• ISSN 1008-505X
  • CN 11-3996/S

施磷水平与冬小麦产量和土壤有效磷含量的关系

娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占

娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占. 施磷水平与冬小麦产量和土壤有效磷含量的关系[J]. 植物营养与肥料学报, 2022, 28(9): 1582-1593. DOI: 10.11674/zwyf.2021661
引用本文: 娄梦玉, 薛华龙, 郭彬彬, 汪江涛, 昝志曼, 马超, 郭大勇, 焦念元, 付国占. 施磷水平与冬小麦产量和土壤有效磷含量的关系[J]. 植物营养与肥料学报, 2022, 28(9): 1582-1593. DOI: 10.11674/zwyf.2021661
LOU Meng-yu, XUE Hua-long, GUO Bin-bin, WANG Jiang-tao, ZAN Zhi-man, Ma Chao, GUO Da-yong, JIAO Nian-yuan, FU Guo-zhan. Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1582-1593. DOI: 10.11674/zwyf.2021661
Citation: LOU Meng-yu, XUE Hua-long, GUO Bin-bin, WANG Jiang-tao, ZAN Zhi-man, Ma Chao, GUO Da-yong, JIAO Nian-yuan, FU Guo-zhan. Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1582-1593. DOI: 10.11674/zwyf.2021661

施磷水平与冬小麦产量和土壤有效磷含量的关系

基金项目: 国家重点研发计划项目(2017YFD0200202);河南省自然科学基金项目(212300410342);河南省科技攻关项目(182102110180,212102110282)。
详细信息
    作者简介:

    娄梦玉 E-mail:2711610671@qq.com

    通讯作者:

    焦念元 E-mail:jiaony1@163.com

Relationship of phosphorus application rate, winter wheat yield and soil available phosphorus content

  • 摘要:
    目的 

    研究施磷水平对冬小麦分蘖成穗、产量、磷素吸收利用的影响及其与土壤有效磷含量的关系,明确维持冬小麦持续高产的最佳土壤有效磷含量及施磷量,为冬小麦高效磷肥管理提供理论依据。

    方法 

    于2018—2021年在河南科技大学农场进行了连续3年小麦田间试验,试验设P2O5 0、90、180和270 kg/hm2 4个磷水平,分别记为P0、P90、P180、P270处理,研究了施磷水平对冬小麦分蘖成穗率、干物质积累与分配、产量、磷素吸收与分配及利用效率的影响,并分析了施磷水平、土壤有效磷含量与产量之间的关系。

    结果 

    (1)随着施磷水平的提高,冬小麦单位面积最大分蘖数、有效分蘖数和干物质积累量处理间均呈P270>P180>P90>P0,而穗粒数、干物质向籽粒中分配率和产量呈先增加后降低的趋势;P180处理的冬小麦产量高达9.8‒10.2 t/hm2,比P90处理高17.3%~18.2% (P<0.05),与P270处理相比高出4.2%~11.5%,但差异不显著;(2)随着施磷水平的提高,冬小麦茎、叶、颖壳及穗轴和籽粒的磷含量处理间多呈P270>P180>P90>P0;籽粒磷积累量呈先增加后降低的趋势,P180水平下籽粒磷积累量最高,为57.0~61.1 g/m2;与P90相比,P180处理显著 (P<0.05) 提高了籽粒磷积累量,提高幅度为27.7%~39.0%;冬小麦磷偏生产力和磷农学利用效率均随着施磷水平的提高呈降低的趋势,与P90相比,P180、P270水平下冬小麦磷偏生产力和农学利用效率分别降低了40.0%~41.1%和35.3%~36.1%、62.1%~64.7%和58.6%~62.8%,且均达到显著水平(P<0.05);(3)土壤有效磷含量与施磷水平呈线性相关,小麦产量与施磷水平和土壤有效磷含量的关系可用一元二次方程拟合。年施P2O5 194.2~197.4 kg/hm2时最佳土壤有效磷含量25.5~25.8 mg/kg,产量最高为9752~10349 kg/hm2

    结论 

    适宜的施磷量可显著增加冬小麦的有效分蘖数和成穗数,提高茎、叶、颖壳及穗轴的干物质和磷素积累量及向籽粒的转移,增加冬小麦单位面积穗数、穗粒数、千粒重和产量。在供试区域,获得冬小麦最高产量的施P2O5 量为194.2~197.4 kg/hm2,土壤有效磷含量为25.5~25.8 mg/kg。

    Abstract:
    Objectives 

    We studied the influence of phosphorus (P) application level on tiller-earing, yield, and the absorption and utilization of P in winter wheat.

    Methods 

    From 2018 to 2021, a field experiment was conducted in Luoyang, Henan Province. Four P2O5 levels (0, 90, 180 and 270 kg/hm2) were setup, recorded as P0, P90, P180 and P270 treatments, respectively. The dry matter accumulation, P content in different organs at the main growing stages of wheat, the yield and yield components were recorded. After harvest, 0–20 cm soil samples were collected for the determination of available P.

    Results 

    Among the P treatments, the maximum and effective tiller number, and the dry matter accumulation of winter wheat were in order of P270>P180>P90>P0, while the grain number per spike, the dry matter allocation rate in grains and yield increased first and then decreased. P180 recorded the highest yield (9.8‒10.2 t/hm2), which was 17.3%‒18.2% higher (P<0.05) than P90, but similar with P270. The P concentration of stems, leaves, glume shells, spike shafts and grains of winter wheat were in order of P270>P180>P90>P0, while the grain P accumulation reached pick under P180 (57.0‒61.1 g/m2). Compared with P90, P180 significantly (P<0.05) increased grain P accumulation by 27.7%‒39.0%. The partial productivity of P and the agronomic utilization efficiency of P in winter wheat showed a decrease trend with the increase of P application levels. Compared with P90, the P partial productivity and P agronomic utilization efficiency of winter wheat at the P180 and P270 levels decreased by 40.0% to 41.1%, 35.3% to 36.1% and 62.1% to 64.7%, 58.6% to 62.8%, respectively. P application levels had linear relationship with soil available P content, but the relationship of wheat yield with P application levels and soil available P content could be fitted with quadratic equations.

    Conclusions 

    Suitable application rate of phosphorus can significantly increase the number of effective tillers and panicles of winter wheat, increase the accumulation of dry matter and phosphorus in stems, leaves, glumes and rachis and their transfer to grains, and increase the number of spikes per unit area, grains per spike, 1000-grain weight and yield of winter wheat. For the highest winter wheat yield in the test area, the P2O5 application rate was 194.2‒197.4 kg/hm2, and the soil available P was 25.5‒25.8 mg/kg.

