Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

硝化抑制剂/菌剂对设施土壤–蔬菜体系中氮素去向的影响

程晓楠, 田晓楠, 郭艳杰, 李瑞娟, 张丽娟, 吉艳芝, 李博文

程晓楠, 田晓楠, 郭艳杰, 李瑞娟, 张丽娟, 吉艳芝, 李博文. 硝化抑制剂/菌剂对设施土壤–蔬菜体系中氮素去向的影响[J]. 植物营养与肥料学报, 2022, 28(8): 1466-1477. DOI: 10.11674/zwyf.2021657
引用本文: 程晓楠, 田晓楠, 郭艳杰, 李瑞娟, 张丽娟, 吉艳芝, 李博文. 硝化抑制剂/菌剂对设施土壤–蔬菜体系中氮素去向的影响[J]. 植物营养与肥料学报, 2022, 28(8): 1466-1477. DOI: 10.11674/zwyf.2021657
CHENG Xiao-nan, TIAN Xiao-nan, GUO Yan-jie, LI Rui-juan, ZHANG Li-juan, JI Yan-zhi, LI Bo-wen. Effects of nitrification inhibitor/microbial inoculum on nitrogen fate in soil-vegetable system of greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1466-1477. DOI: 10.11674/zwyf.2021657
Citation: CHENG Xiao-nan, TIAN Xiao-nan, GUO Yan-jie, LI Rui-juan, ZHANG Li-juan, JI Yan-zhi, LI Bo-wen. Effects of nitrification inhibitor/microbial inoculum on nitrogen fate in soil-vegetable system of greenhouse[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1466-1477. DOI: 10.11674/zwyf.2021657

硝化抑制剂/菌剂对设施土壤–蔬菜体系中氮素去向的影响

基金项目: 河北省重点研发计划项目(21326905D,19224007D);河北省现代农业产业技术体系蔬菜产业创新团队项目(HBCT2018030206)。
详细信息
    作者简介:

    程晓楠 E-mail:chengxn123@163.com

    通讯作者:

    郭艳杰 E-mail: guoyanjie928@126.com

    吉艳芝 E-mail: jiyanzhi@hebau.edu.cn

Effects of nitrification inhibitor/microbial inoculum on nitrogen fate in soil-vegetable system of greenhouse

  • 摘要:
    目的 

    明确硝化抑制剂与菌剂单施与配施条件下设施土壤–茄子生产体系中氮的去向,为设施茄子科学施氮提供理论依据。

    方法 

    田间试验采用随机区组设计,设置6个处理:不施氮肥对照(CK)、常规施氮720 kg/hm2 (FN)、减施30%氮肥(N 504 kg/hm2,RN),减氮30%配施硝化抑制剂(RND)、菌剂(RNB)和同时配施硝化抑制剂与菌剂(RNDB)。研究设施土壤–茄子体系中茄子对氮素的吸收利用、土壤剖面NO3-N累积量、N2O排放和NH3挥发的气态损失量及各去向所占比例。

    结果 

    1) RNDB处理产量为112.27 t/hm2,比RND处理显著增加11.0%;可溶性糖含量达0.95%,较RND和RNB处理分别显著提高17.3%和18.8%。2)各处理吸氮量均为果实>茎秆>叶片>根系;RNDB处理的总吸氮量为259.66 kg/hm2,比RN处理显著提高16.1%;氮肥表观利用率最高为20.87%,与RND和RNB处理差异不显著;氮肥农学效率为99.69 kg/kg,显著高于RND处理。3)相同施氮量下,RNDB处理的气态净损失量(N2O与NH3)和净损失率分别为16.05 kg/hm2和4.73%,RNDB的N2O累积排放量比RNB显著降低28.8%,各处理间NH3挥发累积量差异较小。4) 0—60 cm土层土壤剖面NO3-N累积量为FN>RNB>RN>RND>RNDB>CK,除CK处理外,RNDB处理的累积量最低为873.1 kg/hm2,RNDB处理土壤硝态氮累积量比RN、RNB和RND处理分别减少17.6%、17.7%和2.2%;60—120 cm土层土壤剖面NO3-N累积量为FN>RN>RNB>RND>RNDB>CK,RNDB处理的累积量为744.0 kg/hm2,比RND和RNB处理分别降低1.0%和25.2%。

    结论 

    相比RN处理,减氮30%同时配施硝化抑制剂与菌剂能有效减少N2O气态损失,对NH3挥发影响较小,提高茄子氮素吸收量,显著降低0—60 cm土层土壤氮素残留,是实现茄子优质高产、环境友好的有效措施。

    Abstract:
    Objectives 

    We assessed the fate of soil nitrogen under single application and combined application of nitrification inhibitors and microbial inoculum in a greenhouse eggplant production system.

    Methods 

    The experimental field was set up with a randomized block design and 6 treatments, including no nitrogen fertilizer (CK), conventional nitrogen application of 720 kg/hm2 (FN), 30% reduction of nitrogen fertilizer (N 504 kg/hm2, RN), 30% reduction of nitrogen combined with nitrification inhibitor (RND), microbial inoculum (RNB) and simultaneous application of nitrification inhibitor and microbial inoculum (RNDB). The nitrogen uptake and utilization, NO3-N accumulation in soil profile, N2O emission, gaseous loss of NH3 volatilization and the proportion of each destination in the soil greenhouse eggplant system were assessed.

    Results 

    1) The yield of RNDB treatment was 112.27 t/hm2, which was 11.0% higher than that of RND treatment. The soluble sugar content of RNDB was 0.95%, which was significantly higher than that of RND and RNB by 17.3% and 18.8% respectively. 2) The order of nitrogen uptake in all the treatments was: fruit>stem>leaf >root. The total nitrogen uptake of RNDB treatment was 259.66 kg/hm2, which was 16.1% higher than that of RN. The apparent nitrogen use efficiency of RNDB treatment was the highest (20.87%), which was not significantly different from RND and RNB treatment. The agronomic efficiency of nitrogen fertilizer was 99.69 kg/kg, which was only significantly higher than that of RND treatment. 3) Under the same nitrogen application rate, the net gaseous loss (N2O and NH3) and net loss rate in RNDB treatment were 16.05 kg/hm2 and 4.73% respectively. The accumulative N2O emission of RNDB was significantly lower than that of RNB by 28.8%. There was no significant difference in NH3 volatilization accumulation among treatments. 4) The accumulation of NO3-N in 0–60 cm soil profile was FN> RNB>RN>RND>RNDB>CK. Except in CK treatment, the lowest accumulation of RNDB treatment was 873.1 kg/hm2. The accumulation of soil NO3-N in RNDB treatment was 17.6%, 17.7% and 2.2% lower than that in RN, RNB and RNDB treatment, respectively. The accumulation of NO3-N in 60–120 cm soil profile was FN> RN > RNB>RND>RNDB>CK. The NO3-N accumulative amount of RNDB treatment was 744.0 kg/hm2, which was 1.0% and 25.2% lower than that of RND and RNB treatment, respectively.

    Conclusions 

    Reducing nitrogen by 30% combined with nitrification inhibitor and microbial inoculum application could effectively reduce N2O and NH3 gaseous loss, improve nitrogen absorption of eggplant and significantly reduce nitrogen residue in 0–60 cm soil profile. It is an effective measure to realize environment-friendly production of high quality and high yield eggplant.

  • 随着人们对蔬菜需求量的增加,我国设施蔬菜种植面积逐年扩大,近20年增加了53.1%[1]。为了追求设施蔬菜产量,生产中更加依赖化肥的施用,尤其是氮肥的投入分别达到了露地蔬菜和粮食作物的1.6与3.2倍[2]。过量的氮肥投入造成氮素的气态损失、淋洗损失和土壤累积,严重威胁着生态环境[3]。其中寿光蔬菜大棚的氮肥用量是当地小麦、玉米的6~14倍[4],江苏设施菜地氮肥投入量比测土配方施肥区高17.32%[5],全国设施蔬菜调研的氮肥施用量是推荐量的1.9倍[6]。蔬菜是浅根系作物,很难吸收淋溶到土壤下层的氮素,致使淋洗至根区以外的氮素污染浅层地下水[7]。华北平原地区硝酸盐的平均含量为86.8 mg/L[8],超过世界卫生组织(World Health Organization, WHO)饮用水标准(50 mg/L)的1.74倍。同时土壤氮素以NH3和N2O形式的损失量约占投入量的10%[9],N2O的排放量占我国农业N2O排放总量的21%[10-11]。因此,合理有效的施用氮肥,是当前集约化蔬菜产区亟待解决的问题。

    有研究表明,减少氮肥投入是降低氮素损失的有效途径,在传统施氮量1000 kg/hm2的基础上减氮50%,能有效降低设施番茄土壤硝态氮残留达56.61%,表观氮素损失降低45.72%,土壤氮素平衡盈余率降低34.26%[12];在270 kg/hm2施氮量基础上减氮40%,能使番茄产量显著提高183.6%,氮素利用率显著增加10.5个百分点[13]。也有学者研究发现,硝化抑制剂能够延缓铵态氮向硝态氮的转化速度和强度,减少NO3-N的淋溶和反硝化损失[14],从而提高作物对氮素的吸收和利用率[15-16]。减量施氮配施硝化抑制剂能使黄瓜增产23.3%[17]、西瓜可溶性糖含量提高0.77%~1.25%[18];N2O的排放减少42.1%~64.1%,但NH3挥发损失显著增加34.3%~40.4%[19];芹菜地上部分氮素利用率提高到16.85%,土壤硝态氮含量降低12.28%~56.73%[20]。近年来,微生物菌剂因绿色环保和环境友好等特点,已成为我国的研究热点[21]。有研究发现微生物菌剂在改善土壤环境、促进作物生长和提高氮素利用等方面作用显著[22-23]。施用微生物菌剂的土壤硝态氮含量和N2O平均排放通量分别降低22%~29%和58.3%~73.1%[24],氨挥发量降低13.81%~42.21%[25],番茄产量、可溶性固形物、可溶性蛋白和可溶性糖分别显著增加24.66%、31.05%、27.82和62.73%[26]。同时减氮配施微生物菌剂还能够塑造良好的根系生长环境,能够使小麦的氮素累积量提高11.3%,提高了氮素利用率[27]。可见,硝化抑制剂与微生物菌剂在菜田环境和蔬菜产量等方面发挥着良好的作用。

