Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

添加紫云英对稻田土壤颗粒吸附磷酸盐的影响

章文, 王慧, 李敏, 程文龙, 卜容燕, 唐杉, 韩上, 武际, 朱林, 余庆柱

章文, 王慧, 李敏, 程文龙, 卜容燕, 唐杉, 韩上, 武际, 朱林, 余庆柱. 添加紫云英对稻田土壤颗粒吸附磷酸盐的影响[J]. 植物营养与肥料学报, 2022, 28(8): 1388-1397. DOI: 10.11674/zwyf.2021620
引用本文: 章文, 王慧, 李敏, 程文龙, 卜容燕, 唐杉, 韩上, 武际, 朱林, 余庆柱. 添加紫云英对稻田土壤颗粒吸附磷酸盐的影响[J]. 植物营养与肥料学报, 2022, 28(8): 1388-1397. DOI: 10.11674/zwyf.2021620
ZHANG Wen, WANG Hui, LI Min, CHENG Wen-long, BU Rong-yan, TANG Shan, HAN Shang, WU Ji, ZHU Lin, YU Qing-zhu. Phosphate adsorption on paddy soil particles affected by application of Chinese milk vetch[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1388-1397. DOI: 10.11674/zwyf.2021620
Citation: ZHANG Wen, WANG Hui, LI Min, CHENG Wen-long, BU Rong-yan, TANG Shan, HAN Shang, WU Ji, ZHU Lin, YU Qing-zhu. Phosphate adsorption on paddy soil particles affected by application of Chinese milk vetch[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1388-1397. DOI: 10.11674/zwyf.2021620

添加紫云英对稻田土壤颗粒吸附磷酸盐的影响

基金项目: 国家自然科学基金项目(41807106);安徽省科技重大专项(202003a06020008);现代农业产业技术体系建设专项资金(绿肥CARS-22)。
详细信息
    作者简介:

    章文 E-mail: 790806862@qq.com

    †王慧为共同第一作者 E-mail: kangxi20052009@163.com

    通讯作者:

    武际 E-mail: wuji338@163.com

Phosphate adsorption on paddy soil particles affected by application of Chinese milk vetch

  • 摘要:
    目的 

    研究添加紫云英(Chinese milk vetch, CMV)对土壤颗粒表面磷素吸附特征的影响机制,为绿肥高效利用提供理论依据。

    方法 

    采用土培试验方法,设置4个紫云英翻压量梯度:CMV0 (0)、CMV1 (15000 kg/hm2)、CMV2 (22500 kg/hm2)和CMV3 (30000 kg/hm2),淹水培养30天后,取土样,过250 μm筛后,分为细砂粒(48~250 μm)、粉粒(2~48 μm)和粘粒(<2 μm),分别测定土壤有机质、全氮、全磷和有效磷含量,并分别进行磷酸盐的等温吸附和动力学吸附试验。

    结果 

    与CMV0相比,添加紫云英显著提高了土壤颗粒中有机质、全氮、全磷和有效磷含量,尤以砂粒中的提高幅度最大,分别达到33.42%~81.04%、4.83%~15.17%、45.45%~51.52%和40.76%~60.70%;添加紫云英降低了砂粒和粘粒的比表面积,但是提高了粉粒的比表面积。土壤颗粒对磷素的吸附可用Langmuir吸附等温线方程很好地拟合,添加紫云英提高了各粒径土壤对磷的理论最大吸附量(Qm)、土壤本底吸磷量(NAP)、土壤磷临界浓度(EPC0)、吸附常数(KL)和土壤对磷的亲和力(Kp)。Qm值提高幅度以砂粒最大,提高了4.02%~46.81%;粉粒中NAP值、KL值、EPC0值和Kp值提高幅度最大,分别达到116.77%~210.78%、29.55%~69.05%、93.62%~141.28%和11.97%~28.87%。二级动力学方程可以很好地拟合磷酸盐在土壤颗粒表面吸附过程。拟合结果表明,添加紫云英提高了各粒径土壤颗粒对磷的初始吸附速率(H)和吸附速率常数(k2),以粘粒的H值和k2值提高幅度最高,分别达到25.77%~98.20%和25.74%~111.15%。不同粒径的H值和k2值均以CMV2处理最高。相关分析结果表明,砂粒的Qm和EPC0与有效磷含量显著相关;粉粒的NAP、EPC0Kp与土壤有机质、全磷呈极显著相关关系,KL与全磷呈显著性相关;粘粒的Qm与全磷和有效磷含量极显著相关,EPC0与土壤有机质、全氮、全磷、比表面积均呈极显著相关关系,Kp与土壤有机质、全氮和比表面呈极显著相关。

    结论 

    添加紫云英主要通过影响土壤全磷和有效磷提高土壤颗粒自身贮存磷的能力,促进各土壤颗粒对磷素的吸附,特别是砂粒和粉粒。同时,CMV2处理土壤砂粒和粘粒具有较高的磷素吸附量和吸附强度,而CMV3处理粉粒具有较高的磷素吸附量和吸附强度,因此结合土壤质地,控制紫云英还田量实现稻田磷素科学管理。

    Abstract:
    Objectives 

    Studying the effect of Chinese milk vetch (CMV) on phosphate (P) adsorption on soil particles could provide a theoretical basis for efficient green manure usage.

    Methods 

    Paddy soil was collected from Anhui Province, and CMV was added at the rate of 0, 15000, 22500 and 30000 kg/hm2, and denoted as CMV0, CMV1, CMV2, and CMV3. The mixture was incubated for 30 days under anaerobic conditions. Each soil sample was divided into sand (48–250 μm), silt (2–48 μm), and clay (<2 μm) particles for the isothermal and kinetics adsorption experiment.

    Results 

    Compared with CMV0, CMV (P<0.05) increased the content of organic matter (SOM), total nitrogen (TN), total phosphorus (TP) and available phosphorus (AP) in all the three soil particle sizes. The highest increase of 33.42%–81.04%, 4.83%–15.17%, 45.45%–51.52%, and 40.76%–60.70% was recorded in sand particles. CMV reduced the specific surface area of sandy and clay particles but increased those of silt particles. The Langmuir model described well the P adsorption of soil particles. The maximum adsorption capacity (Qm), native adsorbed exchangeable phosphorus (NAP), zero-equilibrium P concentration values (EPC0), adsorption constant (KL), and soil affinity to phosphorus (Kp) in all soil particles increased under CMV. Sandy particles recorded the highest increase, with the Qm reaching 4.02%–46.81%. In silt particles, the NAP, KL, EPC0, and Kp increased by 116.77%–210.78%, 29.55%–69.05%, 93.62%–141.28%, and 11.97%–28.87%, respectively. The kinetic P adsorption was well fitted with the Pseudo-second-order kinetics. The fitting results showed that the adsorption rate (k2) and the initial sorption rate (H) of the different soil particles increased with CMV application. The highest H and k2 increases were recorded for clay particles, increasing by 25.77%–98.20% and 25.74%–111.15%, respectively. Notably, CMV2 recorded higher H and k2 values than CMV1 and CMV3 in all soil particles. The Qm and EPC0 were correlated with AP in sandy particles (P<0.01) . The NAP, EPC0, and Kp were correlated with SOM and TP (P<0.05) ; KL was correlated with TP in silt particles (P<0.01) . In clay particles, Qm was correlated with TP and AP (P<0.01) ; EPC0 was correlated with SOM, TN, TP, and SSA; Kp was correlate with SOM, TN, and SSA (P<0.05) .

    Conclusions 

    The adsorption of phosphate on the soil particles was enhanced by improving TP and AP mainly with the application of CMV, especially on the sandy and silt particles. The highest values of Qm and KL in CMV2 were recorded for sandy and clay particles. In CMV3, the silt particles had the highest Qm and KL. Therefore, rational application of CMV to paddy soil combined with soil texture could help achieve scientific management of P.

