogen supply conditionsNote:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)2.2 不同供氮条件对苹果砧木物质积累和根冠比的影响
由图2-A可知,在正常供氮条件下,乔化砧山定子和半矮化砧青砧2号的植株总干重和根冠比显著高于5种矮化砧;矮化砧中Pajam2的干物质积累量最大,B9的根冠比最高。与正常供氮相比,低氮条件下,T337和B9的植株总干重显著降低,其中T337的植株叶片、茎干和根系的干重均显著降低(图2-C),根冠比亦显著减小;其余砧木根冠比均呈上升趋势,其中B9、71-3-150和Nic29的增幅显著,三者的根冠比分别增长为对照的1.64、2.59和1.34倍(图2-B)。
图 2 不同供氮条件下苹果砧木干重及根冠比注:NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木不同处理即正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)Figure 2. Dry weight and ratio of root/shoot of apple rootstocks under different nitrogen supply conditionsNote:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)2.3 不同供氮条件下苹果砧木根系形态变化
在正常供氮条件下,乔化砧山定子的根尖数和根系分枝数均显著高于青砧2号和5种矮化砧,T337的根系总表面积和总根长显著高于其余矮化砧(B9、71-3-150、Nic29和Pajam2)。低氮条件下,不同苹果砧木根系形态的变化趋势存在显著差异。如表1所示,与正常供氮相比,低氮条件下,71-3-150和Nic29的根系总表面积均显著升高,此外,71-3-150的总根长、根系总体积、根尖数和根系分枝数等增幅显著。与正常供氮相比,低氮处理使得T337、B9、Pajam2和山定子根系总表面积和总根长均显著降低,T337的降幅最大,其根系总表面积和总根长分别降低了86.04%和88.57%。
表 1 苹果砧木根系形态及低氮处理相较于正常氮处理的比值Table 1. Root morphological characteristics and the ratio of apple rootstocks under low N supply relative to normal N supply condition砧木
Rootstock根系总表面积 (×103 cm2)
Root surface area per plant总根长 (×104 cm)
Root total length per plant根系总体积 (cm3)
Root total volume per plantNN LN 比值 Ratio NN LN 比值 Ratio NN LN 比值 Ratio T337 8.544±0.585 aA 1.193±0.100 bE 0.14 6.824±0.361 aA 0.780±0.063 bD 0.11 26.938±2.270 aCD 15.611±1.952 bD 0.58 B9 2.318±0.003 aCD 1.609±0.178 bDE 0.69 1.654±0.005 aB 1.125±0.026 bD 0.68 24.875±1.612 aCD 19.155±0.941aD 0.77 71-3-150 0.882±0.013 bD 2.393±0.094 aCD 2.71 0.589±0.009 bC 1.770±0.069 aC 3.00 9.777±0.145 bD 26.389±1.034 aD 2.70 Nic29 2.425±0.200 bCD 3.306±0.129 aC 1.36 2.088±0.152 aB 2.106±0.082 aC 1.01 40.267±2.929 aC 42.745±1.666 aC 1.06 Pajam2 3.939±0.257 aBC 2.213±0.004 bD 0.56 2.396±0.119 aB 1.968±0.004 bC 0.82 135.873±8.879 aA 51.205±0.102 bC 0.38 山定子
M. baccata9.382±0.904 aA 7.394±0.322 bA 0.79 6.912±0.325 aA 4.845±0.211 bA 0.70 117.434±11.320 aA 97.480±4.245 aA 0.83 青砧 2 号
Qingzhen 25.434±0.198 aB 5.016±0.562 aB 0.92 2.631±0.379 aB 2.955±0.331 aB 1.12 80.804±2.951 aB 71.463±8.006 aB 0.88 砧木
Rootstock根尖数
Root tips per plant根系分枝数
Root forks per plant平均根直径 (mm)
Root average diameterNN LN 比值 Ratio NN LN 比值 Ratio NN LN 比值 Ratio T337 24711±1286 aD 16975±2129 aE 0.69 59406±9836 aCD 31844±2212 aD 0.54 0.564±0.009 aB 0.478±0.044 aA 0.85 B9 37380±4033 aCD 27385±933 aDE 0.73 73807±8034 aCD 38360±6108 bD 0.52 0.452±0.006 aB 0.462±0.019 aA 1.02 71-3-150 31330±6270 bCD 62903±2451aBC 2.01 32081±6421 bD 79728±159 aCD 2.49 0.577±0.116 aB 0.408±0.018 aA 0.71 Nic29 49078±7450 aBCD 49055±98 aCD 1.00 99298±14668 aCD 111708±4865 aC 1.12 0.486±0.072 aB 0.389±0.044 aA 0.80 Pajam2 74926±4896 aBC 59951±2611 aBC 0.80 129449±8459 aBC 107485±12042 aC 0.83 0.858±0.056 aA 0.447±0.050 bA 0.52 山定子
M. baccata254637±24545 aA 144653±16206 bA 0.57 445082±42902 aA 260823±29220 bA 0.59 0.486±0.047 aB 0.402±0.046 aA 0.83 青砧 2 号
Qingzhen 289967±12949 aB 84049±9416 aB 0.93 193765±27889 aB 183021±20504 aB 0.94 0.504±0.073 aB 0.418±0.047 aA 0.83 注:NN—正常氮供应;LN—低氮胁迫。同列数据后不同小写字母表示同一砧木不同处理间差异显著 (P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著 (P<0.05)。 Note: NN—Normal N supply; LN—Low N stress. Values followed by different lowercase letters indicate in the row significant difference between treatments in the same rootstock (P<0.05), and different capital letters indicate significant difference among rootstocks under same nitrogen supply condition (P<0.05). 2.4 不同供氮条件对苹果砧木硝酸还原酶活性的影响