    硝化抑制剂与菌剂对作物提质增产和环境友好均表现出良好效果,但硝化抑制剂和菌剂对土壤中氮素的去向有何影响?谯江兰[28]在设施番茄上的研究证实了硝化抑制剂和菌剂在提高氮素利用率方面确实起到了协同的效果;张春楠等[29]在设施甜瓜上发现硝化抑制剂和菌剂配施能活化土壤养分,提高植物对养分的吸收;郭娇[30]在设施黄瓜的研究发现,硝化抑制剂与菌剂在减少土壤氮素累积和降低N2O排放量与NH3挥发量方面有良好的效果。因此,本研究以设施茄子为研究对象,探究硝化抑制剂和微生物菌剂单施与配施对土壤–茄子体系中氮素的吸收利用、气态损失及土壤残留的影响,为设施蔬菜的优质、高效种植提供科学依据。

    试验于2019年9月24日—2020年5月10日在河北省保定市定兴县龙华村华农蔬菜合作社(E115°58′97″,N39°16′86″)的温室大棚进行。定兴县位于冀中平原腹地,京津保中心地带,地理位置优越并且地势较为平坦开阔,土层深厚,适宜蔬菜生长,可为京津保地区提供稳定的蔬菜需求。试验地土壤基本理化性质见表1

    表  1  试验前田间试验土壤基本理化性质
    Table  1.  Basic chemical and physical properties of the experimental soil before this study
    土层
    Soil layer
    (cm)
    全氮
    Total N
    (g/kg)
    有机质
    Organic matter
    (g/kg)
    硝态氮
    NO3-N
    (mg/kg)
    速效钾
    NH4OAc-K
    (mg/kg)
    有效磷
    Olsen-P
    (mg/kg)
    pH
    (2.5∶1)
    粒径组成 (%)
    Particle size composition
    容重
    Bulk density
    (g/cm3)
    砂粒
    Sand
    粉粒
    Silt
    黏粒
    Clay
    0—301.1018.57121.68340.0990.427.8373.3715.2111.421.35
    30—600.7412.36116.14195.2450.157.8877.8612.0110.131.33
    60—900.759.25132.40125.3625.697.8076.7513.699.561.30
    90—1200.629.43141.77135.2620.577.7972.0116.0111.981.32
    下载: 导出CSV 
    | 显示表格

    供试作物为茄子,品种为‘107’圆茄。供试商品有机肥(含N 2.38%、P2O5 1.01%、K2O 1.39%),化肥有尿素(N 46%)、过磷酸钙(P2O5 16%)和硫酸钾(K2O 52%)。供试抑制剂为DMPP (3,4-二甲基吡唑磷酸盐)。供试菌剂枯草芽孢杆菌菌剂(粉剂,有效活菌数≥7.6×109 cfu/g)、胶质类芽孢杆菌菌剂(粉剂,有效活菌数≥7×108 cfu/g)。

    试验共设6个处理:不施氮肥对照(CK)、常规施氮量 (720 kg/hm2,FN)、减施30%氮肥(N 504 kg/hm2,RN),以及减氮30%配施硝化抑制剂DMPP (RND)、菌剂(RNB)和同时配施DMPP及菌剂(RNDB)。施氮量包括基肥中商品有机肥和追肥中尿素的纯氮量,每次施肥中减氮及减氮配施DMPP和菌剂处理的施氮量均在常规处理FN的基础上减氮30%进行施用。硝化抑制剂DMPP用量为纯氮量的2%,菌剂为枯草芽孢杆菌和胶质类芽孢杆菌菌剂,用量分别为20×1012、40×1012 cfu/hm2。每个处理3次重复,共18个小区,小区面积29.63 m2 (3.75 m×7.90 m)。茄子种植密度为2.84×104 plant/hm2

    于2019年9月24日施基肥,2019年9月25日定植,2020年5月10日收获。整个生育期共追肥7次,分别为2019年12月3日、2020年1月8日、2020年2月4日、2020年3月4日、2020年3月20日、2020年4月5日、2020年4月20日。其中,每个处理的磷钾肥用量保持一致,分别为295和680 kg/hm2。各处理肥料、菌剂等具体用量见表2。施肥后灌水,肥料与DMPP施入方式为沟施,沟深10 cm,菌剂稀释后再进行灌根,其余田间管理都按当地常规操作进行。

    表  2  试验处理养分与硝化抑制剂和菌剂具体施用剂量
    Table  2.  Dosage of nutrient, DMPP and strains in each experimental treatment
    施肥方式
    Fertilization mode
    N
    (kg/hm2)
    P2O5
    (kg/hm2)
    K2O
    (kg/hm2)
    DMPP
    (kg/hm2)
    枯草类芽孢杆菌
    Bacillus subtilis
    (×1012 cfu/hm2)
    胶质类芽孢杆菌
    Paenibacillus mucilaginosus
    (×1012 cfu/hm2)
    CKFNRNRNDRNBRNDBRNDRNDBRNBRNDBRNBRNDB
    基肥 Basal (2019–09–24)03402382382382381451984.764.7610.0010.0020.0020.00
    追肥 Topdressing
    2019–12–030604242424250620.840.841.431.432.862.86
    2020–01–080503535353550700.700.701.431.432.862.86
    2020–02–040604242424250700.840.841.431.432.862.86
    2020–03–04060424242420700.840.841.431.432.862.86
    2020–03–20050353535350700.700.701.431.432.862.86
    2020–04–05050353535350700.700.701.431.432.862.86
    2020–04–20050353535350700.700.701.421.422.842.84
    总计 Total072050450450450429568010.0810.0820.0020.0040.0040.00
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥 (N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum.
    下载: 导出CSV 
    | 显示表格

    茄子收获到采摘结束期间,按小区记录每次采摘的茄子累计产量同时测定单果重。

    在茄子‘四门斗’期(第3次分枝),每个小区采集充分膨大且外观大小一致的商品果实样品3个,测定品质指标。维生素C含量用钼蓝比色法测定,可溶性糖含量用浓硫酸-蒽酮比色法测定,可溶性蛋白质含量用考马斯亮蓝G250染色法测定,果实横纵径用游标卡尺测量。

    收获后采集各小区长势均匀的3株完整植株,分为果实、茎秆、叶片和根系4个部分在105℃下杀青30 min,65℃烘干至恒重。然后记录干生物量,粉碎后采用浓H2SO4-H2O2消化—凯氏定氮法测定N含量。

    N2O利用密闭式静态箱采集,气相色谱法测定。箱体高15.50 cm,底座直径15.00 cm。于每次追肥后第1、2、3、5、7、9 天采气。采样时间为每天上午9:00—11:00,每隔15 min采样1次,共采集3次气体,每次采集气体后注入20 mL真空瓶内,利用Agilent 7890A型气相色谱仪分析测定。

    NH3采用海绵通气法采集测定[31],海绵吸收的氨用1.0 mol/L KCl浸提,采用连续流动分析仪测定。装置内径15.00 cm,高14.50 cm。每次施肥灌水后连测10天[32]

    种植前采用“S”形取样方式,用土钻采集5个样点土壤,采集深度为0—120 cm,每30 cm为一个样品,用于测定土壤基本理化指标。收获后,每个小区选3个点,用土钻取0—120 cm土壤剖面样品,每30 cm为一个样品,鲜样采用1.0 mol/L KCl溶液浸提,连续流动分析仪测定硝态氮含量。

    土壤容重采用环刀法测定;pH按水土比2.5∶1,酸度计测定。有机质采用重铬酸钾外加热法测定;有效磷、速效钾分别采用0.5 mol/L NaHCO3和1 mol/L CH3COONH4溶液浸提,紫外分光光度计测定有效磷,火焰分光光度计测定速效钾。

    N2O排放通量[μg/(m2·h)] =ρ×H×ΔcΔt×273273+T

    式中:ρ为标准状态下N2O气体密度(其值为1.25 kg/hm3);H为静态箱高度(m);Δct为N2O浓度变化率;T为测定时箱体内的平均温度(℃)

    NH3挥发速率[kg/(hm2·d)]=M×102π×r2×D

    式中:M为单个装置平均每次测得的氨量(NH3-N,mg);r表示装置半径(m);D为每次连续捕获时间(d)。

    N2O净损失率(%)= (施氮处理N2O累积排放量–不施氮处理N2O累积排放量) /施氮量×100

    NH3净损失率(%)= (施氮处理NH3累积挥发量–不施氮处理NH3累积挥发量)/施氮量×100

    各器官吸氮量(kg/hm2)= 各器官生物量×各器官氮含量/106

    硝态氮累积量(kg/hm2)= 土层厚度(cm)×土壤容重(g/cm3)×硝态氮含量(mg/kg)/10

    氮肥偏生产力(kg/kg)= 单位面积产量(kg)/单位面积施氮量(kg)