  • 磷素是植物生长发育所必需的三大营养元素之一,植物主要从土壤磷库和磷肥中获取磷素[1]。由于土壤对磷有强烈的吸附固定作用,磷肥施入土壤后,很容易被土壤颗粒表面或土壤中的铁铝氧化物等吸附转化成作物难以吸收的难溶性磷酸盐,导致磷肥当季利用率降低[2],因此如何提高磷肥当季利用率和土壤磷素有效性一直是磷素研究的热点。磷素的界面反应在一定程度上影响着磷的地球化学行为和生态系统的生产率,其在土壤矿物表面的吸附、解吸和沉淀等界面反应影响和决定着磷的形态、迁移以及循环过程,受土壤pH、有机质、有机酸、施肥水平、土壤质地、土壤矿物类型等多种因素的影响[3-7]

    紫云英是我国南方稻田主要的冬季豆科绿肥,具有固碳固氮、活化土壤养分、增加土壤有机质和改善土壤环境等作用,对提高水稻产量、维持水稻可持续发展和保护农田生物多样性具有重要意义[8]。豆科作物的根系分泌物能够提高土壤磷素有效性,促进植物活化吸收难溶性磷酸盐的能力[9]。研究认为绿肥影响土壤磷素吸附–解吸主要是由绿肥翻压腐解产生的可溶性有机物引起[10],绿肥翻压还田后的腐解过程会向土壤中释放有机酸及阴离子,增强与磷素的竞争吸附,降低土壤对磷素的固持[11]。同时紫云英根系分泌的有机酸对土壤难溶性磷素的活化有很好的促进作用,提高土壤磷素有效性[12-14]。一方面有机酸分子可与矿物表面的配位基发生交换反应,进而增加磷等阴离子养分的植物有效性[15],另一方面,有机酸通过与磷酸根离子竞争吸附点位而降低土壤对磷的吸附固定,促进磷的解吸增加磷的有效性[5]。紫云英翻压还田通过提高参与磷转化的酶活性、增加土壤微生物数量等改善土壤磷素养分状况,显著提升土壤有效磷含量[16]。紫云英根部具有聚磷能力,作为绿肥还田,再经过腐解、积累,增加了磷素的投入量,土壤磷总量提高,紫云英根系分泌的磷酸酶,能够促进土壤潜在磷的生物转化,通过提高土壤中磷的解吸速率的方式,从而减少了土壤对磷的吸附固定[17],并且在紫云英翻压初期向土壤释放较多的质子,促进铁磷和铝磷等含磷矿物的溶解,从而有利于磷素的释放[18]

    我们从不同粒级土壤颗粒对外源带入的磷素的吸附能力角度,研究紫云英添加下影响磷素吸附特征的肥力因子,旨在为紫云英翻压还田土壤磷素管理提供理论依据。

    供试土壤采自安徽省桐城市未种植过紫云英的稻田,该土壤含有机质25.07 g/kg、全氮1.27 g/kg、全磷0.37 g/kg、有效磷19.50 mg/kg、速效钾165 mg/kg、pH为5.47。紫云英采集于安徽省桐城市,其全碳、全氮、全磷、全钾含量(干重)分别为462.60 g/kg、27.18 g/kg、3.28 g/kg、18.75 g/kg。

    采用土培试验,设置0、15000、22500和30000 kg/hm2共4个紫云英添加量,分别为CMV0、CMV1、CMV2和CMV3。将采集的土壤风干捶碎后,称取1400 g与不等量的紫云英鲜样进行充分混合,然后装入高20 cm、直径15 cm圆形塑料桶进行土培试验,其中紫云英鲜样剪成1~2 cm长度。土培试验全程保持淹水状态,淹水深度约为1 cm,每隔3天通过称重法补充水量。在土培时间30天采集土壤样品,每个处理重复3次。土培结束后取出全部土壤样品,风干,一部分分别过0.85 mm和0.15 mm筛,用于测定土壤基本养分含量;另一部分过0.25 mm筛,用于土壤颗粒提取。

    通过湿筛法将土壤颗粒进行分级。具体如下:首先过48 μm孔径湿筛,分离出粒径为48~250 μm的细砂粒。48 μm粒径以下部分采用沉降法,根据Stokes定律计算沉降时间,用虹吸管反复吸取土壤溶液上层粒径<2 μm的粘粒,加入0.5 mol/L CaCl2对粘粒进行絮凝[19]。然后用去离子水和95%酒精进行清洗,直至AgNO3检测无Cl存在。大烧杯底部所沉降颗粒为粒径2~48 μm的粉粒。以上3种土壤颗粒洗净放置于40℃烘箱烘干,即得到细砂粒(48~250 μm)、粉粒(2~48 μm)和粘粒(<2 μm)。

    土壤颗粒基本理化指标的测定采用常规分析方法[20]。土壤颗粒比表面积采用氮气吸附法—比表面积测定仪进行测定。

    在50 mL离心管中加入10 mL浓度为8 g/L土壤悬浮液,随后加入一定量的磷酸盐溶液(KH2PO4),使磷酸盐的最终浓度分别为0、2、5、10、20、50、80、100、200 μmol/L,总反应体积为20 mL,不足部分用背景电解质溶液补充,反应水土比4∶1,背景电解质浓度为0.01 mol/L KNO3。用0.01 mol/L KOH和0.01 mol/L KNO3调节反应体系pH为5.50。该体系在25℃恒温摇床上震荡24 h,转速180 r/min。反应结束后在8000 r/min条件下离心10 min,用0.45 μm微孔滤膜抽滤,获取上清液,采用钼锑抗分光光度法(λ=880 nm)测定上清液中磷浓度。根据吸附反应前后溶液中磷的浓度差,计算磷的吸附量。

    配制50 μmol/L的磷溶液(KH2PO4) 400 mL,使得其水土比4∶1,离子背景浓度0.01 mol/L KNO3。分别于10、20、30、60、90、120、150、180、240、360、540、720、1440 min,吸取10 mL混合液于50 mL离心管,立即在8000 min的条件下离心10 min。用0.01 mol/L KOH和0.01 mol/L KNO3调节反应体系pH为5.50。用0.45 μm微孔滤膜抽滤获取上清液,采用钼锑抗分光光度法(λ=880 nm)测定上清液中磷浓度。磷的吸附量计算如上。

    磷吸附试验拟合方程应用修正后的Langmuir方程:

    Qe=QmCeq/KL+CeqNAPKp=NAP/EPC0

    式中,Qe为磷在供试土壤表面的平衡吸附量 (μmol/g);Qm为磷在供试土壤颗粒表面的理论最大吸附量 (μmol/g);Ceq为平衡吸附上清液中的磷浓度 (μmol/L);NAP为土壤本底吸磷量 (μmol/g);KL为供试土壤对磷的吸附力常数,反映结合键能的大小。EPC0为该拟合方程与X轴的截距,表示供试土壤既不吸附也不向溶液中解吸磷时水土界面的磷临界浓度;Kp为磷在土壤的分离系数,表示土壤对磷的亲和力的大小。

    本试验采用二级动力学模型对试验数据进行拟合。方程如下:

    Qt=Qe(1ek2t)

    式中,Qtt时刻土壤对磷的吸附量(μmol/g);t为反应时间 (min);Qe为平衡吸附量(μmol/g);k2为吸附速率常数;H=k2Qe2,为初始吸附速率。

    本试验数据用Microsoft Office 2003软件进行处理,用SPSS 26.0进行差异显著性分析检验[Ducan (D),P<0.05]和Pearson相关分析,运用Origin 2017软件进行数据拟合并作图。

    从磷酸盐在不同粒径土壤颗粒表面的等温吸附曲线(图1)可以看出,磷酸盐的吸附量随着平衡液磷浓度的增加先快速增加后缓慢上升,呈“L”型,用Langmuir方程对数据进行拟合,均获得较好的拟合结果(R2>0.89,P<0.01),拟合参数见表1