由图3-A可知,在正常供氮条件下,7种苹果砧木的叶片硝酸还原酶(NR)活性大小依次为Nic29> Pajam2> B9、山定子>71-3-150>青砧2号>T337;由图3-B可知,青砧2号的根系NR活性显著高于其余6种砧木,而矮化砧中,T337和71-3-150的根系NR活性显著高于B9、Nic29和Pajam2。与正常供氮相比,低氮条件下,7种苹果砧木叶片及根系中NR活性均发生显著改变。与正常供氮相比,低氮条件下7种砧木叶片NR活性均显著降低,其中,Pajam2和山定子降幅较大,分别降低了67.21%和64.52%。低氮胁迫对T337和71-3-150根系NR活性的影响不明显,却使青砧2号的根系NR活性降低了74.60%;低氮条件下,B9、Nic29、Pajam2和山定子根系NR活性分别较正常供氮提高了3.70、5.16、2.85和5.14倍。
图 3 不同供氮条件下苹果砧木叶片(A)及根系(B)硝酸还原酶(NR)活性注: NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)Figure 3. Activities of nitrate reductase (NR) in leaves (A) and roots (B) of apple rootstocks under different nitrogen supply conditionsNote:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)2.5 不同供氮条件对苹果砧木氮吸收利用的影响
由图4-A可知,在正常供氮条件下,青砧2号的植株总氮累积量显著高于山定子和矮化砧。与正常供氮相比,低氮条件下7种苹果砧木植株氮累积量均发生变化,71-3-150的植株氮累积量显著升高,增幅为66.26%;低氮胁迫使T337、B9、Nic29、Pajam2、山定子和青砧2号的植株氮累积量降低,青砧2号的植株氮累积量降幅最大。由图4-B可知,在正常供氮条件下,山定子的氮利用效率高于其余砧木,71-3-150和Pajam2的氮利用效率显著高于青砧2号、T337、B9和Nic29。与正常供氮相比,低氮条件下,B9、Nic29、Pajam2和青砧2号的氮利用效率均显著提高,青砧2号增幅最大。此外,低氮条件下,山定子和Pajam2的氮利用效率显著高于其余5种砧木。分析图4-C可知,与正常供氮相比,低氮条件下T337、B9和Pajam2的叶片氮累积量显著降低,T337和Pajam2的根系氮累积量显著降低,B9、Nic29和青砧2号的茎干氮累积量也显著降低,而71-3-150的根系和叶片的氮累积量显著升高。
图 4 不同供氮条件下苹果砧木氮累积量和氮利用效率注: NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)Figure 4. Nitrogen accumulation and nitrogen use efficiency in apple rootstocks under different nitrogen supply conditionsNote:NN—Normal N supply;LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)2.6 苹果砧木耐低氮能力综合评价
以上述各指标的相对值为变量,利用模糊隶属函数对7种苹果砧木的耐低氮能力进行综合评价,结果表明,7种苹果砧木耐低氮胁迫能力依次为71-3-150>Nic29>山定子>B9>青砧2号>Pajam2>T337(表2)。以各砧木的耐低氮综合评价值为指标,采用类平均距离法可将7种苹果砧木聚类为3个类群,第Ⅰ类为耐性强的砧木,包括71-3-150;第Ⅱ类为耐性较弱的砧木,包括Nic29、山定子、B9和青砧2号;第Ⅲ类为耐性最弱的砧木,包括Pajam2和T337。
表 2 苹果砧木对低氮胁迫耐受能力的模糊数学函数隶属法评价Table 2. Evaluation of resistance to low-N stress of apple rootstocks using the method of fuzzy membership function砧木
Rootstock新稍生长速率
Growth rate of
new shoot平均叶面积
Average leaf area根系干重
Root dry weight茎干干重
Stem dry weight叶片干重
Leaf dry weight根冠比
Root shoot ratioT337 0.021 0.021 0.022 0.024 0.021 0.021 B9 0.033 0.027 0.021 0.021 0.036 0.028 71-3-150 0.048 0.053 0.053 0.052 0.053 0.053 Nic29 0.021 0.029 0.040 0.031 0.031 0.036 Pajam2 0.052 0.025 0.039 0.021 0.026 0.026 山定子
M. baccata0.024 0.027 0.036 0.048 0.026 0.029 青砧 2 号
Qingzhen 20.050 0.025 0.030 0.028 0.027 0.031 砧木
Rootstock根系表面积
Root surface area总根长
Root total length总根体积
Root total volume根尖数
Root tips根系平均直径
Root average diameter根系分枝数
Root forksT337 0.021 0.024 0.024 0.042 0.021 0.053 B9 0.027 0.026 0.025 0.053 0.021 0.052 71-3-150 0.053 0.053 0.053 0.033 0.053 0.050 Nic29 0.031 0.030 0.031 0.039 0.031 0.034 Pajam2 0.029 0.021 0.026 0.021 0.026 0.021 山定子
M. baccata0.028 0.027 0.021 0.041 0.022 0.029 青砧 2 号
Qingzhen 20.032 0.028 0.029 0.041 0.028 0.033 砧木
Rootstocks根系氮累积量
Root N accumulation茎干氮累积量
Stem N accumulation叶片氮累积量
Leaf N accumulation植株总氮累积量
Total N
accumulation in plant氮利用效率
N utilization efficiencyT337 0.021 0.038 0.030 0.028 0.021 B9 0.026 0.031 0.024 0.025 0.029 71-3-150 0.053 0.053 0.052 0.053 0.025 Nic29 0.027 0.039 0.029 0.030 0.036 Pajam2 0.023 0.041 0.021 0.026 0.038 山定子
M. baccata0.026 0.039 0.049 0.034 0.030 青砧 2 号
Qingzhen 20.024 0.021 0.026 0.021 0.053 砧木
Rootstocks叶片硝酸还原酶活性
Leaf nitrate reductase activity根系硝酸还原酶活性
Root nitrate reductase activity综合评价值
Comprehensive evaluation value排名
RankT337 0.049 0.027 0.529 7 B9 0.053 0.043 0.602 4 71-3-150 0.031 0.025 0.897 1 Nic29 0.030 0.053 0.627 2 Pajam2 0.021 0.038 0.542 6 山定子
