Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

条带覆盖免耕下吉林南部玉米行间土壤水分和温度的时空动态

田梦, 高伟达, 任图生, 李保国

田梦, 高伟达, 任图生, 李保国. 条带覆盖免耕下吉林南部玉米行间土壤水分和温度的时空动态[J]. 植物营养与肥料学报, 2022, 28(7): 1297-1307. DOI: 10.11674/zwyf.2021590
引用本文: 田梦, 高伟达, 任图生, 李保国. 条带覆盖免耕下吉林南部玉米行间土壤水分和温度的时空动态[J]. 植物营养与肥料学报, 2022, 28(7): 1297-1307. DOI: 10.11674/zwyf.2021590
TIAN Meng, GAO Wei-da, REN Tu-sheng, LI Bao-guo. Spatio-temporal variation of soil water and temperature between maize rows as affected by no-tillage and strip crop straw mulching in southern Jilin Province[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1297-1307. DOI: 10.11674/zwyf.2021590
Citation: TIAN Meng, GAO Wei-da, REN Tu-sheng, LI Bao-guo. Spatio-temporal variation of soil water and temperature between maize rows as affected by no-tillage and strip crop straw mulching in southern Jilin Province[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1297-1307. DOI: 10.11674/zwyf.2021590

条带覆盖免耕下吉林南部玉米行间土壤水分和温度的时空动态

基金项目: 国家重点研发计划项目子课题(2021YFD1500802,2016YFD0300804-3);国家自然科学基金项目(41701244)。
详细信息
    作者简介:

    田梦 E-mail:m18814116485@163.com

    通讯作者:

    高伟达E-mail:weida_gao@cau.edu.cn

Spatio-temporal variation of soil water and temperature between maize rows as affected by no-tillage and strip crop straw mulching in southern Jilin Province

  • 摘要:
    目的 

    覆盖免耕能够减缓土壤侵蚀,提升土壤有机质含量,但在我国东北黑土区,可能会引起春季土温较低,影响玉米生长。因此,研究条带覆盖免耕(NT-SRC)技术模式下玉米行间土壤水分和温度的时空分布规律,为科学应用NT-SRC技术提供理论支撑。

    方法 

    玉米田间试验于2018年在吉林省南部进行,采用田间条带覆盖免耕技术模式。玉米采用宽窄行栽培,宽行行距为100 cm,秸秆全覆盖;窄行行距为40 cm,无覆盖,为玉米播种带。选择玉米行间进行原位连续监测,监测点包括玉米株下(0位点),宽行距植株10、20、30和50 cm (简称为10、20、30、50位点),窄行距植株10和20 cm (简称为–10和–20位点),每个位点土壤水分和温度监测探头埋藏5、10和20 cm 3个深度,自动连续监测土壤温度和含水量。

    结果 

    1) NT-SRC管理下,玉米行间含水量在空间分布上呈现宽行>株下>窄行,其中含水量50位点处最高,–10位点处最低;不同监测点土壤含水量在时间尺度上的稳定性为 –10<–20<10<0<20和30<50 位点;土壤水分在玉米生育期内的稳定性表现为苗期>成熟期>拔节期和吐丝灌浆期。2)与窄行相比,宽行在水分较低的拔节期和吐丝灌浆期能够分别提高土壤储水量13.1% 和11.1%。3)宽窄行的行间温度差异主要表现在苗期和拔节期,土壤温度由窄行20 cm处至宽行50 cm处依次降低。相较于宽行,苗期窄行的日均温提高1℃~2℃。

    结论 

    在吉林南部地区免耕配合带状秸秆覆盖模式下,秸秆覆盖使宽行的土壤含水量和储水量在全生育期高于窄行,且土壤含水量更加稳定。无覆盖窄行提升了苗期和拔节期苗带土壤温度,对吐丝灌浆期和成熟期行间温度分布几乎无影响,缓解了吉林南部黑土区全覆盖免耕管理下玉米生长过程中的水热矛盾。

    Abstract:
    Objectives 

    No-tillage with full crop straw mulching is effective in combating soil erosion and improving soil organic matter and water status, but often causes low soil temperature that inhibit the germination and growth of spring maize in Northeast China. Therefore, straw mulching in strips between maize rows, combined with no-tillage (NT-SRC) has been developed. To understand the performance of NT-SRC practice on soil water and temperature, we monitored the soil moisture and temperature in different position around maize plants during the whole growing stage.

    Methods 

    The field monitoring was conducted in southern Jilin Province during the whole maize growing season in 2018. Narrow (40 cm) and wide (100 cm) rows were prepared in field in turn, two maize lines were planted in each narrow row, while the wide row was mulched with straws. Soil water and temperature were monitored at 4 points (i.e., 10, 20, 30 and 50 cm) away from maize plant in the wide row (labeled as 10, 20, 30 and 50 sites), and at 2 points (10 and 20 cm) away from the maize plants in the narrow row (labeled as –10 and –20 sites). Soil water content and temperature were continuously monitored at each point at 5, 10 and 20 cm depths with the sensors controlled by a data logger.

    Results 

    The water content was in order of wide row > under plant > narrow row, with the highest water content at 50 cm point in wide row and the lowest at point 10 in narrow row. The time variation of soil moisture across the seven points was in order –10 cm > –20 cm > 10 cm > 0 (under plant) > 20 cm and 30 cm > 50 cm. The stability of soil moisture across the growing stages was in order of seedling stage< maturity stage< jointing stage, silking and filling stage. The soil water storage in wide rows were 13.1% and 11.1% higher than in narrow rows at jointing stage and silking stage, respectively. The differences of soil temperature between wide and narrow rows were mainly observed at the seedling and jointing stages of maize. The soil temperature decreased from 20 cm away from maize plant in the narrow row to 50 cm in the wide row. At the seedling stage, the mean daily temperature in the narrow row was 1℃–2℃ higher than that of the wide row.

    Conclusions 

    Under no-tillage condition, straw mulching on wide rows could maintain higher and more stable soil moisture during the whole growing stages of spring maize, and the narrow rows without straw mulching could obtain more heat for the germination and growth of maize at seedling and jointing stages. Therefore, no-tillage with straw mulching in strips alleviates the problem of water and heat required for the growth of maize in the black soil area of Southern Jilin.