    氮肥表观利用率(%)= (施氮处理植株总吸氮量–不施氮处理植株总吸氮量)/施氮量×100

    氮肥农学效率(kg/kg)= (施氮处理作物产量–不施氮处理作物产量)/施氮量

    试验数据处理和作图采用Microsoft Excel 2016,统计分析采用SPSS 22.0进行单因素方差分析,选用LSD (P<0.05为显著)进行多重比较。

    表3可以看出,常规施氮FN和减氮RN处理的产量差异不显著,分别为92.07和88.63 t/hm2。减施氮量下,RND、RNB和RNDB处理的产量分别较RN处理显著增加12.7%、18.9%和26.7%;硝化抑制剂与菌剂联合施用的RNDB处理比RND处理显著增产11.0%,但与单施菌剂的RNB处理差异不显著,且RND和RNB处理也未表现出产量差异。单果重不同处理间的变化与产量的变化趋势一致,RND、RNB和RNDB处理茄子单果重分别较RN处理显著增加8.2%、10.1%和16.8%,但RND、RNB和RNDB 3个处理差异不显著。

    表  3  不同处理对设施茄子产量和品质的影响
    Table  3.  Yield and quality of eggplant under different treatments in a greenhouse
    处理
    Treatment
    产量 (t/hm2)
    Yield
    单果重 (g)
    Single fruit weight
    维生素 C (mg/100 g)
    Vitamin C
    可溶性蛋白 (mg/g)
    Soluble protein
    可溶性糖 (%)
    Soluble sugar
    果形指数
    Fruit shape index
    CK62.03 e337.65 d41.99 c0.66 d0.49 d0.83 a
    FN92.07 cd464.23 bc69.85 b0.93 bc0.67 c0.89 a
    RN88.63 d439.21 c66.81 b0.88 c0.63 c0.90 a
    RND99.87 bc478.56 ab82.33 a0.99 ab0.81 b0.91 a
    RNB105.37 ab483.34 ab87.17 a1.00 ab0.80 b0.91 a
    RNDB112.27 a513.16 a89.77 a1.06 a0.95 a0.94 a
    注:CK—不施氮肥对照;FN—常规施 N 720 kg/hm2;RN—减施 30% 氮肥 (N 504 kg/hm2);RND—减氮 30% 配施 DMPP;RNB—减氮 30% 配施菌剂;RNDB—减氮 30% 配合 DMPP 及菌剂。同列数据后不同小写字母表示不同处理在 5% 水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant difference among treatments at the 5% level.
    下载: 导出CSV 
    | 显示表格

    表3显示,除果形指数差异没有显著性外,茄子其他品质指标均表现为添加硝化抑制剂或菌剂处理高于未添加的处理。维生素C含量在RND、RNB、RNDB处理间无显著差异,但较RN处理分别显著提高23.2%、30.5%和34.4%;可溶性蛋白质含量分别比RN处理显著增加12.5%、13.6%和20.5%,RND、RNB、RNDB处理间差异不显著;RNDB处理的可溶性糖含量最高,为0.95%,较RND和RNB处理分别显著提高17.3%和18.8%。

    表4可以看出,减氮30%处理(RN)的茄子根、茎、叶、果实吸氮量与常规施氮量处理(FN)相比,均有所降低,根的降低幅度达到显著水平。而RND、RNB和RNDB处理各部位及总吸氮量与FN相比均无显著差异。RNDB处理各部位和总吸氮量均高于RN处理,总吸氮量显著高于RN处理16.1%。

    表  4  不同处理茄子吸氮量及氮素利用率
    Table  4.  Nitrogen uptake and use efficiency of eggplant under different treatments
    处理
    Treatment
    吸氮量 N uptake (kg/hm2)表观利用率 (%)
    NUE
    农学效率 (kg/kg)
    NAE
    偏生产力 (kg/kg)
    NPFP
    根 Root茎 Stem叶 Leaf果实 Fruit总计 Total
    CK11.34 c38.03 c32.73 b72.39 c154.48 c
    FN15.98 a59.29 ab48.45 a125.22 ab248.94 ab13.12 b41.72 c127.87 d
    RN13.22 bc51.14 b40.12 ab119.20 b223.67 b13.73 b52.78 c175.85 c
    RND14.59 ab61.82 a40.98 ab129.97 ab247.36 ab18.43 ab75.08 b198.15 b
    RNB14.44 ab59.60 a42.13 ab128.42 ab244.38 ab18.07 ab85.99 ab209.06 ab
    RNDB16.78 a61.95 a42.52 ab138.41 a259.66 a20.87 a99.69 a222.76 a
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。同列数据后不同小写字母表示不同处理在5%水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant difference among treatments at the 5% level.
    下载: 导出CSV 
    | 显示表格

    氮肥的表观利用率(NUE)反映当季作物对氮肥的回收情况,氮肥农学效率(NAE)反映单位氮肥用量的增产量。RNDB处理氮素表观利用率最高为20.87%,分别较RND和RNB处理提高2.44%和2.80个百分点。RN处理的NUE和NAE与FN处理相当,即减少常规施氮量的30%并未提高氮肥的回收率和增产率。而RND和RNB处理的NUE虽然相较于FN处理的提升幅度未达到显著水平,但其农学效率显著高于FN和RN处理,RNDB处理的NUE和NAE均显著高于FN和RN处理,表明同时配施DMPP和菌剂提升氮肥效率的效果好于单独配施DMPP或者菌剂。氮肥偏生产力(NPFP)为单位氮肥用量的产量,RNDB处理的NPFP与RNB处理相当,但显著高于RND处理,RND和RNB处理显著高于RN处理,RN处理显著高于FN处理。因此,减氮30%同时配施DMPP和菌剂不仅提高了对化肥的回收量,而且更有效地用于果实的生产。

    图1可看出,所有施氮处理的土壤N2O排放通量均在施肥后第1~2天达到峰值,峰值在1253~2508 μg/(m2·h),与CK处理差异显著,随后逐渐降低并在第9天后与CK基本一致;与FN处理相比,减氮30%的RN、RND、RNB和RNDB处理土壤N2O排放通量峰值显著降低27.9%~50.0%,说明降低氮肥投入能有效降低N2O排放通量。相同施氮量下,RND、RNB、RNDB处理的土壤N2O排放通量峰值分别比RN处理显著降低了30.6%、24.4%和23.0%,说明单施DMPP、菌剂或二者合用均能有效降低土壤N2O排放通量峰值。FN处理平均N2O排放通量为2998 μg/(m2·h),RN、RND、RNB、RNDB比FN分别显著降低37.2%、55.9%、43.0%和58.1%。RND和RNDB处理平均N2O排放通量则比RN处理显著降低33.3%~34.6%。由此可见,DMPP能有效减少土壤N2O排放,菌剂对土壤N2O排放有一定抑制作用,且DMPP与菌剂配施表现出一定的协同作用。

    图  1  设施茄子追肥期间土壤N2O排放通量动态变化
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。箭头代表施肥时期,分别为2019年12月3日、2020年1月8日、2020年2月4日、2020年3月4日、2020年3月20日、2020年4月5日、2020年4月20日,分别于追肥后第1、2、3、5、7、9天采气
    Figure  1.  Dynamics of soil N2O emission flux under different fertilization treatments
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Arrows represent fertilization periods, December 3, 2019, January 8, 2020, February 4, 2020, March 4, 2020, March 20, 2020, April 5, 2020, April 20, 2020. Gas was collected on the 1st, 2nd, 3rd, 5th, 7th and 9th days after topdressing

    由土壤氨挥发速率动态变化(图2)可知,不施氮CK处理在整个追肥期间的NH3挥发速率峰值仅为0.03 kg/(hm2·d),施氮处理均在施肥后2~3天达到峰值,在0.24~0.38 kg/(hm2·d),随后逐渐降低,并在9~10天后趋于稳定;与FN处理相比,RN、RND、RNB、RNDB 4个减氮处理的土壤NH3挥发速率峰值显著减小了29.0%~36.8%;与RN处理相比,RND处理表现出上升趋势,RNB和RNDB处理则呈下降趋势,但差异均未达到显著水平。在整个监测期间,FN处理平均土壤NH3挥发速率为0.09 kg/(hm2·d),减氮30%的RN、RND、RNB、RNDB处理比FN处理分别显著降低31.0%、23.3%、32.0%和26.8%;与RN处理相比,RND处理显著增加了平均NH3挥发速率,虽然RNDB处理的平均NH3挥发速率有所增加,但未达到显著差异水平,而RNB处理的平均NH3挥发速率表现出小幅度的下降趋势,差异不显著。说明DMPP在一定程度上增加了土壤NH3挥发,但菌剂对土壤NH3挥发无明显影响。

    图  2  设施茄子追肥期间土壤NH3挥发动态变化
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。箭头代表施肥时期,分别为2019年12月3日、2020年1月8日、2020年2月4日、2020年3月4日、2020年3月20日、2020年4月5日、2020年4月20日,分别于追肥后第1、2、3、5、7、9天采气。
    Figure  2.  Dynamic changes of soil NH3 volatilization rate under different fertilization treatments
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Arrows represent fertilization periods, December 3, 2019, January 8, 2020, February 4, 2020, March 4, 2020, March 20, 2020, April 5, 2020, April 20, 2020. Gas was collected on the 1st, 2nd, 3rd, 5th, 7th and 9th days after topdressing.