M. baccata0.023 0.052 0.610 3 青砧 2 号
Qingzhen 20.046 0.021 0.593 5 3. 讨论
3.1 低氮胁迫对不同苹果砧木生长的影响
氮作为植物生长发育过程中的必需营养元素,是苹果器官分化、物质代谢及果实品质形成的重要物质基础。氮素亏缺条件下,树体会快速响应,植株生长和物质积累量等均发生显著变化,但受影响程度存在品种特异性[15,27]。在苹果栽培过程中,砧木作为树体的地下部分,负责吸收和转运土壤中的养分。优良砧木不仅是保障果树产量品质的基础,还能有效提高树体对多种生物及非生物胁迫的适应能力。通常认为在苹果栽培中,乔化砧树体高大且根系发达,对土壤适应能力强,而矮化砧木树体矮小且抗性较弱[28-29],这与本研究结果不一致。本研究对7种苹果砧木在低氮条件下的生长和生理生化指标进行分析,结合隶属函数法综合评价可知,71-3-150耐低氮胁迫能力最强,生产中常用的矮化砧木T337适应能力最弱,尽管在正常供氮条件下,乔化砧山定子在植株总干重、根系参数和植株氮累积量等方面明显高于矮化砧,但其耐低氮能力弱于71-3-150、Nic29等矮化砧(表2,图5)。程丽丽等[15]研究发现,低氮胁迫下光皮桦的根冠比增加,而低氮敏感型光皮桦植株生长和生物积累量等降幅大于耐受型。陈凌等[21]研究也发现,低氮胁迫下,耐低氮能力强的糜子品种表型性状变化幅度较小,且更容易调节自身生理特性,适应低氮环境。本研究与上述研究结果一致,与正常供氮相比,低氮胁迫下T337、Nic29和山定子的新稍生长受到显著抑制,Pajam2和山定子的叶片伸展减弱,植株地上部和根系干重降低,而71-3-150的新稍生长速率和地上部干重受影响较小,叶面积显著增大,且根系中干物质积累量增加,植株根冠比随之升高(图1,图2),表现出较强的低氮适应能力。韩清泉等[30]研究发现,低氮条件下仅耐低氮能力强的川滇柳根冠比升高,其余品种根冠比无显著变化甚至降低,这与本研究结果一致,除71-3-150、B9和Nic29外,Pajam2、山定子和青砧2号的根冠比变化不显著,而T337则显著降低。
3.2 低氮胁迫对不同苹果砧木根系形态的影响
根系是植物感知根际环境的器官,具有极强的可塑性以适应环境变化[25]。赵泽群等[10]在玉米的研究中发现,低氮条件下,玉米根干重的增加与总根长、根表面积、根体积和侧根数的增加密切相关,这与本研究结果一致。本研究发现,低氮胁迫下71-3-150的根系干物质积累量增加,根系总表面积、总根长、根系总体积、根尖数等根系性状增幅显著(表1),表明耐低氮能力强的砧木在低氮胁迫下能够促进根系生长,增大根系与土壤的接触面积,有利于植株对养分的吸收,并将更多的同化产物分配至根部,提高植株根冠比,这是砧木为适应氮素亏缺条件,捕获养分而产生的补偿机制之一[31]。不同苹果砧木根系对低氮胁迫的响应存在明显的品种特异性,低氮处理使得T337、B9、Pajam2和山定子根系总表面积和总根长均显著降低,耐低氮能力弱的砧木根系参数的降幅更大,而Nic29的根系总表面积、总根长、根体积和根系分枝数升高,但Nic29的根尖数减少,这可能与持续氮素亏缺过程中根基部细胞发生程序性死亡机制有关,而这一机制有待进一步研究[32]。
3.3 低氮胁迫对不同苹果砧木氮吸收利用的影响
关于植物氮高效吸收利用的研究主要集中在耐低氮性和氮效率两方面,前者关注植物在低氮条件下保持正常生长的能力,而后者是指在特定供氮条件下作物氮吸收利用状况[33]。根系吸收的氮素必须经同化后才能被植物利用,因此,氮代谢是植物生长发育过程中最重要的生理生化过程之一。硝酸还原酶(NR)作为一种诱导酶,是氮代谢过程中的关键酶,同时也是氮吸收的重要限制因子。正常供氮条件下,青砧2号的根系NR活性显著高于其他砧木(图3),有利于根系和植株的氮累积(图4)。李强等[34]研究发现,低氮胁迫下,不同氮效率的玉米叶片中NR活性均大幅下降,氮高效品种降幅小于氮低效品种,这与本研究结果一致,低氮胁迫使得不同苹果砧木叶片NR显著降低,Pajam2的降幅最大(图3-A)。Nic29、Pajam2和T337均为M9 (英国东茂林实验站收集和育成)中筛选到的优系,Pajam2和T337对低氮胁迫适应能力均低于71-3-150、B9等其他矮化砧,而Nic29表现出一定的优势。秦永梅等[35]研究发现,氮肥用量的增加可提高玉米叶片NR活性,但高水平的NO3–却使得根系NR降低,即叶片和根系表现出相反的变化趋势,这可能与植物体内氮的转运分配有关。彭玲等[1]在对不同稳定性供氮条件下T337的NR活性研究后发现,由于根系和叶片的所处环境不同,二者NR活性变化趋势存在差异。本研究也获得相似结果,低氮条件下B9、Nic29、Pajam2和山定子叶片NR活性降低,根系中NR活性显著提升。
NO3–被植物体吸收后,既可以在根系中同化利用,也可以转移到根系液泡中储存起来,被吸收的NO3–还可以通过木质部运往植物的地上部分[11]。发达的根系是氮高效吸收利用的基础,正常供氮条件下,山定子和青砧2号的植株氮累积量明显高于矮化砧;此外,多数研究认为,低氮条件下植株总氮累积量与植株根系形态密切相关[36-37],这与本研究结果一致。低氮胁迫使T337、B9、Pajam2和青砧2号等苹果砧木根系发育受阻,植株及各器官的氮累积量亦呈降低趋势,而71-3-150的根系干物质量和根系参数均显著提高,植株及各器官的氮累积量增加。但钟思荣等[38]研究发现,低氮条件下,烟草根系体积增大,但茎叶氮累积量减小,表明氮累积量不仅依赖于根系,也与植物自身的氮素吸收能力有关。这与本研究结果一致,低氮条件下,Nic29的根系总表面积和总体积高于正常供氮,根系中氮累积量未有明显变化,但叶片和茎干中氮累积量却呈降低趋势。除了氮吸收能力,秦璐等[25]研究发现,低氮胁迫会使油菜的氮利用效率显著增加,这与苹果砧木的变化规律一致,这是植物为适应低氮环境而产生的重要生理应答机制之一。
4. 结论
在正常供氮条件下,乔化砧木山定子和半矮化砧青砧2号在植株生长、根系发育和养分吸收利用等方面均强于矮化砧;低氮条件下,各砧木均发生显著变化且变化趋势存在差异。基于各指标的耐低氮指数,利用隶属函数法和聚类分析可将砧木分为3种耐性类型:第Ⅰ类为耐性强的砧木(71-3-150);第Ⅱ类为耐性较弱的砧木(Nic29、山定子、B9和青砧2号);第Ⅲ类为耐性最弱的砧木(Pajam2和T337)。低氮条件下,苹果砧木通过提高氮利用效率适应养分亏缺,其中,耐性强的砧木植株生长受抑制程度较小,并通过调节自身生理特性,增加根系中的物质和养分积累,提高植株根冠比,以适应低氮环境。
-
图 1 不同供氮条件下苹果砧木新梢生长和平均叶面积的差异
注:NN—正常供氮水平;LN—低氮胁迫。柱上不同小写字母表示同一砧木不同处理即正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)
Figure 1. Shoot growth and leaf area of apple rootstocks under different nitrogen supply conditions
Note:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)
图 2 不同供氮条件下苹果砧木干重及根冠比
注:NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木不同处理即正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)
Figure 2. Dry weight and ratio of root/shoot of apple rootstocks under different nitrogen supply conditions
Note:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)
图 3 不同供氮条件下苹果砧木叶片(A)及根系(B)硝酸还原酶(NR)活性
注: NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)