  • 黑土区是我国重要的商品粮生产基地。从20世纪50年代以来,在高强度集约利用下,黑土地土壤侵蚀加剧,有机质含量持续下降,黑土层变薄、变瘦、变硬现象突出[1-2]。目前,黑土区水土流失面积达到4.47万km2,占黑土区总面积的37.9%[3],黑土层厚度也由开垦初期的60—70 cm下降至20—30 cm[4]。此外,东北黑土区是典型的雨养农业,且全年降水不均,水分对作物生长是一个重要的影响因素。在松辽平原,近10年玉米生长季发生干旱的频率达到了60%[5]。Zhang[6]对松辽平原玉米产区作物产量–气候因子的回归分析表明,干旱是影响该地玉米产量的最关键气象因素。因此,保护黑土地资源,提升保水能力,对实现黑土区农业可持续发展,保障我国粮食安全具有重要的意义。

    秸秆全覆盖免耕是保护性耕作主要方式之一。通过免除机械翻耕、减少土壤扰动和周年秸秆覆盖还田,实现了降低土壤侵蚀、提高土壤有机质含量和蓄水保墒的目标[7-8]。但是,也有研究表明,免耕管理下土壤含水量较高,加上大量秸秆覆盖,导致冷凉区春季农田地温偏低,影响作物出苗和前期生长,甚至造成玉米减产[9-12]。另外,对于秸秆量较大的地区,地表大量秸秆存在影响免耕播种机性能,一定程度上影响玉米播种质量。因此,需要建立一套既有利于改善土壤水分条件和土壤肥力,又可以降低春季土壤低温风险的耕作模式。

    Kaspar等[13]和 Swan等[14]指出,移除种植行作物秸秆,从全面覆盖调整为采用条带覆盖改变了土壤水热的时空分布,从而提高玉米株高和产量。近年来在我国吉林南部黑土区实践证明,与秸秆全覆盖下免耕相比,条带覆盖免耕提高了播种的质量,也受到了农民的认可。但关于该模式对土壤水分和温度在玉米生长季内行间分布特征的影响仍缺乏定量研究。为此,本研究基于田间试验,通过原位连续动态监测条带覆盖免耕下行尺度上土壤水分和温度动态变化过程,为认识条带覆盖免耕技术模式,改善吉林南部黑土区土壤水分和温度提供数据支撑,有利于科学地推广该项耕作模式。

    试验地位于中国农业大学吉林梨树试验站 (北纬43°10′,东经124°22′)。该地区属于中温带湿润季风气候区,历年平均降雨量为556 mm,降雨集中在5—9月份,占全年降水量的82%;历年平均气温为5.9℃,≥10℃的活动积温为3078℃。试验地土壤类型为黑土(Mollisols,USDA),质地为黏壤土,0—20 cm土层土壤砂粒、粉粒和黏粒含量分别为24%、45%和31%,有机质含量为21 g/kg。

    本研究仅针对条带覆盖免耕模式开展田间观测。种植作物为一年熟春玉米,采用宽窄行种植模式,宽行行距为100 cm,窄行行距40 cm。具体田间操作如下:每年秋季玉米收获后,秸秆留高茬(30 cm),其余部分经联合收割机粉碎后全部覆盖于地表。第二年春季播种前,首先用秸秆归行机将播种带地表覆盖的秸秆进行归行,然后利用免耕播种机一次性完成开沟、施肥、播种和镇压作业。玉米株距为25 cm,种植密度为6.4万株/hm2。每年宽窄行进行轮换,即下一年在上一年的宽行进行播种。肥料采用缓释掺混肥料(N–P2O5–K2O 24–13–15),总养分≥52%,施肥量为800 kg/hm2。肥料于播种过程中随播种机沟施入土壤,施肥位置距播种行外侧10 cm,深度10 cm。

    田间观测年份为2018年,玉米播种时间为5月20日。为准确测定行间不同位置土壤含水量和温度,待玉米出苗后(6月1日),选择长势良好的植株所在行安装水分和温度探头。在距离植株约10 cm 处挖开一个宽约100 cm、深约25 cm的剖面,用尺子测定好安装位置的距离后,分别在3个土壤深度5、10和20 cm,7个行间位置埋设土壤TDR水分探头和热电偶温度探头。7个监测点分别为:玉米植株下方(记为0位点)、窄行内距离植株10和20 cm处(记为–10和–20位点)和宽行内距离植株10、20、30和50 cm处(记为10、20、30和50位点),具体见图1。本研究中,土壤水分、温度从2018年6月5日开始监测,至2018年10月8日玉米收获时结束监测。土壤含水量采用TDR100 (Campbell Scientific Inc., Logan, UT),每2 h测定一次;土壤温度采用铜–康铜型热电偶,每1 h测定一次;含水量和温度数据由数据采集仪(CR1000, Campbell Scientific Inc., Logan, UT)自动记录。降水量和太阳辐射数据由试验地旁边的自动气象站进行监测和记录。

    图  1  田间土壤温度和水分探头埋设方式示意图
    Figure  1.  Schematic diagram of installation the probes for measuring soil water content and temperature of different soil layers in the field

    利用BMO方法[15]处理TDR波形,得到土壤介电常数(Ka)。将Ka带入Topp公式[16]计算土壤体积含水量(θ):

    θ=4.3×106Ka35.5×104Ka2+2.92×102Ka5.3×102 (1)

    各生育期宽行与窄行0—20 cm土层的平均储水量计算公式如下:

    SWw=3i=1Zi×[(θ10i+θ20i+θ30i+θ50i)/4] (2)
    SWN = 3i=1Zi×[(θ10i+θ20i)/2] (3)

    式中,SWwSWN分别为宽行和窄行储水量(mm);θ10iθ20iθ30iθ50iθ–10iθ–20i分别为10、20、30、50、–10和–20位点的含水量;Zi为第i层土壤厚度(mm)。

    在本研究中,计算一段时间内土壤含水量的变异系数用来描述含水量的稳定性(CVtime),计算公式如下:

    CVtime = σtimeμtime×100% (4)

    式中:σtime为行间某一位点在某一玉米生育期内土壤日平均含水量的标准差;μtime为对应土壤日平均含水量的平均值。

    图2展示了2018年与过去30年试验区玉米生长季内月平均降水量的比较及2018年月平均气温。总体来看,2018年玉米生育期内降水量(465 mm)与多年平均值(477 mm)相近,为平水年。从降水分布来看,玉米生育期内降水呈正态分布。与30年平均值相比较,2018年6月降水量降低了30 mm,而8月份降水增加了54.6 mm。2018年6—9月平均气温分别为22.4℃、25.3℃、22.1℃和16.1℃。因此,2018年的气候条件具有一定的代表性。

    图  2  2018年玉米生育期内月降雨量、月平均气温和过去30年玉米生育期内平均月降雨
    Figure  2.  Monthly rainfall and temperature in 2018 and average monthly rainfall in the past 30 years during the maize growing season

    从玉米整个生育期来看,覆盖带和未覆盖带不同监测点5、10 和20 cm 深度土壤含水量动态特征不同(图3)。在5 cm土壤深度,整个作物生育期内,覆盖带平均土壤含水量高于未覆盖带。在行间不同监测点的变化趋势为50位点>0位点> –20、10、20和30位点> –10 位点。50 位点处日平均含水量变化范围为0.31~0.44 cm3/cm3,平均含水量为0.38 cm3/cm3;而株下(0位点)含水量变化范围在0.23~0.38 cm3/cm3;窄行–10位点的平均含水量比宽行50位点低44% (图3)。在10 cm深度,各监测点含水量在行间分布规律与5 cm深度相似,但行间土壤含水量差异减小。在20 cm深度,–20位点含水量低于其他监测点,其余监测点行间含水量差异较小。此外,50位点和–20位点的土壤含水量随土层深度增加而减小,5 cm深度土壤含水量比10和20 cm深度含水量高约11%。其余监测点含水量随土壤深度增加而增大。