    图  1  添加紫云英(CMV)下土壤颗粒对磷的等温吸附曲线
    Figure  1.  Isothermal adsorption curves of phosphorus on soil particles with the addition of CMV
    表  1  添加紫云英(CMV)下土壤颗粒对磷的等温吸附拟合参数
    Table  1.  The Langmuir fitting parameters of phosphate adsorption on soil particles with the addition of CMV
    颗粒
    Soil particle
    处理
    Treatment
    Qm
    (μmol/g)
    KLEPC0
    (μmol/g)
    NAP
    (μmol/g)
    KpR2P
    砂粒
    Sand
    CMV0141.9289.577.5311.001.460.8926<0.01
    CMV1147.6292.397.6715.502.020.9402<0.01
    CMV2208.35130.659.4914.111.490.9363<0.01
    CMV3191.16142.168.7413.071.500.9030<0.01
    粉粒
    Silt
    CMV0104.1655.672.353.341.420.9502<0.01
    CMV1105.4572.124.557.241.590.9634<0.01
    CMV2116.2974.745.6710.381.830.9208<0.01
    CMV3139.1794.115.289.061.720.9355<0.01
    粘粒
    Clay
    CMV0529.7227.121.6137.0923.040.9936<0.01
    CMV1580.7152.012.1444.0120.570.9866<0.01
    CMV2579.9641.212.3244.0819.820.9865<0.01
    CMV3551.1033.752.4537.7814.820.9896<0.01
    下载: 导出CSV 
    | 显示表格

    表1可以看出,在砂粒中,添加紫云英处理的最大吸附量(Qm)值、土壤本底吸磷量(NAP)值、吸附力常数(KL)值、磷临界浓度(EPC0)值和分离系数(Kp)值分别比CMV0提高了4.02%~46.81%、18.82%~40.91%、3.15%~58.71%、1.86%~26.03%和2.74%~38.36%。其中CMV2处理的QmKL、EPC0、NAP分别比CMV0处理提高了46.81%、45.86%、26.03%和28.27%。CMV2处理Qm和EPC0值最大,比CMV0、CMV1和CMV3处理分别提高了8.99%~46.81%和8.58%~26.03%;CMV1处理的Kp最大,为2.02。在粉粒中,添加紫云英处理的Qm值、NAP值、KL值、EPC0值和Kp值分别比CMV0提高1.24%~52.81%、116.77%~210.78%、29.55%~69.05%、93.62%~141.28%和11.97%~28.87%。其中CMV3处理的QmKL、EPC0、NAP分别比CMV0处理提高了33.61%、69.05%、124.68%和171.26%,此外,CMV2处理EPC0、NAP和Kp值均最大。在粘粒中,添加紫云英处理的Qm值、NAP值、KL值和EPC0值分别比CMV0提高4.04%~9.63%、1.86%~18.85%、24.45%~91.78%和32.92%~52.17%。其中CMV2处理的QmKL、EPC0、NAP值分别比CMV0处理提高了9.48%、51.95%、44.10%和18.85%,其中CMV2处理的NAP最大;Kp则随着紫云英添加量的增加而降低。因此紫云英添加提高了砂粒和粉粒对磷的吸附量、吸附强度以及对磷素的亲和力;增加了粘粒对磷的吸附量和吸附强度,但降低对磷的分离系数。

    不同粒径土壤颗粒之间相比较,Qm、NAP、Kp均在粘粒中达到最大值,按大小排列为粘粒>砂粒>粉粒。KL和EPC0在砂粒中最大,按大小排列为砂粒>粉粒>粘粒。

    将磷酸盐在不同粒径土壤颗粒表面动力学吸附数据用二级动力学方程进行拟合,均获得较好的拟合结果(R2>0.99,P<0.01) (图2表2)。在砂粒中,紫云英添加提高了平衡吸附量(Qe)、初始吸附速率(H)和吸附速率常数(k2),分别增加了2.43%~5.02%、5.26%~76.69%和5.31%~91.54%;其中Hk2均在CMV2最大。在粉粒中,添加紫云英提高了QeHk2值,分别提高了2.39%~14.68%、1.57%~24.40%和7.98%~35.69%,其中Hk2值也均在CMV2最大。在粘粒中,添加紫云英提高了QeHk2值,分别增加1.09%~9.30%、25.77%~98.20%和25.74%~111.15%;其中CMV2处理的Hk2值最大。由上可知,添加紫云英提高了各粒径土壤颗粒对磷的初始吸附速率(H)和吸附速率常数(k2),其中CMV2处理的H值和k2最高;添加紫云英对粘粒的H值和k2值增加幅度最高。

    图  2  添加紫云英(CMV)下土壤颗粒对磷的动力学吸附
    Figure  2.  The kinetic adsorption of phosphorus on soil particles under different CMV addition
    表  2  添加紫云英(CMV)下不同粒径土壤颗粒表面磷的二级动力学吸附参数
    Table  2.  The secondary kinetic adsorption parameters of phosphorus on soil particles under different CMV addition
    土壤颗粒
    Soil particle
    处理
    Treatment
    Qe
    (μmol/g)
    H
    (μmol/min)
    k2
    [mg/(μmol·min)]
    R2P
    砂粒
    Sand
    CMV078.7410.641.5830.9998<0.01
    CMV181.9711.201.6670.9997<0.01
    CMV282.6918.803.0320.9999<0.01
    CMV380.6513.662.1010.9998<0.01
    粉粒
    Silt
    CMV068.1310.861.7790.9999<0.01
    CMV169.7611.031.9210.9995<0.01
    CMV278.1313.512.4140.9998<0.01
    CMV372.4612.382.3570.9998<0.01
    粘粒
    Clay
    CMV0107.539.430.8160.9997<0.01
    CMV1108.7013.051.1050.9998<0.01
    CMV2114.1718.691.7230.9999<0.01
    CMV3117.5311.861.0260.9997<0.01
    下载: 导出CSV 
    | 显示表格

    不同粒径之间相比较,Qe按大小排列为粘粒>砂粒>粉粒;H值的大小顺序依次为砂粒>粘粒>粉粒;k2值大小顺序依次为砂粒>粉粒>粘粒。

    表3表明,相同粒径下,添加紫云英3个处理的土壤有机质含量显著高于不添加紫云英处理(CMV0),处理中砂粒、粉粒和粘粒中CMV1、CMV2和CMV3处理有机质含量比CMV0处理分别增加了33.42%~81.04%、13.43%~20.37%和1.43%~10.36%,在砂粒中添加紫云英下土壤有机质含量增幅最高。对于全氮含量,在砂粒和粘粒中,CMV1、CMV2和CMV3处理比CMV0分别显著增加了4.83%~15.17%、1.56%~7.55%;但在粉粒中各处理土壤全氮含量差异不明显。添加紫云英也显著提高了砂粒、粉粒和粘粒中全磷含量,其中在砂粒中全磷提高幅度最高,CMV1、CMV2和CMV3处理全磷含量比CMV0增加了45.45%~51.52%;但在砂粒CMV1、CMV2和CMV3处理之间土壤全磷含量差异不明显。添加紫云英也显著提高了砂粒、粉粒和粘粒中有效磷含量,砂粒的有效磷提高幅度最高,为40.76%~60.70%;同时在粉粒和粘粒中CMV2处理有效磷含量分别比CMV0处理提高了52.20%和12.70%,均达到显著性差异(P<0.05);对比不同紫云英添加量之间,在各粒级中CMV2处理土壤有效磷含量均为最高,在砂粒和粉粒中CMV2处理明显高于其他处理,达到显著性差异。综上,添加紫云英处理均显著提高了砂粒、粉粒和粘粒中有机质、全氮、全磷和有效磷含量,其中添加紫云英在砂粒中土壤各养分含量提升幅度最大。土壤各养分含量大小依次排列为粘粒>砂粒>粉粒。