    表5可以看出,与FN处理相比,RN、RND、RNB和RNDB处理土壤N2O累积排放量显著降低了26.1%~49.9%;相同施氮量下,RND和RNDB处理的N2O累积排放量较RN处理分别显著降低32.1%、32.3%,RNDB的N2O累积排放量比RNB显著降低28.8%。同样,在N2O净损失率中RNDB处理比RN处理显著降低了37.6%。RN、RND、RNB和RNDB处理土壤NH3累积挥发量比FN处理显著降低15.3%~34.8%;相同施氮量下,与RN处理相比,RND和RNDB处理土壤NH3累积挥发量分别增加了23.2%和9.1%,RN与RNDB处理差异不显著。相比FN处理,其余各处理的N2O排放和NH3挥发的气态损失量显著降低26.33%~85.48% (FN处理的气态净损失总量显著高于其他施氮处理35.35%~49.69%),减氮30%处理间差异不显著。但RNDB处理比RND处理N2O排放量,NH3累积挥发量和二者的气体损失量分别降低0.3%、11.5%和9.1%。

    表  5  不同处理土壤N2O累积排放量与NH3累积挥发量(kg/hm2)及净损失率(%)
    Table  5.  Cumulative N2O emission and NH3 volatilization (kg/hm2) and the net loss rate (%) in different treatments
    处理
    Treatment
    N2ONH3N2O+NH3
    (kg/hm2)(%)(kg/hm2)(%)(kg/hm2)(%)
    CK0.75 d2.72 d3.47 c
    FN7.51 a1.78 a16.38 a3.60 ab23.89 a5.38 a
    RN5.55 b1.81 a11.27 c3.22 b16.82 b5.03 a
    RND3.77 c1.14 b13.88 b4.20 a17.65 b5.34 a
    RNB5.28 b1.70 a10.68 c2.99 b15.96 b4.69 a
    RNDB3.76 c1.13 b12.29 bc3.60 ab16.05 b4.73 a
    注:CK—不施氮肥对照;FN—常规施 N 720 kg/hm2;RN—减施 30% 氮肥 (N 504 kg/hm2);RND—减氮 30% 配施 DMPP;RNB—减氮 30% 配施菌剂;RNDB—减氮 30% 配合 DMPP 及菌剂。同列数据后不同小写字母表示不同处理在 5% 水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant differences among treatments at the 5% level.
    下载: 导出CSV 
    | 显示表格

    从不同处理茄子收获后0—120 cm土壤剖面NO3-N累积量(图3)可以看出,CK处理最低,为750 kg/hm2;FN处理最高,为2440 kg/hm2。与FN处理相比,RN、RND、RNB和RNDB处理的NO3-N累积量分别显著降低17.5%、34.1%、17.6%和35.2%,降低幅度以RNDB处理最大,RNDB处理的NO3-N累积量显著低于RNB处理,与RND处理差异不显著,RNDB处理比RN、RNB和RND处理0—60 cm土层NO3-N累积量分别降低17.6%、17.7%和2.2%;60—120 cm土层RNDB的NO3-N积累量为744.0 kg/hm2

    图  3  不同处理设施茄子收获后0—120 cm土壤剖面NO3-N累积量
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。柱上不同小写字母表示同一土层不同处理间在5%水平有显著差异,不同大写字母表示0—120 cm土层不同处理间在5%水平有显著差异
    Figure  3.  Soil NO3-N accumulation in the 0–120 cm soil profile in different treatments after eggplant harvest in a greenhouse
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Different lowercase letters indicate significant difference among treatments in the same soil layer at the 5% level , and different uppercase letters indicate significant difference among treatments in 0–120 cm soil layer at the 5% level

    各处理硝态氮均在0—30 cm表土层的累积量较多,FN和RN处理的硝态氮累积量分别为662和565 kg/hm2,二者无显著差异。与RN处理相比,0—30 cm土层RND与RNB处理NO3-N累积量无显著差异,而RNDB处理显著降低了20.7%。在30—60 cm的土层中,除CK外,各处理的硝态氮累积量在175~484 kg/hm2,且差异不显著。0—60 cm土层RNDB NO3-N累积量为873.1 kg/hm2。在60—90 cm土层中,RNDB处理比RNB处理显著降低了35.1%,与RND处理差异不显著。在90—120 cm土层中,FN处理的NO3-N累积量为626 kg/hm2,显著高于其他处理。

    氮素是植物体生长的必需元素,其对作物产量的贡献率高达40%~50%[33],并且也是影响品质的重要因素[34]。本研究表明,与CK处理相比,各施氮肥处理均能显著提高茄子产量、单果重及可溶性蛋白含量等指标;硝化抑制剂与菌剂配施的RNDB处理表现出良好的协同效果,比单一添加硝化抑制剂或菌剂处理的增产与提质效果显著。石艳星[35]和郭广正等[36]研究发现,减氮配施菌剂或硝化抑制剂对蔬菜的产量及果实品质均有显著的促进作用。

    作物吸氮量是反映植株生长能力的重要指标之一,而植株良好的生长势是确保蔬菜优质丰产的前提。本试验中硝化抑制剂与菌剂配施的RNDB处理吸氮量为259.66 kg/hm2,比RN处理显著提高16.1%;氮肥表观利用率最高为20.87%,分别比RND和RNB处理提高2.44%和2.80个百分点,高于硝化抑制剂与菌剂单施的效果,这与郭娇等[37]在蔬菜上的研究结果一致。其原因一是由于硝化抑制剂能够抑制铵态氮向硝态氮转化[38],使NH4+-N在土壤中大量聚集并且留存时间较长[39],促进植株对氮素的吸收,进而促进作物增产;二是由于微生物菌剂在土壤中可以活化速效养分或土壤微生物菌群,从而促进植物的吸收,有利于植物生长[40]。硝化抑制剂与菌剂配施后,土壤NH4+-N较单施硝化抑制剂或菌剂的处理有所增加,从而增加了植株的吸氮量。

    农田土壤氮素的气态损失途径主要为NH3挥发、硝化-反硝化产生的N2O的排放,且随着施氮量的增加,气态氮素的损失量也随之增加[9]。本试验条件下,与减氮RN处理相比,单施硝化抑制剂的RND处理N2O损失量显著降低32.1%,NH3挥发量显著增加23.2%,由于硝化抑制剂抑制土壤中硝化微生物的氨氧化过程,减少土壤NH4+-N向NO2-N的转化,使土壤中铵态氮浓度能够维持较长的时间[41],减少NO2-N的累积,从而降低土壤中N2O产生和排放[42-43],增加了NH3挥发[44]。本研究中传统施氮处理的气态净损失总量为23.89 kg/hm2,显著高于其他施氮处理,达35.35%~49.69%;而单施硝化抑制剂、单施菌剂、硝化抑制剂与菌剂配施处理的气态净损失总量分别为17.65、15.96和16.05 kg/hm2,且3个处理间差异不显著。单施硝化抑制剂的N2O排放量、NH3挥发累积量和二者的气体损失量与硝化抑制剂/菌剂配施的数值相近,但RNDB处理比RND处理分别降低0.3%、11.5%和9.1%;而且与减氮RN处理相比,单施菌剂处理的N2O排放量和NH3累积量虽有所降低,但差异不显著,由此说明了菌剂对于氮素气态转化的影响不明显,而菌剂、硝化抑制剂配施的处理中硝化抑制剂的效果表现更为突出。

    由于设施蔬菜栽培的环境封闭和生产高度集约化[45],换茬频率与周年利用率较高,土壤中过量的氮肥未能及时被作物吸收利用而产生大量残留,加之大水漫灌和灌水频率高,导致其向蔬菜根圈底层土壤迁移和累积[46-47]。本研究中,0—60 cm土体作为茄子根区范围,NO3-N累积量表现为FN>RNB>RN>RND>RNDB>CK,硝化抑制剂与菌剂配施的RNDB处理比RNB和RND处理分别降低17.7%和2.2%;60—120 cm土体的NO3-N累积量表现为FN>RN>RNB>RND>RNDB>CK,RNDB处理比RND和RNB处理分别降低1.0%和25.2%。硝化抑制剂和菌剂配施能降低土壤硝态氮累积,主要是由于硝化抑制剂和微生物菌剂的作用机理不同。硝化抑制剂降低土壤NO3-N累积量主要是抑制了土壤的硝化作用所致[28,40]。而枯草芽孢杆菌(本试验所用菌剂)一方面能产生许多抗生素和植物激素活性的化合物,调节大气固氮菌固定大气中的氮素[48];另一方面由于溶磷解钾菌(枯草芽孢杆菌与胶质类芽孢杆菌)的施用,能够产生叠加效应,提高土壤速效氮的含量,提高氮素利用率[49]

    在供试条件下,将茄子施氮量由720 kg/hm2减至504 kg/hm2,对茄子的产量和品质、氮素吸收总量和氮肥吸收利用效率、农学效率均无不利影响。但相比RN处理,配施硝化抑制剂降低了N2O排放量提高了NH3挥发量,而配施菌剂没有影响N2O排放量,只降低了NH3挥发量,因而同时配施DMPP和菌剂有效减少了N2O排放量,且对NH3挥发量影响较小,提高了茄子氮素吸收总量,因而显著降低了0—60 cm土层土壤氮素残留。因此,减氮配施硝化抑制剂与菌剂是实现茄子优质高产、环境友好的有效措施。

  • 图  1   设施茄子追肥期间土壤N2O排放通量动态变化

    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。箭头代表施肥时期,分别为2019年12月3日、2020年1月8日、2020年2月4日、2020年3月4日、2020年3月20日、2020年4月5日、2020年4月20日,分别于追肥后第1、2、3、5、7、9天采气

    Figure  1.   Dynamics of soil N2O emission flux under different fertilization treatments

    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Arrows represent fertilization periods, December 3, 2019, January 8, 2020, February 4, 2020, March 4, 2020, March 20, 2020, April 5, 2020, April 20, 2020. Gas was collected on the 1st, 2nd, 3rd, 5th, 7th and 9th days after topdressing

    图  2   设施茄子追肥期间土壤NH3挥发动态变化

    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。箭头代表施肥时期,分别为2019年12月3日、2020年1月8日、2020年2月4日、2020年3月4日、2020年3月20日、2020年4月5日、2020年4月20日,分别于追肥后第1、2、3、5、7、9天采气。

    Figure  2.   Dynamic changes of soil NH3 volatilization rate under different fertilization treatments

    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Arrows represent fertilization periods, December 3, 2019, January 8, 2020, February 4, 2020, March 4, 2020, March 20, 2020, April 5, 2020, April 20, 2020. Gas was collected on the 1st, 2nd, 3rd, 5th, 7th and 9th days after topdressing.