    图  3  玉米生育期内监测点–20、–10、0、10、20和50 在3个土层土壤含水量随时间的动态变化
    Figure  3.  The dynamics of soil water content of three soil depths at –20, –10, 0, 10, 20 and 50 monitoring points during the maize growing season

    受植物生长及气候影响,覆盖带和未覆盖带不同位置、不同深度土壤含水量在玉米各生育期的动态特征不同。播种前,土壤水分充足而且宽行和窄行都处于秸秆覆盖状态,行间覆盖带与未覆盖带含水量分布均匀,各监测点平均含水量的变化范围为0.32~0.39 cm3/cm3,苗期行间平均含水量为0.36 cm3/cm3,且土壤含水量显著高于其他时期 (图3)。在拔节期土壤行间平均含水量为0.31 cm3/cm3,且覆盖带与未覆盖土壤含水量差异明显。在5 cm土壤深度,50 位点在整个行间土壤含水量最高,为0.38 cm3/cm3,而表层其余监测点土壤含水量差异较小,变化范围在0.28~0.31 cm3/cm3。20 cm土壤深度–20 位点在整个行间土壤含水量最低,为0.27 cm3/cm3。在10和20 cm土壤深度,覆盖行和株下的含水量范围为0.30~0.34 cm3/cm3,高于未覆盖行(0.27~0.31 cm3/cm3)。在吐丝灌浆期,土壤行间平均含水量为0.29 cm3/cm3,在玉米4个生育期中最低。在表层5 cm土壤深度,50 位点和株下0 位点土壤含水量均高于0.30 cm3/cm3,其余监测点土壤含水量变化范围在0.23~0.29 cm3/cm3,其中–10位点土壤含水量最低,为0.23 cm3/cm3。而10和20 cm土壤深度土壤含水量变化规律与拔节期相同。成熟期土壤行间平均含水量为0.32 cm3/cm3。在5 cm土壤深度,平均含水量的空间变化特征为50位点(0.38 cm3/cm3)>0位点(0.33 cm3/cm3)>–20、10、20和30位点(0.29~0.31 cm3/cm3)>–10 位点(0.25 cm3/cm3)。在10和20 cm 位置,覆盖行和株下(50、20、10、和0位点)含水量变化范围为0.32~0.36 cm3/cm3,略高于未覆盖带位点土壤含水量(0.29~0.33 cm3/cm3)。

    土壤含水量的时间尺度变异性(CVtime)反映了一定时期内土壤含水量的稳定性,与作物生长也有密切关系。相较于其他生育期,苗期的CVtime最小,行间各位置在5、10和20 cm土壤深度的CVtime均小于3%。拔节期和吐丝灌浆期的土壤平均含水量较低,但降雨集中,土壤干湿交替过程变化明显,因此CVtime高于苗期和成熟期(表1)。且不同位置的CVtime差异较大,变化范围为5.3%~22.6%。其中,在5 cm深度,CVtime在–10位点>10位点>–20、0、20和30 位点>50 位点;在10 cm深度,0和–20 位点的CVtime高于其他位置,而50 位点的CVtime最小;在20 cm深度,–20和–10 位点的CVtime高于20、30和50 位点。在成熟期,CVtime的变化范围为3.8%~12.2%,其中50位点CVtime最小,其次为0 位点,其余监测点差异不大(表1)。

    表  1  玉米生育期条带覆盖免耕行间不同监测点在5、10 和20 cm深度土壤含水量的时间尺度变异系数
    Table  1.  The coefficient of variation (CVtime, %) of soil water content of different monitoring points in 5, 10 and 20 cm soil depths at different maize growth stages
    土壤深度
    Soil depth
    玉米生育期
    Maize growth stage
    监测点位置 Monitoring point
    –20–10010203050
    5 cm 苗期 Seedling stage 1.4 2.1 2.1 1.3 2.0 2.6 2.2
    拔节期 Jointing stage 12.0 20.1 13.8 18.4 14.1 14.2 5.3
    吐丝灌浆期 Silking-filling stage 13.4 22.6 12.5 16.4 11.8 13.6 7.4
    成熟期 Maturity 9.6 10.7 5.4 12.2 8.4 9.1 5.1
    10 cm 苗期 Seedling stage 2.4 2.0 2.5 1.1 2.4 1.0 1.2
    拔节期 Jointing stage 14.5 12.3 16.1 13.5 11.2 13.5 7.7
    吐丝灌浆期 Silking-filling stage 17.2 11.5 14.7 11.7 12.1 14.2 10.6
    成熟期 Maturity 7.3 7.7 5.1 8.0 5.9 7.7 3.9
    20 cm 苗期 Seedling stage 2.4 1.8 2.9 1.9 2.9 1.9 2.8
    拔节期 Jointing stage 14.3 13.7 12.5 12.1 10.1 9.6 7.8
    吐丝灌浆期 Silking-filling stage 15.9 14.9 10.5 12.3 10.4 7.6 10.4
    成熟期 Maturity 9.3 6.3 6.5 3.8 6.1 4.9 4.1
    注:–20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离 (cm)。
    Note: –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm).
    下载: 导出CSV 
    | 显示表格

    图4展示了玉米不同生育期内窄行(–20 和–10 位点)和宽行(10、20、30和50位点) 0—20 cm土壤剖面的储水量。根据储水量大小,4个生育期依次为苗期>成熟期>拔节期>吐丝灌浆期。在每个生育期内,宽行土壤储水量都高于窄行,在苗期、拔节期、吐丝灌浆期和成熟期,宽行比窄行区域储水量分别高出8.5%、13.1%、11.1%和9.6%。

    图  4  宽行与窄行区域各生育期0—20 cm深度土壤储水量的比较
    Figure  4.  Comparisons of soil water storage in 0−20 cm soil profile between wide and narrow rows at four maize growth stages

    土壤含水量对降雨的响应反映了降雨过程中水分在土壤剖面内入渗再分布的过程。我们选择了3次较为有代表性的降雨事件,分别发生在7月8日、7月11—12日、7月26日,其降雨量分别为16.4、52.2和59.4 mm。图5展示了降雨后土壤含水量的变化过程。

    图  5  不同监测点5、 10和20 cm深度土壤含水量对3次降雨的响应
    注:图例中, –20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离(cm)。
    Figure  5.  The responses of soil water content to three rainfall events in 5, 10 and 20 cm depths of monitoring points
    Note: In the legends, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm)

    第一次降雨前,5 cm深度50位点初始土壤含水量约为0.36 cm3/cm3,其他监测点的初始含水量约为0.25 cm3/cm3。降水16.4 mm后,在5和10 cm深度,–20 、–10、0 和10位点的含水量迅速增加约30%~40% ,20、30和50位点各层次土壤含水量对降雨没有响应;20 cm深度–20、–10和0位点土壤含水量上升了16%~30%,其他监测点含水量没有明显变化。

