Adverse effects of superabsorbent polymers on crop growth and the underlying mechanisms
-
摘要:
施用保水剂是提高作物抗旱能力的有效措施,但其用量稍多即导致种子发芽率下降、产量减少、根系生长受阻等不利影响。究其原因,既可能是保水剂与作物竞争“土壤水分”、降低土壤“通气性”等间接影响,也可能是保水剂对作物生长的直接抑制作用。农用保水剂中不可避免地残留着丙烯酸、钠等水溶性成分,丙烯酸对动物具有生物毒性,其在正常水分条件下,可以很快降解。但是,如果保水剂在土壤中吸水形成凝胶,就会大大降低丙烯酸的降解速率,可能对作物造成伤害。由于绝大多数研究都是在常规土壤水分条件下进行得到的结果,因此,在干旱条件下安全有效使用保水剂还需从机理和技术两方面开展研究,主要研究内容包括:不同保水剂在干旱条件下的安全阈值研究;聚合物单体成分在干旱条件下的降解特征及其降解产物对动植物的生物毒性;保水剂中有害组分在不同土壤条件下的降解、稀释扩散特征,有害组分对作物生长不同时期不利影响的发生与其降解动态的关系。另外,在应用技术方面,现行“农林保水剂”行业标准对单体残留量尚无限制,还缺乏对安全使用保水剂的指导。在以上研究基础上,今后应筛选单体生物毒性低的聚合物,优化单体合成参数,减少单体残留,以实现保水剂的安全高效使用。
Abstract:Application of superabsorbent polymers (SAPs) is an effective measure to improve drought resistance of crops. However, slightly excessive application rate will lead to adverse effects, such as decline of seed germination rate, yield decrease, poor root growth and so on. The indirect causes of the adverse effects could be the competition for soil moisture by crops and reduced soil aeration. The direct cause of the adverse effects is the inhibition of crop growth caused by the residual water-soluble components in SAPs, such as acrylic acid and sodium. Acrylic acid is toxic to animals, but its quick degradation under normal moisture conditions lessens its danger. However, if SAPs absorb water and form gel in soil, the half-life of acrylic acid in the gel will be greatly elongated, and might damage the crops. Most studies on the possible direct damage of monomers in SAPs were conducted under normal soil moisture conditions. Therefore, the safe and effective application of SAPs still needs to be studied under drought conditions. The safe concentration and threshold for crop growth, the degradation kinetics of monomer components under drought conditions, and the toxicity of degraded monomers to soil, plants under drought conditions need to be extensively studied. The degradation, dilution and diffusion characteristics of harmful components in SAPs under different soil conditions and the risk in different crop growing periods are also unclear. The limitations of the residual quantity of monomer should be considered in current industrial standard of SAPs, so as to provide guidance for the safe use of SAPs. In general, the safe and efficient application of polymers relies on the screening of SAPs with low biotoxicity of monomers, the optimized synthesis parameters to reduce the residue of monomers, and the specified application methods.
-
水资源缺乏是我国农业生产面临的一个主要问题,农田年均干旱受灾面积高达200万hm2[1]。由于全球气候变化加剧了降水的不均匀分布,农业生产干旱灾害更为严峻[2],亟需工程技术措施来抵御短期的旱灾。近年来,化学保水剂 (superabsorbent polymers) 在农业和园林方面得到快速应用,取得了显著的保水、保肥、改土效果[3-6],已经成为解决农业旱灾、提高水肥利用率、促进作物增产的重要手段[7-8]。然而,保水剂大量使用(大于90~150 kg/hm2)的负面影响报道也逐渐增多[9-11]。目前,保水剂应用中出现的抑制作物生长、减产等现象尚缺乏深入研究分析,不利于制定科学的预防措施,影响了保水剂在节水农林业生产中的应用潜力。本文从保水剂与作物的关系出发,尝试解析保水剂抑制作物生长的主要原因,为改进农林保水剂生产工艺、消除有害因素提供思路。
1. 保水剂过量施用不利于作物生长和品质
保水剂由于其特殊的分子结构,能够快速吸收水分,其所吸持的水分一般在干旱时才能缓慢释放供植物吸收利用,因而具有明显的保水抗旱[5,12]、减少养分流失[13-14]和改善土壤物理结构的功效[15-16]。介晓磊和康玲玲[17]利用张力计和恒温脱水动力学方法,研究了不同剂量保水剂对土壤持水性的影响,发现随保水剂用量的增加土壤持水容量增大,因此作物可利用的有效水增加。保水剂不仅可以增加土壤含水量,而且可以有效降低土壤水分蒸发提高水分的利用率[18-19],用量越大,吸水量越多且保肥能力越强[20-23]。
保水剂被施入土壤后,反复吸水膨胀和释水收缩使土壤孔隙增加,从而在一定程度上改善了土壤的通透状况。黄占斌等[24]研究表明,保水剂在土壤中反复吸水膨胀和释水收缩可显著增加土壤中0.5~5 mm 粒径的团粒结构,随着土壤保水剂用量的增加,土壤中粒径大于1 mm的大团聚体和土壤孔隙增加,这对改善土壤通透性和减少土面蒸发有重要作用。然而,在农、林、园艺等领域的应用研究中发现,保水剂促进作物生长的效果不稳定,与其施用量关系尤为密切,如吴琳杰等[25]对侧柏的盆栽试验发现,随保水剂施用量的增加侧柏出苗率显著下降,土壤含水率为15%时,各处理的种子出芽率、发芽势、幼苗株高、鲜重等均低于空白对照,出芽率比空白对照低30%,负效应显现。表1列举了一些保水剂及其对蔬菜、园艺等作物生长和品质产生负效应时的施用量[10,26-37]。在粮食作物研究中,也有类似的报道。马友华等[38]研究了多功能保水剂对玉米、大豆、小麦和花生成苗率的影响,结果显示保水剂施用量为1%时可促进作物幼苗生长,但用量超过1%则出苗率下降,且随着保水剂用量的增加出苗率降低。许紫峻等[39]利用数据包络分析(DEA模型)进行了丙烯酸–腐殖酸型、聚丙烯酸盐–聚丙烯酰胺型、丙烯酸型3种保水剂对玉米生长综合效率的分析,发现随着保水剂用量增加,土壤含水量增加,但是促生长作用却不显著,3种保水剂使用量在20 g/m2时玉米生长的综合效率都达到DEA有效值,当增加到40 g/m2时,玉米生长的综合效率均下降。因此,保水剂作为一种土壤调理剂,其作用效果不是越多越好,在一定用量范围内是随着保水剂用量的增加而促生长作用增加,超过一定用量则效果降低,甚至可能会对作物产生毒害作用[27,36,40]。
表 1 产生不良影响的保水剂及其用量Table 1. Superabsorbent polymers and dosages causing adverse effects on crop保水剂单体
Monomer in SAP作物种类
Crop species土壤质地
Soil texture施用方式
Use method不利影响