Figure 3. Activities of nitrate reductase (NR) in leaves (A) and roots (B) of apple rootstocks under different nitrogen supply conditions
Note:NN—Normal N supply; LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)
图 4 不同供氮条件下苹果砧木氮累积量和氮利用效率
注: NN—正常氮供应;LN—低氮胁迫。柱上不同小写字母表示同一砧木正常氮和低氮处理间差异显著(P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著(P<0.05)
Figure 4. Nitrogen accumulation and nitrogen use efficiency in apple rootstocks under different nitrogen supply conditions
Note:NN—Normal N supply;LN—Low N stress. Different lowercase letters above the bars indicate significant difference between normal and low N treatments of one rootstock, and different capital letters indicate significant difference among rootstocks under the same nitrogen supply condition (P<0.05)
表 1 苹果砧木根系形态及低氮处理相较于正常氮处理的比值
Table 1 Root morphological characteristics and the ratio of apple rootstocks under low N supply relative to normal N supply condition
砧木
Rootstock根系总表面积 (×103 cm2)
Root surface area per plant总根长 (×104 cm)
Root total length per plant根系总体积 (cm3)
Root total volume per plantNN LN 比值 Ratio NN LN 比值 Ratio NN LN 比值 Ratio T337 8.544±0.585 aA 1.193±0.100 bE 0.14 6.824±0.361 aA 0.780±0.063 bD 0.11 26.938±2.270 aCD 15.611±1.952 bD 0.58 B9 2.318±0.003 aCD 1.609±0.178 bDE 0.69 1.654±0.005 aB 1.125±0.026 bD 0.68 24.875±1.612 aCD 19.155±0.941aD 0.77 71-3-150 0.882±0.013 bD 2.393±0.094 aCD 2.71 0.589±0.009 bC 1.770±0.069 aC 3.00 9.777±0.145 bD 26.389±1.034 aD 2.70 Nic29 2.425±0.200 bCD 3.306±0.129 aC 1.36 2.088±0.152 aB 2.106±0.082 aC 1.01 40.267±2.929 aC 42.745±1.666 aC 1.06 Pajam2 3.939±0.257 aBC 2.213±0.004 bD 0.56 2.396±0.119 aB 1.968±0.004 bC 0.82 135.873±8.879 aA 51.205±0.102 bC 0.38 山定子
M. baccata9.382±0.904 aA 7.394±0.322 bA 0.79 6.912±0.325 aA 4.845±0.211 bA 0.70 117.434±11.320 aA 97.480±4.245 aA 0.83 青砧 2 号
Qingzhen 25.434±0.198 aB 5.016±0.562 aB 0.92 2.631±0.379 aB 2.955±0.331 aB 1.12 80.804±2.951 aB 71.463±8.006 aB 0.88 砧木
Rootstock根尖数
Root tips per plant根系分枝数
Root forks per plant平均根直径 (mm)
Root average diameterNN LN 比值 Ratio NN LN 比值 Ratio NN LN 比值 Ratio T337 24711±1286 aD 16975±2129 aE 0.69 59406±9836 aCD 31844±2212 aD 0.54 0.564±0.009 aB 0.478±0.044 aA 0.85 B9 37380±4033 aCD 27385±933 aDE 0.73 73807±8034 aCD 38360±6108 bD 0.52 0.452±0.006 aB 0.462±0.019 aA 1.02 71-3-150 31330±6270 bCD 62903±2451aBC 2.01 32081±6421 bD 79728±159 aCD 2.49 0.577±0.116 aB 0.408±0.018 aA 0.71 Nic29 49078±7450 aBCD 49055±98 aCD 1.00 99298±14668 aCD 111708±4865 aC 1.12 0.486±0.072 aB 0.389±0.044 aA 0.80 Pajam2 74926±4896 aBC 59951±2611 aBC 0.80 129449±8459 aBC 107485±12042 aC 0.83 0.858±0.056 aA 0.447±0.050 bA 0.52 山定子
M. baccata254637±24545 aA 144653±16206 bA 0.57 445082±42902 aA 260823±29220 bA 0.59 0.486±0.047 aB 0.402±0.046 aA 0.83 青砧 2 号
Qingzhen 289967±12949 aB 84049±9416 aB 0.93 193765±27889 aB 183021±20504 aB 0.94 0.504±0.073 aB 0.418±0.047 aA 0.83 注:NN—正常氮供应;LN—低氮胁迫。同列数据后不同小写字母表示同一砧木不同处理间差异显著 (P<0.05),不同大写字母表示同一供氮条件下不同砧木间差异显著 (P<0.05)。 Note: NN—Normal N supply; LN—Low N stress. Values followed by different lowercase letters indicate in the row significant difference between treatments in the same rootstock (P<0.05), and different capital letters indicate significant difference among rootstocks under same nitrogen supply condition (P<0.05). 表 2 苹果砧木对低氮胁迫耐受能力的模糊数学函数隶属法评价
Table 2 Evaluation of resistance to low-N stress of apple rootstocks using the method of fuzzy membership function
砧木
Rootstock新稍生长速率
Growth rate of
new shoot平均叶面积