    第二次降雨(52.2 mm)前各位点土壤初始含水量较高:5 cm深度 –20和0位点(–10位点处传感器故障,缺数据)约为0.30 cm3/cm3,10、20和30位点的土壤含水量约为0.25 cm3/cm3, 50位点的土壤含水量达到0.37 cm3/cm3。降雨后3个土壤深度各位点的含水量都有增加:在5 cm深度, 10 位点的含水量约增加了40%,–20和0位点含水量增加了33%,20和30位点含水量增加24%,50位点含水量仅增加了10%。在10与20 cm深度,行间含水量对降雨响应差异减小,各监测点土壤含水量增加约18%~36%。

    第三次降雨(59.4 mm)与第二次降雨相隔14天,降雨前表层土壤较为干燥。除5 cm深度50位点外,其他监测点含水量在0.15~0.25 cm3/cm3。降雨后,在5 cm深度,–20、–10、0 和10位点含水量迅速上升了约60%~70%; 20、30和50位点含水量分别增加了27%、48%和18%。在10 和20 cm深度,各个位点土壤含水量均有所上升且趋于一致,而且与表层几乎在同一时间达到最大含水量。此外,在第二次和第三次降雨中,宽行含水量达到最大值的时间滞后于窄行约14 h。

    选取苗期(6月19、23和27日)和拔节期(7月12、16和20日)为例,土壤变干过程中各监测点土壤含水量的时空变化特征见图6。在苗期,各监测点土壤含水量在6月19日为0.32~0.40 cm3/cm3。土壤变干过程中,窄行 –20、–10 位点5 cm深度土壤的含水量损失最快,连续8天无降雨后,含水量减少了18%,其次为宽行0、10和20位点,含水量减少6%,而30和50 位点水分无损耗。在10 和20 cm 深度,–20 位点含水量减少最快,在两个层次分别降低了14%和10%,而在10 cm深度的0位点含水量减少了8%,其余监测点含水量减少均小于或等于5%。

    图  6  苗期及拔节期土壤变干过程中行间不同监测点含水量时空变化特征
    注:监测点位中, –20、–10 、0为窄行上样点距玉米植株的距离,10、20、30和50为宽行上样点距玉米植株的距离(cm)。
    Figure  6.  The changes of soil water content as soil dry processes during seedling and jointing stages at different monitoring points between rows
    Note: In the monitoring point, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance to maize plant on the wide rows (cm).

    在拔节期,各监测点土壤含水量7月12日为0.29~0.40 cm3/cm3。0位点含水量减少最多,在5、10和20 cm深度含水量分别减少了29%、34%和25%。其次为10、–10和–20位点,10位点在5、10和20 cm剖面内含水量分别急剧减少了33%、23%和16%。–10位点在5、10和20 cm土层土壤含水量降低约21%~26%,–20位点在5、10和20 cm剖面内土壤含水量均下降27%,干燥峰下移至20 cm深度以下;而在20和30位点,土壤含水量在0—20 cm剖面内损失了8%~13%。50位点在0—20 cm土壤含水量变化最小,降低了约6%。

    整个玉米生长季内各监测点在不同土层深度土壤日平均温度时空动态特征见图7。总的来看,3个土壤深度、7个监测点的土壤温度均具有明显的季节性变化规律。由苗期逐渐升高,到吐丝灌浆期达到最高后逐渐下降。在苗期和拔节期,行间土壤日均温按照–20、–10、0、10、20、30和50位点的顺序依次降低,宽行的土壤温度低于窄行和株下。在5 cm深度,与50位点相比,0位点(株下)土壤日均温在苗期和拔节期分别高1.8℃和1.1℃,在10 cm深度分别高1.4℃和0.7℃,在20 cm深度分别高1.0℃和0.6℃;而与–20位点相比,0位点在5 cm深度的日均温度在苗期和拔节期分别降低了0.5℃和0.4℃。在吐丝灌浆期,不同监测点在3个深度的土壤温度没有明显差异。在玉米成熟期,行间各监测点土壤温度呈现出与苗期相反的变化趋势,50位点的土壤温度最高,–20位点最低。

    图  7  不同监测点在5、10和20 cm深度日平均土壤温度随时间动态变化
    注:图例中, –20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离(cm)。
    Figure  7.  Dynamics of mean daily soil temperature in 5, 10 and 20 cm depths of various monitoring points
    Note: In the legends, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm).

    在吉林南部,土壤温度与玉米苗期生长有密切的关系。同时,我们的结果也表明玉米整个生育期内,不同监测点土壤温度的差异主要体现在苗期和拔节期(图7)。因此,本部分重点分析苗期条带秸秆覆盖免耕行间不同位置土壤温度日变化规律。总的来看,土壤温度与太阳辐射日变化规律基本一致,呈正弦函数变化。本文选择苗期太阳辐射较强的6月9日和较弱的6月14日为例,分析行间不同位点在5 cm深度土壤温度的日动态变化规律及其与太阳辐射的关系(图8)。在6月9日,太阳辐射较强, 0位点与20和50位点的最大温差出现在14:00,分别为5.1℃和8.6℃;0位点与–20位点的最大温差出现于12:00,0位点比–20位点低2.5℃ (图8a)。另外,太阳辐射达到最大值的时间约为12:00,而窄行位点达到最高温度时间为15:00,宽行位点达到最高温的时间为18:00左右,土壤温度变化均滞后于太阳辐射变化。在太阳辐射较弱的6月14日,土壤温度日变幅较小,行间不同监测点的温度差异也低于6月9日相同时间的值。例如,0位点的最高温度比20和50位点分别高出1.1℃和2.0℃,比–20位点则低0.6℃ (图8b)。

    图  8  玉米苗期其中两天的–20、0、20和50监测点在5 cm深度土壤温度和太阳辐射日变化特征
    Figure  8.  Characteristics of the daily changes of soil temperature at –20, 0, 20 and 50 monitoring points in 5 cm depth and the solar radiation in two selected days of maize seedling stage

    土壤水分和温度在行间的分布规律受到土壤性状、地表覆盖、气象条件、净辐射、植物根系吸水等很多因素的影响[17-21],同时土壤温度的变化与水分状况相关[22-24]。本研究中,我们假设不同监测点相同深度土壤的物理、化学性状基本相同。因此,土壤性状差异不再讨论。在不同玉米生育期内,NT-SRC管理下作用于行间不同监测点土壤水、热特征的因素也不同。