Adverse effect用量
Dosage文献来源
Literature丙烯酰胺、丙烯酸钾
Acrylamide, potassium acrylate柠条、红砂、泡果白刺
C. korshinskii,
Reaumuria soongarica,,
Nitraria sphaerocarpa不详
Unknown种子包衣
Seed coating抑制生长
Reduced growth13%凝胶;种子重量的4%
13% gel; 4% of seed weight[26–27] 丙烯酰胺、丙烯酸钾
Acrylamide, potassium acrylate油菜 Rape 黏土
Clay土施
Soil application减产
Yield reduction75 kg/hm2 [28] 丙烯酰胺
Acrylamide松树 Pine 沙土
sand土施
Soil application存活率降低
Low surviving7 g/plant [29] 丙烯酰胺
Acrylamide黑麦草、白三叶、芹菜
Ryegrass, Trifolium repens, celery不详
Unknown育苗基质
Seedling substrate根系生长变差
Poor root growth0.8%;0.3% [30–31] 丙烯酸钠
Sodium acrylate丁香、棉花、金盏花
Clove, cotton,
Calendula officinalis L.不详
Unknown土施
Soil application株高受到抑制
Plant height inhibited20 g/plant;5 kg/hm2;土壤的0.4%
20 g/plant; 5 kg/hm2; 0.4% of soil[32–34] 丙烯酸
Acrylic acid花生 Peanut 沙壤土
Sandy loam土施
Soil application饱果率、籽仁蛋白质含量降低
Decreased full fruit rate and protein content225 kg/km2 [35] 不详
Unknown马铃薯 Potato 沙壤土
Sandy loam土施
Soil application膜透性增大
Increased membrane permeability31 kg/km2 [36] 不详
Unknown黄瓜 Cucumber 不详
Unknown育苗基质
Seedling substrate育苗效果差
Poor seedling growth基质重量的1%
1% of substrate[37] 不详
Unknown天葵、黄瓜
Sunflower, cucumber不详
Unknown浸种
Seed soaking发芽率降低
Decreased germination25%凝胶
25% gel[10] 2. 高量保水剂对作物的间接抑制
保水剂所吸收和保持的水分能否被植物利用是抗旱的关键。多年来,众多研究者从不同角度开展了“保水剂是否会与作物争水”的探讨。李景生等[41]曾指出植物能吸收土壤水分中张力低于15 MPa的毛管水,而保水剂吸持的水90%~95%均保持着15 MPa以下的张力,这说明保水剂吸持的水分有90%以上是可以被植物吸收的。黄占斌等[42]的研究发现,当土壤的压力势为–1.0 MPa 时,含0.5%保水剂的土壤含水率达到15.0%~13.1%,保水剂吸持的水90%以上已经被释放出来,而土壤水势为–1.5 MPa对于植物来说才是萎焉系数,说明保水剂本身所持的水分至少有90%可以被植物利用。进一步研究还表明,保水剂的最大吸水力为13~14 kg/m2,而根系的吸水力大多在17~18 kg/m2,所以一般情况下施用保水剂不会引起作物根系水分倒流[43]。冉艳玲[44]的研究也有相似的结论:保水剂的水吸力为0.01~0.05 MPa,而土壤吸力0.01~0.09 MPa保持的水都是容易被植物吸收利用的,保水剂对于水的吸力是小于植物根系吸收水分的吸力,所以保水剂保存的水是容易被植物吸收,同时也是容易被周围较干燥土壤所吸收的水。
研究认为,水分供应一定时施用保水剂会降低土壤基质水分能态,且保水剂施用量越多,基质水份能态越低,出现保水剂与作物争水的现象,抑制了作物出苗及苗期生长[9,45-46]。张艳等[45]监测了小麦整个生育期0—40 cm土层土壤含水量,结果表明保水剂用量为120 kg/hm2的处理土壤含水量均高于用量为90 kg/hm2处理,但保水剂用量120 kg/hm2的处理小麦光合作用及产量均显著低于用量90 kg/hm2处理,原因归结于大量施用保水剂致使水分聚集在保水剂周围而降低了小麦根系对水分的竞争吸收。王昱程等[47]在研究不同类型保水剂不同比例添加量(0.25%、0.50%、0.75%、1.00%)对土壤水分垂直入渗和含水量的影响时也发现,保水剂施用量与土壤水分累积入渗量和各层土壤含水率呈正相关。因此,保水剂的用量影响着其对水分的固持能力,过于干旱条件下,不仅不能供给作物水分,反而与作物竞争水分。
过高的保水剂用量可显著增加土壤的含水量,降低土壤气液相比例,影响透气性,不利于出苗及出苗后的根系生长[48-50]。白岗栓等[51]在烤烟生长的试验中发现,保水剂施用量为60 kg/hm2时的烤烟产量和品质优于施用量为75 kg/hm2,其原因是用量较大时保水剂吸水膨胀后阻塞土壤孔隙,不利于降水入渗,影响土壤的通透性。
此外,Taylor等 [52]的试验发现,保水剂能降低植株体内钙、镁和铁含量;Silberbush等[53]报道灌溉淡水时,施用一种名为Agrosoak的保水剂增加了土壤溶液中的钠含量并使作物减产,但他们均未对其作用机理和防御措施进一步深入研究。
3. 农用保水剂的主要类型和主要成分的生物学毒性
农林保水剂按合成原料种类大致可分为3类[7]:1)合成聚合物类,包括以丙烯酸、丙烯酰胺、丙烯腈、乙烯醇等为单体的交联均聚或共聚物;2)天然高分子材料接枝聚合物类,包括淀粉、纤维素、壳聚糖等接枝聚合物;经过处理的天然高分子与单体发生接枝反应,提高其生物降解性能。3)有机–无机复合类,在丙烯酸、丙烯酰胺、甲基丙磺酸等单体中添加无机矿物、腐植酸、海藻酸、海泡石等进行接枝交联,改善聚合物的网络结构,提高保水剂的性能。这3类保水剂在合成时都需要丙烯酸、丙烯酰胺等作为接枝单体进行聚合反应[54-55],有时还会添加其他单体作为增强单体,如2-丙烯酰胺-2-甲基丙磺酸(AMPS)、顺丁烯二酸酐(MA)等。丙烯酸由于在酸度较高的水相中容易发生自交联反应,该反应迅速且聚合不充分,因此,需要添加NaOH或KOH进行调节。相比于KOH,NaOH在价格上更具有优势。丙烯酰胺类保水剂是一种非离子型保水剂,不需要调节中和度,但是由于丙烯酰胺类保水剂的保水性能较弱,常与丙烯酸混合成丙烯酸–丙烯酰胺钠/钾保水剂。目前,占市场主导地位的是聚丙烯酸-丙烯酸钠聚合物[56]。
保水剂具有一定强度,不溶于水,吸水后如同海绵呈三维网状结构,作物根系可以穿透凝胶吸收养分和水分,理论上对作物无害。然而笔者研究团队发现,在营养液中添加前面提到的3类保水剂,玉米幼苗地上部和根系的生长受到抑制,且抑制作用在培养第6天时明显大于第3天(图1)。添加保水剂培养玉米幼苗第6天,玉米幼苗根系表皮和外皮层脱落、破损严重,对其进行扫描观察,可以看到根细胞显微结构已出现明显伤害症状,维管束明显缩小,导管组织发育不完整(图2)[57],表明保水剂对作物可能存在直接伤害作用。
图 1 不同保水剂凝胶处理第3天(a)和第6天(b)的玉米幼苗[57]注:CK—蒸馏水;SP—聚丙烯酸钠;PP—聚丙烯酸钾;SPP—聚丙烯酸钠+磷矿粉Figure 1. Maize seedlings treated by different superabsorbent polymers for 3 days (a) and 6 days (b)Note: CK—Distilled water;SP—Sodium polyacrylate;PP—Potassium polyacrylate;SPP—Sodium polyacrylate and phosphate rock powder.图 2 蒸馏水对照(a和b)和聚丙烯酸钠(c和d)、聚丙烯酸钾(e和f)、聚丙烯酸钠嵌有磷矿粉(g和h)3种高吸水聚合物水凝胶处理玉米根系的电子显微镜扫描图像[57]注:Ep—表皮; Ex—外皮层; CP—皮层薄壁组织; En—内皮层; VC—维管束Figure 2. Scanning electron microscopy images at two scales of maize root treated with distilled water as a control (a and b) and three superabsorbent polymer hydrogels, sodium polyacrylate (c and d), potassium polyacrylate (e and f), and sodium polyacrylate embedded with phosphate rock powder (g and h)Note: Ep—Epidermis; Ex—Exodermis; CP—Cortex parenchyma; En—Endomermis; VC—Vascular cylinder.3.1 丙烯酸的生物毒性及降解特征