    表  3  添加紫云英(CMV)下土壤颗粒养分含量与比表面积
    Table  3.  The nutrient content and specific surface area (SSA) of soil particles as affected by CMV addition
    土壤颗粒
    Soil particle
    处理
    Treatment
    有机质
    Organic matter
    (g/kg)
    全氮
    Total N
    (g/kg)
    全磷
    Total P
    (g/kg)
    有效磷
    Available P
    (mg/kg)
    比表面积
    SSA
    (m2/g)
    砂粒
    Sand
    CMV019.15±0.56 c1.45±0.01 b0.33±0.00 b22.57±1.50 c7.51±0.35 a
    CMV129.61±1.32 b1.52±0.01 a0.50±0.00 a31.77±0.50 b6.22±0.42 c
    CMV225.55±0.47 b1.67±0.08 a0.48±0.01 a36.27±0.25 a6.03±0.19 c
    CMV334.67±2.91 a1.52±0.14 a0.49±0.01 a34.73±0.50 a6.84±0.23 b
    粉粒
    Silt
    CMV011.24±0.05 b0.50±0.01 a0.38±0.01 b16.38±0.25 c2.39±0.15 c
    CMV112.75±0.45 a0.55±0.06 a0.40±0.00 b20.63±1.75 b4.37±0.24 a
    CMV213.53±0.83 a0.52±0.08 a0.46±0.02 a24.93±0.75 a4.19±0.10 a
    CMV312.86±0.17 a0.53±0.00 a0.46±0.00 a19.33±1.00 b3.31±0.22 b
    粘粒
    Clay
    CMV058.60±0.45 c3.84±0.07 c2.11±0.02 b37.39±0.14 b35.07±1.32 a
    CMV159.44±0.70 c3.90±0.01 b2.28±0.02 a40.01±1.10 ab30.58±0.92 b
    CMV261.81±0.02 b3.98±0.01 b2.32±0.00 a42.14±0.10 a31.23±0.85 b
    CMV364.67±0.56 a4.13±0.01 a2.29±0.00 a39.31±1.72 ab27.11±2.55 b
    方差分析 ANOVA
    紫云英 CMV amountP<0.01P>0.05P<0.01P<0.01P<0.01
    颗粒 Particle typeP<0.01P<0.01P<0.01P<0.01P<0.01
    注:同列数据后不同小写字母表示相同土壤颗粒下不同处理间差异显著 (P<0.05)。
    Note: SSA—Specific surface area. Values followed by different lowercase letters in a column mean significant difference among treatments in the same type of soil particle (P<0.05).
    下载: 导出CSV 
    | 显示表格

    对比土壤颗粒比表面积(SSA),添加紫云英3个处理显著增加了粉粒的SSA值,但明显降低了砂粒和粘粒的SSA值。对比不同粒径,粘粒的土壤比表面积最大,土壤颗粒比表面积大小依次为粘粒>砂粒>粉粒。

    将等温吸附参数与土壤理化性质进行相关性分析(表4)表明,砂粒中的Qm与土壤有效磷含量显著相关(P<0.05);NAP与土壤全磷含量和比表面呈极显著相关(P<0.01);EPC0与土壤全氮和有效磷含量显著相关(P<0.05)。在粉粒中,Qm与土壤全磷含量显著相关;NAP与土壤有机质和全磷含量极显著相关(P<0.01),与土壤有效磷含量显著相关;EPC0与土壤有机质、全磷含量极显著相关(P<0.01),与土壤有效磷含量显著相关;KL与土壤全磷含量显著相关;Kp与土壤有机质、全磷和有效磷含量极显著相关。在粘粒中,Qm与土壤全磷和有效磷含量极显著相关(P<0.01);EPC0与土壤有机质、全氮、全磷含量和比表面积极显著相关;Kp与土壤颗粒有机质、全氮含量和比表面积呈极显著相关(P<0.01)。

    表  4  土壤养分含量与等温吸附参数的相关性
    Table  4.  Correlation between soil nutrient content and isothermal adsorption parameters
    土壤颗粒
    Soil particle
    吸附参数
    Parameter
    有机质
    Organic matter
    全氮
    Total N
    全磷
    Total P
    有效磷
    Available P
    比表面积
    SSA
    砂粒
    Sand
    Qm0.4070.6930.5320.824*–0.491
    NAP0.5450.4150.881**0.693–0.852**
    EPC00.3210.734*0.5030.805*–0.525
    KL0.3460.4010.2100.540–0.050
    Kp0.291–0.1040.4780.106–0.435
    粉粒
    Silt
    Qm0.3220.0800.729*0.0070.079
    NAP0.909**0.2020.893**0.834*0.713
    EPC00.910**0.2390.869**0.805*0.751
    KL0.6200.2210.822*0.3180.350
    Kp0.887**0.1480.909**0.850**0.642
    粘粒
    Clay
    Qm0.3560.3550.932**0.859**–0.519
    NAP–0.102–0.0500.6390.608–0.303
    EPC00.840**0.843**0.939**0.489–0.877**
    KL–0.165–0.1460.6430.710–0.139
    Kp–0.946**–0.956**–0.6230.0010.886**
    注:Qm—土壤理论最大吸附量;NAP—土壤本底吸磷量;EPC0—土壤磷临界浓度;KL—土壤对磷的吸附力常数;Kp—磷在土壤的分离系数。*—表示 0.05 显著性水平;**—表示 0.01 显著性水平。
    Note: Qm—The maximum adsorption capacity; NAP—The native adsorbed exchangeable phosphorus; EPC0—The zero-equilibrium P concentration; KL—The adsorption constant; Kp—The affinity of soil to phosphorus. *—Significant at the 0.05 level; **—Significant at the 0.01 level.
    下载: 导出CSV 
    | 显示表格

    在本试验中,添加紫云英显著提高了土壤有机质、全氮、全磷和有效磷含量。大量研究证明紫云英腐解速率对土壤肥力具有重要影响。由于紫云英中可溶性及易分解有机物质丰富,为土壤微生物提供大量的碳源和养分,致使前期腐解较快[21]。宋莉等[22]发现,紫云英腐解总的特征是前期快、后期慢,主要集中在前30天,腐解达到总腐解量的90%。稻田翻压紫云英通过提高参与碳、氮、磷等养分转化的酶活性,增加相关微生物量,提高土壤活性有机碳含量和碳转化酶活性,进而培育土壤碳库和氮库,对土壤有机质、全氮具有显著提升作用,改善土壤速效养分;同时降低了土壤容重,增加土壤孔隙度和毛管孔隙度,提高了粒径>2 mm土壤团聚体的比例和土壤团聚体的稳定性[8,23-25],改善土壤肥力。

    土壤肥力特征是影响土壤吸附磷的重要因素,在本试验中通过相关关系分析表明,土壤有机质、全氮、全磷、有效磷均与土壤磷吸附参数呈现显著或极显著的相关关系(表4)。土壤有机质是影响磷素行为的重要因素之一。研究认为有机质对磷的吸附具有双重作用[26]:一方面土壤有机质在磷的吸附过程中与土壤中阴离子结合,增加与磷的矿物吸附位点的竞争;另一方面土壤有机质与铁铝螯合形成阳离子桥,增加磷吸附位点,从而提高土壤吸附固定磷能力[27-29]。本试验中添加紫云英处理显著提高砂粒、粉粒和粘粒中有机质含量,而添加紫云英后的砂粒、粉粒和粘粒中磷素的吸附量(Qm)也分别提高4.02%~46.81%、1.24%~52.81%和4.04%~9.63%,且有机质与NAP (粉粒)、Kp (粉粒)呈极显著正相关关系,因此紫云英添加到土壤后在腐解过程中产生大量的有机酸,在提高土壤有机质的同时,也可能溶解了土壤中的结晶态铁铝,提高土壤铁铝等氧化物的活性[18],增加土壤颗粒中磷素吸附位点和对磷素的吸附强度,提高土壤颗粒对磷的吸附量(Qm)、本底吸磷量(NAP)和土壤颗粒对磷的亲和力(Kp)。Fan 等[30]和Pizzeghello 等[31]在南方泥田土和红壤中施入有机肥也显著增加磷的最大吸附量。因此添加紫云英通过提高土壤颗粒中有机质含量,大幅增加土壤颗粒对磷素的吸附能力。