    在玉米苗期,尽管降水量在全生育期处于最低水平,但由于播种前作物地表一直保持秸秆全覆盖状态。因此,所有位点0—20 cm土壤剖面整体含水量较高,分布较为均匀(图3)。苗期玉米植株较小,作物蒸腾作用可以忽略不计。土壤水分损失途径主要是土面蒸发。对于宽行和窄行,影响土面蒸发的主要因素是地表秸秆覆盖程度。宽行表面秸秆覆盖,能有效地抑制蒸发[25],使宽行土壤储水量比窄行高8.5%;尤其明显的是,50位点土壤含水量高于其他监测点。另外,苗期阶段,降雨事件较少(图2)。因此,窄行位点和宽行位点土壤含水量变化均不剧烈(表1)。在此阶段土壤温度是限制玉米萌发、生长的主要因素。玉米苗期行间不同监测点土壤温度的变化非常剧烈。秸秆覆盖一方面直接降低了地表净辐射,另一方面使宽行土壤含水量较高。两方面使窄行(苗带)土壤升温快且温度高(图7图8)。作为土壤与大气热量交换的一道屏障,秸秆覆盖降温作用明显,导致苗期温度过低,是影响免耕下作物生长发育的关键因素[13,26]。本研究中,在晴朗的白天,苗期株下0位点在5 cm深度的土壤温度在20℃~27℃,而宽行50位点的温度变化在17℃~19℃,窄行处的日平均温度比宽行处高2.2℃(图8)。研究表明,即使土壤温度改变1℃,也会对玉米生长速率产生显著的影响[27]。有研究指出,相较于裸土处理,在出苗后30天,秸秆覆盖处理下玉米叶片减少1.1~1.4片[28]。因此,NT-SRC有效地提高了根系生长区的土壤温度,有利于玉米苗期生长。

    在拔节期,玉米株高和叶面积处于逐渐升高阶段,因此,拔节期土壤含水量时空动态特征主要受作物吸水、土面蒸发和降雨的影响。整体来看,拔节期宽行含水量高且比窄行稳定(图3表1),其主要原因是秸秆覆盖一方面减少土壤蒸发[25,29],另一方面,尽管秸秆覆盖对降水具有截获作用,减少了降水入渗量 [30],但其减缓了土壤含水量在降雨和干旱过程中的变化强度,增强了土壤含水量的稳定性(图5图6)[31]。玉米根系主要分在10和–10位点的空间内,根系吸水使两个位点土壤含水量变异增大(表1)。在此阶段,土壤含水量和地表净辐射差异是导致行间不同监测点土壤温度时空分布特征差异的驱动因子。宽行有秸秆覆盖,含水量高、净辐射低,所以日平均温、最高温度和升温速率均低于窄行。

    在吐丝灌浆期和成熟期,吉林南部黑土区农田土面蒸发量很低[32]。玉米蒸腾量在全生育期最大,土壤水分损失主要过程为玉米植株蒸腾作用[33] 。此阶段是玉米一生需水最多的时期,易发生干旱胁迫[34]。降雨也主要集中在这段时间内(图2)。因此,玉米根系分布特征与该时期行间含水量动态变化也有密切的关系。玉米根系密度随土壤深度一般呈先增加后降低的趋势[35-36]。所以,在本研究中,5 cm深度玉米根系吸水主要使–10和10位点土壤含水量迅速下降。随着深度的增加,根系吸水作用位点逐渐扩大到–20和20、30位点(表1)。50位点不受影响。在吐丝灌浆期,行间相同深度不同监测点日平均土壤温度基本相同,其主要原因是秸秆覆盖带土壤含水量较高,热容量较大,接收到的净辐射较小,土壤温度日变化较小。在成熟期,由于气温的降低,部分土壤热量通过热交换散失到大气中,而秸秆覆盖能够降低这种热量的损失,使得宽行处的土壤温度高于窄行处,秸秆起到了保温作用。同时成熟期宽行土壤含水量较高,土壤热惯量较大,也一定程度上减缓了土壤温度随气温的降低[37]

    免耕条件下,玉米采用窄行播种、宽行秸秆覆盖的技术措施,避免了秸秆覆盖降低苗期土壤温度的副作用,又提高了玉米整个生育期内土壤水分状况,提高玉米抵御干旱能力。因此,免耕-带状秸秆还田可创造适合玉米生长的水热时空分布。由于本研究仅基于一个平水年的结果,在春季干旱或者雨水偏多的情况下,玉米行间的土壤水热时空动态特征还需进一步评估。

  • 图  1   田间土壤温度和水分探头埋设方式示意图

    Figure  1.   Schematic diagram of installation the probes for measuring soil water content and temperature of different soil layers in the field

    图  2   2018年玉米生育期内月降雨量、月平均气温和过去30年玉米生育期内平均月降雨

    Figure  2.   Monthly rainfall and temperature in 2018 and average monthly rainfall in the past 30 years during the maize growing season

    图  3   玉米生育期内监测点–20、–10、0、10、20和50 在3个土层土壤含水量随时间的动态变化

    Figure  3.   The dynamics of soil water content of three soil depths at –20, –10, 0, 10, 20 and 50 monitoring points during the maize growing season

    图  4   宽行与窄行区域各生育期0—20 cm深度土壤储水量的比较

    Figure  4.   Comparisons of soil water storage in 0−20 cm soil profile between wide and narrow rows at four maize growth stages

    图  5   不同监测点5、 10和20 cm深度土壤含水量对3次降雨的响应

    注:图例中, –20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离(cm)。

    Figure  5.   The responses of soil water content to three rainfall events in 5, 10 and 20 cm depths of monitoring points

    Note: In the legends, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm)

    图  6   苗期及拔节期土壤变干过程中行间不同监测点含水量时空变化特征

    注:监测点位中, –20、–10 、0为窄行上样点距玉米植株的距离,10、20、30和50为宽行上样点距玉米植株的距离(cm)。

    Figure  6.   The changes of soil water content as soil dry processes during seedling and jointing stages at different monitoring points between rows

    Note: In the monitoring point, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance to maize plant on the wide rows (cm).

    图  7   不同监测点在5、10和20 cm深度日平均土壤温度随时间动态变化

    注:图例中, –20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离(cm)。

    Figure  7.   Dynamics of mean daily soil temperature in 5, 10 and 20 cm depths of various monitoring points

    Note: In the legends, –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm).