丙烯酸是一种重要的化工原料,在合成树脂、涂料、塑料、纺织、皮革、造纸、建材等行业中得到广泛应用。丙烯酸具有中度毒性和强腐蚀性,极易溶于水且易在环境中迁移,并能对环境产生一定的毒害。Staples等[58]研究了丙烯酸及其脂类化合物对鱼类(虹鳟鱼 Oncorhynchus mykiss、海糖虾 Mysidopsis bahia、红鲈鲤鱼Cyprinodon variegatus)和淡水水蚤类动物(Daphnia magna)的毒性特征,提出丙烯酸对鱼类和无脊椎动物的急性毒性评级从无毒到轻度中毒的浓度范围为27~236 mg/L。徐文静等[59]发现,丙烯酸对海洋微藻东海原甲藻(Prorocentrum donghaiense)和淡水微藻莱茵衣藻(Chlamydomonas reinhardtii) 96 h生长潜力半抑制质量浓度(IC50)分别为22.79和161.8 mg/L,表明丙烯酸对微生物毒性大于对鱼类和无脊椎动物。
通过水培试验发现,营养液中丙烯酸为2.5 mg/L即对玉米主根生长产生显著抑制,地上部生物量显著降低;丙烯酸超过5 mg/L便导致玉米根系腐烂,根冠比降低,根系表面积和体积显著下降(图3)[60]。
据调查,以丙烯酸为单体合成的保水剂中残留的丙烯酸浓度从350 mg/kg[61]到1500 mg/kg以上[62],市售10种农用保水剂产品中残留的丙烯酸含量为390~7940 mg/kg,差异很大。在土壤中保水剂的吸水量一般可达到20~60 g/g[63],若保水剂中残留的丙烯酸为1500 mg/kg,则其凝胶中的丙烯酸浓度可达25~75 mg/kg。尽管丙烯酸在土壤中降解速率较快,降解半衰期小于1天,3天即可完全降解[58],但笔者研究团队发现,受保水剂凝胶特殊结构的影响,保水剂中残留的丙烯酸降解比正常情况下丙烯酸在土壤中降解慢许多(图4),保水剂中残留丙烯酸在土壤最大持水量(41.3%)条件下快速降解和释放,第3天减少97.25%,第7天仅剩下0.93%,第15天凝胶中已检测不到丙烯酸。然而,保水剂一般在干旱半干旱地区施用,这些区域土壤含水量往往难以达到田间持水量,因而其保水剂中丙烯酸的降解速率很可能与土壤含水量25.0% (T2)和17.5% (T3)条件下相似。在土壤中,丙烯酸的降解速率随土壤含水率的下降而减缓,其潜在的危险期将延长,10~15天仍能达到损害作物的浓度[60]。
图 4 保水剂中丙烯酸在不同含水率(41.3%、25.0%和17.5%)土壤中的降解率动态[60]Figure 4. Degradation rate of acrylic acid in SAPs in soil with different moisture contents (41.3%, 25.0% and 17.5%)3.2 丙烯酰胺的生物毒性及降解特征
保水剂的另一常用聚合单体是丙烯酰胺,广泛应用于污水处理、化妆品、造纸、纺织、合成染料、粘合剂、隐形眼镜、食物包装材料和耐高压纤维等领域。丙烯酰胺是能对人及动物神经系统产生毒性的蓄积性神经毒物[64];可导致细胞基因突变、染色体变异、细胞有丝分裂受阻、细胞微核化等致癌性[65];可诱发动物生殖系统肿瘤,导致生殖细胞染色体变异,对精子的形成、受精和对雌性生殖均有不利影响[66-67]。
阴离子型聚丙烯酰胺(PAM)是最常用的土壤调理剂,虽然它是一种惰性聚合物,但由于聚合不完全,可能有丙烯酰胺单体的残留[68]。在22℃土壤中,25 mg/kg的丙烯酰胺半衰期仅为18~45 h,温度降低和丙烯酰胺浓度提高都会延长丙烯酰胺的半衰期[69]。据Mroczek等[70]报道,丙烯酰胺单体可以从水凝胶中迁移,因此使用含有丙烯酰胺单体的保水剂的环境风险值得关注。丙烯酰胺对植物的毒性方面目前没有研究报道,笔者通过在玉米水培营养液中添加丙烯酰胺发现,15和40 mg/L两个浓度的丙烯酰胺对玉米幼苗生长无显著影响(表2)。在以后的研究中可以进一步探究丙烯酰胺在更高浓度对植物的毒害,以及研究丙烯酰胺类保水剂对作物是否存在不利影响。
表 2 营养液中不同浓度丙烯酰胺培养8天后的玉米生物量(g/plant, FW)Table 2. Fresh biomass of maize plants in nutrient solution with different acrylamide concentrations at the 8th day of culture浓度 Concentration (mg/L) 根 Root 茎叶 Stem and leaf 总鲜重 Total 变化量 Variation (%) 0 0.42±0.09 a 0.64±0.06 ab 1.06 100.00 15 0.42±0.07 a 0.8±0.08 a 1.22 115.69 40 0.41±0.07 ab 0.66±0.07 ab 1.03 97.07 注:表中数据为平均值±标准偏差。同列数据中不同小写字母表示处理间差异显著 (P<0.05)。
Note: Data are mean±SD. Different small letters indicate significant difference among treatments (P <0.05).3.3 钠离子对植物生长的抑制
以丙烯酸为单体制备保水剂时,需用碱中和到70%以上,目前多采用氢氧化钠,中和度70%的交联聚丙烯酸钠型保水剂产品中钠含量将达到16%。
钠离子对于维持细胞渗透压有重要作用,但浓度过高易引起植物的离子毒害和渗透胁迫,可破坏细胞膜的完整性,降低细胞质膜的透性,使大量酶的正常结构遭到破坏而失活,同时造成Ca2+等元素大量外渗,引起细胞内离子平衡失调和细胞代谢紊乱,最终导致细胞衰老或死亡[71]。笔者团队通过凝胶栽培玉米后发现[57],钠型保水剂处理幼苗根中钠离子含量达到对照的10倍以上,显著抑制根系生长,根系总长度、表面积、根尖数量均比对照减少50%以上,植株新叶表现出严重的缺钙症状,不同程度地造成根系皮层薄壁组织破损和根尖细胞膜系统损伤。
不同于丙烯酸等有机单体在土壤中能快速降解,保水剂中的钠在土壤中只是一个稀释、扩散的过程,而且受凝胶结构的影响,在很长一段时间内,凝胶中的钠含量都能保持较高的水平[60]。同时,保水剂残留丙烯酸和钠离子对作物的伤害存在叠加效应。
4. 展望
业内对施用保水剂出现作物生长抑制或减产现象普遍归咎于“保水剂与作物争水或影响土壤透气性”,深入分析发现并非如此。从保水剂含有对作物有害组分出发,可以很好地解释在生产实际中保水剂施用量稍多即造成作物生长不利影响的现象。图5是随保水剂施用量增加对作物生长影响的效应模型[60]:随着保水剂用量的增加,其保水保肥等促生效应增强,同时其伤害作物的负效应亦增加,当用量较少时,作物根系接触保水剂的机会较少,伤害作用较小,促生效应大于伤害的负作用,实际表现为促进作物生长,此时保水剂对作物的伤害具有隐蔽性;随保水剂用量的增加,伤害效应大于促生效应,则实际效应表现为减产,不利影响显现。
图 5 丙烯酰胺酸钠用量对作物生长影响的效应模型[60]注:EP—平衡点;PE—正效应;CE—综合效应;NE—负效应。Figure 5. Relationships between SAPs dosage and its effect on cropsNote: EP—Equilibrium point; PE—Positive effect; CE—Comprehensive effect; NE—Negative effect.在机理研究中,农用保水剂生产的聚合单体具有不同程度的生物毒性,但是单体对作物生长的影响研究报道不够,特别是其对作物生长的安全浓度阈值未见报道。此外,单体成分在干旱条件下的降解动力学没有研究,保水剂施入土壤后其残留的大量单体在干旱条件下对动植物的毒性也没有系统的研究。因此,需要探明保水剂中有害组分在不同土壤条件下的降解、稀释扩散特征,揭示有害组分对作物不同生长时期不利影响的发生与其降解动态的关系,为保水剂的合成单体种类选择和优化生产工艺条件消除有害成分提供科学依据。
在明晰保水剂对作物不利影响的发生机制基础上,可以从以下3方面探索避免不利影响的应用技术研究。
1)优化保水剂原料配方及工艺,从源头减少保水剂中对作物有害的组分含量。在明确常用单体对作物的毒性特征基础上,可以优先选择对作物生长影响小的单体或减少对作物生长影响大的单体的用量。保水剂中单体残留量受反应时间、反应温度、引发剂、交联剂的种类和用量、颗粒大小的影响,差异较大,如丙烯酸,在合成过程中优化各项参数可使残留单体降低至0.1%,工业生产中可用乙醇洗涤后再干燥,残留丙烯酸的量可进一步降低33%左右[72-74]。近年来研究发现,添加壳聚糖等复合保水剂可减少丙烯酸的残留量[75],有机–无机复合保水剂的发展可显著降低生产上水溶性单体比例,从而有效降低产品单体残留量。
2)可以通过完善农林保水剂产品质量标准来预防对作物生长的不利影响。我国现行的“农林保水剂”行业标准(NY 886—2016),规定了保水剂产品的吸水倍数、吸盐水倍数、水分含量、pH和粒度5项技术指标,对残留单体等有害组分种类和含量尚无限制指标,这与保水剂中有害组分种类及对作物的毒性阈值、造成作物生长不利影响的机制等缺乏系统研究有关。保水剂的生产属于高分子化工行业,因此在产品标准完善上既要考虑农林业应用中的安全性,同时也需要结合保水剂生产工艺的可行性来确定。