Average leaf area根系干重
Root dry weight茎干干重
Stem dry weight叶片干重
Leaf dry weight根冠比
Root shoot ratioT337 0.021 0.021 0.022 0.024 0.021 0.021 B9 0.033 0.027 0.021 0.021 0.036 0.028 71-3-150 0.048 0.053 0.053 0.052 0.053 0.053 Nic29 0.021 0.029 0.040 0.031 0.031 0.036 Pajam2 0.052 0.025 0.039 0.021 0.026 0.026 山定子
M. baccata0.024 0.027 0.036 0.048 0.026 0.029 青砧 2 号
Qingzhen 20.050 0.025 0.030 0.028 0.027 0.031 砧木
Rootstock根系表面积
Root surface area总根长
Root total length总根体积
Root total volume根尖数
Root tips根系平均直径
Root average diameter根系分枝数
Root forksT337 0.021 0.024 0.024 0.042 0.021 0.053 B9 0.027 0.026 0.025 0.053 0.021 0.052 71-3-150 0.053 0.053 0.053 0.033 0.053 0.050 Nic29 0.031 0.030 0.031 0.039 0.031 0.034 Pajam2 0.029 0.021 0.026 0.021 0.026 0.021 山定子
M. baccata0.028 0.027 0.021 0.041 0.022 0.029 青砧 2 号
Qingzhen 20.032 0.028 0.029 0.041 0.028 0.033 砧木
Rootstocks根系氮累积量
Root N accumulation茎干氮累积量
Stem N accumulation叶片氮累积量
Leaf N accumulation植株总氮累积量
Total N
accumulation in plant氮利用效率
N utilization efficiencyT337 0.021 0.038 0.030 0.028 0.021 B9 0.026 0.031 0.024 0.025 0.029 71-3-150 0.053 0.053 0.052 0.053 0.025 Nic29 0.027 0.039 0.029 0.030 0.036 Pajam2 0.023 0.041 0.021 0.026 0.038 山定子
M. baccata0.026 0.039 0.049 0.034 0.030 青砧 2 号
Qingzhen 20.024 0.021 0.026 0.021 0.053 砧木
Rootstocks叶片硝酸还原酶活性
Leaf nitrate reductase activity根系硝酸还原酶活性
Root nitrate reductase activity综合评价值
Comprehensive evaluation value排名
RankT337 0.049 0.027 0.529 7 B9 0.053 0.043 0.602 4 71-3-150 0.031 0.025 0.897 1 Nic29 0.030 0.053 0.627 2 Pajam2 0.021 0.038 0.542 6 山定子
M. baccata0.023 0.052 0.610 3 青砧 2 号
Qingzhen 20.046 0.021 0.593 5 -
[1] 彭玲, 刘晶晶, 王芬, 等. 硝酸盐供应水平对平邑甜茶幼苗生长、光合特性与15N吸收利用的影响[J]. 应用生态学报, 2018, 29(2): 522–530. Peng L, Liu J J, Wang F, et al. Effects of nitrate nitrogen supply on the growth, photosynthetic characteristics and 15N absorption, utilization of Malus hupehensis seedlings[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 522–530. Peng L, Liu J J, Wang F, et al. Effects of nitrate nitrogen supply on the growth, photosynthetic characteristics and 15N absorption, utilization of Malus hupehensis seedlings[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 522‒530.
[2] 高娟, 马娟娟, 孙瑞峰, 等. 蓄水坑灌下不同氮素水平对苹果叶片光合作用的影响[J]. 节水灌溉, 2019, (5): 27–30. Gao J, Ma J J, Sun R F, et al. Effects of different nitrogen levels on photosynthesis of apple leaves under water storage pit irrigation[J]. Water Saving Irrigation, 2019, (5): 27–30. DOI: 10.3969/j.issn.1007-4929.2019.05.006 Gao J, Ma J J, Sun R F, et al. Effects of different nitrogen levels on photosynthesis of apple leaves under water storage pit irrigation[J]. Water Saving Irrigation, 2019, 285(5): 27‒30. DOI: 10.3969/j.issn.1007-4929.2019.05.006
[3] Zhao H, Sun S, Zhang L, et al. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency[J]. Plant Physiology and Biochemistry, 2020, 155: 455–463. DOI: 10.1016/j.plaphy.2020.07.037
[4] Qian W, Liu C, Dong Q, et al. Genome-wide identification and analysis of apple NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) genes reveals MdNPF6.5 confers high capacity for nitrogen uptake under low-nitrogen conditions[J]. International Journal of Molecular Sciences, 2018, 19(9): 2761. DOI: 10.3390/ijms19092761
[5] 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9): 1401–1408. Wu J N, Wei X D, Li X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401–1408. Wu J N, Wei X D, Li X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401‒1408.