  • 小麦在粮食生产中占有极其重要的作用,在我国作物种植面积和总产中处于第二位[1],其高产和稳产对我国粮食安全具有重要作用。小麦获得高产需要适宜的土壤肥力,磷素作为小麦养分供给中仅次于氮素的第二大元素[2],对小麦生长发育和产量形成起着重要作用[3-4],尤其对冬小麦产量构成三要素之一单位面积穗数具有明显的调控效应。相关研究表明[5-9],增施适量磷肥,能促进小麦的分蘖发生,提高单位面积穗数,进而提高小麦产量,这说明磷肥在小麦高产中发挥重要作用。然而,磷在土壤中移动性较弱,极易被固定,导致磷肥的当季利用率较低[10],土壤中大量积累的磷会导致磷矿资源的浪费和水体富营养化等一系列环境问题[11],不利于农业可持续发展[12]。目前,我国还普遍存在磷肥过量施用现象,而河南省作为农业大省,在农业快速发展的同时,农业资源投入量大幅度增加,氮肥、磷肥施用量均位列全国第一,导致河南省农田面源污染形势严峻[13]。可见,明确最佳施磷量对农业增产和可持续发展具有至关重要的作用。

    关于最佳施磷量与土壤中有效磷含量和产量的关系前人已做了一定的研究,马清霞等[14]在黄土高原17年长期施磷试验表明,小麦获得最高产量6465 kg/hm2的施磷量为144 kg/hm2,冬前土壤有效磷含量为21.2 mg/kg。马悦等[15]对北方麦区49个地点的试验表明,维持土壤有效磷含量在20~30 mg/kg时,减施或不施磷肥依然可以实现小麦高产,当土壤有效磷含量过高时,冬小麦单位面积穗数、粒重降低导致小麦产量降低。孙慧敏[16]在山东龙口麦区的试验表明,在有效磷含量为 30.44 mg/kg 的土壤上施磷对小麦籽粒产量没有显著影响,而冯媛媛等[17]通过在有效磷含量不同的土壤上进行施磷试验,结果显示在有效磷含量<10 mg/kg的土壤上,小麦增产效果最强的施磷量为150 kg/hm2;在有效磷含量为10~20 mg/kg的土壤上,小麦增产效果最强的施磷量为90~120 kg/hm2;在有效磷含量>20 mg/kg的土壤上,小麦产量随施磷量的增加呈先增加后达到平衡的趋势,还受土壤质地和气候条件的影响。这说明小麦最适施磷量不仅受土壤有效磷和产量影响,还与生态条件有关。目前,关于施磷水平对冬小麦分蘖成穗、产量和磷素吸收利用的影响及其与土壤有效磷含量的关系等方面的系统研究还相对较少。为此,本试验研究了施磷水平对冬小麦分蘖成穗、干物质积累分配与转运、产量、磷素吸收利用的影响,并分析了施磷水平与土壤有效磷含量和冬小麦产量的关系,明确达到冬小麦高产时的土壤有效磷含量及其最佳施磷量,为河南省冬小麦磷肥管理提供理论指导。

    本试验在河南科技大学实验农场进行,地理位置为112°24′53′′E,34°35′58′′N。试验田地处平原,地势平坦,土壤类型为黄潮土,质地为中壤。试验开始时耕层土壤容重为1.35 g/cm3,0—20 cm耕层碱解氮含量为33.9 mg/kg,速效钾含量为223.8 mg/kg,有效磷含量为6.84 mg/kg,有机质含量为10.7 g/kg,土壤pH为7.56。前茬为玉米和花生间作,作物收获后秸秆全部还田。

    于2018—2021年采用田间定位小区试验,供试小麦品种为‘洛麦26’。试验设年施磷(P2O5)量为0、90、180和 270 kg/hm2 4个水平,依次记为P0、P90、P180 和P270。每个处理设3次重复,每个小区面积60 m2 (10 m×6 m)。冬小麦为机械精播,播种量150 kg/hm2,行距20 cm。供试磷肥为磷酸二铵 (P2O5 46%,含N 18%),于小麦播种前作为基肥一次性施入。供试氮肥为尿素 (N 46%),各处理均施氮 180 kg/hm2,按基肥和追肥2∶1分两次施用,追肥于小麦拔节期撒施,施后灌水。其它管理同大田生产。分别于2018年10月16日、2019年10月18日和2020年10月29日播种,2019年6月1日、2020年5月31日和2021年6月5日收获。

    于冬小麦拔节期,在各小区取代表性30 cm长单行小麦,调查茎秆数用于计算单位面积最大分蘖数;在冬小麦成熟期,于各小区取代表性30 cm单行,调查穗数计算单位面积有效分蘖数。

    分别在冬小麦拔节期、扬花期、灌浆期和成熟期于各小区取代表性30 cm单行植株,分成茎、叶、穗三部分,105℃杀青30 min,75℃烘干至恒重。

    成熟期每个处理随机选取1 m双行小麦测产,每个处理重复3次,风干前测定小麦穗数和穗粒数,风干后测定小麦籽粒产量和千粒重。

    分别于拔节期、扬花期、灌浆期、成熟期采集小麦地上部植株样,分为茎、叶、籽粒和颖壳及穗轴,105℃杀青30 min,75℃烘干至恒重将其粉碎。样品经浓H2SO4–H2O2消煮后,采用电感耦合等离子体光谱仪(Agilent 5110)测定磷含量。

    在小麦冬前于各小区取0—20 cm土壤,采用Olsen法浸提,钼蓝比色法测定土壤有效磷含量。

    成穗率(%)=有效分蘖数/最大分蘖数×100

    总干物质量=茎重+叶重+穗重

    干物质分配比率(%)=各部位干物质量/总干物质量×100

    花前营养器官同化物转移量=扬花期整株干重–成熟期秸秆干重

    花前营养器官同化物转移率(%)=(扬花期整株干重–成熟期秸秆干重)/扬花期整株干重×100=花前营养器官同化物转移量/扬花期整株干重×100

    花前干物质对籽粒产量的贡献率(%)=花前营养器官同化物转移量/成熟期籽粒干重×100

    植株各器官磷积累量=植株各器官干重×含磷量

    植株各器官磷分配比例(%)=植株各器官磷积累量/植株总磷积累量×100

    磷肥偏生产力(kg/kg)=施磷处理籽粒产量/施磷量

    磷肥农学效率(kg/kg)=(施磷处理籽粒产量–不施磷处理籽粒产量)/施磷量

    磷收获指数=籽粒磷积累总量/植株磷积累总量

    数据处理和作图均采用Microsoft Excel 2007,差异显著性分析采用SPSS 22。多重比较采用LSD法,P<0.05为差异显著。

    表1可以看出,3个生长季冬小麦随着施磷水平的提高,最大分蘖数和有效分蘖数均呈逐渐增加的趋势。与P0相比,P90、P180、P270的最大分蘖数分别提高了205.8%~261.3%、271.7%~307.4%、297.3%~354.4%;有效分蘖数分别提高了78.6%~113.0%、148.6%~149.2%、153.7%~173.2%,均达到显著水平(P<0.05)。P0分蘖成穗率最高,与P90相比,P180、P270的分蘖成穗率分别提高了8.7%~14.3%、3.4%~14.6%,均达到显著水平(P<0.05),P180和P270之间2018—2020年分蘖成穗率差异不显著。由此可得,提高施磷水平能增加冬小麦单位面积最大分蘖数和有效分蘖数。