3)针对保水剂中残留丙烯酸在极低浓度即可造成伤害但在土壤中降解较快的毒害性特征,可以在施用方法上通过在作物播种或移植前一段时间(如10~15天)将保水剂施入土壤并浇灌一定量的水,达到作物根系接触凝胶前使其中的丙烯酸降解以消除丙烯酸伤害的目的。同时,不同土壤类型、温度等气候条件以及土壤含水量均影响丙烯酸的降解速率,不同地区保水剂提前施入的具体时间需要进一步研究确定。
-
图 1 不同保水剂凝胶处理第3天(a)和第6天(b)的玉米幼苗[57]
注:CK—蒸馏水;SP—聚丙烯酸钠;PP—聚丙烯酸钾;SPP—聚丙烯酸钠+磷矿粉
Figure 1. Maize seedlings treated by different superabsorbent polymers for 3 days (a) and 6 days (b)
Note: CK—Distilled water;SP—Sodium polyacrylate;PP—Potassium polyacrylate;SPP—Sodium polyacrylate and phosphate rock powder.
图 2 蒸馏水对照(a和b)和聚丙烯酸钠(c和d)、聚丙烯酸钾(e和f)、聚丙烯酸钠嵌有磷矿粉(g和h)3种高吸水聚合物水凝胶处理玉米根系的电子显微镜扫描图像[57]
注:Ep—表皮; Ex—外皮层; CP—皮层薄壁组织; En—内皮层; VC—维管束
Figure 2. Scanning electron microscopy images at two scales of maize root treated with distilled water as a control (a and b) and three superabsorbent polymer hydrogels, sodium polyacrylate (c and d), potassium polyacrylate (e and f), and sodium polyacrylate embedded with phosphate rock powder (g and h)
Note: Ep—Epidermis; Ex—Exodermis; CP—Cortex parenchyma; En—Endomermis; VC—Vascular cylinder.
图 4 保水剂中丙烯酸在不同含水率(41.3%、25.0%和17.5%)土壤中的降解率动态[60]
Figure 4. Degradation rate of acrylic acid in SAPs in soil with different moisture contents (41.3%, 25.0% and 17.5%)
图 5 丙烯酰胺酸钠用量对作物生长影响的效应模型[60]
注:EP—平衡点;PE—正效应;CE—综合效应;NE—负效应。
Figure 5. Relationships between SAPs dosage and its effect on crops
Note: EP—Equilibrium point; PE—Positive effect; CE—Comprehensive effect; NE—Negative effect.
表 1 产生不良影响的保水剂及其用量
Table 1 Superabsorbent polymers and dosages causing adverse effects on crop
保水剂单体
Monomer in SAP作物种类
Crop species土壤质地
Soil texture施用方式
Use method不利影响
Adverse effect用量
Dosage文献来源
Literature丙烯酰胺、丙烯酸钾
Acrylamide, potassium acrylate柠条、红砂、泡果白刺
C. korshinskii,
Reaumuria soongarica,,
Nitraria sphaerocarpa不详
Unknown种子包衣
Seed coating抑制生长
Reduced growth13%凝胶;种子重量的4%
13% gel; 4% of seed weight[26–27] 丙烯酰胺、丙烯酸钾
Acrylamide, potassium acrylate油菜 Rape 黏土
Clay土施
Soil application减产
Yield reduction75 kg/hm2 [28] 丙烯酰胺
Acrylamide松树 Pine 沙土
sand土施
Soil application存活率降低
Low surviving7 g/plant [29] 丙烯酰胺
Acrylamide黑麦草、白三叶、芹菜
Ryegrass, Trifolium repens, celery不详
Unknown育苗基质
Seedling substrate根系生长变差
Poor root growth0.8%;0.3% [30–31] 丙烯酸钠
Sodium acrylate丁香、棉花、金盏花
Clove, cotton,
Calendula officinalis L.不详
Unknown土施
Soil application株高受到抑制
Plant height inhibited20 g/plant;5 kg/hm2;土壤的0.4%
20 g/plant; 5 kg/hm2; 0.4% of soil[32–34] 丙烯酸
Acrylic acid花生 Peanut 沙壤土
Sandy loam土施
Soil application饱果率、籽仁蛋白质含量降低
Decreased full fruit rate and protein content225 kg/km2 [35] 不详
Unknown马铃薯 Potato 沙壤土
Sandy loam土施
Soil application膜透性增大
Increased membrane permeability31 kg/km2 [36] 不详
Unknown黄瓜 Cucumber 不详
Unknown育苗基质
Seedling substrate育苗效果差
Poor seedling growth基质重量的1%
1% of substrate[37] 不详
Unknown天葵、黄瓜
Sunflower, cucumber不详
Unknown浸种
Seed soaking发芽率降低
Decreased germination25%凝胶
25% gel[10] 表 2 营养液中不同浓度丙烯酰胺培养8天后的玉米生物量(g/plant, FW)
Table 2 Fresh biomass of maize plants in nutrient solution with different acrylamide concentrations at the 8th day of culture
浓度 Concentration (mg/L) 根 Root 茎叶 Stem and leaf 总鲜重 Total 变化量 Variation (%) 0 0.42±0.09 a 0.64±0.06 ab 1.06 100.00 15 0.42±0.07 a 0.8±0.08 a 1.22 115.69 40 0.41±0.07 ab 0.66±0.07 ab 1.03 97.07 注:表中数据为平均值±标准偏差。同列数据中不同小写字母表示处理间差异显著 (P<0.05)。
Note: Data are mean±SD. Different small letters indicate significant difference among treatments (P <0.05). -
[1] 姚晔. 干旱气候对农业生产的影响及气象服务对策探析[J]. 南方农机, 2021, 52(6): 68–69. Yao Y. Impact of arid climate on agricultural production and meteorological service countermeasures[J]. Southern Agricultural Machinery, 2021, 52(6): 68–69. DOI: 10.3969/j.issn.1672-3872.2021.06.033 Yao Y. Impact of arid climate on agricultural production and meteorological service countermeasures[J]. Southern Agricultural Machinery. 2021, 52(6): 68–69. DOI: 10.3969/j.issn.1672-3872.2021.06.033
[2] 姚亚庆. 1950–2015年我国农业气象灾害时空特征研究[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2016. Yao Y Q. The spatial and temporal characterists of argo-meteorological disasters during 1950–2015 in China [D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2016.