    图  8   玉米苗期其中两天的–20、0、20和50监测点在5 cm深度土壤温度和太阳辐射日变化特征

    Figure  8.   Characteristics of the daily changes of soil temperature at –20, 0, 20 and 50 monitoring points in 5 cm depth and the solar radiation in two selected days of maize seedling stage

    表  1   玉米生育期条带覆盖免耕行间不同监测点在5、10 和20 cm深度土壤含水量的时间尺度变异系数

    Table  1   The coefficient of variation (CVtime, %) of soil water content of different monitoring points in 5, 10 and 20 cm soil depths at different maize growth stages

    土壤深度
    Soil depth
    玉米生育期
    Maize growth stage
    监测点位置 Monitoring point
    –20–10010203050
    5 cm 苗期 Seedling stage 1.4 2.1 2.1 1.3 2.0 2.6 2.2
    拔节期 Jointing stage 12.0 20.1 13.8 18.4 14.1 14.2 5.3
    吐丝灌浆期 Silking-filling stage 13.4 22.6 12.5 16.4 11.8 13.6 7.4
    成熟期 Maturity 9.6 10.7 5.4 12.2 8.4 9.1 5.1
    10 cm 苗期 Seedling stage 2.4 2.0 2.5 1.1 2.4 1.0 1.2
    拔节期 Jointing stage 14.5 12.3 16.1 13.5 11.2 13.5 7.7
    吐丝灌浆期 Silking-filling stage 17.2 11.5 14.7 11.7 12.1 14.2 10.6
    成熟期 Maturity 7.3 7.7 5.1 8.0 5.9 7.7 3.9
    20 cm 苗期 Seedling stage 2.4 1.8 2.9 1.9 2.9 1.9 2.8
    拔节期 Jointing stage 14.3 13.7 12.5 12.1 10.1 9.6 7.8
    吐丝灌浆期 Silking-filling stage 15.9 14.9 10.5 12.3 10.4 7.6 10.4
    成熟期 Maturity 9.3 6.3 6.5 3.8 6.1 4.9 4.1
    注:–20、–10 、0为窄行上监测点距玉米植株的距离,10、20、30和50为宽行上监测点距玉米植株的距离 (cm)。
    Note: –20, –10 and 0 were the distance of monitoring points to maize plant on the narrow rows, and 10, 20, 30 and 50 were the distance of monitoring points to maize plant on the wide rows (cm).
    下载: 导出CSV
  • [1]

    Yang X M, Zhang X P, Deng W, et al. Black soil degradation by rainfall erosion in Jilin, China[J]. Land Degradation and Development, 2003, 14(4): 409–420. DOI: 10.1002/ldr.567

    [2]

    Yao Y, Ye L, Tang H, et al. Cropland soil organic matter content change in Northeast China, 1985–2005[J]. Open Geosciences, 2015, 7(1): 234–243.

    [3] 姜艳艳, 常诚, 张大伟, 等. 东北黑土区水土流失现状及成因分析[J]. 黑龙江科学, 2020, 11(18): 152–153. Jiang Y Y, Chang C, Zhang D W, et al. Present situation and cause analysis of soil erosion in the black soil region of Northeast China[J]. Heilongjiang Science, 2020, 11(18): 152–153. DOI: 10.3969/j.issn.1674-8646.2020.18.071

    Jiang Y Y, Chang C, Zhang D W, et al. Present situation and cause analysis of soil erosion in the black soil region of Northeast China [J]. Heilongjiang Science, 2020, 11(18): 152-153. DOI: 10.3969/j.issn.1674-8646.2020.18.071

    [4] 陆继龙. 我国黑土的退化问题及可持续农业[J]. 水土保持学报, 2001, 15(2): 53–55, 67. Lu J L. Phaeozem degradation and sustainable agriculture in China[J]. Journal of Soil and Water Conservation, 2001, 15(2): 53–55, 67. DOI: 10.3321/j.issn:1009-2242.2001.02.014

    Lu J L. Phaeozem degradation and sustainable agriculture in China [J]. Journal of Soil and Water Conservation, 2001, (2): 53-55, 67. DOI: 10.3321/j.issn:1009-2242.2001.02.014

    [5] 尹小刚, 刘武仁, 郑洪兵, 等. 松辽平原中部地区应对气候干旱变化的土壤耕作技术[J]. 农业工程学报, 2012, 28(22): 123–131. Yin X G, Liu W R, Zheng H B, et al. Soil tillage practices coping with drought climate change in central region of Songliao Plain[J]. Transactions of the Chinese Society of Agricultural Engineering , 2012, 28(22): 123–131. DOI: 10.3969/j.issn.1002-6819.2012.22.019

    Yin X G, Liu W R, Zheng H B, et al. Soil tillage practices coping with drought climate change in central region of Songliao Plain [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 123-131. DOI: 10.3969/j.issn.1002-6819.2012.22.019

    [6]

    Zhang J. Risk assessment of drought disaster in the maize-growing region of Songliao Plain, China[J]. Agriculture, Ecosystems and Environment, 2004, 102(2): 133–153. DOI: 10.1016/j.agee.2003.08.003

    [7]

    Rattan L. Restoring soil quality to mitigate soil degradation[J]. Sustainability, 2015, 7(5): 5875–5895. DOI: 10.3390/su7055875

    [8]

    Blanco-Canqui H, Ruis S J. No-tillage and soil physical environment[J]. Geoderma, 2018, 326: 164–200. DOI: 10.1016/j.geoderma.2018.03.011

    [9]

    Kaspar T C, Crosbie T M, Cruse R M, et al. Growth and productivity of four corn hybrids as affected by tillage[J]. Agronomy Journal, 1987, 79(3): 477–481. DOI: 10.2134/agronj1987.00021962007900030014x

    [10]

    Swan J B, Schneider E C, Moncrief J F, et al. Estimating corn growth, yield, and grain moisture from air growing degree days and residue cover[J]. Agronomy Journal, 1987, 79(1): 53–60. DOI: 10.2134/agronj1987.00021962007900010012x

    [11] 张少良, 张兴义, 于同艳, 等. 秸秆覆盖对农田黑土春季地温的影响[J]. 干旱区资源与环境, 2010, 24(6): 169–173. Zhang S L, Zhang X Y, Yu T Y, et al. Effect of crop residue mulch on spring soil temperature in black soil[J]. Journal of Arid Land Resources and Environment, 2010, 24(6): 169–173. DOI: 10.13448/j.cnki.jalre.2010.06.025

    Zhang S L, Zhang X Y, Yu T Y, et al. Effect of crop residue mulch on spring soil temperature in black soil [J]. Journal of Arid Land Resources and Environment, 2010, 24(6): 169-173. DOI: 10.13448/j.cnki.jalre.2010.06.025

    [12] 匡恩俊, 宿庆瑞, 迟凤琴, 等. 不同材料覆盖对玉米生长及水分利用效率影响[J]. 土壤与作物, 2017, 6(2): 96–103. Kuang E J, Su Q R, Chi F Q, et al. Effect of mulching materials on maize growth and water use efficiency[J]. Soils and Crops, 2017, 6(2): 96–103. DOI: 10.11689/j.issn.2095-2961.2017.02.003

    Kuang E J, Su Q R, Chi F Q, et al. Effect of mulching materials on maize growth and water use efficiency [J]. Soils and Crops, 2017, 6(2): 96-103. DOI: 10.11689/j.issn.2095-2961.2017.02.003

    [13]

    Kaspar T C, Erbach D C, Cruse R M. Corn response to seed-row residue removal[J]. Soil Science Society of America Journal, 1990, 54(4): 1112–1117. DOI: 10.2136/sssaj1990.03615995005400040032x

    [14]

    Swan J B, Kaspar T C, Erbach D C. Seed-row residue management for corn establishment in the northern US corn belt[J]. Soil and Tillage Research, 1996, 40(1–2): 55–72. DOI: 10.1016/S0167-1987(96)80006-7