    表  1  不同施磷水平下冬小麦分蘖数及成穗率
    Table  1.  Tillering number and effective tiller percentage of winter wheat under different P application rates
    年份
    Year
    处理
    Treatment
    最大分蘖数 (×104/hm2)
    Maximum tiller
    有效分蘖数 (×104/hm2)
    Effective tiller
    分蘖成穗率 (%)
    Effective tiller ratio
    2018—2019P0477.8 d285.2 d59.8 a
    P901461.1 c509.3 c34.9 c
    P1801775.9 b709.3 b39.9 b
    P2701898.2 a759.3 a40.0 b
    2019—2020P0436.7 d306.7 d70.3 a
    P901577.8 c613.3 c38.9 c
    P1801779.2 b764.4 b43.0 b
    P2701984.4 a837.8 a42.2 b
    2020—2021P0449.2 d316.3 d70.4 a
    P901619.6 c673.8 c41.6 d
    P1801739.5 b786.3 b45.2 b
    P2701866.1 a802.4 a43.0 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    图1可以看出,不施磷处理(P0)冬小麦干物质积累量随着生育期的推进先增加后降低,在灌浆期达到最大值,而P90、P180和P270处理随着生育期的推进小麦干物质积累量不断增加,以成熟期最大。各生育期冬小麦干物质积累量均表现为P270>P180>P90>P0,P0、P90、P180处理之间冬小麦干物质积累增加显著,而P270 相较于P180的增幅有时不显著,表明施磷超过P180不一定能继续促进冬小麦的干物质积累。

    图  1  不同施磷水平下冬小麦不同生育期干物质积量
    注:JS—拔节期,AS—扬花期; FS—灌浆期; MS—成熟期。柱上不同小写字母表示同一年份处理间在0.05水平差异显著
    Figure  1.  Dry matter accumulation of winter wheat at different growing stages under different P application rates
    Note: JS—Jointing stage; AS—Anthesis stage; FS—Filling stage; MS—Maturity stage. Different lowercase letters above the bars indicate significant difference among treatments in the same year at the 0.05 level

    表2可以看出,冬小麦茎、叶和颖壳及穗轴的干物质分配量均随着施磷水平的提高呈增加的趋势,与P0相比,P90、P180、P270处理下茎的干物质分配量分别增加了189.4%~233.0%、223.8%~309.1%和252.4%~346.9%,叶的干物质分配量分别增加了238.8%~310.5%、346.6%~400.7%和397.3%~452.5%,颖壳及穗轴的干物质分配量分别增加了124.5%~275.3%、166.7%~234.6%和201.3%~325.0%,均达到显著水平(P<0.05)。籽粒的干物质分配量随着施磷水平的提高呈先增加后降低的趋势,P180处理下达到最大值。随着施磷水平的提高,叶的干物质分配比率总体呈逐渐增加的趋势,颖壳及穗轴的干物质分配比率呈先降低后增加的趋势,P180处理下达到最低值,籽粒的干物质分配比率随着施磷水平的提高呈先增加后降低的趋势,P180水平下干物质分配比率达到最高值,2018—2019年、2019—2020年、2020—2021年分别达到44.3%、42.7%和45.3%。由此说明,增施磷肥能够影响光合产物在冬小麦各个器官中的分配比率,通过降低颖壳及穗轴的分配比率来提高茎、叶及籽粒的分配比率,进而提高小麦产量。

    表  2  不同施磷水平下冬小麦干物质的分配
    Table  2.  Dry matter distribution in winter wheat under different P application rates
    年份
    Year
    磷水平
    P level
    分配量 Allocation amount (g/m2)分配比率 Allocation rate (%)

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P0227.7 d74.2 d112.0 d287.7 c37.6 bc12.3 b18.4 a41.1 b
    P90710.0 c251.4 c253.9 c927.5 b38.7 ab13.7 a13.9 c43.3 a
    P180899.5 b337.4 b335.2 b1248.4 a37.4 c14.0 a13.9 c44.3 a
    P2701017.6 a369.0 a418.4 a1205.0 a39.0 a14.1 a16.1 b40.0 b
    2019—2020P0283.1 d85.7 d139.9 d307.8 c34.6 a10.6 b17.1 a37.8 b
    P90819.2 c351.8 c314.1 c1024.3 b32.7 b14.0 a12.5 b40.8 a
    P180916.6 b429.1 b373.0 b1265.1 a30.7 c14.4 a12.5 b42.7 a
    P270997.7 a473.5 a421.5 a1184.5 a32.4 b15.4 a13.7 b38.5 b
    2020—2021P0215.7 d68.5 d92.7 d283.5 d32.6 a10.5 a14.1 a43.0 ab
    P90718.2 c244.5 c347.9 b920.4 c33.7 a11.5 a12.2 bc43.2 a
    P180882.4 b305.9 b310.2 c1241.3 a32.2 a11.2 a11.3 c45.3 a
    P270933.4 a364.6 a394.0 a1164.5 b32.7 a12.8 a13.8 ab40.8 b
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    冬小麦产量的形成来自花前干物质的转移和花后光合同化干物质的积累两个方面[18]。花前营养器官贮藏物质向籽粒的转运是决定小麦籽粒产量的主要因素[19]。由表3可以看出,随着施磷水平的提高,3个生长季冬小麦茎、叶的干物质转移量均呈先增加后减少的趋势,P90水平下达到最高,相较于P0和P180,P90的茎干物质转移量分别增加了62.8%~174.9%和12.9%~23.5%,叶干物质转移量分别增加了69.3%~90.8%和6.5%~14.5% (P<0.05),相同施磷水平下茎的干物质转移量高于叶片。随施磷水平的提高,冬小麦茎、叶的干物质转移率均显著降低 (P<0.05)。可见施磷水平越低,茎叶干物质向籽粒的贡献率越高。相同施磷水平下,茎的干物质转移率10.7%~29.6%均低于叶片干物质转移率19.8%~49.1%。随施磷水平的提高,3个生长季冬小麦干物质转运对籽粒贡献率均降低,差异达到显著水平(P<0.05)。说明低磷水平下,籽粒的干物质积累大量依靠花前茎叶干物质的转移,随着施磷水平的提高,会逐渐减弱对花前茎叶干物质的依赖。相同施磷水平下,茎对籽粒的干物质贡献率11.8%~34.0%均高于叶片对籽粒的干物质贡献率10.1%~27.6%。上述结果表明,提高施磷水平增加了茎、叶干物质转移量,降低了干物质转移率及干物质转运对籽粒的贡献率。

    表  3  施磷水平对冬小麦花前干物质转移的影响
    Table  3.  Effects of P level on pre-anthesis dry matter transfer in winter wheat
    年份
    Year
    磷水平
    P level
    干物质转移量 (g/m2)
    Dry matter transfer
    干物质转移率 (%)
    Dry matter transfer ratio
    干物质贡献率 (%)
    Contribution rate to grain

    Stem

    Leaf

    Stem

    Leaf

    Stem

    Leaf
    2018—2019P096.1 d69.3 d29.6 a48.4 a33.5 a24.1 a
    P90264.2 a132.2 a27.1 b35.4 b29.3 b14.7 b
    P180213.9 b111.5 b19.4 c25.3 c19.5 c10.2 c
    P270121.7 c104.4 c10.7 d22.1 d11.8 d10.1 c
    2019—2020P0106.0 d82.5 c28.1 a47.0 a34.0 a26.4 a
    P90251.5 a139.7 a24.3 b29.4 b26.1 b14.5 b
    P180222.7 b124.8 ab19.9 c22.7 c19.5 c11.0 c
    P270172.9 c115.6 b14.7 d19.8 c15.6 d10.4 c
    2020—2021P0131.1 c79.0 c26.8 a49.1 a28.0 a27.6 a
    P90213.4 a137.0 a25.1 a38.5 b24.3 a15.6 b
    P180186.6 ab128.6 ab18.7 b33.5 b16.6 b11.5 b
    P270167.7 bc113.8 b15.9 c23.1 c15.5 b10.5 b
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    表4可得,施磷水平的提高显著增加了冬小麦单位面积穗数、穗粒数、千粒重和产量。与P0相比,P90、P180、P270处理下冬小麦单位面积穗数分别提高了57.7%~149.4%、128.0%~187.9%、147.4%~200.0%,且差异均达到显著水平 (P<0.05)。冬小麦穗粒数和产量均随着施磷水平的提高呈先增加后降低的趋势,均在P180达到最大值,与P0相比,P90、P180、P270处理下冬小麦穗粒数分别增加了12.0%~27.1%、20.9%~44.2%、14.0%~34.2%;产量分别增加了165.2%~234.6%、215.6%~292.3%、200.0%~257.7%。与P90相比P180产量提高17.3%~18.2%,与P270相比P180产量提高4.2%~11.5%。综合产量及其构成三要素可得,P180水平下冬小麦产量最高。