[3] Fan R, Luo J, Yan S, et al. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth[J]. Pedosphere, 2015, 25(5): 737–748. DOI: 10.1016/S1002-0160(15)30055-2
[4] Yu G H, Pei L Y, Yuan P L, et al. Porosity change model for watered super absorbent polymer–treated soil[J]. Environmental Earth Sciences, 2010, 61(6): 1197–1205. DOI: 10.1007/s12665-009-0443-4
[5] Abedi–Koupai J, Sohrab F, Swarbrick G. Evaluation of hydrogel application on soil water retention characteristics[J]. Journal of Plant Nutrition, 2008, 31(2): 317–331. DOI: 10.1080/01904160701853928
[6] 蒋美佳, 刘晓林, 冯钰梅, 等. 有机肥配施保水剂对紫色土水分入渗及氮素淋溶的影响[J]. 水土保持学报, 2019, 33(5): 99–104. Jiang M J, Liu X L, Feng Y M, et al. Effect of organic fertilizer combined with water-retaining agent on water infiltration and nitrogen leaching of purple soil[J]. Journal of Soil and Water Conservation, 2019, 33(5): 99–104. Jiang M J, Liu X L, Feng Y M, et al. Effect of organic fertilizer combined with water-retaining agent on water infiltration and nitrogen leaching of purple soil[J]. Journal of Soil and Water Conservation, 2019, 33(5): 99–104.
[7] 黄占斌, 孙朋成, 钟建, 等. 高分子保水剂在土壤水肥保持和污染治理中的应用进展[J]. 农业工程学报., 2016, 32(1): 125–131. Huang Z B, Sun P C, Zhong J, et al. Application of super absorbent polymer in water and fertilizer conservation of soil and pollution management[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 125–131. Huang Z B, Sun P C, Zhong J, et al. Application of super absorbent polymer in water and fertilizer conservation of soil and pollution management[J]. Journal of Agricultural Engineering, 2016, 32(1): 125–131.
[8] Hüttermann A, Orikiriza L, Agaba H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands[J]. CLEAN – Soil, Air, Water., 2010, 37(7): 517–526.
[9] 马莉. 保水剂处理对油松容器苗生长的影响[J]. 河北林业科技, 2017, 45(1): 34–36. Ma L. Effects of different water treatment on growth of pinus tabulaeformis carriere container seedling[J]. , 2017, 45(1): 34–36. Ma L. Effects of different water treatment on growth of pinus tabulaeformis carriere container seedling[J]. 2017, (1): 34–36.
[10] Alves M C, Teixeira A. The effect of hydrophilic gel from the second layer of Tingui (Magonia pubescens St. Hil. ) seeds on germination and early development of cucumber (Cucumis sativus L. )[J]. Journal of Cranio–Maxillo–Facial Surgery: Official Publication of the European Association for Cranio–Maxillo–Facial Surgery, 2012, 34: 61.
[11] 杨学珍, 李利利. 保水剂用量对旱地玉米性状和产量的影响[J]. 甘肃农业科技, 2019, 57(8): 32–34. Yang X Z, Li L L. Effects of water-retaining agent dosage on character and yield of dryland maize[J]. Gansu Agricultural Science and Technology, 2019, 57(8): 32–34. Yang X Z, Li L L. Effects of water-retaining agent dosage on characts and yield of dryland maize[J]. Gansu Agricultural Science and Technology. 2019, (8): 32–34.
[12] Mao S, Islam M R, Xue X, et al. Evaluation of a water–saving superabsorbent polymer for corn (Zea mays L. ) production in arid regions of Northern China[J]. African Journal of Agricultural Research, 2011, 6(17): 4108–4115.
[13] Han Y G, Yu X X, Yang P L, et al. Dynamic study on water diffusivity of soil with super–absorbent polymer application[J]. Environmental Earth Sciences, 2013, 69(1): 289–296. DOI: 10.1007/s12665-012-1956-9
[14] Ghobashy M M, El-Damhougy B K, Nady N, et al. Radiation crosslinking of modifying super absorbent (polyacrylamide/gelatin) hydrogel as fertilizers carrier and soil conditioner[J]. Journal of Polymers and the Environment, 2018, 26(9): 3981–3994. DOI: 10.1007/s10924-018-1273-9
[15] Islam M R, Zhang W, Mao S, et al. Status of land degradation and desertification in Bangladesh and the role of agro forestry in their control[J]. Journal of Agriculture, Biotechnology and Ecology, 2010, 3: 107–116.
[16] Yang Y, Wu J, Zhao S, et al. Assessment of the responses of soil pore properties to combined soil structure amendments using X-ray computed tomography[J]. Scientific Reports, 2018, 8(1): 1–10.
[17] 介晓磊, 康玲玲. 保水剂对土壤持水特性的影响[J]. 河南农业大学学报, 2000, 34(1): 22–24. Jie X L, Kang L L. Effect of water-retaining agents on water retention properties of soil[J]. Journal of Henan Agricultural University, 2000, 34(1): 22–24. DOI: 10.3969/j.issn.1000-2340.2000.01.006 Jie X L, Kang L L. Effect of water-retaining agents on water retention properties of soil[J]. Journal of Henan Agricultural University, 2000, 34(1): 22–24. DOI: 10.3969/j.issn.1000-2340.2000.01.006
[18] Shainberg I, Levy G J. Organic polymers and soil sealing in cultivated soils[J]. Soil Science, 1994, 158(4): 267–273. DOI: 10.1097/00010694-199410000-00006
[19] 王宇, 叶建仁. 保水剂种类及含量对土壤水分蒸发的影响[J]. 南京林业大学学报(自然科学版), 2008, 32(4): 95–97. Wang Y, Ye J R. Effects of water-retaining-agents species and concentrations on soil water evaporation quantity of soil[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2008, 32(4): 95–97. Wang Y, Ye J R. Effects of water-retaining-agents species and concentrations on soil water evaporation quantity of soil [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2008, 32(4): 95–97.
[20] Apostol K G, Jacobs D F, Dumroese R K. Root desiccation and drought stress responses of bareroot Quercus rubra seedlings treated with a hydrophilic polymer root dip[J]. Plant and Soil, 2009, 315(1): 229–240.
[21] 李建设, 高艳明, 韩艳霞. Skygel保水剂与供水方式对黄瓜幼苗生长的影响[J]. 西北农业学报, 2010, 19(6): 134–138. Li J S, Gao Y M, Han Y X. Effects of skygel aquasorb and water supply mode on the growth of cucumber seedling[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(6): 134–138. DOI: 10.3969/j.issn.1004-1389.2010.06.028 Li J S, Gao Y M, Han Y X. Effects of skygel aquasorb and water supply mode on the growth of cucumber seedling growth[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(6): 134–138. DOI: 10.3969/j.issn.1004-1389.2010.06.028
[22] 姚建武, 王艳红, 唐明灯, 等. 施用保水剂对旱地赤红壤持水能力及氮肥淋失的影响[J]. 水土保持学报, 2010, 24(5): 191–194. Yao J W, Wang Y H, Tang M D, et al. Effects of water retaining agents on water holding capacity and nitrogen leaching loss in Latosol red soil[J]. Journal of Soil and Water Conservation, 2010, 24(5): 191–194. Yao J W, Wang Y H, Tang M D, et al. Effects of water retaining agents on water holding capacity and nitrogen leaching loss in Latosol red soil[J]. Journal of Soil and Water Conservation, 2010, 24(5): 191–194.
[23] Tubert E, Vitali V A, Alvarez M S, et al. Synthesis and evaluation of a superabsorbent–fertilizer composite for maximizing the nutrient and water use efficiency in forestry plantations[J]. Journal of Environmental Management, 2018, 210: 239–254.