[6] 文滨滨, 张新昊, 沈红艳, 等. 氮素亏缺对苹果愈伤组织硝态氮吸收及同化的影响[J]. 植物营养与肥料学报, 2019, 25(11): 1939–1948. Wen B B, Zhang X H, Shen H Y, et al. Effects of nitrogen deficiency on nitrate uptake and assimilation of apple callus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1939–1948. DOI: 10.11674/zwyf.18470 Wen B B, Zhang X H, Shen H Y, et al. Effects of nitrogen deficiency on nitrate uptake and assimilation of apple callus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1939‒1948. DOI: 10.11674/zwyf.18470
[7] Marschner P. Mineral nutrition of higher plants[M]. Pittsburgh: Academic Press, 2012.
[8] 宋岩, 张锐, 鱼尚奇, 等. 不同施氮水平对核桃砧木苗形态特征及生理特性的影响[J]. 福建农业学报, 2020, 35(3): 309–316. Song Y, Zhang R, Yu S Q, et al. Morphology and physiology of walnut stock seedlings as affected by nitrogen fertilizations[J]. Fujian Journal of Agricultural Sciences, 2020, 35(3): 309–316. Song Y, Zhang R, Yu S Q, et al. Morphology and physiology of walnut stock seedlings as affected by nitrogen fertilizations[J]. Fujian Journal of Agricultural Sciences, 2020, 35(3): 309‒316.
[9] Takatoshi K, Anne K. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture[J]. Plant and Cell Physiology, 2016, 57(4): 707–714.
[10] 赵泽群, 师赵康, 王雯, 等. 低氮胁迫对玉米幼苗氮素和蔗糖分配及性状的影响[J]. 植物营养与肥料学报, 2020, 26(4): 783–796. Zhao Z Q, Shi Z K, Wang W, et al. Allocation of nitrogen and sucrose in maize seedling under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 783–796. DOI: 10.11674/zwyf.19226 Zhao Z Q, Shi Z K, Wang W, et al. Allocation of nitrogen and sucrose in maize seedling under low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 783‒796. DOI: 10.11674/zwyf.19226
[11] 荣楠, 韩永亮, 荣湘民, 等. 油菜NO3–的吸收、分配及氮利用效率对低氮胁迫的响应[J]. 植物营养与肥料学报, 2017, 23(4): 1104–1111. Rong N, Han Y L, Rong X M, et al. Response of NO3– uptake and distribution and nitrogen use efficiency in oilseed rape to limited nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1104–1111. Rong N, Han Y L, Rong X M, et al. Response of NO3- uptake and distribution and nitrogen use efficiency in oilseed rape to limited nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1104‒1111.
[12] 张美俊, 乔治军, 杨武德, 等. 不同糜子品种对低氮胁迫的生物学响应[J]. 植物营养与肥料学报, 2014, 20(3): 661‒669. Zhang M J, Qiao Z J, Yang W D, et al. Biological response of different cultivars of millet to low nitrogen stress[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(3): 661‒669.
[13] Du Q G, Yang J, Shah S M S, et al. Comparative transcriptome analysis of the different nitrogen responses in low-nitrogen sensitive and tolerant maize genotypes[J]. Journal of Integrative Agriculture, 2021, 20(8): 2043–2055. DOI: 10.1016/S2095-3119(20)63220-8
[14] Liu Y, Li M X, Xu J S, et al. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions[J]. BMC Plant Biology, 2019, 19(6): 562–572.
[15] 程丽丽, 潘樱, 林艳, 等. 低氮胁迫对不同光皮桦基因型苗期生长及生理生化特征的影响[J]. 核农学报, 2020, 34(11): 2435–2443. Cheng L L, Pan Y, Lin Y, et al. Effect of low nitrogen stress on the growth, physiological, and biochemical characteristics of different Betula luminifera genotypes[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2435–2443. DOI: 10.11869/j.issn.100-8551.2020.11.2435 Cheng L L, Pan Y, Lin Y, et al. Effect of low nitrogen stress on the growth, physiological, and biochemical characteristics of different Betula luminifera denotypes[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2435‒2443. DOI: 10.11869/j.issn.100-8551.2020.11.2435
[16] 韩佳, 周高峰, 李峤虹, 等. 缺镁、铁、硼胁迫对4个柑橘砧木生长及养分吸收的影响[J]. 园艺学报, 2012, 39(11): 2105–2112. Han J, Zhou G F, Li Q H, et al. Effects of magnesium, iron, boron deficiency on the growth and nutrition absorption of four major citrus rootstocks[J]. Acta Horticulturae Sinica, 2012, 39(11): 2105–2112. Han J, Zhou G F, Li Q H, et al. Effects of magnesium, iron, boron deficiency on the growth and nutrition absorption of four major citrus rootstocks[J]. Acta Horticulturae Sinica, 2012, 11(39): 2105‒2112.
[17] 郑永强, 邓烈, 何绍兰, 等. 不同砧木对特罗维塔甜橙植株生长、产量和果实品质的影响[J]. 果树学报, 2010, 27(4): 611–615. Zheng Y Q, Deng L, He S L, et al. Effects of rootstocks on tree growth, yield and fruit quality of Trouita sweet orange in south China[J]. Journal of Fruit Science, 2010, 27(4): 611–615. Zheng Y Q, Deng L, He S L, et al. Effects of seven rootstocks on rree growth, yield and fruit quality of 'Hamlin' sweet orange in south China[J]. Journal of Fruit Science, 2010, 4(27): 611‒615.
[18] 康晓育. 不同氮素供应对苹果幼苗生长及氮素利用的影响[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2013. Kang X Y. Effects of different nitrogen supply on the growth and nitrogen utilization of apple seedlings[D]. Yangling, Shaanxi: Northwest A&F University, 2013.