    表  4  不同施磷水平下的冬小麦产量及产量构成
    Table  4.  Yield and yield component of winter wheat under different P application rates
    年份
    Year
    磷水平
    P level
    穗数 (×104/hm2)
    Spike number
    穗粒数
    Grain number per spike
    千粒重 (g)
    1000-grain weight
    产量 (t/hm2)
    Yield
    2018—2019P0232.8 d31.0 b47.2 c2.6 c
    P90580.6 c37.9 a52.0 a8.7 b
    P180670.3 b41.4 a51.2 a10.2 a
    P270698.3 a38.1 a49.1 b9.1 b
    2019—2020P0313.3 c30.1 c42.4 c3.2 c
    P90637.8 b33.7 b49.9 a8.5 b
    P180822.2 a36.4 a49.1 ab10.1 a
    P270868.9 a34.3 ab47.1 b9.6 a
    2020—2021P0316.3 c26.9 c41.7 c2.6 c
    P90498.8 b34.2 b47.6 b8.3 b
    P180721.2 a38.8 a48.9 a9.8 a
    P270782.5 a36.1 ab47.3 b9.3 ab
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    表5可以看出,随着施磷水平的提高,3个生长季扬花期冬小麦茎、叶磷含量均呈逐渐增加的趋势,与P0和P90相比,P180处理下冬小麦茎的磷含量分别增加了77.2%~112.5%和14.9%~16.2%,叶的磷含量分别增加了62.3%~170.1%和22.4%~33.2%,均达到显著水平(P<0.05),与P180相比,2019—2020年P270处理茎的磷含量增加不显著,2018—2019、2020—2021年增加显著,而叶的磷含量3个生长季增加均不显著;颖壳及穗轴磷含量P90较P0处理增加达到显著水平(P<0.05),而与P180、P270处理间相比2019—2020年无显著差异。随着施磷水平的提高,成熟期冬小麦茎、叶、颖壳及穗轴和籽粒的磷含量整体均呈增加的趋势,P180处理下冬小麦茎磷含量较P0和P90分别增加了17.6%~24.1%和11.0%~20.2%,叶磷含量分别增加了107.1%~356.4%和29.0%~40.7%,颖壳及穗轴磷含量分别增加了29.2%~36.8%和8.5%~9.8%,籽粒磷含量分别增加了19.6%~33.8%和4.7%~5.0%,多数达到显著水平(P<0.05),而P270处理的茎和籽粒磷含量与P180相比没有显著差异。由此可得,在施P2O5 0~180 kg/hm2范围内,增加施磷量可以显著提高各器官含磷量,施P2O5超过180 kg/hm2不能继续显著增加植株各器官含磷量。

    表  5  不同施磷水平下冬小麦扬花期与成熟期各器官含磷量(mg/g)
    Table  5.  P concentration in organs of winter wheat at anthesis and maturity stages under different P application rates
    年份
    Year
    磷水平
    P level
    扬花期 Anthesis stage成熟期 Maturity stage

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P01.01 d1.75 c2.98 c0.91 c0.98 c1.06 b3.88 b
    P901.54 c2.32 b3.69 b0.97 b1.52 b1.43 a4.57 a
    P1801.79 b2.84 a3.89 ab1.07 a2.03 a1.45 a4.64 a
    P2701.86 a2.99 a3.92 a1.08 a1.97 a1.47 a4.66 a
    2019—2020P00.80 c1.07 c2.67 b0.92 b0.39 d1.13 c3.40 c
    P901.48 b2.28 b3.71 a0.94 b1.38 c1.33 b4.27 b
    P1801.70 a2.89 a3.72 a1.13 a1.78 b1.46 a4.47 a
    P2701.76 a2.94 a3.70 a1.15 a1.93 a1.42 a4.55 a
    2020—2021P00.92 d1.43 c2.86 c0.87 c0.78 c1.04 c3.31 c
    P901.50 c2.14 b3.60 b0.94 b1.23 b1.30 b4.22 b
    P1801.73 b2.85 a3.76 a1.08 a1.73 a1.41 a4.43 a
    P2701.81 a2.91 a3.82 a1.08 a1.77 a1.43 a4.50 a
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatmentsin the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    图2可以看出,3个生长季4个施磷水平下冬小麦植株磷积累量均随着生育期的推进呈逐渐增加的趋势,P0水平下冬小麦植株磷积累量随着生育期的推进增加较缓慢,成熟期仅达到15.0~15.2 kg/hm2;P90、P180、P270处理下冬小麦植株磷积累量随生育期推进增加迅速,成熟期分别达到56.8~59.8、78.7~79.3、78.8~80.7 kg/hm2。P0~P180处理下冬小麦植株磷积累量呈增加的趋势,与P90相比,P180处理下冬小麦植株磷积累量增加了30.5%~67.9%,均达到显著水平(P<0.05),与P180相比,P270处理成熟期差异不显著。由此说明P2O5 0~180 kg/hm2范围内增加施磷量可以显著增加冬小麦植株磷积累量,但过量施用磷肥不能显著增加植株对磷素的积累。

    图  2  不同施磷水平下冬小麦植株磷积累量
    注:JS—拔节期;AS—扬花期;FS—灌浆期;MS—成熟期。柱上不同小写字母表示同一年份处理间差异达5%显著水平
    Figure  2.  Phosphorus accumulation in winter wheat under different P application rates
    Note: JS—Jointing stage; AS—Anthesis stage; FS—Filling stage; MS—Maturity stage. Different lowercase letters above the bars indicate significant difference among treatments in the same year (P<0.05)

    表6可知,成熟期冬小麦各器官的磷素积累量随着施磷水平的提高呈逐渐增加的趋势,其中,茎和颖壳及穗轴的磷积累量的增加达到显著水平(P<0.05);叶的磷积累量的增加在P0~P180达到显著水平,籽粒的磷积累量呈先增加后降低的趋势,在P180达到最大值,相比P90,P180籽粒磷积累量提高27.7%~39.0%。随着施磷水平的提高,茎和颖壳及穗轴的磷素分配比率呈先降低后增加的趋势,P90和P180的磷素分配比率较低,叶的磷素分配比率呈逐渐增加的趋势,籽粒的磷素分配比率呈先增加后降低的趋势,P270时磷素分配比率达到最低,3个生长季各处理籽粒分配比率为66.4%~74.7%。