[24] 黄占斌, 张国桢. 保水剂特性测定及其在农业中的应用[J]. 农业工程学报, 2002, 18(1): 22–26. Huang Z B, Zhang G Z. Characteristics of aquasorb and its application in crop production[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(1): 22–26. DOI: 10.3321/j.issn:1002-6819.2002.01.006 Huang Z B, Zhang G Z. Characteristics of aquasorb and its application in crop production[J]. Journal of Agricultural Engineering, 2002, 18(1): 22–26. DOI: 10.3321/j.issn:1002-6819.2002.01.006
[25] 吴琳杰, 张志铭, 赵勇, 等. 土壤水分条件及保水剂用量对侧柏、栓皮栎种子萌发及幼苗生长的影响[J]. 西部林业科学., 2016, 45(1): 112–116,130. Wu L J, Zhang Z M, Zhao Y, et al. Impacts of soil moisture and water-retaining agent on germination and seedling growth of Platycladus orientalis and Quercus variabilis[J]. Journal of West China Forestry Science, 2016, 45(1): 112–116,130. Wu L J, Zhang Z M, Zhao Y, et al. Impacts of soil moisture and water-retaining agent on germination and seedling growth of Platycladus orientalis and Quercus variabilis[J]. Journal of West China Forestry Science. 2016, 45(1): 112–116, 130.
[26] Su L, Li J, Xue H, et al. Super absorbent polymer seed coatings promote seed germination and seedling growth of Caragana korshinskii in drought[J]. Journal of Zhejiang University–Science B, 2017, 18(8): 696–706. DOI: 10.1631/jzus.B1600350
[27] 马静, 单立山, 王洋, 等. 保水剂对4种典型荒漠植物种子萌发的影响[J]. 水土保持通报, 2019, 39(2): 38–42. Ma J, Shan L S, Wang Y, et al. Effects of retaining agent on seed germination of four typical desert plants[J] Bulletin of Soil and Water Conservation, 2019, 39(2): 38–42.
[28] Shekari F, Javanmard A, Abbasi A. Effects of super–absorbent polymer application on yield and yield components of rapeseed (Brassica napus L. )[J]. Notulae Scientia Biologicae, 2015, 7(3): 361–366. DOI: 10.15835/nsb739554
[29] Sarvaš M, Pavlenda P, Takáčová E. Effect of hydrogel application on survival and growth of pine seedlings in reclamations[J]. Journal of Forest Science, 2007, 53(5): 204–209.
[30] 于茜, 姜小堂, 盛伟, 等. 保水剂对基质保水性和芹菜幼苗生长的影响[J]. 江苏农业科学. 2016, 44(10): 208–210. Yu X, Jiang X T, Sheng W, et al. Effects of water-retaining agent on water retention of substrate and growth of celery seedlings[J] Jiangsu Agricultural Science, 2016, 44(10): 208–210.
[31] 张小庆. 保水剂不同配比在岩壁复绿基质中的应用研究[D]. 江苏南京: 南京林业大学硕士学位论文, 2010. Zhang X Q. Study on the application of different proportions of water-retaining agent in rock wall greening matrix[D] Nanjing, Jiangsu: MS Thesis of Nanjing Forestry University, 2010.
[32] 武毅, 孙保平, 张建锋, 等. 保水剂对4种木本植物生长及根系形态的影响[J]. 中国水土保持科学, 2018, 16(1): 96–102. Wu Y, Sun B P, Zhang J F, et al. Effect of water-retaining agent in different dosage on growth and root morphology of 4 woody plants[J] Science of Soil and Water Conservation, 2018, 16(1): 96–102.
[33] Nejatzadeh–Barandozi F. Investigation of super absorbent polymers and zinc sulfate on the yield and yield components of Calendula officinalis[J]. Acta Scientiarum Polonorum. Hortorum Cultus, 2019, 18(2): 105–113.
[34] Ngobeni N D, Buthelezi N M, Mataruka D. Growth and yield response of cotton cultivars to "Zeba" superabsorbent polymer and N–application under irrigation[C]. African Crop Science Society, 2007: 213–217.
[35] 厉广辉, 李长生, 王兴军, 等. 保水剂对露地栽培花生产量和品质的影响[J]. 西北植物学报, 2019, 39(11): 2037–2043. Li G H, Li C S, Wang X J, et al. Effect of superabsorbent polymer application on yield and quality of peanut under unmulching cultivation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 2037–2043. Li G H, Li C S, Wang X J, et al. Effect of superabsorbent polymer application on yield and quality of peanut under unmulching cultivation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(11): 2037–2043.
[36] 王霞玲, 郭凯先, 黄佳盛, 等. 新型保水剂施用量对土壤水分和马铃薯生长特性的影响研究[J]. 节水灌溉, 2019, 44(6): 25–29. Wang X L, Guo K X, Huang J S, et al. Effects of the application amount of the new water-retaining agent on soil moisture and potato growth characteristics[J]. Water Saving Irrigation, 2019, 44(6): 25–29. DOI: 10.3969/j.issn.1007-4929.2019.06.007 Wang X L, Guo K X, Huang J S, et al. Effects of the application amount of the new water-retaining agent on soil moisture and potato growth characteristics[J]. Water Saving Irrigation, 2019, (6): 25–29. DOI: 10.3969/j.issn.1007-4929.2019.06.007
[37] 和苗苗, 卢珏, 田汝响. 保水剂对底泥堆肥用作育苗基质的保水性和黄瓜幼苗生长的影响[J]. 杭州师范大学学报(自然科学版), 2020, 19(6): 76–84. He M M, Lu J, Tian R X. Effects of water-retaining agent on the water retention capacity of sediment compost and the growth of cucumber seedling[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2020, 19(6): 76–84. He M M, Lu J, Tian R X. Effects of water-retaining agent on the water retention capacity of sediment compost and the growth of cucumber seedling[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2020, 19(6): 76–84.
[38] 马友华, 王广海, 程焱, 等. 多功能保水剂对作物抗旱效应的初步研究[J]. 安徽农业大学学报, 2001, 28(2): 129–132. Ma Y H, Wang G H, Cheng Y, et al. Preliminary study of water-remaining reagent with plenty of functions on drought resistant effects of crops selected[J]. Journal of Anhui Agricultural University, 2001, 28(2): 129–132. DOI: 10.3969/j.issn.1672-352X.2001.02.005 Ma Y H, Wang G H, Cheng Y, et al. Preliminary study of water-remaining reagent with plenty of functions on drought resistant effects of crops selected[J]. Journal of Anhui Agricultural University. 2001, 2021(2): 129–132. DOI: 10.3969/j.issn.1672-352X.2001.02.005
[39] 许紫峻, 汪溪远, 师庆东, 等. 不同材质保水剂对玉米生长综合效率的DEA模型分析[J]. 水土保持研究., 2017, 24(6): 160–166. Xu Z J, Wang X Y, Shi Q D, et al. Analysis of impact of different super absorbent polymer on comprehensive efficiency of maize growth based on the DEA model[J]. Research of Soil and Water Conservation, 2017, 24(6): 160–166. Xu Z J, Wang X Y, Shi Q D, et al. Corn with different water retaining agents[J]. Research of Soil and Water Conservation. 2017, 24(6): 160–166.