    图  3   不同处理设施茄子收获后0—120 cm土壤剖面NO3-N累积量

    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。柱上不同小写字母表示同一土层不同处理间在5%水平有显著差异,不同大写字母表示0—120 cm土层不同处理间在5%水平有显著差异

    Figure  3.   Soil NO3-N accumulation in the 0–120 cm soil profile in different treatments after eggplant harvest in a greenhouse

    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Different lowercase letters indicate significant difference among treatments in the same soil layer at the 5% level , and different uppercase letters indicate significant difference among treatments in 0–120 cm soil layer at the 5% level

    表  1   试验前田间试验土壤基本理化性质

    Table  1   Basic chemical and physical properties of the experimental soil before this study

    土层
    Soil layer
    (cm)
    全氮
    Total N
    (g/kg)
    有机质
    Organic matter
    (g/kg)
    硝态氮
    NO3-N
    (mg/kg)
    速效钾
    NH4OAc-K
    (mg/kg)
    有效磷
    Olsen-P
    (mg/kg)
    pH
    (2.5∶1)
    粒径组成 (%)
    Particle size composition
    容重
    Bulk density
    (g/cm3)
    砂粒
    Sand
    粉粒
    Silt
    黏粒
    Clay
    0—301.1018.57121.68340.0990.427.8373.3715.2111.421.35
    30—600.7412.36116.14195.2450.157.8877.8612.0110.131.33
    60—900.759.25132.40125.3625.697.8076.7513.699.561.30
    90—1200.629.43141.77135.2620.577.7972.0116.0111.981.32
    下载: 导出CSV

    表  2   试验处理养分与硝化抑制剂和菌剂具体施用剂量

    Table  2   Dosage of nutrient, DMPP and strains in each experimental treatment

    施肥方式
    Fertilization mode
    N
    (kg/hm2)
    P2O5
    (kg/hm2)
    K2O
    (kg/hm2)
    DMPP
    (kg/hm2)
    枯草类芽孢杆菌
    Bacillus subtilis
    (×1012 cfu/hm2)
    胶质类芽孢杆菌
    Paenibacillus mucilaginosus
    (×1012 cfu/hm2)
    CKFNRNRNDRNBRNDBRNDRNDBRNBRNDBRNBRNDB
    基肥 Basal (2019–09–24)03402382382382381451984.764.7610.0010.0020.0020.00
    追肥 Topdressing
    2019–12–030604242424250620.840.841.431.432.862.86
    2020–01–080503535353550700.700.701.431.432.862.86
    2020–02–040604242424250700.840.841.431.432.862.86
    2020–03–04060424242420700.840.841.431.432.862.86
    2020–03–20050353535350700.700.701.431.432.862.86
    2020–04–05050353535350700.700.701.431.432.862.86
    2020–04–20050353535350700.700.701.421.422.842.84
    总计 Total072050450450450429568010.0810.0820.0020.0040.0040.00
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥 (N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum.
    下载: 导出CSV

    表  3   不同处理对设施茄子产量和品质的影响

    Table  3   Yield and quality of eggplant under different treatments in a greenhouse

    处理
    Treatment
    产量 (t/hm2)
    Yield
    单果重 (g)
    Single fruit weight
    维生素 C (mg/100 g)
    Vitamin C
    可溶性蛋白 (mg/g)
    Soluble protein
    可溶性糖 (%)
    Soluble sugar
    果形指数
    Fruit shape index
    CK62.03 e337.65 d41.99 c0.66 d0.49 d0.83 a
    FN92.07 cd464.23 bc69.85 b0.93 bc0.67 c0.89 a
    RN88.63 d439.21 c66.81 b0.88 c0.63 c0.90 a
    RND99.87 bc478.56 ab82.33 a0.99 ab0.81 b0.91 a
    RNB105.37 ab483.34 ab87.17 a1.00 ab0.80 b0.91 a
    RNDB112.27 a513.16 a89.77 a1.06 a0.95 a0.94 a
    注:CK—不施氮肥对照;FN—常规施 N 720 kg/hm2;RN—减施 30% 氮肥 (N 504 kg/hm2);RND—减氮 30% 配施 DMPP;RNB—减氮 30% 配施菌剂;RNDB—减氮 30% 配合 DMPP 及菌剂。同列数据后不同小写字母表示不同处理在 5% 水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant difference among treatments at the 5% level.
    下载: 导出CSV

    表  4   不同处理茄子吸氮量及氮素利用率

    Table  4   Nitrogen uptake and use efficiency of eggplant under different treatments

    处理
    Treatment
    吸氮量 N uptake (kg/hm2)表观利用率 (%)
    NUE
    农学效率 (kg/kg)
    NAE
    偏生产力 (kg/kg)
    NPFP
    根 Root茎 Stem叶 Leaf果实 Fruit总计 Total
    CK11.34 c38.03 c32.73 b72.39 c154.48 c
    FN15.98 a59.29 ab48.45 a125.22 ab248.94 ab13.12 b41.72 c127.87 d
    RN13.22 bc51.14 b40.12 ab119.20 b223.67 b13.73 b52.78 c175.85 c
    RND14.59 ab61.82 a40.98 ab129.97 ab247.36 ab18.43 ab75.08 b198.15 b
    RNB14.44 ab59.60 a42.13 ab128.42 ab244.38 ab18.07 ab85.99 ab209.06 ab
    RNDB16.78 a61.95 a42.52 ab138.41 a259.66 a20.87 a99.69 a222.76 a
    注:CK—不施氮肥对照;FN—常规施N 720 kg/hm2;RN—减施30%氮肥(N 504 kg/hm2);RND—减氮30%配施DMPP;RNB—减氮30%配施菌剂;RNDB—减氮30%配合DMPP及菌剂。同列数据后不同小写字母表示不同处理在5%水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant difference among treatments at the 5% level.
    下载: 导出CSV

    表  5   不同处理土壤N2O累积排放量与NH3累积挥发量(kg/hm2)及净损失率(%)

    Table  5   Cumulative N2O emission and NH3 volatilization (kg/hm2) and the net loss rate (%) in different treatments

    处理
    Treatment
    N2ONH3N2O+NH3
    (kg/hm2)(%)(kg/hm2)(%)(kg/hm2)(%)
    CK0.75 d2.72 d3.47 c
    FN7.51 a1.78 a16.38 a3.60 ab23.89 a5.38 a
    RN5.55 b1.81 a11.27 c3.22 b16.82 b5.03 a
    RND3.77 c1.14 b13.88 b4.20 a17.65 b5.34 a
    RNB5.28 b1.70 a10.68 c2.99 b15.96 b4.69 a
    RNDB3.76 c1.13 b12.29 bc3.60 ab16.05 b4.73 a
    注:CK—不施氮肥对照;FN—常规施 N 720 kg/hm2;RN—减施 30% 氮肥 (N 504 kg/hm2);RND—减氮 30% 配施 DMPP;RNB—减氮 30% 配施菌剂;RNDB—减氮 30% 配合 DMPP 及菌剂。同列数据后不同小写字母表示不同处理在 5% 水平有显著性差异。
    Note: CK—Control without nitrogen fertilizer; FN—Conventional N 720 kg/hm2; RN—Reduce the application of 30% nitrogen fertilizer (N 504 kg/hm2); RND—Reduce nitrogen by 30% with DMPP; RNB—Reduce nitrogen by 30% with microbial inoculum; RNDB—Reduce nitrogen by 30% with DMPP and microbial inoculum. Values followed by different lowercase letters within a column indicate significant differences among treatments at the 5% level.
    下载: 导出CSV
  • [1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019.

    National Bureau of Statistics. China statistical yearbook[M]. Beijing: China Statistics Press, 2019.

    [2]

    Huang S W, Jin J Y. Status of heavy metals in agricultural soils as affected by different patterns of land use[J]. Environmental Monitoring and Assessment, 2008, 139(1–3): 317–327. DOI: 10.1007/s10661-007-9838-4

    [3]

    Widowati L R, De Neve S, Setyorini D, et al. Nitrogen balances and nitrogen use efficiency of intensive vegetable rotations in South East Asian Tropical Andisols[J]. Nutrient Cycling in Agroecosystems, 2011, 91(2): 131–143. DOI: 10.1007/s10705-011-9451-3

    [4] 刘苹, 李彦, 江丽华, 等. 施肥对蔬菜产量的影响—以寿光市设施蔬菜为例[J]. 应用生态学报, 2014, 25(6): 1752–1758. Liu P, Li Y, Jiang L H, et al. Effect of fertilizer application on greenhouse vegetable yield: A case study of Shouguang City[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1752–1758.