    表  6  不同施磷水平下冬小麦各器官磷素积累与分配
    Table  6.  The accumulation and distribution of phosphorus in the organs of winter wheat under different P application rates
    年份
    Year
    施磷水平
    P level
    磷素积累量 P accumulation (g/m2)磷素分配率 P distribution rate (%)

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P02.26 d0.78 d1.43 d12.1 c13.7 a4.7 c8.7 a73.0 a
    P907.00 c4.15 c3.75 c43.6 b12.0 b7.1 b6.4 c74.5 a
    P1809.65 b7.22 b5.09 b61.1 a11.5 b8.7 a6.1 c73.6 a
    P27011.52 a7.77 a6.30 a57.4 a13.9 a9.4 a7.6 b69.2 b
    2019—2020P02.54 d0.42 d1.79 d12.3 d15.5 a2.6 d10.9 a74.7 a
    P907.46 c5.29 c4.30 c45.2 c12.0 c8.5 c6.9 c72.6 a
    P18010.79 b7.87 b5.49 b58.5 a13.1 bc9.5 b6.6 c70.8 ab
    P27012.03 a9.25 a6.20 a54.4 b14.7 ab11.3 a7.6 b66.4 b
    2020—2021P02.28 d0.71 c1.39 d10.6 d15.2 a4.9 c9.3 a70.8 bc
    P907.04 c4.12 b3.67 c42.5 c12.3 bc7.2 b6.4 c74.1 a
    P1809.42 b7.13 a5.10 b57.0 a12.0 c9.1 a6.5 c72.5 ab
    P27011.11 a7.42 a6.20 a54.5 b14.0 ab9.4 a7.8 b68.8 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    表7可以看出,3个生长季随着施磷水平的提高,冬小麦磷肥偏生产力和农学效率均呈现降低的趋势,且均达到显著水平(P<0.05),与P90相比P180和P270下磷肥偏生产力分别降低了40.0%~41.1%和62.1%~64.7%,磷肥农学效率分别降低了35.3%~36.1%和58.6%~62.8%。由此可得,提高施磷水平会降低冬小麦对磷肥的利用效率。

    表  7  不同施磷水平下冬小麦磷肥利用效率
    Table  7.  Phosphate fertilizer use efficiency of winter wheat under different P application rates
    年份
    Year
    施磷水平
    P level
    偏生产力
    Partial
    productivity
    (kg/kg)
    农学效率
    Agronomy
    efficiency
    (kg/kg)
    磷收获指数
    P harvest
    index
    2018—2019P00.74 b
    P90215.6 a146.7 a0.75 a
    P180129.0 b94.9 b0.73 b
    P27076.1 c54.6 c0.70 c
    2019—2020P00.72 a
    P90217.0 a136.4 a0.73 a
    P180127.9 b87.1 b0.71 b
    P27082.2 c56.4 c0.66 c
    2020—2021P00.75 a
    P90214.0 a142.3 a0.75 a
    P180128.5 b91.9 b0.73 b
    P27080.0 c55.8 c0.71 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV 
    | 显示表格

    在一定施磷范围内,增施磷肥能够促进小麦产量的提高 (图3)。3个生长季冬小麦产量(y)与施磷水平(x) 之间的关系可用一元二次方程拟合:y = –0.198x2 + 76.887x + 2885.2,可得在施磷量194.2 kg/hm2时获得最高产量为10349.4 kg/hm2(土壤有效磷含量为25.5 mg/kg),施磷量>194.2 kg/hm2时产量降低。土壤有效磷含量(y)与施磷量(x)之间呈线性正相关:y = 0.0886x + 8.3405。提高施磷水平能够增加0—20 cm土壤有效磷含量 (图3)。冬小麦产量(y)与0—20 cm土壤有效磷含量(x)的关系也符合一元二次方程y = –19.253x2 + 995.97x – 3128.5,土壤有效磷含量为25.8 mg/kg时产量最高,为9752.0 kg/hm2,将所得产量最高的土壤有效磷含量代入土壤有效磷含量与施磷水平方程可得,产量最高时的土壤有效磷含量所对应的施磷量为197.4 kg/hm2,与上述所得产量最高时的施磷量194.2 kg/hm2无显著差异,由此可得冬小麦生长所需最佳土壤有效磷水平且产量最高的施磷水平范围为194.2~197.4 kg/hm2

    图  3  施磷水平与耕层土壤有效磷含量及小麦产量的关系
    Figure  3.  Relationship among phosphorus application level, topsoil available phosphorus concentration and wheat yield

    合理的群体结构对小麦产量至关重要[20]。分蘖成穗是小麦重要的生物学特征,也是决定群体发展的重要因素,对小麦产量及产量形成起着重要的作用[21]。研究表明,增施磷肥可以促进小麦的分蘖,显著提高单位面积有效穗数来优化群体结构,获得高产,并且小麦分蘖成穗率与产量呈线性正相关[22-24]。在本试验中,随着施磷水平的提高,冬小麦最大分蘖数和有效分蘖数均得到显著增加,与前人研究结果一致。然而分蘖成穗率与小麦产量的关系与前人研究有所不同,P90水平下冬小麦产量高于P0,但P90水平下分蘖成穗率反而低于P0水平,其原因可能是P0条件下土壤中有效磷含量不能满足冬小麦产生较多的分蘖,造成单穗单株的情况,从而分蘖成穗率较高,产量较低。

    小麦产量主要来源于花前营养器官贮存同化物向籽粒的转运和花后光合同化物的积累。小麦高产的前提是具有较高的干物质积累[25],冬小麦干物质积累量随着施磷量的增加表现为递增的趋势[26-27]。本试验研究表明,施磷水平在小于P2O5 180 kg/hm2时,冬小麦干物质积累量随着施磷量的增加而明显增加,并促进了小麦花后干物质向籽粒的转运,进而提升小麦产量,但施P2O5 270 kg/hm2时,虽然小麦干物质积累量还在增加,但降低了在籽粒中的分配比例,导致小麦产量的降低。

    协调冬小麦单位面积穗数、穗粒数和千粒重三者关系是获得高产的关键[28]。研究表明,随着施磷量的增加冬小麦单位面积穗数增加,而穗粒数和千粒重呈先增加后降低的趋势[9, 29-30]。本试验结果显示随着施磷水平的提高,冬小麦单位面积穗数逐渐增加,但施P2O5 270 kg/hm2时,由于穗粒数和千粒重的降低,其产量低于施P2O5 180 kg/hm2处理,这主要由于在施P2O5 270 kg/hm2时,促进前期分蘖,造成后期群体过大,下落小穗数增多,导致穗粒数和千粒重降低。

    合理施用磷肥可以促进小麦对磷素的吸收利用,有利于小麦生长发育,增加生物量及提高产量。施磷量对小麦植株的含磷量影响较大,有研究认为植株中的磷含量随着施磷量的增加而增加[31-32]。本研究结果表明增施磷肥可以提高冬小麦茎、叶、颖壳及穗轴和籽粒的磷含量,这与前人研究结果基本一致,但本试验中施磷量到达P2O5 180 kg/hm2时植株磷含量成熟期不再随施磷量增加而显著增加。