[19] 马宝焜, 徐继忠, 孙建设. 关于我国苹果矮砧密植栽培的思考[J]. 果树学报, 2010, 27(1): 105–109. Ma B K, Xu J Z, Sun J S. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science, 2010, 27(1): 105–109. Ma B K, Xu J Z, Sun J S. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science, 2010, 27(1): 105‒109.
[20] 马利萍, 李凯, 杨天一, 等. 不同砧木对普通型和短枝型‘富士’苹果树体生长生理特性和果实品质的影响[J]. 果树资源学报, 2022, 3(2): 27–31. Ma L P, Li K, Yang T Y, et al. Effect of different rootstocks on the growth, physiological characteristics and fruit quality of common and short branch ‘Fuji’ apple trees[J]. Journal of Fruit Resources, 2022, 3(2): 27–31. Ma L P, Li K, Yang T Y, et al. Effect of different rootstocks on the growth, physiological characteristics and fruit quality of common and short branch ‘Fuji’ apple trees[J]. Journal of Fruit Resources, 2022, 3(2): 27‒31.
[21] 陈凌, 王君杰, 王海岗, 等. 耐低氮糜子品种的筛选及农艺性状的综合评价[J]. 中国农业科学, 2020, 53(16): 3214–3224. Chen L, Wang J J, Wang H G, et al. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits[J]. Scientia Agricultura Sinica., 2020, 53(16): 3214–3224. DOI: 10.3864/j.issn.0578-1752.2020.16.002 Chen L, Wang J J, Wang H G, et al. Screening of broomcorn millet varieties tolerant to low nitrogen stress and the comprehensive evaluation of their agronomic traits [J]. Scientia Agricultura Sinica. 2020, 53(16): 3214‒3224. DOI: 10.3864/j.issn.0578-1752.2020.16.002
[22] 裴雪霞, 王姣爱, 党建友, 等. 耐低氮小麦基因型筛选指标的研究[J]. 植物营养与肥料学报, 2007, 13(1): 93–98. Pei X X, Wang J A, Dang J Y, et al. An approach to the screening index for low nitrogen tolerant wheat genotype[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1): 93–98. DOI: 10.3321/j.issn:1008-505X.2007.01.016 Pei X X, Wang J A, Dang J Y, et al. An approach to the screening index for low nitrogen tolerant wheat genotype[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1): 93‒98. DOI: 10.3321/j.issn:1008-505X.2007.01.016
[23] 冯跃, 曹立勇, 吴伟明, 等. 水稻苗期不同阶段与低氮耐性相关的QTL分析[J]. 植物营养与肥料学报, 2010, 16(4): 880–886. Feng Y, Cao L Y, Wu W M, et al. Comparative analyses of QTLs for N-deficiency tolerance at different seedling stages in rice (Oryza sativa L.)[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(4): 880–886. DOI: 10.11674/zwyf.2010.0415 Feng Y, Cao L Y, Wu W M, et al. Comparative analyses of QTLs for N-deficiency tolerance at different seedling stages in rice (Oryza sativa L. )[J]. Journal of Plant Nutrition and Fertilizerss, 2010, 16(4): 880‒886. DOI: 10.11674/zwyf.2010.0415
[24] 张晓霞, 张芮, 成自勇, 等. 不同覆盖方式和灌水量对设施延后栽培葡萄生长特性和产量品质的影响[J]. 干旱地区农业研究, 2016, 34(3): 103–107. Zhang X X, Zhang R, Cheng Z Y, et al. Effects of water amount and mulching methods on growth characteristics and quality of grape with facility-delayed cultivation[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 103–107. Zhang X X, Zhang R, Cheng Z Y, et al. Effects of water amount and mulching methods on growth characteristicsand quality of grape with facility-delayed cultivation[J]. Agricultural Research in the Arid Areas, 2016, 34(3): 103‒107.
[25] 秦璐, 王建强, 韩配配, 等. 不同氮效率油菜种质苗期氮吸收转运与利用差异研究[J]. 作物杂志, 2021, (3): 28–33. Qin L, Wang J Q, Han P P, et al. Difference in nitrogen absorption and transportation and utilization of rapeseed germplasms with contrasting nitrogen efficiency[J]. Crops, 2021, (3): 28–33. Qin L, Wang J Q, Han P P, et al. Difference in nitrogen absorption and transportation and utilization of rapeseed germplasms with contrasting nitrogen efficiency[J]. Crops. 2021, (3): 28‒33.
[26] 栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析[J]. 中国农业科学, 2017, 50(20): 3898–3907. Li Z Y, Zhang Q X, Tong Z Y, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas[J]. Scientia Agricultura Sinica, 2017, 50(20): 3898–3907. DOI: 10.3864/j.issn.0578-1752.2017.20.006 Li Z Y, Zhang Y X, Tong Z Y, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas[J]. Scientia Agricultura Sinica, 2017, 50(20): 3898‒3907. DOI: 10.3864/j.issn.0578-1752.2017.20.006
[27] Quan X Y, Qian Q F, Ye Z L, et al. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress[J]. Journal of Plant Physiology, 2016, 206: 59–67.
[28] 束怀瑞. 果树栽培理论与实践[M]. 北京: 农业出版社, 2009. Shu H R. Theory and practice of fruit tree cultivation[M]. Beijing: Agricultural Press, 2009.
[29] 束怀瑞, 杨洪强. 苹果根系研究[M]. 北京: 科学出版社, 2007. Shu H R, Yang H Q. Apple root system research[M]. Beijing: Science Press, 2007.
[30] 韩清泉, 宋海凤, 唐铎腾, 等. 川滇柳与青杨属间嫁接幼苗对氮素缺乏的生理响应[J]. 应用生态学报, 2017, 28(12): 3833–3840. Han Q Q, Song H F, Tang D T, et al. Physiological responses of Salix rehderiana and Populus cathayana grafted seedlings to nitrogen deficiency[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3833–3840. Han Q Q, Song H F, Tang D T, et al. Physiological responses of Salix rehderiana and Populus cathayana grafted seedlings to nitrogen deficiency[J]. Chinese Journal of Applied Ecology, 2017, 28(12): 3833‒3840.