    [15]

    Wang Z J, Kojima Y, Lu S, et al. Time domain reflectometry waveform analysis with second-order bounded mean oscillation[J]. Soil Science Society of America Journal, 2014, 78(4): 1146–1152. DOI: 10.2136/sssaj2013.11.0497

    [16]

    Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574–582. DOI: 10.1029/WR016i003p00574

    [17] 石吕, 薛亚光, 魏亚凤, 等. 基于宽窄行种植模式下稻秸非均匀性覆盖对土壤特性及小麦产量的影响[J]. 核农学报, 2021, 35(7): 1668–1677. Shi L, Xue Y G, Wei Y F, et al. Effects of rice straw non-uniform mulch on soil characteristics and wheat yield based on wide-narrow-row planting pattern[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1668–1677. DOI: 10.11869/j.issn.100-8551.2021.07.1668

    Shi L, Xue Y G, Wei Y F, et al. effects of rice straw non-uniform mulch on soil characteristics and wheat yield based on Wide-Narrow-Row Planting Pattern [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1668-1677. DOI: 10.11869/j.issn.100-8551.2021.07.1668

    [18]

    Shinners K J, Nelson W S, Wang R. Effects of residue-free band width on soil temperature and water content[J]. Transactions of the ASAE, 1994, 37(1): 39–49. DOI: 10.13031/2013.28051

    [19] 徐明, 张健, 刘国彬, 等. 植被类型和降雨量对沟谷地土壤水分和温度空间分布的影响[J]. 草地学报, 2017, 25(3): 499–507. Xu M, Zhang J, Liu G B, et al. Effects of vegetation types and rainfall on soil water content and temperature in the Gully areas[J]. Acta Agrestia Sinica, 2017, 25(3): 499–507.

    Xu M, Zhang J, Liu G B, et al. Effects of vegetation types and rainfall on soil water content and temperature in the Gully areas [J]. Acta Agrestia Sinica. 2017, 25(3): 499-507.

    [20] 席本野, 王烨, 贾黎明, 等. 宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系[J]. 生态学报, 2011, 31(1): 47–57. Xi B Y, Wang Y, Jia L M, et al. Property of root distribution of triploid Populus tomentosa and its relation to root water uptake under the wide-and-narrow row spacing scheme[J]. Acta Ecologica Sinica, 2011, 31(1): 47–57.

    Yi B Y, Wang Y, Jia L M et al. Property of root distribution of triploid Populus tomentosa and its relation to root water uptake under the wide-and-narrow row spacing scheme [J]. Acta Ecologica Sinica, 2011, 31(1): 47-57.

    [21]

    Alvarez R, Steinbach H S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas[J]. Soil and Tillage Research, 2009, 104(1): 1–15. DOI: 10.1016/j.still.2009.02.005

    [22] 高红贝, 邵明安. 温度对土壤水分运动基本参数的影响[J]. 水科学进展, 2011, 22(4): 484–494. Gao H B, Shao M A. Effect of temperature on soil moisture parameters[J]. Advances in Water Science, 2011, 22(4): 484–494. DOI: 10.3321/j.issn:1001-6791.2009.01.001

    Gao B H, Shao M A. Effect of temperature on soil moisture parameters [J]. Advances in Water Science, 2009, 104(1): 1-15. DOI: 10.3321/j.issn:1001-6791.2009.01.001

    [23] 李慧星, 夏自强, 马广慧. 含水量变化对土壤温度和水分交换的影响研究[J]. 河海大学学报(自然科学版), 2007, 35(2): 172–175. Li H X, Xia Z Q, Ma G H, et al. Effects of water content variation on soil temperature process and water exchange[J]. Journal of Hohai University (Natural Science Edition), 2007, 35(2): 172–175.

    Li H X, Xia Z Q, Ma G H, et al. Effects of water content variation on soil temperature process and water exchange [J]. Journal of Hohai University, 2007, (2): 172-175.

    [24] 陈丽娟, 张新民, 王小军, 等. 不同土壤水分处理对膜上灌春小麦土壤温度的影响[J]. 农业工程学报, 2008, 24(4): 9–13. Chen L J, Zhang X M Wang X J, et al. Effect of different soil moisture treatments on soil temperature of plastic film mulched spring wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(4): 9–13. DOI: 10.3321/j.issn:1002-6819.2008.04.002

    Chen L J, Zhang X M Wang X J et al. Effect of different soil moisture treatments on soil temperature of plastic film mulched spring wheat [J]. Transactions of the CSAE, 2008, (4): 9-13. DOI: 10.3321/j.issn:1002-6819.2008.04.002

    [25] 陈素英, 张喜英, 胡春胜, 等. 秸秆覆盖对夏玉米生长过程及水分利用的影响[J]. 干旱地区农业研究, 2002, 20(4): 55–57, 66. Chen S Y, Zhang X Y, Hu C S, et al. Effect of mulching on growth and soil water dynamics of summer corn field[J]. Agricultural Research in the Arid Areas, 2002, 20(4): 55–57, 66. DOI: 10.3321/j.issn:1000-7601.2002.04.013

    Chen S Y, Zhang X Y, Hu C S, et al. Effect of mulching on growth and soil water dynamics of summer corn field [J]. Agricultural Research in the Arid Areas, 2002, (4): 55-57, 66. DOI: 10.3321/j.issn:1000-7601.2002.04.013

    [26]

    Walker J M. One-degree increments in soil temperatures affect maize seedling behavior[J]. Soil Science Society of America Journal, 1969, 33(5): 729–736. DOI: 10.2136/sssaj1969.03615995003300050031x

    [27]

    Barlow E, Boersma L, Young J L. Photosynthesis, transpiration, and leaf elongation in corn seedlings at suboptimal soil temperatures[J]. Agronomy Journal, 1977, 69(1): 95–100. DOI: 10.2134/agronj1977.00021962006900010025x

    [28] 张乃生, 薛宗让, 洛希图, 等. 旱地玉米免耕覆盖土壤温度效应[J]. 山西农业科学, 1994, 22(3): 13–16. Zhang N S, Xue Z R, Luo X T, et al. Study on soil temperature under no-tillage with stalks mulching in semi-arid areas[J]. Journal of Shanxi Agricultural Sciences, 1994, 22(3): 13–16.

    Zhang N S, Xue Z R, Luo X T, et al. Study on soil temperature under no-tillage with stalks mulching in semi-arid areas [J]. Journal of Shanxi Agricultural Sciences, 1994, (3): 13-16.