    小麦磷素积累量与供磷水平有关,相关研究表明,适量提高施磷量可以显著提高小麦植株磷积累量和籽粒中的磷含量[9,32]。本试验结果表明,施P2O5 180 kg/hm2时,冬小麦植株磷积累量显著高于不施磷和施P2O5 90 kg/hm2的,与前人研究结果一致,但过量施磷不仅不能无限制提高冬小麦植株磷积累,还会降低小麦产量,造成小麦对磷的“奢侈吸收”,如本研究中施P2O5 270 kg/hm2时,冬小麦植株磷积累量高于施P2O5 180 kg/hm2,但冬小麦籽粒产量低于施P2O5 180 kg/hm2。本研究还表明,施磷量还影响了冬小麦植株磷积累量在生育后期的再分配,在成熟期,籽粒磷积累量占地上部总磷积累量的66.4%~74.7%,施P2O5 180 kg/hm2时小麦籽粒磷积累量比不施磷小麦显著增加,这与陈远学等[33]、史燕捷等[34]的研究结果类似。说明适量增施磷肥,能促进磷营养向籽粒转运,提高冬小麦磷养分利用效率。

    肥料的偏生产力、农学利用效率都是直接反映施肥与小麦产量关系的重要参数。本研究表明,随着施磷(P2O5)量从90 kg/hm2增加至270 kg/hm2,冬小麦磷偏生产力和磷农学利用效率均显著降低 (P<0.05)。这与李廷亮等[8]在晋南旱地小麦研究结果一致。可见,增施磷肥对籽粒产量形成的贡献率随施磷量的增加而降低。但综合产量来看,本研究4个施磷水平中,P2O5 180 kg/hm2为较佳施磷水平。

    土壤有效磷是土壤磷储库中对作物最为有效的部分,也是评价土壤供磷水平的重要指标[35],合理的施磷量能维持土壤磷库的平衡[36]。试验研究表明,增加施磷量对提高土壤有效磷含量具有重要作用,尤其是耕层土壤中的有效磷[37-40]。本试验将冬小麦土壤有效磷含量与施磷水平进行拟合,可得土壤有效磷含量随着施磷量的增加而增加,与前人研究结果一致,可见,增加施磷量在提高小麦产量的同时也提高了土壤有效磷含量。不施磷和低磷(P2O5 90 kg/hm2)水平时,土壤有效磷含量较低,这可能是植株消耗土壤中的磷素,造成土壤有效磷匮乏的原因。本试验结果显示,冬小麦获得最高产量9752.0~10349.4 kg/hm2的施磷量为194.2~197.4 kg/hm2,土壤有效磷含量为25.5~25.8 mg/kg,马清霞等[14]在黄土高原17年长期施磷试验表明,小麦获得最高产量6465 kg/hm2的施磷量为144 kg/hm2,土壤有效磷含量为21.2 mg/kg。马悦等[15]对北方麦区49个地点的试验表明,维持土壤有效磷含量在20~30 mg/kg时,冬小麦产量最高。可见,小麦获得高产下最佳土壤有效磷含量存在一定差异,这可能是由于产量水平、环境和土壤理化性质的不同所致。由以上可得,根据土壤有效磷含量,确定小麦持续高产下最佳施磷量,是提高小麦产量的最有效手段。

    在供试区域,提高冬小麦的施磷水平可显著增加冬小麦的有效分蘖数和成穗数,提高茎、叶、颖壳及穗轴的干物质和磷素积累量及向籽粒的转移,增加冬小麦单位面积穗数、穗粒数和千粒重。但是当施磷水平超过适宜范围后,主要增加了营养器官中干物质和磷的积累与分配,降低向籽粒的转移,不能进一步提高产量。施磷量与土壤有效磷含量呈线性正相关,而小麦产量与施磷量和土壤有效磷含量的关系可以用成一元二次方程拟合。小麦产量最高的土壤有效磷含量为25.5~25.8 mg/kg,施磷(P2O5)量为194.2~197.4 kg/hm2

  • 图  1   不同施磷水平下冬小麦不同生育期干物质积量

    注:JS—拔节期,AS—扬花期; FS—灌浆期; MS—成熟期。柱上不同小写字母表示同一年份处理间在0.05水平差异显著

    Figure  1.   Dry matter accumulation of winter wheat at different growing stages under different P application rates

    Note: JS—Jointing stage; AS—Anthesis stage; FS—Filling stage; MS—Maturity stage. Different lowercase letters above the bars indicate significant difference among treatments in the same year at the 0.05 level

    图  2   不同施磷水平下冬小麦植株磷积累量

    注:JS—拔节期;AS—扬花期;FS—灌浆期;MS—成熟期。柱上不同小写字母表示同一年份处理间差异达5%显著水平

    Figure  2.   Phosphorus accumulation in winter wheat under different P application rates

    Note: JS—Jointing stage; AS—Anthesis stage; FS—Filling stage; MS—Maturity stage. Different lowercase letters above the bars indicate significant difference among treatments in the same year (P<0.05)

    图  3   施磷水平与耕层土壤有效磷含量及小麦产量的关系

    Figure  3.   Relationship among phosphorus application level, topsoil available phosphorus concentration and wheat yield

    表  1   不同施磷水平下冬小麦分蘖数及成穗率

    Table  1   Tillering number and effective tiller percentage of winter wheat under different P application rates

    年份
    Year
    处理
    Treatment
    最大分蘖数 (×104/hm2)
    Maximum tiller
    有效分蘖数 (×104/hm2)
    Effective tiller
    分蘖成穗率 (%)
    Effective tiller ratio
    2018—2019P0477.8 d285.2 d59.8 a
    P901461.1 c509.3 c34.9 c
    P1801775.9 b709.3 b39.9 b
    P2701898.2 a759.3 a40.0 b
    2019—2020P0436.7 d306.7 d70.3 a
    P901577.8 c613.3 c38.9 c
    P1801779.2 b764.4 b43.0 b
    P2701984.4 a837.8 a42.2 b
    2020—2021P0449.2 d316.3 d70.4 a
    P901619.6 c673.8 c41.6 d
    P1801739.5 b786.3 b45.2 b
    P2701866.1 a802.4 a43.0 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV

    表  2   不同施磷水平下冬小麦干物质的分配

    Table  2   Dry matter distribution in winter wheat under different P application rates

    年份
    Year
    磷水平
    P level
    分配量 Allocation amount (g/m2)分配比率 Allocation rate (%)

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P0227.7 d74.2 d112.0 d287.7 c37.6 bc12.3 b18.4 a41.1 b
    P90710.0 c251.4 c253.9 c927.5 b38.7 ab13.7 a13.9 c43.3 a
    P180899.5 b337.4 b335.2 b1248.4 a37.4 c14.0 a13.9 c44.3 a
    P2701017.6 a369.0 a418.4 a1205.0 a39.0 a14.1 a16.1 b40.0 b
    2019—2020P0283.1 d85.7 d139.9 d307.8 c34.6 a10.6 b17.1 a37.8 b
    P90819.2 c351.8 c314.1 c1024.3 b32.7 b14.0 a12.5 b40.8 a
    P180916.6 b429.1 b373.0 b1265.1 a30.7 c14.4 a12.5 b42.7 a
    P270997.7 a473.5 a421.5 a1184.5 a32.4 b15.4 a13.7 b38.5 b
    2020—2021P0215.7 d68.5 d92.7 d283.5 d32.6 a10.5 a14.1 a43.0 ab
    P90718.2 c244.5 c347.9 b920.4 c33.7 a11.5 a12.2 bc43.2 a
    P180882.4 b305.9 b310.2 c1241.3 a32.2 a11.2 a11.3 c45.3 a
    P270933.4 a364.6 a394.0 a1164.5 b32.7 a12.8 a13.8 ab40.8 b
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV

    表  3   施磷水平对冬小麦花前干物质转移的影响

    Table  3   Effects of P level on pre-anthesis dry matter transfer in winter wheat

    年份
    Year
    磷水平
    P level
    干物质转移量 (g/m2)
    Dry matter transfer
    干物质转移率 (%)
    Dry matter transfer ratio
    干物质贡献率 (%)
    Contribution rate to grain

    Stem

    Leaf

    Stem

    Leaf

    Stem

    Leaf
    2018—2019P096.1 d69.3 d29.6 a48.4 a33.5 a24.1 a
    P90264.2 a132.2 a27.1 b35.4 b29.3 b14.7 b
    P180213.9 b111.5 b19.4 c25.3 c19.5 c10.2 c
    P270121.7 c104.4 c10.7 d22.1 d11.8 d10.1 c
    2019—2020P0106.0 d82.5 c28.1 a47.0 a34.0 a26.4 a
    P90251.5 a139.7 a24.3 b29.4 b26.1 b14.5 b
    P180222.7 b124.8 ab19.9 c22.7 c19.5 c11.0 c
    P270172.9 c115.6 b14.7 d19.8 c15.6 d10.4 c
    2020—2021P0131.1 c79.0 c26.8 a49.1 a28.0 a27.6 a
    P90213.4 a137.0 a25.1 a38.5 b24.3 a15.6 b
    P180186.6 ab128.6 ab18.7 b33.5 b16.6 b11.5 b
    P270167.7 bc113.8 b15.9 c23.1 c15.5 b10.5 b
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV

    表  4   不同施磷水平下的冬小麦产量及产量构成

    Table  4   Yield and yield component of winter wheat under different P application rates

    年份
    Year
    磷水平
    P level
    穗数 (×104/hm2)
    Spike number
    穗粒数
    Grain number per spike
    千粒重 (g)
    1000-grain weight
    产量 (t/hm2)
    Yield
    2018—2019P0232.8 d31.0 b47.2 c2.6 c
    P90580.6 c37.9 a52.0 a8.7 b
    P180670.3 b41.4 a51.2 a10.2 a
    P270698.3 a38.1 a49.1 b9.1 b
    2019—2020P0313.3 c30.1 c42.4 c3.2 c
    P90637.8 b33.7 b49.9 a8.5 b
    P180822.2 a36.4 a49.1 ab10.1 a
    P270868.9 a34.3 ab47.1 b9.6 a
    2020—2021P0316.3 c26.9 c41.7 c2.6 c
    P90498.8 b34.2 b47.6 b8.3 b
    P180721.2 a38.8 a48.9 a9.8 a
    P270782.5 a36.1 ab47.3 b9.3 ab
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV

    表  5   不同施磷水平下冬小麦扬花期与成熟期各器官含磷量(mg/g)

    Table  5   P concentration in organs of winter wheat at anthesis and maturity stages under different P application rates

    年份
    Year
    磷水平
    P level
    扬花期 Anthesis stage成熟期 Maturity stage

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P01.01 d1.75 c2.98 c0.91 c0.98 c1.06 b3.88 b
    P901.54 c2.32 b3.69 b0.97 b1.52 b1.43 a4.57 a
    P1801.79 b2.84 a3.89 ab1.07 a2.03 a1.45 a4.64 a
    P2701.86 a2.99 a3.92 a1.08 a1.97 a1.47 a4.66 a
    2019—2020P00.80 c1.07 c2.67 b0.92 b0.39 d1.13 c3.40 c
    P901.48 b2.28 b3.71 a0.94 b1.38 c1.33 b4.27 b
    P1801.70 a2.89 a3.72 a1.13 a1.78 b1.46 a4.47 a
    P2701.76 a2.94 a3.70 a1.15 a1.93 a1.42 a4.55 a
    2020—2021P00.92 d1.43 c2.86 c0.87 c0.78 c1.04 c3.31 c
    P901.50 c2.14 b3.60 b0.94 b1.23 b1.30 b4.22 b
    P1801.73 b2.85 a3.76 a1.08 a1.73 a1.41 a4.43 a
    P2701.81 a2.91 a3.82 a1.08 a1.77 a1.43 a4.50 a
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatmentsin the same year at the 0.05 level.
    下载: 导出CSV

    表  6   不同施磷水平下冬小麦各器官磷素积累与分配

    Table  6   The accumulation and distribution of phosphorus in the organs of winter wheat under different P application rates

    年份
    Year
    施磷水平
    P level
    磷素积累量 P accumulation (g/m2)磷素分配率 P distribution rate (%)

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain

    Stem

    Leaf
    颖壳及穗轴
    Glume and rachis
    籽粒
    Grain
    2018—2019P02.26 d0.78 d1.43 d12.1 c13.7 a4.7 c8.7 a73.0 a
    P907.00 c4.15 c3.75 c43.6 b12.0 b7.1 b6.4 c74.5 a
    P1809.65 b7.22 b5.09 b61.1 a11.5 b8.7 a6.1 c73.6 a
    P27011.52 a7.77 a6.30 a57.4 a13.9 a9.4 a7.6 b69.2 b
    2019—2020P02.54 d0.42 d1.79 d12.3 d15.5 a2.6 d10.9 a74.7 a
    P907.46 c5.29 c4.30 c45.2 c12.0 c8.5 c6.9 c72.6 a
    P18010.79 b7.87 b5.49 b58.5 a13.1 bc9.5 b6.6 c70.8 ab
    P27012.03 a9.25 a6.20 a54.4 b14.7 ab11.3 a7.6 b66.4 b
    2020—2021P02.28 d0.71 c1.39 d10.6 d15.2 a4.9 c9.3 a70.8 bc
    P907.04 c4.12 b3.67 c42.5 c12.3 bc7.2 b6.4 c74.1 a
    P1809.42 b7.13 a5.10 b57.0 a12.0 c9.1 a6.5 c72.5 ab
    P27011.11 a7.42 a6.20 a54.5 b14.0 ab9.4 a7.8 b68.8 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV

    表  7   不同施磷水平下冬小麦磷肥利用效率

    Table  7   Phosphate fertilizer use efficiency of winter wheat under different P application rates

    年份
    Year
    施磷水平
    P level
    偏生产力
    Partial
    productivity
    (kg/kg)
    农学效率
    Agronomy
    efficiency
    (kg/kg)
    磷收获指数
    P harvest
    index
    2018—2019P00.74 b
    P90215.6 a146.7 a0.75 a
    P180129.0 b94.9 b0.73 b
    P27076.1 c54.6 c0.70 c
    2019—2020P00.72 a
    P90217.0 a136.4 a0.73 a
    P180127.9 b87.1 b0.71 b
    P27082.2 c56.4 c0.66 c
    2020—2021P00.75 a
    P90214.0 a142.3 a0.75 a
    P180128.5 b91.9 b0.73 b
    P27080.0 c55.8 c0.71 c
    注:同列数据后不同小写字母表示同一年份不同处理间在0.05水平差异显著。
    Note: Values followed by different lowercase letters in a column indicate significant difference among treatments in the same year at the 0.05 level.
    下载: 导出CSV
  • [1] 赵广才, 常旭虹, 王德梅, 等. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1–7. Zhao G C, Chang X H, Wang D M, et al. General situation and development of wheat production[J]. Crops, 2018, (4): 1–7. DOI: 10.16035/j.issn.1001-7283.2018.04.001