[31] 武永军, 沈玉芳, 颜秦峰, 等. 缺氮复氮处理对玉米根系生长、根系活力、硝态氮及氨基酸含量的影响[J]. 西北农业学报, 2012, 21(12): 61–64. Wu Y J, Shen Y F, Yan Q F, et al. Effect of N deficiency and N recovery treatment on root geowth, root activity, content of NO3–-N and amino acids[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(12): 61–64. DOI: 10.7606/j.issn.1004-1389.2012.12.012 Wu Y J, Shen Y F, Yan Q F, et al. Effect of N deficiency and N recovery treatment on root geowth, root activity, content of NO3--N and amino acids[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2012, 21(12): 61‒64. DOI: 10.7606/j.issn.1004-1389.2012.12.012
[32] 张子义, 伊霞, 胡博, 等. 缺氮条件下燕麦根轴细胞的程序性死亡[J]. 中国农学通报, 2010, 26(8): 175–178. Zhang Z Y, Yi X, Hu B, et al. Programmed death of cortical cells in oat roots under nitrogen deficiency[J]. Chinese Agricultural Science Bulletin, 2010, 26(8): 175–178. Zhang Z Y, Yi X, Hu B, et al. Programmed death of cortical cells in oat roots under nitrogen deficiency[J]. Chinese Agricultural Science Bulletin, 2010, 26(8): 175‒178.
[33] 钟思荣, 龚丝雨, 张世川, 等. 作物不同基因型耐低氮性和氮效率研究进展[J]. 核农学报, 2018, 32(8): 1658–1663. Zhong S R, Gong S Y, Zhang S C, et al. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1658–1663. Zhong S R, Gong S Y, Zhang S C, et al. Research progress on low nitrogen tolerance and nitrogen efficiency in crop plants[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1658‒1663.
[34] 李强, 任云, 邹勇, 等. 低氮胁迫下不同氮效率玉米品种的氮代谢与物质生产差异[J]. 西北农业学报, 2021, 30(5): 672–680. Li Q, Ren Y, Zou Y, et al. Differences in nitrogen metabolism and dry matter production between maize cultivars and different nitrogen efficiencies under low nitrogen stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(5): 672–680. Li Q, Ren Y, Zhou Y, et al. Differences in nitrogen metabolism and dry matter production between maize cultivars and different nitrogen efficiencies under low nitrogen stress [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 5(30): 672‒680.
[35] 秦永梅, 伊六喜, 赵小庆, 等. 硝酸盐胁迫对玉米幼苗氮同化相关酶的影响[J]. 华北农学报, 2015, 30(4): 105–109. Qin Y M, Yi L X, Zhao X Q, et al. Effects of nitrate stress on nitrogen assimilation related enzyme on maize seedling[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(4): 105–109. DOI: 10.7668/hbnxb.2015.04.019 Qin Y M, Yi L X, Zhao X Q, et al. Effects of nitrate stress on nitrogen assimilation related enzyme on maize seedling [J]. Acta Agriculturae Boreali-Sinica, 2015, 30(4): 105‒109. DOI: 10.7668/hbnxb.2015.04.019
[36] Jiang S Y, Sun J Y, Tian Z W, et al. Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat (Triticum aestivum L.)[J]. Environmental and Experimental Botany, 2017, 141: 28–40. DOI: 10.1016/j.envexpbot.2017.06.006
[37] 徐国伟, 王贺正, 翟志华, 等. 不同水氮耦合对水稻根系形态生理, 产量与氮素利用的影响[J]. 农业工程学报, 2015, 31(10): 132–141. Xu G W, Wang H Z, Zhai Z H, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 132–141. Xu G W, Wang H Z, Zhai Z H, et al. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 131‒141.
[38] 钟思荣, 陈仁霄, 陶瑶, 等. 耐低氮烟草基因型的筛选及其氮效率类型[J]. 作物学报, 2017, 43(7): 993–1002. Zhong S R, Chen R X, Tao Y, et al. Screening of tobacco genotypes tolerant to low-nitrogen and their nitrogen efficiency types[J]. Acta Agronomica Sinica, 2017, 43(7): 993–1002.
-
期刊类型引用(6)
1. 陈泽鑫,葛晓宁,郭红艳,晏巢,曹林青,周幼成,邹玉玲,田丰,何铁定,肖爽,张旭,陈丹阳,黄细乃,钟秋平. 不同砧穗组合浙江红花油茶嫁接苗的生理生化特性比较. 中南林业科技大学学报. 2025(02): 91-100 . 百度学术
2. 张心怡,赵新玥,田莉华,王沛,周青平,雷映霞. 9个裸燕麦品种苗期耐低氮性评价. 中国草地学报. 2024(01): 56-69 . 百度学术
3. 刘智成,严良文,陈瑶瑶,欧雪婷. 福建地区不同栽培模式下百香果的产量与品质特征. 浙江农业学报. 2024(01): 134-147 . 百度学术
4. 张鑫,马迎杰,齐边斌,于波,吕德国,秦嗣军. 独脚金内酯类似物GR24对山定子幼苗低氮胁迫的缓解作用. 应用生态学报. 2023(06): 1592-1600 . 百度学术
5. 李文华,刘青华,周志春,高凯,骆定会. 砧木及抗性马尾松松脂组分对松材线虫的响应. 林业科学研究. 2023(04): 1-11 . 百度学术
6. 刘怀特,曹扬,杜培华,周莎莎,李中勇,张学英,徐继忠,梁博文. 外源褪黑素对养分胁迫下苹果砧木幼苗氮代谢相关酶活性及基因表达的影响. 植物营养与肥料学报. 2023(10): 1884-1895 . 本站查看
其他类型引用(4)