    土壤有效磷以及全磷常用作衡量土壤供磷能力和评估磷素流失风险的主要指标[1]。在本试验中土壤全磷和有效磷含量与Qm、NAP、EPC0KLKp均达到显著相关关系,特别是土壤有效磷分别与Qm、NAP以及EPC0之间呈现出显著或极显著的正相关关系(表4)。添加紫云英通过活化土壤中难溶态磷的含量以及自身磷素释放入土壤中,增加磷素吸附的“源”[32]。这与张海涛等[33]的磷肥施用或土壤磷水平的增加,土壤最大吸磷量(Qm)呈降低趋势研究结果相反。这主要可能由于本试验中砂粒和粉粒中全磷(<0.50 g/kg)与有效磷(<36.27 mg/kg)均较低,低浓度磷土壤颗粒对磷的吸附固定能力较强,从而土壤颗粒中全磷和有效磷含量增加,提高土壤颗粒吸附磷的“源”;但磷“源”增加的绝对值较低,不足以提高磷素的流失风险。而在粘粒中,Qm和颗粒中全磷和有效磷呈显著正相关关系,NAP和KL也都与有效磷呈正相关关系,这可能与粘粒中铁铝氧化物、钙镁含量及表面电化学性质等相关。

    土壤颗粒的比表面积也影响着土壤磷素吸附行为,随着土壤颗粒粒径减小,比表面积增大,颗粒表面提供的有效吸附位点增多,提高土壤颗粒对磷的吸附量[34]。本试验在砂粒中,土壤比表面积与NAP值呈极显著负相关;在粘粒中与EPC0值、Kp值分别呈极显著负相关关系和正相关关系,这表明磷素在土壤颗粒表面的吸附,是多因素综合影响的结果。同时也看到,在砂粒和粘粒中,紫云英添加降低了这两个粒径土壤颗粒的比表面积,这可能由于过量地添加紫云英大幅提高土壤有机质含量,促进土壤颗粒之间的凝聚,甚至这些有机物质包被在土壤颗粒表面[35],降低了土壤颗粒的比表面,这与王琼等[36]在黑土上的研究结果一致。

    土壤颗粒类型也是影响磷素吸附的重要因素,粘粒对磷的吸附量和吸附能力要高于粉粒和砂粒[30, 36-37]。在本试验中添加紫云英提高了砂粒和粉粒对磷素的QmKL值,但对粘粒的QmKL值影响较小,也即添加紫云英可以提高砂粒和粉粒对磷的吸持,特别在含砂粒和粉粒较多的土壤中添加紫云英可以提高土壤颗粒对磷的吸持。本研究中,添加紫云英在显著提高土壤各养分含量的同时,还提高了不同颗粒粒径对磷的吸附量、吸附强度和吸附速率。但应当注意的是,在砂粒和粘粒中,CMV3处理的磷素最大理论吸附量Qm值和NAP值都要低于CMV2处理,也即CMV2处理各土壤颗粒粒径的磷素吸附量和吸附强度达到最高,而在粉粒中,CMV3处理的磷素最大理论吸附量Qm值和KL值最高,因此在农业生产中要结合土壤质地控制好紫云英的添加量。综上,添加适量的紫云英不仅可以提高磷的生物有效性,还可以提高土壤各种粒径颗粒对磷的吸持能力,是稻田土壤磷素科学管理的有效途径。

    添加紫云英可显著提高不同粒径土壤颗粒中的养分含量,以砂粒中的提升幅度最大,其中有机质、全氮、全磷、有效磷含量提高幅度分别达81.04%、15.17%、51.52%和60.70%。

    添加紫云英有效提高不同粒径土壤颗粒对磷的最大理论吸附量(Qm)、土壤本底吸磷量(NAP)和吸附强度(KL),砂粒中磷的Qm可提高46.81%,粉粒中磷的吸附强度(KL)、土壤磷临界浓度(EPC0)和土壤本底吸磷量(NAP),可分别提高69.05%、124.68%和171.26%。各粒径下,等温吸附参数与土壤各养分含量分别呈显著或极显著相关关系。

    不同紫云英添加量下,土壤颗粒对磷的动力学吸附过程符合二级动力学方程模型。各粒径下,添加紫云英可以有效提高初始吸附速率(H)和吸附速率常数(k2)。在粘粒中,相较于不添加紫云英处理,Hk2分别提高了98.20%和111.15%。

  • 图  1   添加紫云英(CMV)下土壤颗粒对磷的等温吸附曲线

    Figure  1.   Isothermal adsorption curves of phosphorus on soil particles with the addition of CMV

    图  2   添加紫云英(CMV)下土壤颗粒对磷的动力学吸附

    Figure  2.   The kinetic adsorption of phosphorus on soil particles under different CMV addition

    表  1   添加紫云英(CMV)下土壤颗粒对磷的等温吸附拟合参数

    Table  1   The Langmuir fitting parameters of phosphate adsorption on soil particles with the addition of CMV

    颗粒
    Soil particle
    处理
    Treatment
    Qm
    (μmol/g)
    KLEPC0
    (μmol/g)
    NAP
    (μmol/g)
    KpR2P
    砂粒
    Sand
    CMV0141.9289.577.5311.001.460.8926<0.01
    CMV1147.6292.397.6715.502.020.9402<0.01
    CMV2208.35130.659.4914.111.490.9363<0.01
    CMV3191.16142.168.7413.071.500.9030<0.01
    粉粒
    Silt
    CMV0104.1655.672.353.341.420.9502<0.01
    CMV1105.4572.124.557.241.590.9634<0.01
    CMV2116.2974.745.6710.381.830.9208<0.01
    CMV3139.1794.115.289.061.720.9355<0.01
    粘粒
    Clay
    CMV0529.7227.121.6137.0923.040.9936<0.01
    CMV1580.7152.012.1444.0120.570.9866<0.01
    CMV2579.9641.212.3244.0819.820.9865<0.01
    CMV3551.1033.752.4537.7814.820.9896<0.01
    下载: 导出CSV

    表  2   添加紫云英(CMV)下不同粒径土壤颗粒表面磷的二级动力学吸附参数

    Table  2   The secondary kinetic adsorption parameters of phosphorus on soil particles under different CMV addition

    土壤颗粒
    Soil particle
    处理
    Treatment
    Qe
    (μmol/g)
    H
    (μmol/min)
    k2
    [mg/(μmol·min)]
    R2P
    砂粒
    Sand
    CMV078.7410.641.5830.9998<0.01
    CMV181.9711.201.6670.9997<0.01
    CMV282.6918.803.0320.9999<0.01
    CMV380.6513.662.1010.9998<0.01
    粉粒
    Silt
    CMV068.1310.861.7790.9999<0.01
    CMV169.7611.031.9210.9995<0.01
    CMV278.1313.512.4140.9998<0.01
    CMV372.4612.382.3570.9998<0.01
    粘粒
    Clay
    CMV0107.539.430.8160.9997<0.01
    CMV1108.7013.051.1050.9998<0.01
    CMV2114.1718.691.7230.9999<0.01
    CMV3117.5311.861.0260.9997<0.01
    下载: 导出CSV

    表  3   添加紫云英(CMV)下土壤颗粒养分含量与比表面积

    Table  3   The nutrient content and specific surface area (SSA) of soil particles as affected by CMV addition