    Liu P, Li Y, Jiang L H, et al. Effect of fertilization application on greenhouse vegetable yield: A case study of Shouguang City[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1752-1758.

    [5] 仇美华, 殷广德, 梁永红. 江苏省设施蔬菜施肥现状及对策研究[J]. 南方农业, 2020, 14(9): 187–190. Qiu M H, Yin G D, Liang Y H. Study on the current situation and countermeasures of fertilization of protected vegetables in Jiangsu Province[J]. South Chinese Agriculture, 2020, 14(9): 187–190. DOI: 10.19415/j.cnki.1673-890x.2020.09.092

    Qiu M H, Yin G D, Liang Y H. Study on the current situation and Countermeasures of fertilization of protected vegetables in Jiangsu Province [J]. South Chinese Agriculture, 2020, 14(9): 187-190. DOI: 10.19415/j.cnki.1673-890x.2020.09.092

    [6] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480–1493. Huang S W, Tang J W, Li C H, et al. Reducing potential of chemical fertilizer and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1480–1493. DOI: 10.11674/zwyf.17366

    Huang S W, Tang J W, Li C H, et al. Reducing potential of chemical fertilizer and scientific fertilization countermeasure in vegetable production in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1480-1493. DOI: 10.11674/zwyf.17366

    [7] 孙晓姝, 王立革, 郭珺, 等. 山西曲沃设施蔬菜施肥现状及土壤氮磷累积与分配特征[J]. 生态科学, 2019, 38(6): 149–155. Sun X S, Li L G, Guo J, et al. Nitrogen input of vegetable and potential loss of nitrogen and phosphorus for in solar greenhouse of southern of Quwo, Shanxi[J]. Ecological Science, 2019, 38(6): 149–155. DOI: 10.14108/j.cnki.1008-8873.2019.06.022

    Sun X S, Li L G, Guo J, et al. Nitrogen input of vegetable and potential loss of nitrogen and phosphorus for in solar greenhouse of southern of Quwo, Shanxi[J]. Ecological Science, 2019, 38(6): 149-155. DOI: 10.14108/j.cnki.1008-8873.2019.06.022

    [8] 王仕琴, 郑文波, 孔晓乐. 华北农区浅层地下水硝酸盐分布特征及其空间差异性[J]. 中国生态农业学报, 2018, 26(10): 1476–1482. Wang S Q, Zheng W B, Kong X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476–1482. DOI: 10.13930/j.cnki.cjea.180639

    Wang S Q, Zheng W B, Kong X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476-1482. DOI: 10.13930/j.cnki.cjea.180639

    [9] 山楠, 韩圣慧, 刘继培, 等. 不同肥料施用对设施菠菜地NH3挥发和N2O排放的影响[J]. 环境科学, 2018, 39(10): 4705–4716. Shan N, Han S H, Liu J P, et al. Emission of NH3 and N2O from spinach field treated with different fertilizers[J]. Environmental Science, 2018, 39(10): 4705–4716.

    Shan N, Han S H, Liu J P, et al. Emission of NH3 and N2O from spinach field treater with different fertilizers[J]. Environmental Science, 2018, 39(10): 4705-4716.

    [10]

    Wang J, Xiong Z, Yan X. Fertilizer-induced emission factors and background emissions of N2O from vegetable fields in China[J]. Atmospheric Environment, 2011, 45(38): 6923–6929. DOI: 10.1016/j.atmosenv.2011.09.045

    [11]

    Zhao Y, Lv H, Qasim W, et al. Drip fertigation with straw incorporation significantly reduces N2O emission and N leaching while maintaining high vegetable yields in solar greenhouse production[J]. Environmental Pollution, 2021, 273(2): 116521.

    [12] 寇长林, 骆晓声, 巨晓棠. 优化施氮对设施番茄土壤硝态氮残留及土壤氮平衡的影响[J]. 植物营养与肥料学报, 2021, 27(5): 837–848. Kou C L, Luo X S, Ju X T. Effects of optimized fertilization on N balance and nitrate-N accumulation in greenhouse tomato fields[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 837–848. DOI: 10.11674/zwyf.20456

    Kou C L, Luo X S, Ju X T. Effects of optimized fertilization on N balance and nitrate-N accumulation in of greenhouse tomato fields[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 837-848. DOI: 10.11674/zwyf.20456

    [13] 闵炬, 施卫明. 不同施氮量对太湖地区大棚蔬菜产量, 氮肥利用率及品质的影响[J]. 植物营养与肥料学报, 2009, 15(1): 151–157. Min J, Shi W M. Effects of different N rate on the yield, N use efficiency and fruit quality of vegetables cultivated in plastic greenhouse in Taihu Lake Region[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(1): 151–157. DOI: 10.3321/j.issn:1008-505X.2009.01.022

    Min J, Shi W M. Effects of different N rate on the yield, N use efficiency and fruit quality of vegetables cultivated in plastic greenhouse in Taihu Lake Region[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(1): 151-157. DOI: 10.3321/j.issn:1008-505X.2009.01.022

    [14] 刘钰莹, 张妍, 汪哲远, 李廷强. 硝化抑制剂与生物炭配施对水稻土氮素转化及氮肥利用率的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 223–232. Liu Y Y, Zhang Y, Wang Z Y, Li T Q. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture & Life Science Edition), 2021, 47(2): 223–232.

    Liu Y Y, Zhang Y, Wang Z Y, Li Y Q. Effects of combined application of nitrification inhibitors on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture & Life Science), 2021, 47(02): 223-232.

    [15] 曾后清, 朱毅勇, 王火焰, 沈其荣. 生物硝化抑制剂—一种控制农田氮素流失的新策略[J]. 土壤学报, 2012, 49(2): 382–388. Zeng H Q, Zhu Y Y, Wang H Y, Shen Q R. Biological nitrification inhibitor—a new strategy for control nitrogen loss from farmland[J]. Acta Pedologica Sinica, 2012, 49(2): 382–388.

    Zeng H Q, Zhu Y Y, Wang H Y, Shen Q R. Biological nitrification inhibitor—a new strategy for control nitrogen loss from farmland[J]. Acta Pedologica Sinica, 2012, 49(2): 382-388.

    [16] 季加敏, 喻瑶, 陆星, 等. 肥料添加剂降低N2O排放的效果与机理[J]. 植物营养与肥料学报, 2012, 18(6): 1434–1440. Ji J M, Yu Y, Lu X, et al. The effect and mechanism of fertilizer additives on reduction of N2O emission[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1434–1440.

    Ji J M, Yu Y, Lu X, et al. The effect and mechanism of fertilizer additives on reduction of N2O emission[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(6): 1434-1440.

    [17] 杨俊刚, 李艳梅, 孙焱鑫, 等. UAN添加氮肥抑制剂对生菜产量、品质及土壤氮平衡的影响[J]. 中国土壤与肥料, 2020, (1): 67–74. Yang J G, Li Y M, Sun Y X, et al. Effects of urea ammonium nitrate (UAN) with N inhibiter on lettuce yield, quality and soil N balance[J]. Soil and Fertilizer Sciences in China, 2020, (1): 67–74. DOI: 10.11838/sfsc.1673-6257.19112

    Yang J G, Li Y M, Sun Y X, et al. Effects of urea ammonium nitrate (UAN) with N inhibiter on lettuce yield, quality and soil N balance[J]. Soil and Fertilizer Sciences in China, 2020, 56(1): 67-74. DOI: 10.11838/sfsc.1673-6257.19112

    [18] 伍少福, 吴良欢, 尹一萌, 等. 含硝化抑制剂复合肥对西瓜黄瓜产量和营养品质的影响[J]. 农业环境科学学报, 2006, 25(6): 1432–1435. Wu S F, Wu L H, Yin Y M, et al. Effects of compound fertilizer with nitrification inhibitor on the yield and nutritional quality of watermelon and cucumber[J]. Journal of Agro-Environmental Science, 2006, 25(6): 1432–1435. DOI: 10.3321/j.issn:1672-2043.2006.06.008

    Wu S F, Wu L H, Yin Y M, et al. Effects of compound fertilizer with nitrification inhibitor on the yield and nutritional quality of watermelon and cucumber[J]. Journal of Agro-Environmental Science, 2006, 25(06): 1432-1435. DOI: 10.3321/j.issn:1672-2043.2006.06.008

    [19] 张琳, 孙卓玲, 马理, 等. 不同水氮条件下双氰胺(DCD)对温室黄瓜土壤氮素损失的影响[J]. 植物营养与肥料学报, 2015, 21(1): 128–137. Zhang L, Sun Z L, Ma L, et al. Effects of dicyandiamide on nitrogen loss from cucumber planting soil in intensive greenhouse under different irrigation and nitrogen conditions[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 128–137. DOI: 10.11674/zwyf.2015.0114

    Zhang L, Sun Z L, Ma L, et al. Effects of dicyandiamide on nitrogen loss from cucumber planting soil in intensive greenhouse under different irrigation and nitrogen conditions[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 128-137. DOI: 10.11674/zwyf.2015.0114

    [20] 郭艳杰, 王小敏, 牛翠云, 等. 2种氮源与双氰胺配施对温室芹菜氮素吸收和营养品质的影响[J]. 水土保持学报, 2016, 30(2): 149–154. Guo Y J, Wang X M, Niu C Y, et al. Effects of 2 kinds of nitrogen sources with DCD application on nitrogen uptake and nutritional quality of greenhouse celery[J]. Journal of Soil and Water Conservation, 2016, 30(2): 149–154.