    [29] 殷涛, 何文清, 严昌荣, 等. 地膜秸秆双覆盖对免耕种植玉米田土壤水热效应的影响[J]. 农业工程学报, 2014, 30(19): 78–87. Yin T, He W Q, Yan C R, et al. Effects of plastic mulching on surface of no-till straw mulching on soil water and temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 78–87. DOI: 10.3969/j.issn.1002-6819.2014.19.010

    Yin T, He W Q, Yan C R, et al. Effects of plastic mulching on surface of no-till straw mulching on soil water and temperature [J]. Transactions of the CSAE, 2014, 30(19): 78-87. DOI: 10.3969/j.issn.1002-6819.2014.19.010

    [30]

    Baumhardt R L, Johnson G L, Schwartz R C. Residue and long-term tillage and crop rotation effects on simulated rain infiltration and sediment transport[J]. Soil Science Society of America Journal, 2012, 76(4): 1370–1378. DOI: 10.2136/sssaj2011.0331

    [31] 刘淑珍, 高伟达, 任图生. 利用最小水分限制范围评价东北黑土区免耕和垄作的土壤水分稳定性[J]. 农业工程学报, 2020, 36(10): 107–115. Liu S Z, Gao W D, Ren T S, et al. Evaluating the stability of black soil water content in Northeast China under no tillage and ridge tillage using least limiting water range[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 107–115. DOI: 10.11975/j.issn.1002-6819.2020.10.013

    Liu S Z, Gao W D Ren T S, et al. Evaluating the stability of black soil water content in Northeast China under no tillage and ridge tillage using least limiting water range [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 107-115. DOI: 10.11975/j.issn.1002-6819.2020.10.013

    [32] 王月月. 农田蒸散的测定与分解: 茎流计和热脉冲传感器的应用[D]. 北京: 中国农业大学博士学位论文, 2017.

    Wang Y Y. Measurement and partitioning evapotranspiration: Application of sap flow sensors and heat-pulse sensors [D]. Beijing: PhD Dissertation of China Agricultural University, 2017.

    [33] 于庆峰, 苗庆丰, 史海滨, 等. 秸秆覆盖量对土壤温度和春玉米耗水规律及产量的影响[J]. 水土保持研究, 2018, 25(3): 111–116. Yu Q F, Miao Q F, Shi H B, et al. Effects of straw mulch rates on soil temperature[J]. Research of Soil and Water Conservation, 2018, 25(3): 111–116. DOI: 10.13869/j.cnki.rswc.2018.03.016

    Yu Q F, Miao Q F, Shi H B, et al. Effects of straw mulch rates on soil temperature [J]. Research of Soil and Water Conservation, 2018, 25(3): 111-116. DOI: 10.13869/j.cnki.rswc.2018.03.016

    [34] 黄晚华, 杨晓光, 曲辉辉, 等. 基于作物水分亏缺指数的春玉米季节性干旱时空特征分析[J]. 农业工程学报, 2009, 25(8): 28–34. Huang W H, Yang X G, Qu H H, et al. Analysis of spatial-temporal characteristic on seasonal drought of spring maize based on crop water deficit index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(8): 28–34. DOI: 10.3969/j.issn.1002-6819.2009.08.006

    Huang W H, Yang X G, Qu H H, et al. Analysis of spatial-temporal characteristic on seasonal drought of spring maize based on crop water deficit index [J]. Transactions of the CSAE, 2009, 25(8): 28-34. DOI: 10.3969/j.issn.1002-6819.2009.08.006

    [35] 彭云峰, 张吴平, 李春俭. 不同氮吸收效率玉米品种的根系构型差异比较: 模拟与应用[J]. 中国农业科学, 2009, 42(3): 843–853. Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: Simulation and application[J]. Scientia Agricultura Sinica, 2009, 42(3): 843–853. DOI: 10.3864/j.issn.0578-1752.2009.03.011

    Peng Y F, Zhang W P, Li C J. Relationship between nitrogen efficiency and root architecture of maize plants: Simulation and application [J]. Scientia Agricultura Sinica, 2009, 42(3): 843-853. DOI: 10.3864/j.issn.0578-1752.2009.03.011

    [36] 李春俭, 彭云峰, 牛君仿, 等. 土壤中的玉米根系生长及其研究应注意的问题[J]. 植物营养与肥料学报, 2010, 16(1): 225–231. Li C J, Peng Y F, Niu J F, et al. Real maize roots in the soil and issues should be considered by study[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(1): 225–231. DOI: 10.11674/zwyf.2010.0134

    Li C J, Peng Y F, Nui J F, et al. Real maize roots in the soil and issues should be considered by study [J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(1): 225-231. DOI: 10.11674/zwyf.2010.0134

    [37] 刘振华, 赵英时. 遥感热惯量反演表层土壤水的方法研究[J]. 中国科学(D辑):地球科学, 2006, 36(6): 552–558. Liu Z H, Zhao Y S. The research on monitoring of land surface soil moisture by the thermal inertia method in remote sensing[J]. Science in China (Series D): Earth Sciences, 2006, 36(6): 552–558.

    Liu Z H, Zhao Y S. The research on monitoring of land surface soil moisture by the thermal inertia method in remote sensing[J]. Science in China(Series D): Earth Sciences, 2006, 36(6): 552-558.

  • 期刊类型引用(8)

    1. 韩丹丹,刘冬,敖曼,刘吉平,管强,武海涛. 黑土农田土壤甲螨多样性对不同耕作方式的响应. 土壤与作物. 2025(01): 73-83 . 百度学术
    2. 田洪涛,陈闯,张越,刘忠喜. 玉米秸秆腐解及养分释放特性研究. 农业与技术. 2025(06): 50-53 . 百度学术
    3. 王永亮,胥子航,李申,梁哲铭,白炬,杨治平. 不同覆盖措施对土壤水热状况及春玉米产量和水分利用效率的影响. 作物学报. 2024(05): 1312-1324 . 百度学术
    4. 曹尤淞,张晨晖,肖波,孙福海. 黑土区农田藻藓两类结皮发育对土壤团聚体稳定性和击溅侵蚀的影响. 应用生态学报. 2023(04): 892-902 . 百度学术
    5. 张益,王渝淞,武昱鑫,余新晓,樊登星,贾国栋,王春华. 坝上地区人工林和草地生长季土壤水势动态. 水土保持学报. 2023(03): 181-189 . 百度学术
    6. 谷志伟,李晓强,董炜华,吴怡,邓守奇,韦森超,刘子宁. 东北黑土区土壤动物对玉米秸秆不同还田方式的响应. 玉米科学. 2023(06): 90-99 . 百度学术
    7. 沙野,赵思雨,郭雯清,刘正,郝展宏,柯丽华,黄一文,冯国忠,米国华. 秸秆覆盖条耕模式下不同玉米品种的产量差异及其生长适应特征分析. 植物营养与肥料学报. 2023(11): 1977-1990 . 本站查看
    8. 胥子航,王睿,刘育旺,仇子健,刘利霞,刘晓林,白炬,王永亮. 地膜和秸秆覆盖提高春玉米产量与氮肥利用效率. 植物营养与肥料学报. 2023(11): 1991-2003 . 本站查看

    其他类型引用(8)

图(8)  /  表(1)
计量
  • 文章访问数:  1706
  • HTML全文浏览量:  735
  • PDF下载量:  74
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-11-21
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2022-07-24

目录

/

返回文章
返回