[40] Yang F, Cen R, Feng W, et al. Effects of super-absorbent polymer on soil remediation and crop growth in arid and semi-arid areas[J]. Sustainability, 2020, 12(18): 7825. DOI: 10.3390/su12187825
[41] 李景生, 黄韵珠. 土壤保水剂的吸水保水性能研究动态[J]. 中国沙漠, 1996, 16(1): 86–91. Li J S, Huang Y Z. Research trends of water absorption and water retention properties of soil water retaining agents[J]. Bulletin of Soil and Water Conservation, 1996, 16(1): 86–91. DOI: 10.3321/j.issn:1000-694X.1996.01.017 Li J S, Huang Y Z. Research trends of water absorption and water retention properties of soil water retaining agents[J]. Bulletin of Soil and Water Conservation, 1996, 16(1): 86–91. DOI: 10.3321/j.issn:1000-694X.1996.01.017
[42] 黄占斌, 夏春良. 农用保水剂作用原理研究与发展趋势分析[J]. 水土保持研究, 2005, 12(5): 104–106. Huang Z B, Xia C L. A study on impact principles and development trend of agricultural super absorbent[J]. Research of Soil and Water Conservation, 2005, 12(5): 104–106. DOI: 10.3969/j.issn.1005-3409.2005.05.023 Huang Z B, Xia C L. A study on impact principles and development trend of agricultural super absorbent[J]. Research of Soil and Water Conservation, 2005, 12(5): 104–106. DOI: 10.3969/j.issn.1005-3409.2005.05.023
[43] 黄占斌, 辛小桂, 宁荣昌, 等. 保水剂在农业生产中的应用与发展趋势[J]. 干旱地区农业研究, 2003, 21(3): 11–14. Huang Z B, Xin X G, Ning R C, et al. The application and development trend of aquasorb in agricultural production[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 11–14. DOI: 10.3321/j.issn:1000-7601.2003.03.002 Huang Z B, Xin X G, Ning R C, et al. The application and development trend of aquasorb in agricultural production[J]. Agricultural Research in the Arid Areas, 2003, 21(3): 11–14. DOI: 10.3321/j.issn:1000-7601.2003.03.002
[44] 冉艳玲. 化学保水剂对土壤水分及物理特性的作用效应[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2014. Ran Y L. Effect of super absorbent polymers on soil water moisture and physical properties[D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2014.
[45] 张艳, 马洪义. 不同剂量保水剂对小麦光合及产量的影响[J]. 青岛农业大学学报(自然科学版), 2009, 25(4): 265–267. Zhang Y, Ma H Y. Effect of different amount of water retaining agent on wheat photosynthesis and yield[J]. Journal of Qingdao Agricultural University (Natural Science), 2009, 25(4): 265–267. Zhang Y, Ma H Y. Effect of different amount of water retaining agent on wheat photosynthesis and yield[J]. Journal of Qingdao Agricultural University: Natural Science, 2009, 25(4): 265–267.
[46] Yin Z, Cao J, Li Z, et al. Optimizing the interaction between poly (vinyl alcohol) and sandy soil for enhanced water retention performance[J]. RSC Advances, 2016, 6(16): 13377–13383. DOI: 10.1039/C5RA22309A
[47] 王昱程, 刘鹏, 邵慧杨, 等. 保水剂对风沙土水分垂直入渗和含水量的影响[J]. 水土保持通报, 2013, 33(5): 172–l175. Wang Y C, Liu P, Shao H Y, et al. Effect of absorbent polymer on vertical infiltration and moisture content in aeolian sandy soil[J]. Bulletin of Water and Soil Conservation , 2013, 33(5): 172–175.
[48] Johnson M S, Veltkamp C J. Structure and functioning of water–storing agricultural polyacrylamides[J]. Journal of the Science of Food and Agriculture, 1985, 36(9): 789–793. DOI: 10.1002/jsfa.2740360905
[49] 王志刚, 于健, 高聚林, 等. 不同施用方式下保水剂浓度对作物成苗的影响[J]. 华北农学报, 2009, 23(6): 212–216. Wang Z G, Yu J, Gao J L, et al. Effect of concentration of super absorbent polymer on the seedling establishment of crops under different application methods[J]. Acta Agriculturae Boreali-Sinica, 2009, 23(6): 212–216. Wang Z G, Yu J, Gao J L, et al. Effect of concentration of super absorbent polymer on the seedling establishment of crops under different application methods[J]. Acta Agriculturae Boreali-Sinica, 2009, 23 (6): 212–216.
[50] 陈柯宇, 赵瑞, 陈俊琴, 等. 不同质量分数保水剂对番茄穴盘苗生长发育及质量的影响[J]. 西北农业学报, 2010, 19(8): 171–174. Chen K Y, Zhao R, Chen J Q, et al. Effects of different mass fractions of water retaining agent on tomato plug seedlings growth and quality[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(8): 171–174. DOI: 10.3969/j.issn.1004-1389.2010.08.034 Chen K Y, Zhao R, Chen J Q, et al. Effects of different mass fractions of water retaining agent on tomato plug seedlings growth and quality[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(8): 171–174. DOI: 10.3969/j.issn.1004-1389.2010.08.034
[51] 白岗栓, 耿伟, 何登峰. 保水剂施用量对秦巴山区土壤特性及烤烟生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 343–354. Bai G S, Geng W, He D F. Effects of super absorbent polymer with different application rates on soil characteristics and flue–cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343–354. Bai G S, Geng W, He D F. Effects of super absorbent polymer with different application rates on soil characteristics and flue–cured tobacco growth in Qinba mountain area [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343–354.
[52] Taylor K C, Halfacre R G. The effect of hydrophilic polymer on media water retention and nutrient availability to Ligustrum lucidum[J]. HortScience, 1986, 21(5): 1159–1161.
[53] Silberbush M, Adar E, De Malach Y. Use of an hydrophilic polymer to improve water storage and availability to crops grown in sand dunes II. Cabbage irrigated by sprinkling with different water salinities[J]. Agricultural Water Mmanagement, 1993, 23(4): 315–327. DOI: 10.1016/0378-3774(93)90043-A
[54] 赵林, 蔡雅红, 何荷苗, 等. 高吸水性树脂的制备工艺及应用研究进展[J]. 工程塑料应用, 2018, 46(8): 143–148. Zhao L, Cai Y H, He H M, et al. Research progress on preparation method and application of super absorbent resins[J]. Engineering Plastics Application, 2018, 46(8): 143–148. DOI: 10.3969/j.issn.1001-3539.2018.08.026 Zhao L, Cai Y H, He H M, et al. Research progress on preparation method and application of super absorbent resins[J]. Engineering Plastics Application, 2018, 46(8): 143–148. DOI: 10.3969/j.issn.1001-3539.2018.08.026
[55] Zakaria M E T, Jamari S S, Ling Y Y, et al. Synthesis of superabsorbent polymer via inverse suspension method: Effect of carbon filler[C]. Materials Science and Engineering Conference Series, 2017: 12–13.
[56] 邬一凡. 高吸水性树脂研究进展及发展趋势[J]. 化工新型材料, 2019, 47(5): 23–26. Wu Y F. Progress and development trend of production technology of super absorbent polymer[J] New Chemical Materials, 2019, 47(5): 23–26.
[57] Chen X, Huang L, Mao X, et al. A comparative study of the cellular microscopic characteristics and mechanisms of maize seedling damage from superabsorbent polymers[J]. Pedosphere, 2017, 27(2): 274–282. DOI: 10.1016/S1002-0160(17)60305-9
[58] Staples C A, Murphy S R, McLaughlin J E, et al. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters[J]. Chemosphere, 2000, 40(1): 29–38. DOI: 10.1016/S0045-6535(99)00228-3
[59] 徐文静, 张凯奇, 付强, 等. 丙烯酰胺对水环境中典型微藻的毒性效应[J]. 环境化学, 2020, 39(1): 71–79. Xu W J, Zhang K Q, Fu Q, et al. Toxic effects of acrylamide on phytoplankton in natural waters[J]. Environmental Chemistry, 2020, 39(1): 71–79. DOI: 10.7524/j.issn.0254-6108.2019013101 Xu W J, Zhang K Q, Fu Q, et al. Toxic effects of acrylamide on phytoplankton in natural waters[J]. Environmental Chemistry, 2020, 39(1): 71–79. DOI: 10.7524/j.issn.0254-6108.2019013101
[60] Chen X, Mao X Y, Lu Q, et al. Characteristics and mechanisms of acrylate polymer damage to maize seedlings[J]. Ecotoxicology and Environmental Safety, 2016, 129: 228–234. DOI: 10.1016/j.ecoenv.2016.03.018
[61] Zhang J F, Zhao T N, Sun B P, et al. Effects of biofertilizers and super absorbent polymers on plant growth and soil fertility in the arid mining area of Inner Mongolia, China[J]. Journal of Mountain Science, 2018, 15(9): 1920–1935. DOI: 10.1007/s11629-017-4801-5
[62] Fiume M Z. Final report on the safety assessment of acrylates copolymer and 33 related cosmetic ingredients[J], International Journal of Toxicology, 2002, 21(6): 1–50.