    Guo Y J, Wang X M, Niu C Y, et al. Effects of 2 kinds of nitrogen sources with DCD application on nitrogen uptake and nutritional quality of greenhouse celery[J]. Journal of Soil and Water Conservation, 2016, 30(2): 149-154.

    [21] 王亚文, 史慧芳, 张鹏, 等. 微生物菌肥在设施蔬菜生产中的研究进展[J]. 农学学报, 2021, 11(11): 27–32. Wang Y W, Shi H F, Zhang P, et al. Research progress of microbial fertilizer in facility vegetable production[J]. Journal of Agriculture, 2021, 11(11): 27–32. DOI: 10.11923/j.issn.2095-4050.casb2021-0063

    Wang Y W, Shi H F, Zhang P, et al. Research progress of microbial fertilizer in facility vegetable production[J]. Journal of Agriculture, 2021, 11(11): 27-32. DOI: 10.11923/j.issn.2095-4050.casb2021-0063

    [22] 温丹, 王晓, 孙凯宁, 等. 不同形态微生物菌剂对不结球白菜生长和品质的影响[J]. 应用生态学报, 2021, 32(5): 1777–1782. Wen D, Wang X, Sun K N, et al. Effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino (non-heading Chinese Cabbage).[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1777–1782.

    Wen D, Wang X, Sun K N, et al. Effects of different forms of microbial agents on the growth and quality of Brassica rapa L. ssp. chinensis Makino (non-heading Chinese Cabbage). [J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1777-1782.

    [23]

    Shen W, Hu M, Qian D, et al. Microbial deterioration and restoration in greenhouse-based intensive vegetable production systems[J]. Plant and Soil, 2021, 463(1–2): 1–18. DOI: 10.1007/s11104-021-04933-w

    [24] 王璠, 徐圣君, 马双龙, 等. 解淀粉芽孢杆菌菌剂对雪菜生长和土壤氧化亚氮排放的影响[J]. 中国农学通报, 2015, 31(13): 229–235. Wang F, Xu S J, Ma S L, et al. Effects of Bacillus amyloliquefaciens biofertilizer on Brassica juncea var. multiceps growth and N2O emission from soil[J]. Chinese Agricultural Science Bulletin, 2015, 31(13): 229–235. DOI: 10.11924/j.issn.1000-6850.2014-2479

    Wang F, Xu S J, Ma S L, et al. Effects of Bacillus amyloliquefaciens Biofertilizer on Brassica juncea var. multiceps growth and N2O emission from soil[J]. Chinese Agricultural Science Bulletin, 2015, 31(13): 229-235. DOI: 10.11924/j.issn.1000-6850.2014-2479

    [25] 汪霞. 微生物菌剂对碱性土壤氨挥发的控制及其机理研究[D]. 安徽合肥: 中国科学技术大学硕士学位论文, 2017.

    Wang X. The effects and mechanism of biofertilizer on mitigation the ammonia volatilization from the alkaline soil[D]. Hefei, Anhui: MS Thesis of University of Science and Technology of China, 2017.

    [26] 岳明灿, 王志国, 陈秋实, 等. 减施化肥配施微生物菌剂对番茄产质量和土壤肥力的影响[J]. 土壤, 2020, 52(1): 68–73. Yue M C, Wang Z G, Chen Q S, et al. Effects of reduced chemical fertilizer combined with application of microbial agents on growth and soil fertility of cherry tomato[J]. Soils, 2020, 52(1): 68–73.

    Yu M C, Wang Z G, Chen Q S, et al. Effects of reduced chemical fertilizer combined with application of microbial agents on growth and soil fertility of cherry tomato[J]. Soils, 2020, 52(1): 68-73.

    [27] 郭新送, 丁方军, 陈士更, 洪丕征. 控释尿素配施微生物菌剂的氮肥利用率及土壤酶活性研究[J]. 水土保持学报, 2016, 30(2): 277–282. Guo X S, Ding F J, Chen S G, Hong P Z. Study on nitrogen use efficiency and soil enzyme activities of combined application of controlled-release urea and microbial inoculants[J]. Journal of Soil and Water Conservation, 2016, 30(2): 277–282.

    Guo X S, Ding F J, Chen S G, Hong P Z. Study on nitrogen use efficiency and soil enzyme activities of combined application of controlled-release urea and microbial inoculants[J]. Journal of Soil and Water Conservation, 2016, 30 (2): 277-282.

    [28] 谯江兰. 硝化抑制剂和菌剂对设施番茄生长及土壤养分状况的影响[D]. 河北保定: 河北农业大学硕士学位论文, 2019.

    Qiao J L, Effects of nitrification inhibitors and bacterial agents on growth and soil nutrient status of greenhouse tomato[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2019.

    [29] 张春楠, 张瑞芳, 王鑫鑫, 等. 硝化抑制剂和微生物菌剂对甜瓜产量及氮素利用的影响[J]. 水土保持学报, 2020, 34(6): 281–287, 293. Zhang C N, Zhang R F, Wang X X, et al. Effects of nitrification inhibitors and microbial agents on yield and nitrogen utilization of melon[J]. Journal of Soil and Water Conservation, 2020, 34(6): 281–287, 293.

    Zhang C N, Zhang R F, Wang X X, et al. Effects of nitrification inhibitors and microbial agents on yield and nitrogen utilization of melon[J]. Journal of Soil and Water Conservation, 2020, 34 (06): 281-287, 293.

    [30] 郭娇. 温室黄瓜减氮配施硝化抑制剂与菌剂对氮损失的调控效应[D]. 河北保定: 河北农业大学硕士学位论文, 2020.

    Guo J. Regulation effects of nitrogen reduction with nitrification inhibitor and bacteria agent on nitrogen loss from greenhouse cucumber[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2020.

    [31] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定—通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205–209. Wang Z H, Liu X J, Ju X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(2): 205–209. DOI: 10.3321/j.issn:1008-505X.2002.02.014

    Wang Z H, Liu X J, Ju X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Journal of Plant Nutrition and Fertilizers, 2002, 8(2): 205-209. DOI: 10.3321/j.issn:1008-505X.2002.02.014

    [32] 罗伟, 程于真, 陈竹君, 周建斌. 日光温室番茄-西瓜轮作系统不同水氮处理氨挥发特征[J]. 应用生态学报, 2019, 30(4): 1278–1286. Luo W, Cheng Y Z, Chen Z J, Zhou J B. Ammonia volatilization under different nitrogen and water treatments of tomato-watermelon rotation system in solar greenhouse in Losses, China[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1278–1286.

    Luo W, Cheng Y Z, Chen Z J, Zhou J B. Ammonia volatilization under different nitrogen and water treatments of tomato-watermelon rotation system in solar greenhouse in Losses, China[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1278-1286.

    [33] 欧立军, 康林玉, 赵激, 等. 作物氮素吸收与利用研究进展[J]. 北方园艺, 2018, 41(7): 151–156. Ou L J, Kang L Y, Zhao J, et al. Research progress on nitrogen uptake and utilization of crops[J]. Northern Horticulture, 2018, 41(7): 151–156.

    Ou L J, Kang L Y, Zhao J, et al. Research Progress on nitrogen uptake and utilization of crops[J]. Northern Horticulture, 2018, 41(7): 151-156.

    [34] 卢家柱, 赵贵宾, 颉建明, 等. 不同施氮量对茄子产量、品质及肥料利用率的影响[J]. 华北农学报, 2016, 31(3): 205–211. Lu J Z, Zhao G B, Jie J M, et al. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(3): 205–211. DOI: 10.7668/hbnxb.2016.03.030

    Lu J Z, Zhao G B, Jie J M, et al. Effects of different nitrogen fertilizer application rates on yield, quality and fertilizer utilization rate of eggplant[J]. Act Agriculturae Boreali-Sinica, 2016, 31(3): 205-211. DOI: 10.7668/hbnxb.2016.03.030

    [35] 石艳星. 脲酶/硝化双抑制剂缓释肥对番茄产量、品质及氮素利用率的影响研究[D]. 河北保定: 河北农业大学硕士学位论文, 2014.

    Shi Y X. Effects of urease / nitrification double inhibitor application on tomato yield, quality and the influence of nitrogen utilization research[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2014.

    [36] 郭广正, 张芬, 沈远鹏, 等. 减氮配施硝化抑制剂对大白菜农学和环境效应评价[J]. 农业环境科学学报, 2020, 39(10): 2307–2315. Guo G Z, Zhang F, Shen Y P, et al. Comprehensive assessment of the agronomic and environment effects of N application rate reduction combined with nitrification inhibitor on Chinese Cabbage[J]. Journal of Agro-Environmental Science, 2020, 39(10): 2307–2315. DOI: 10.11654/jaes.2020-0884

    Guo G Z, Zhang F, Shen Y P, et al. Comprehensive assessment of the agronomic and environment effects of N application rate reduction combined with nitrification inhibitor on Chinese Cabbage[J]. Journal of Agro-Environmental Science, 2020, 39(10): 2307-2315. DOI: 10.11654/jaes.2020-0884

    [37] 郭娇, 刘巧, 郭艳杰, 等. 氮肥与硝化抑制剂配施对冷棚芹菜氮素吸收及产量和品质的影响[J]. 河北农业大学学报, 2020, 43(5): 54–61. Guo J, Liu Q, Guo Y J, et al. Effects of nitrogen fertilizer with nitrification inhibitors application on nitrogen uptake, yield and quality of cold shed celery[J]. Journal of Hebei Agricultural University, 2020, 43(5): 54–61.