    土壤颗粒
    Soil particle
    处理
    Treatment
    有机质
    Organic matter
    (g/kg)
    全氮
    Total N
    (g/kg)
    全磷
    Total P
    (g/kg)
    有效磷
    Available P
    (mg/kg)
    比表面积
    SSA
    (m2/g)
    砂粒
    Sand
    CMV019.15±0.56 c1.45±0.01 b0.33±0.00 b22.57±1.50 c7.51±0.35 a
    CMV129.61±1.32 b1.52±0.01 a0.50±0.00 a31.77±0.50 b6.22±0.42 c
    CMV225.55±0.47 b1.67±0.08 a0.48±0.01 a36.27±0.25 a6.03±0.19 c
    CMV334.67±2.91 a1.52±0.14 a0.49±0.01 a34.73±0.50 a6.84±0.23 b
    粉粒
    Silt
    CMV011.24±0.05 b0.50±0.01 a0.38±0.01 b16.38±0.25 c2.39±0.15 c
    CMV112.75±0.45 a0.55±0.06 a0.40±0.00 b20.63±1.75 b4.37±0.24 a
    CMV213.53±0.83 a0.52±0.08 a0.46±0.02 a24.93±0.75 a4.19±0.10 a
    CMV312.86±0.17 a0.53±0.00 a0.46±0.00 a19.33±1.00 b3.31±0.22 b
    粘粒
    Clay
    CMV058.60±0.45 c3.84±0.07 c2.11±0.02 b37.39±0.14 b35.07±1.32 a
    CMV159.44±0.70 c3.90±0.01 b2.28±0.02 a40.01±1.10 ab30.58±0.92 b
    CMV261.81±0.02 b3.98±0.01 b2.32±0.00 a42.14±0.10 a31.23±0.85 b
    CMV364.67±0.56 a4.13±0.01 a2.29±0.00 a39.31±1.72 ab27.11±2.55 b
    方差分析 ANOVA
    紫云英 CMV amountP<0.01P>0.05P<0.01P<0.01P<0.01
    颗粒 Particle typeP<0.01P<0.01P<0.01P<0.01P<0.01
    注:同列数据后不同小写字母表示相同土壤颗粒下不同处理间差异显著 (P<0.05)。
    Note: SSA—Specific surface area. Values followed by different lowercase letters in a column mean significant difference among treatments in the same type of soil particle (P<0.05).
    下载: 导出CSV

    表  4   土壤养分含量与等温吸附参数的相关性

    Table  4   Correlation between soil nutrient content and isothermal adsorption parameters

    土壤颗粒
    Soil particle
    吸附参数
    Parameter
    有机质
    Organic matter
    全氮
    Total N
    全磷
    Total P
    有效磷
    Available P
    比表面积
    SSA
    砂粒
    Sand
    Qm0.4070.6930.5320.824*–0.491
    NAP0.5450.4150.881**0.693–0.852**
    EPC00.3210.734*0.5030.805*–0.525
    KL0.3460.4010.2100.540–0.050
    Kp0.291–0.1040.4780.106–0.435
    粉粒
    Silt
    Qm0.3220.0800.729*0.0070.079
    NAP0.909**0.2020.893**0.834*0.713
    EPC00.910**0.2390.869**0.805*0.751
    KL0.6200.2210.822*0.3180.350
    Kp0.887**0.1480.909**0.850**0.642
    粘粒
    Clay
    Qm0.3560.3550.932**0.859**–0.519
    NAP–0.102–0.0500.6390.608–0.303
    EPC00.840**0.843**0.939**0.489–0.877**
    KL–0.165–0.1460.6430.710–0.139
    Kp–0.946**–0.956**–0.6230.0010.886**
    注:Qm—土壤理论最大吸附量;NAP—土壤本底吸磷量;EPC0—土壤磷临界浓度;KL—土壤对磷的吸附力常数;Kp—磷在土壤的分离系数。*—表示 0.05 显著性水平;**—表示 0.01 显著性水平。
    Note: Qm—The maximum adsorption capacity; NAP—The native adsorbed exchangeable phosphorus; EPC0—The zero-equilibrium P concentration; KL—The adsorption constant; Kp—The affinity of soil to phosphorus. *—Significant at the 0.05 level; **—Significant at the 0.01 level.
    下载: 导出CSV
  • [1] 都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2): 476–486. Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China[J]. Acta Pedologica Sinica, 2021, 58(2): 476–486.

    Du J X, Liu K L, Huang J, et al. Spatio-temporal evolution characteristics of soil available phosphorus and its response to phosphorus balance in paddy soil in China [J]. Acta Pedologica Sinica, 2021, 58(2): 476-486.

    [2] 兰忠明, 林新坚, 张伟光, 等. 缺磷对紫云英根系分泌物产生及难溶性磷活化的影响[J]. 中国农业科学, 2012, 45(8): 1521–1531. Lan Z M, Lin X J, Zhang W G, et al. Effect of P deficiency on the emergence of Astragalus L. root exudates and mobilization of sparingly soluble phosphorus[J]. Scientia Agricultura Sinica, 2012, 45(8): 1521–1531. DOI: 10.3864/j.issn.0578-1752.2012.08.008

    Lan Z M, Lin X J, Zhang W G, et al. Effect of p deficiency on the emergence of astragalus L. root exudates and mobilization of sparingly soluble phosphorus [J]. Scientia Agricultura Sinica, 2012, 45(8): 1521–1531. DOI: 10.3864/j.issn.0578-1752.2012.08.008

    [3] 颜晓, 卢志红, 魏宗强, 等. 几种典型酸性旱地土壤磷吸附的关键影响因素[J]. 中国土壤与肥料, 2019, (3): 1–7. Yan X, Lu Z H, Wei Z Q, et al. Key factors influencing phosphorus sorption for several acid upland soils[J]. Soil and Fertilizer Sciences in China, 2019, (3): 1–7. DOI: 10.11838/sfsc.1673-6257.18314

    Yan X, Lu Z H, Wei Z Q, et al. Key factors influencing phosphorus sorption for several acid upland soils [J]. Soil and Fertilizer Sciences in China, 2019, (3): 1–7. DOI: 10.11838/sfsc.1673-6257.18314

    [4]

    Yan Z J, Chen S, Dari B, et al. Phosphorus transformation response to soil properties changes induced by manure application in a calcareous soil[J]. Geoderma, 2018, 322: 163–171. DOI: 10.1016/j.geoderma.2018.02.035

    [5] 严玉鹏, 王小明, 胡震, 等. 磷酸根在矿物表面的吸附–解吸特性研究进展[J]. 土壤, 2021, 53(3): 439–448. Yan Y P, Wang X M, Hu Z, et al. Research progresses on sorption and desorption characteristics of phosphate on minerals[J]. Soils, 2021, 53(3): 439–448.

    Yan Y P, Wang X M, Hu Z et al. Research progresses on sorption and desorption characteristics of phosphate on minerals [J]. Soils, 2021, 53(3): 439–448.

    [6] 夏文建, 冀建华, 刘佳, 等. 长期不同施肥红壤磷素特征和流失风险研究[J]. 中国生态农业学报, 2018, 26(12): 1876–1886. Xia W J, Ji J H, Liu J, et al. Effect of long-term fertilization on soil phosphorus characteristics and loss risk of red soil[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1876–1886.

    XIA W J, JI J H, LIU J, et al. Effect of long-term fertilization on soil phosphorus characteristics and loss risk of red soil [J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1876–1886.