[63] 杜维薇, 刘子凡, 董志国, 等. 塇土大颗粒保水剂的吸水、释水及保水保肥特性研究[J]. 热带农业科学, 2021, 41(5): 1–5. Du W W, Liu Z F, Dong Z G, et al. Characteristics of large granule water retaining agent in absorption, release and retention of water and fertility[J]. Chinese Journal of Tropical Agriculture, 2021, 41(5): 1–5. Du W W, Liu Z F, Dong Z G, et al. Characteristics of large granule water retaining agent in absorption, release and retention of water and fertility[J]. Chinese Journal of Tropical Agriculture, 2021, 41(5): 1–5.
[64] Fang J, Liang C L, Jia X D, et al. Immunotoxicity of acrylamide in female BALB/c mice[J]. Biomedical & Environmental Sciences, 2014, 27(6): 401–409.
[65] 赵梦瑶. 丙烯酰胺致小鼠神经毒性分子机制及蓝莓花色苷提取物对其解毒作用的研究[D]. 北京: 中国农业大学博士学位论文, 2017. Zhao M Y. Molecular mechanism of acrylamide-induced neurotoxicity and intervention of blueberry anthocyanin extract against crylamide-induced toxicity in vivo[D]. Beijing: PhD Dissertation of China Agricultural University, 2017.
[66] Duan X, Wang Q C, Chen K L, et al. Acrylamide toxic effects on mouse oocyte quality and fertility in vivo[J]. Scientific Reports, 2015, 5(1): 1–11. DOI: 10.9734/JSRR/2015/14076
[67] Ma Y, Shi J, Zheng M, et al. Toxicological effects of acrylamide on the reproductive system of weaning male rats[J]. Toxicology & Industrial Health, 2011, 27(7): 617–627.
[68] Xiong B, Dettam L R, Derrick S, et al. Polyacrylamide degradation and its implications in environmental systems[J]. Npj Clean Water, 2018, 1(1): 1–9. DOI: 10.1038/s41545-018-0001-2
[69] Bosch S J, Lande S S, Howard P H. Degradation and leaching of acrylamide in soil[J]. Journal of Environmental Quality, 1979, 8(1): 133–137.
[70] Mroczek E, Konieczny P, Kleiber T, et al. Response of hydroponically grown head lettuce on residual monomer from polyacrylamide[J]. Food Additives & Contaminants, 2014, 31(8): 1399–1405. DOI: 10.1080/19440049.2014.926401
[71] Bader B, Aissaoui F, Kmicha I, et al. Effects of salinity stress on water desalination, olive tree (Olea europaea L. cvs 'Picholine', 'Meski' and 'Ascolana') growth and ion accumulation[J]. Desalination, 2015, 364: 46–52. DOI: 10.1016/j.desal.2015.01.002
[72] 李杰, 王海涛, 孙文种, 等. 高吸水树脂中丙烯酸残留量的测定及其影响因素[J]. 北京理工大学学报, 2004, 49(7): 643–645. Li J, Wang H T, Sun W Z, et al. Determination of residue acrylic monomer and its influence on super absorbent resin[J] Transaction of Beijing Institute of Technology, 2004, 49(7): 643–645.
[73] 张禹. 丙烯酸酯共聚乳液制备及残留单体研究[D]. 湖北武汉: 湖北大学硕士学位论文, 2017. Zhang Y. Study on preparation of acrylate copolymer emulsion and research on residual monomer[D]. Wuhan, Hubei: MS Thesis of Hubei University, 2017.
[74] 张禹, 朱超, 冯波, 等. 叔碳酸乙烯酯与丙烯酸酯共聚乳液残留单体含量影响因素的研究[J]. 粘接, 2016, 37(11): 56–59. Zhang Y, Zhu C, Feng B, et al. Study on factors to influence residual monomer content in acrylate-vinyl versatate copolymer emulsion[J]. Bonding, 2016, 37(11): 56–59. DOI: 10.3969/j.issn.1001-5922.2016.11.010 Zhang Y, Zhu C, Feng B, et al. Study on factors to influence residual monomer content in acrylate-vinyl versatate copolymer emulsion[J]. Bonding, 2016, 37(11): 56–59. DOI: 10.3969/j.issn.1001-5922.2016.11.010
[75] Ismiyati T, Alhasyimi A A. The effect of chitosan addition in acrylic resin matrix towards the residual monomers and impact strength[J]. Research Journal of Pharmacy and Technology, 2021, 14(4): 2280–2285.
-
期刊类型引用(13)
1. 吴嘉希,朱会军,邢鹤严,陈佳倩,谢子曦,邓文琪,于珊,曾曙才,吴道铭. 适用植物根系生长观察的半固态凝胶配方筛选. 江西农业大学学报. 2024(01): 161-172 . 百度学术
2. 王小彬,闫湘,李秀英,孙兆凯,涂成. 农林保水剂效果评价及其环境风险探讨. 中国农业科学. 2024(06): 1117-1136 . 百度学术
3. 郭建忠,李森,张永康,张抗萍,李林. 聚谷氨酸吸水树脂对小麦光合及产量的影响. 江苏农业科学. 2024(09): 79-86 . 百度学术
4. 付宏喆,王亚飞,朱治忠,苏鹏飞,孙占伟,殷全玉,赵铭钦,程小强,张明月. 保水剂与氮肥配施对雪茄烟抗旱性相关理化性状的影响. 山东农业科学. 2024(06): 88-95 . 百度学术
5. 拉毛草,董隆明,甘瑞勋,蔡斌,余涛,孙文倩,张静,张志莹,花立民. 不同浓度湿润剂对高寒草甸鼠害型秃斑地改良效果研究. 草原与草坪. 2024(04): 113-120 . 百度学术
6. 邓超超,张靖,周琦,宿翠翠,王振龙,施志国,魏域斌,周彦芳. 新型生态保水剂施量对兰州新区土壤微环境及马铃薯产量效益的影响. 节水灌溉. 2024(12): 12-18 . 百度学术
7. 高杨,冯鑫鑫,李林繁,邢哲,李荣,吴国忠. 辐射法制备淀粉基超级吸水材料及其性能. 辐射研究与辐射工艺学报. 2023(01): 44-51 . 百度学术
8. 宋稳锋,王志远,吴心瑶,任可,刘铭,甄雨卓,宋李霞,刘超计,王龙昌. 不同保水剂及覆盖材料对西南旱作农田土壤特性和油菜生长的影响. 西南大学学报(自然科学版). 2023(03): 88-99 . 百度学术
9. 崔勇,李培贵,李珍,张艳玲,魏固宁. 马铃薯干旱胁迫响应及抗旱综合技术研究进展. 中国蔬菜. 2023(04): 20-28 . 百度学术
10. 索文康,杨金翰,胡晨阳,冯莎莎,田小明. 氮肥和调理剂对土壤碳氮含量及莜麦产量的影响. 中国生态农业学报(中英文). 2023(06): 858-867 . 百度学术
11. 罗晟昇,何洪良,黎正英,廖韦卫,韦海球,唐利球,李海碧. 保水剂及其在甘蔗抗旱栽培中的研究进展. 中国糖料. 2023(03): 42-48 . 百度学术
12. 高齐,盛阳阳,赵志伟,王砚涵,张永虎,张永平. 不同类型保水剂对旱作谷子水分利用的影响. 干旱区资源与环境. 2023(09): 154-163 . 百度学术
13. 高杨,冯鑫鑫,邢哲,李林繁,黄卫兵,李荣,吴国忠. 两种共聚单体对淀粉/聚丙烯酸钠超级吸水材料耐盐性能的影响. 辐射研究与辐射工艺学报. 2023(05): 34-42 . 百度学术
其他类型引用(4)