    Guo J, Liu Q, Guo Y J, et al. Effects of nitrogen fertilizer with nitrification inhibitors application on nitrogen uptake, yield and quality of cold shed celery[J]. Journal of Hebei Agricultural University, 2020, 43(5): 54-61.

    [38] 油伦成, 李东坡, 崔磊, 等. 不同硝化抑制剂组合对铵态氮在黑土和褐土中转化的影响[J]. 植物营养与肥料学报, 2019, 25(12): 2113–2121. You L C, Li D P, Cui L, et al. Effects of different nitrification inhibitor combinations on the transformation of ammonium nitrogen in black soil and cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2113–2121. DOI: 10.11674/zwyf.19338

    You L C, Li D P, Cui L, et al. Effects of different nitrification inhibitor combinations of on the transformation of ammonium nitrogen in black soil and cinnamon soil[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2113-2121. DOI: 10.11674/zwyf.19338

    [39] 李莉, 李东坡, 武志杰, 等. 脲酶/硝化抑制剂对尿素氮在白浆土中转化的影响[J]. 植物营养与肥料学报, 2011, 17(3): 646–650. Li L, Li D P, Wu Z J, et al. Effects of urease/nitrification inhibitors on the transformation of urea nitrogen in Albic soil[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(3): 646–650. DOI: 10.11674/zwyf.2011.0347

    Li L, Li D P, Wu Z J, et al. Effects of urease/nitrification inhibitors on the transformation of urea nitrogen in Albic soil[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(03): 646-650. DOI: 10.11674/zwyf.2011.0347

    [40] 王赫, 李晓雪, 王亚玲, 等. 化肥减量配施有机肥和菌剂对辣椒产量, 品质和养分累积的影响[J]. 北方园艺, 2021, 44(16): 1–7. Wang H, Li X X, Wang Y L, et al. Effects of reduced chemical fertilizer combined application of organic fertilizer and microbial inoculants on yield, quality and nutrient accumulation in Chili pepper[J]. Northern Horticulture, 2021, 44(16): 1–7.

    Wang H, Li X X, Wang Y L, et al. Effects of reduced chemical fertilizer combined application of organic fertilizer and microbial inoculants on yield, quality and nutrient accumulation in chili pepper[J]. Northern Horticulture, 2021, 44(16): 1-7.

    [41] 孙海军, 闵炬, 施卫明, 祝介贵. 硝化抑制剂影响小麦产量、N2O与NH3排放的研究[J]. 土壤, 2017, 49(5): 876–881. Sun H J, Min J, Shi W M, Zhu J G. Effects of nitrification inhibitor application on wheat yield, N2O emission and NH3 volatilization[J]. Soils, 2017, 49(5): 876–881.

    Sun H J, Min J, Shi W M, Zhu J G. Effects of nitrification inhibitor application on wheat yield, N2O emission and NH3 volatilization[J]. Soils, 2017, 49 (5): 876-881.

    [42]

    Zakir H A K M, Subbarao G V, Pearse S J, et al. Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)[J]. New Phytologist, 2008, 180(2): 442–451. DOI: 10.1111/j.1469-8137.2008.02576.x

    [43]

    Irigoyen I, Muro J, Azpilikueta M, et al. Ammonium oxidation kinetics in the presence of nitrification inhibitors DCD and DMPP at various temperatures[J]. Soil Research, 2003, 41(6): 1177–1183. DOI: 10.1071/SR02144

    [44]

    Menéndez S, Merino P, Pinto M, et al. Effect of N-(n-butyl) thiophosphoric triamide and 3, 4 dimethylpyrazole phosphate on gaseous emissions from grasslands under different soil water contents.[J]. Journal of Environmental Quality, 2009, 38(1): 27–35. DOI: 10.2134/jeq2008.0034

    [45] 吉艳芝. 填闲作物阻控设施蔬菜土壤硝态氮累积和淋失的研究[D]. 河北保定: 河北农业大学博士学位论文, 2010.

    Ji Y Z. Catch crop control soil nitrogen accumulation and leaching in greenhouse[D]. Baoding, Hebei: MS Thesis of Hebei Agricultural University, 2010.

    [46] 李世清, 李生秀. 半干旱地区农田生态系统中硝态氮的淋失[J]. 应用生态学报, 2000, 11(2): 240–242. Li S Q, Li S X. Leaching loss of nitrate from semiarid area ecosystem[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 240–242. DOI: 10.3321/j.issn:1001-9332.2000.02.021

    Li S Q, Li S Q. Leaching loss of nitrate from semiarid area ecosystem[J]. Chinese Journal of Applied Ecology, 2000, 11(2): 240-242. DOI: 10.3321/j.issn:1001-9332.2000.02.021

    [47] 王朝辉, 宗志强, 李生秀, 陈宝明. 蔬菜的硝态氮累积及菜地土壤的硝态氮残留[J]. 环境科学, 2002, 23(3): 79–83. Wang Z H, Zong Z Q, Li S X, Chen B M. Nitrate accumulation in vegetables and its residual in vegetable fields[J]. Environmental Science, 2002, 23(3): 79–83. DOI: 10.3321/j.issn:0250-3301.2002.03.016

    Wang Z H, Zong Z Q, Li S X, Chen B M. Nitrate accumulation in vegetables and its residual in vegetable fields[J]. Environmental Science, 2002, 23(3): 79-83. DOI: 10.3321/j.issn:0250-3301.2002.03.016

    [48]

    Lastochkina O, Aliniaeifard S, Garshina D, et al. Seed priming with endophytic Bacillus subtilis strain-specifically improves growth of Phaseolus vulgaris plants under normal and salinity conditions and exerts anti-stress effect through induced lignin deposition in roots and decreased oxidative and osmotic damages[J]. Journal of Plant Physiology, 2021, 263: 153462. DOI: 10.1016/j.jplph.2021.153462

    [49] 杨冬艳, 高晶霞, 桑婷, 等. 溶磷菌和解钾菌对拱棚连作辣椒生长及土壤养分含量的影响[J]. 北方园艺, 2019, 42(6): 1–6. Yang D Y, Gao J X, Sang T, et al. Effects of phosphorus solubilizing bacteria and potassium-solubilizing bacteria on pepper growth and soil nutrient content in continuous arch shed cultivation[J]. Northern Horticulture, 2019, 42(6): 1–6. DOI: 10.11937/bfyy.20182358

    Yang D Y, Gao J X, Sang T, et al. Effects of phosphorus solubilizing bacteria and potassium-solubilizing bacteria on pepper growth and soil nutrient content in continuous arch shed cultivation[J]. Northern Horticulture, 2019, 42(6): 1-6. DOI: 10.11937/bfyy.20182358

  • 期刊类型引用(10)

    1. 成艳红,黄欠如,武琳,黄尚书,李小飞,张昆. 红壤旱地一株自生固氮菌的筛选鉴定及其固氮能力评估. 中国农学通报. 2020(09): 100-106 . 百度学术
    2. 邱小忠,杨罡,陈俊,黄国昌,龚小华,连晨姿. 微生物基因工程与农业产业化发展探究. 南方农业. 2020(32): 157-158+161 . 百度学术
    3. 李涛,张朝辉,郭雅雯,田香,许晓莞,邱立友. 国内外微生物肥料研究进展及展望. 江苏农业科学. 2019(10): 37-41 . 百度学术
    4. 何建清,张格杰,赵伟进,王孝先. 青稞根际优良联合固氮菌的筛选及鉴定. 干旱地区农业研究. 2019(05): 182-186+192 . 百度学术
    5. 聂登壁,施文. 根际促生菌在烟草生产中的应用研究进展. 现代农业科技. 2018(10): 8+10 . 百度学术
    6. 王慧桥,陈为峰,诸葛玉平,贺明荣,王振林,张吉旺,董元杰. 滨海盐土自生固氮菌的筛选及其对玉米幼苗生长的影响. 河北科技师范学院学报. 2017(02): 60-67 . 百度学术
    7. 舒照鹤,陈银建,尹虎成,黄国枫. 恩格兰微生物菌肥对烤烟生长发育及抗病性的影响. 湖北农业科学. 2017(06): 1026-1028 . 百度学术
    8. 王靖渊,屠乃美,何康,侯方舟,付小红,杨旭初. 有机肥料对土壤微生物多样性影响研究进展. 天津农业科学. 2016(06): 51-55 . 百度学术
    9. 杨国萍,齐绍武. 有机肥对土壤环境及烟叶品质影响的研究进展. 安徽农业科学. 2015(14): 171-175 . 百度学术
    10. 胡小东,柴云霞,邹阳,吴杰. 烤烟根际促生菌应用研究进展. 中国烟草学报. 2015(05): 119-125 . 百度学术

    其他类型引用(14)

图(3)  /  表(5)
计量
  • 文章访问数:  1676
  • HTML全文浏览量:  746
  • PDF下载量:  60
  • 被引次数: 24
出版历程
  • 收稿日期:  2021-12-15
  • 录用日期:  2022-05-09
  • 网络出版日期:  2022-07-10
  • 刊出日期:  2022-08-24

目录

/

返回文章
返回