    [7] 胡怡凡, 刘佳坪, 王子楷, 等. 轮作提高土壤磷生物有效性改善后茬作物磷素营养[J]. 植物营养与肥料学报, 2021, 27(8): 1305–1310. Hu Y F, Liu J P, Wang Z K, et al. Rotation increases soil phosphorous bioavailability and improves phosphorous nutrition of the latter crop in rotation[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1305–1310. DOI: 10.11674/zwyf.20398

    Hu Y F, Liu J P, Wang Z K, et al. Rotation increases soil phosphorous bioavailability and improves phosphorous nutrition of the latter crop in rotation [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1305–1310. DOI: 10.11674/zwyf.20398

    [8] 高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制[J]. 植物营养与肥料学报, 2020, 26(12): 2115–2126. Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115–2126. DOI: 10.11674/zwyf.20375

    Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115–2126. DOI: 10.11674/zwyf.20375

    [9] 梁玉英, 黄益宗, 孟凡乔, 朱永官. 有机酸对菜地土壤磷素活化的影响[J]. 生态学报, 2005, 25(5): 1171–1177.

    Liang Y Y, Huang Y Z, Meng F Q, Zhu Y G. Effect of organic acids on the activation of phosphorus in vegetable garden soils[J]. Acta Ecologic Sinica, 2005, 25(5): 1171–1177.

    [10] 章永松, 林咸永, 倪吾钟. 有机肥对土壤磷吸附–解吸的直接影响[J]. 植物营养与肥料学报, 1996, 2(3): 200–205. Zhang Y S, Lin X Y, Ni W Z. Direct effect of organic fertilizer on phosphorus adsorption-desorption in soil[J]. Journal of Plant Nutrition and Fertilizers, 1996, 2(3): 200–205. DOI: 10.3321/j.issn:1008-505X.1996.03.002

    Zhang Y S, Lin X Y, Ni W Z. Direct effect of organic fertilizer on phosphorus adsorption-desorption in soil [J]. Journal of Plant Nutrition and Fertilizers, 1996, (3): 200–205. DOI: 10.3321/j.issn:1008-505X.1996.03.002

    [11] 张乃于, 闫双堆, 李娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析[J]. 植物营养与肥料学报, 2019, 25(12): 2076–2083. Zhang N Y, Yan S D, Li J, et al. Meta-analysis on the effects of low molecular weight organic acids on increasing availability of soil phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2076–2083. DOI: 10.11674/zwyf.19330

    Zhang N Y, Yan S D, Li J, et al. Meta-analysis on the effects of low molecular weight organic acids on increasing availability of soil phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2076–2083. DOI: 10.11674/zwyf.19330

    [12]

    Jemo M, Abaidoo R C, Nolte C, et al. Phosphorus benefits from grain-legume crops to subsequent maize grown on acid soils of southern Cameroon[J]. Plant and Soil, 2006, 284(1–2): 385–397. DOI: 10.1007/s11104-006-0052-x

    [13] 刘永红, 马舒威, 岳霞丽, 等. 土壤环境中的小分子有机酸及其环境效应[J]. 华中农业大学学报, 2014, 33(2): 133–138. Liu Y H, Ma S W, Yue X L, et al. Low molecular weight organic acids in soils and its environmental effects[J]. Journal of Huazhong Agricultural University, 2014, 33(2): 133–138. DOI: 10.3969/j.issn.1000-2421.2014.02.024

    Liu Y H, Ma S W, Yue X L, et al. Low molecular weight organic acids in soils and its environmental effects [J]. Journal of Huazhong Agricultural University, 2014, 33(2): 133–138. DOI: 10.3969/j.issn.1000-2421.2014.02.024

    [14] 顾炽明, 李越, 李银水, 等. 绿肥腐解液中有机酸组成对铝磷和铁磷活化能力的影响[J]. 植物营养与肥料学报, 2021, 27(9): 1627–1635. Gu C M, Li Y, Li Y S, et al. Effects of organic acid composition in the decomposed liquid of green manure crops on the activation level of AlPO4 and FePO4·2H2O[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1627–1635. DOI: 10.11674/zwyf.2021092

    Gu C M, Li Y, Li Y S, et al. Effects of organic acid composition in the decomposed liquid of green manure crops on the activation level of AlPO4 and FePO4·2H2O [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1627–1635. DOI: 10.11674/zwyf.2021092

    [15]

    Huang Q Y, Zhao Z H, Chen W L. Effects of several low- molecular weight organic acids and phosphate on the adsorption of acid phosphatase by soil colloids and minerals[J]. Chemosphere, 2003, 52: 571–579. DOI: 10.1016/S0045-6535(03)00238-8

    [16] 郇恒福, 黄嘉璞, 线琳, 等. 施用豆科绿肥对酸性土壤有机磷组分的动态影响[J]. 草地学报, 2014, 22(6): 1216–1221. Huan H F, Huang J P, Xian L, et al. Dynamic effects of Leguminous green manure on the organic phosphorus fractions of acid soil[J]. Acta Agrestia Sinica, 2014, 22(6): 1216–1221.

    Huan H F, Huang J P, Xian L, et al. Dynamic effects of leguminous green manure on the organic phosphorus fractions of acid soil [J]. Acta Agrestia Sinica, 2014, 22(6): 1216-1221.

    [17] 刘彩玲, 王瑞, 李昱, 等. 不等量翻压紫云英处理下黄泥田土壤磷组分的变化[J]. 中国土壤与肥料, 2019, (6): 44–48,70. Liu C L, Wang R, Li Y et al. Changes in soil phosphorus contents induced by milk vetch green manure[J]. Soil and Fertilizer Sciences in China, 2019, (6): 44–48,70. DOI: 10.11838/sfsc.1673-6257.19061

    Liu C L, Wang R, Li Y et al. Spatial fraction of effective boron content in tobacco growing soil and its influencing factors in Longshan County [J]. Soil and Fertilizer Sciences in China, 2019(6): 44–48, 70. DOI: 10.11838/sfsc.1673-6257.19061

    [18]

    Wang Y, Liang H, Li S, et al. Co-utilizing milk vetch, rice straw, and lime reduces the Cd accumulation of rice grain in two paddy soils in south China[J]. Science of the Total Environment, 2022, 806: 150622–150632. DOI: 10.1016/j.scitotenv.2021.150622

    [19] 熊毅. 土壤胶体研究方法[M]. 北京: 科学出版社, 1985.

    Xiong Y. Soil colloid[M]. Beijing: Science Press, 1985.

    [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2020.

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.

    [21] 王飞, 林诚, 李清华, 等. 亚热带单季稻区紫云英不同翻压量下有机碳和养分释放特征[J]. 草业学报, 2012, 21(4): 319–324. Wang F, Lin C, Li Q H, et al. A study on organic carbon and nutrient releasing characteristics of different Astragalus sinicus manure use levels in a single cropping region of Subtropical China[J]. Acta Prataculturae Sinica, 2012, 21(4): 319–324. DOI: 10.11686/cyxb20120439

    Wang F, Lin C, Li Q H, et al. A study on organic carbon and nutrient releasing characteristics of different Astragalus sinicus manure use levels in a single Cropping region of Subtropical China [J]. Acta Prataculturae Sinica, 2012, 21(4): 319–324. DOI: 10.11686/cyxb20120439

    [22] 宋莉, 韩上, 鲁剑巍, 等. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究[J]. 中国土壤与肥料, 2015, (3): 100–104. Song L, Han S, Lu J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field[J]. Soil and Fertilizer Sciences in China, 2015, (3): 100–104. DOI: 10.11838/sfsc.20150318

    Song L, Han S, Lu J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field [J]. Soil and Fertilizer Sciences in China, 2015, (3): 100-104. DOI: 10.11838/sfsc.20150318

    [23] 王慧, 唐杉, 王允青, 等. 紫云英翻压对稻田土壤肥力和双季稻产量的影响[J]. 土壤通报, 2019, 50(6): 1384–1390. Wang H, Tang S, Wang Y Q, et al. Effects of the incorporation of Chinese milk vetch on soil fertility and double rice yield[J]. Chinese Journal of Soil Science, 2019, 50(6): 1384–1390. DOI: 10.19336/j.cnki.trtb.2019.06.17

    Wang H, Tang S, Wang Y Q, et al. Effects of the incorporation of Chinese milk vetch on soil fertility and double rice yield [J]. Chinese Journal of Soil Science, 2019, 50(6): 1384–1390. DOI: 10.19336/j.cnki.trtb.2019.06.17

    [24] 唐杉, 王允青, 赵决建, 等. 紫云英还田对双季稻产量及稳定性的影响[J]. 生态学杂志, 2015, 34(11): 3086–3093. Tang S, Wang Y Q, Zhao J J, et al. Effects of milk vetch application on double cropping rice yield and yield stability[J]. Chinese Journal of Ecology, 2015, 34(11): 3086–3093. DOI: 10.13292/j.1000-4890.20151023.005

    Tang S, Wang Y Q, Zhao J J, et al. Effects of milk vetch application on double cropping rice yield and yield stability [J]. Chinese Journal of Ecology, 2015, 34(11): 3086-3093. DOI: 10.13292/j.1000-4890.20151023.005

    [25] 颜志雷, 方宇, 陈济琛, 等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1151–1160. Yang Z L, Fang Y, Chen J C, et al. Effect of turning over Chinese milk vetch (Astragalus sinicus L. ) on soil nutrients and microbial properties in paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1151–1160. DOI: 10.11674/zwyf.2014.0511

    Yang Z L, Fang Y, Chen J C, et al. Effect of turning over Chinese milk vetch (Astragalus sinicus L. ) on soil nutrients and microbial properties in paddy fields [J]. Plant Nutrition and Fertilizer Science, 2014, 20(5): 1151–1160. DOI: 10.11674/zwyf.2014.0511

    [26]

    Guppy C N, Menzies N W, Moody P W, et al. Competitive sorption reactions between phosphorus and organic matter in soil: A review[J]. Australian Journal of Soil Research, 2005, 43(2): 189–202. DOI: 10.1071/SR04049

    [27]

    Zhang Y H, Huang S M, Guo D D, et al. Phosphorus adsorption and desorption characteristics of different textural fluvo-aquic soils under long-term fertilization[J]. Journal of Soils and Sediments, 2019, 19(3): 1306–1318. DOI: 10.1007/s11368-018-2122-0

    [28]

    Arai Y, Sparks D L. Phosphate reaction dynamics in soils and soil components: A multiscale approach[J]. Advances in Agronomy, 2007, 94: 135–179.

    [29] 赵小蓉, 钟晓英, 李贵桐, 等. 我国23个土壤磷素淋失风险评估Ⅱ. 淋失临界值与土壤理化性质和磷吸附特性的关系[J]. 生态学报, 2006, 26(9): 3011–3017. Zhao X R, Zhong X Y, Li G T, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils Ⅱ. The relationships between soil properties, P adsorption characteristics and the leaching criterion[J]. Acta Ecologica Sinica, 2006, 26(9): 3011–3017. DOI: 10.3321/j.issn:1000-0933.2006.09.029

    Zhao X R, Zhong X Y, Li G T, et al. The evaluation of phosphorus leaching risk of 23 Chinese soils Ⅱ. The relationships between soil properties, P adsorption characteristics and the leaching criterion [J]. Acta Ecologica Sinica, 2006, (9): 3011–3017. DOI: 10.3321/j.issn:1000-0933.2006.09.029

    [30]

    Fan B Q, Wang J, Fenton O, et al. Strategic differences in phosphorus stabilization by alum and dolomite amendments in calcareous and red soils[J]. Environmental Science and Pollution Research, 2019, 26(5): 4842–4854. DOI: 10.1007/s11356-018-3968-9

    [31]

    Pizzeghello D, Berti A, Nardi S, et al. Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications[J]. Agriculture, Ecosystems & Environment, 2014, 189: 216–228.

    [32] 刘春增, 常单娜, 李本银, 等. 种植翻压紫云英配施化肥对稻田土壤活性有机碳氮的影响[J]. 土壤学报, 2017, 54(3): 657–669. Liu C Z, Chang D N, Li B Y, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil[J]. Acta Pedologica Sinica, 2017, 54(3): 657–669. DOI: 10.11766/trxb201607050273

    Liu C Z, Chang D N, Li B Y, et al. Effects of planting and incorporation of Chinese milk vetch coupled with application of chemical fertilizer on active organic carbon and nitrogen in paddy soil [J]. Acta Pedologica Sinica, 2017, 54(3): 657–669. DOI: 10.11766/trxb201607050273

    [33] 张海涛, 刘建玲, 廖文华, 等. 磷肥和有机肥对不同磷水平土壤磷吸附-解吸的影响[J]. 植物营养与肥料学报, 2008, 14(2): 284–290. Zhang H T, Liu J L, Liao W H, et al. Effect of phosphate fertilizer and manure on properties of phosphorus sorption and desorption in soils with different phosphorus levels[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(2): 284–290. DOI: 10.3321/j.issn:1008-505X.2008.02.013

    Zhang H T, Liu J L, Liao W H, et al. Effect of phosphate fertilizer and manure on properties of phosphorus sorption and desorption in soils with different phosphorus levels [J]. Plant Nutrition and Fertilizer Science, 2008, 14(2): 284–290. DOI: 10.3321/j.issn:1008-505X.2008.02.013

    [34] 赵文强, 刘星, 蔡鹏, 等. 病原菌在红壤胶体上的吸附机制研究[J]. 土壤学报, 2013, 50(2): 221–229. Zhao W Q, Liu X, Cai P, et al. Mechanisms of bacterial pathogens adsorption on red soil colloids[J]. Acta Pedologica Sinica, 2013, 50(2): 221–229. DOI: 10.11766/trxb201206210246

    Zhao W Q, Liu X, Cai P, et al. Mechanisms of bacterial pathogens adsorption on red soil colloids [J]. Acta Pedologica Sinica, 2013, 50(2): 221–229. DOI: 10.11766/trxb201206210246

    [35]

    Chen C, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science and Technology, 2014, 48: 13751–13759. DOI: 10.1021/es503669u

    [36] 王琼, 展晓莹, 张淑香, 等. 长期不同施肥处理黑土磷的吸附-解吸特征及对土壤性质的响应[J]. 中国农业科学, 2019, 52(21): 3866–3877. Wang Q, Zhan X Y, Zhang S X, et al. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization[J]. Scientia Agricultura Sinica, 2019, 52(21): 3866–3877. DOI: 10.3864/j.issn.0578-1752.2019.21.015

    Wang Q, Zhan X Y, Zhang S X, et al. Phosphorus adsorption and desorption characteristics and its response to soil properties of black soil under long-term different fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866–3877. DOI: 10.3864/j.issn.0578-1752.2019.21.015

    [37]

    Wang Y, Shen Z Y, Niu J F, et al. Adsorption of phosphorus on sediments from the Three-Gorges Reservoir (China) and the relation with sediment compositions[J]. Journal of Hazardous Materials, 2009, 162: 92–98. DOI: 10.1016/j.jhazmat.2008.05.013

  • 期刊类型引用(3)

    1. 夏铭阳,梁怡,刘敦一. 纳米镁肥降低土壤镁淋洗的机制探究. 东北农业科学. 2025(01): 16-24 . 百度学术
    2. 熊丽媛,靳振江,李雪松,朱虹颖,张晓文,秦广法,成官文. 豆科植物对铝土矿矿泥肥力和酶活性的影响. 环境科学与技术. 2023(08): 125-133 . 百度学术
    3. 余艳芳,何世界,丁丽,杜光辉,杨光,雷海霞,刘彦龙,吕玉虎. 稻茬紫云英田阔叶草防治药剂筛选及安全性评价. 杂草学报. 2023(03): 55-60 . 百度学术

    其他类型引用(3)

图(2)  /  表(4)
计量
  • 文章访问数:  1906
  • HTML全文浏览量:  764
  • PDF下载量:  64
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-12-01
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-07-26
  • 刊出日期:  2022-08-24

目录

/

返回文章
返回