    Zhao G C, Chang X H, Wang D M, et al. General situation and development of wheat production[J]. Crops, 2018, (4): 1-7. DOI: 10.16035/j.issn.1001-7283.2018.04.001

    [2] 岳寿松, 于振文. 磷对冬小麦后期生长及产量的影响[J]. 山东农业科学, 1994, (1): 13–15. Yue S S, Yu Z W, et al. Effect of phosphorus on the later growth and yield of winter wheat[J]. Shandong Agricultural Sciences, 1994, (1): 13–15. DOI: 10.14083/j.issn.1001-4942.1994.01.004

    Yue S S, Yu Z W, et al. Effect of phosphorus on the later growth and yield of winter wheat [J]. Shandong Agricultural Sciences, 1994, (1): 13-15. DOI: 10.14083/j.issn.1001-4942.1994.01.004

    [3]

    Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology (Bethesda), 1998, 116(2): 447–453. DOI: 10.1104/pp.116.2.447

    [4] 黄晓萌, 刘晓燕, 串丽敏, 等. 优化施肥下长江流域冬小麦产量及肥料增产效应[J]. 中国农业科学, 2020, 53(17): 3541–3552. Huang X M, Liu X Y, Chuan L M, et al. Effects of yield and fertilization on yield increase of winter wheat in Yangtze valley under optimized fertilization[J]. Scientia Agricultura Sinica, 2020, 53(17): 3541–3552. DOI: 10.3864/j.issn.0578-1752.2020.17.011

    Huang X M, Liu X Y, Chuan L M, et al. Effects of yield and fertilization on yield increase of winter wheat in Yangtze valley under optimized fertilization[J]. Scientia Agricultura Sinica, 2020, 53(17): 3541-3552. DOI: 10.3864/j.issn.0578-1752.2020.17.011

    [5] 毛思帅, 周吉红, 孟范玉, 等. 磷肥不同用量对京郊小麦产量的影响[J]. 作物杂志, 2014, (4): 88–90. Mao S S, Zhou J H, Meng F Y, et al. Effect of different amount of phosphorus on yield of wheat in the suburb of Beijing[J]. Crops, 2014, (4): 88–90. DOI: 10.16035/j.issn.1001-7283.2014.04.020

    Mao S S, Zhou J H, Meng F Y, et al. Effect of different amount of phosphorus on yield of wheat in the suburb of Beijing [J]. Crops, 2014(4): 88-90. DOI: 10.16035/j.issn.1001-7283.2014.04.020

    [6] 胡雨桐, 郝明德, 付威, 等. 不同降水年型和施磷水平对小麦产量的效应[J]. 中国农业科学, 2017, 50(2): 299–309. Hu Y T, Hao M D, Fu W, et al. Effects of precipitation patterns and different phosphorus nutrition levels on winter wheat yield[J]. Scientia Agricultura Sinica, 2017, 50(2): 299–309. DOI: 10.3864/j.issn.0578-1752.2017.02.009

    Hu Y T, Hao M D, Fu W, et al. Effects of precipitation patterns and different phosphorus nutrition levels on winter wheat yield [J]. Scientia Agricultura Sinica, 2017, 50(2): 299-309. DOI: 10.3864/j.issn.0578-1752.2017.02.009

    [7] 陆梅, 孙敏, 高志强, 等. 不同施磷水平对旱地小麦产量及其构成要素的影响[J]. 灌溉排水学报, 2018, 37(7): 13–19. Lu M, Sun M, Gao Z Q, et al. Impact of different phosphorus application levels on yield and grain traits of winter wheat in drylands[J]. Journal of Irrigation and Drainage, 2018, 37(7): 13–19. DOI: 10.13522/j.cnki.ggps.2017.0645

    Lu M, Sun M, Gao Z Q, et al. Impact of different phosphorus application levels on yield and grain traits of winter wheat in drylands [J]. Journal of Irrigation and Drainage, 2018, 37(7): 13-19. DOI: 10.13522/j.cnki.ggps.2017.0645

    [8] 李廷亮, 谢英荷, 洪坚平, 等. 施磷水平对晋南旱地冬小麦产量及磷素利用的影响[J]. 中国生态农业学报(中英文), 2013, 21(6): 658–665. Li T L, Xie Y H, Hong J P, et al. Effects of phosphorus application rates on winter wheat yield and phosphorus use efficiency in drylands of South Shanxi Province[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6): 658–665. DOI: 10.3724/SP.J.1011.2013.00658

    Li T L, Xie Y H, Hong J P, et al. Effects of phosphorus application rates on winter wheat yield and phosphorus use efficiency in drylands of South Shanxi Province[J]. Chinese Journal of Eco-Agriculture, 2013, 21(6): 658-665. DOI: 10.3724/SP.J.1011.2013.00658

    [9] 姜宗庆, 封超年, 黄联联, 等. 施磷量对不同类型专用小麦产量和品质的调控效应[J]. 麦类作物学报, 2006, 26(5): 113–116. Jiang Z Q, Feng C N, Huang L L, et al. Effect of phosphorus application on grain yield and quality of wheat for different end uses[J]. Journal of Triticeae Crops, 2006, 26(5): 113–116. DOI: 10.3969/j.issn.1009-1041.2006.05.025

    Jiang Z Q, Feng C N, Huang L L, et al. Effect of phosphorus application on grain yield and quality of wheat for different end uses[J]. Journal of Triticeae Crops, 2006, 26(5): 113-116. DOI: 10.3969/j.issn.1009-1041.2006.05.025

    [10]

    Syers J K, Johnston A E, Curtin D. Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behavior with agronomic information[M]. Rome: FAO Inter-Departmental Working Group. 2008.

    [11] 张微微, 周怀平, 黄绍敏, 等. 长期不同施肥模式下碱性土有效磷对磷盈亏的响应[J]. 植物营养与肥料学报, 2021, 27(2): 263–274. Zhang W W, Zhou H P, Huang S M, et al. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 263–274. DOI: 10.11674/zwyf.20325

    Zhang W W, Zhou H P, Huang S M, et al. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(2): 263-274. DOI: 10.11674/zwyf.20325

    [12] 张晶, 党建友, 裴雪霞, 等. 微喷灌水肥一体化下磷钾肥减量分期施用对小麦产量和养分利用的影响[J]. 核农学报, 2020, 34(3): 629–634. Zhang J, Dang J Y, Pei X X, et al. Effects of phosphorus and potassium fertilizer application methods on the yield and utilizations of wheat through micro-sprinkler irrigation[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 629–634. DOI: 10.11869/j.issn.100-8551.2020.03.0629

    Zhang J, Dang J Y, Pei X X, et al. Effects of phosphorus and potassium fertilizer application methods on the yield and utilizations of wheat through micro-sprinkler irrigation [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 0629-0634. DOI: 10.11869/j.issn.100-8551.2020.03.0629

    [13] 寇长林, 骆晓声. 河南省农田面源污染发生规律及防控研究[J]. 磷肥与复肥, 2020, (8): 27–29. Kou C L, Luo X S. Study on the regularity, prevention and control of farmland non-point source pollution in Henan Province[J]. Phosphate & Compound Fertilizer, 2020, (8): 27–29. DOI: 10.3969/j.issn.1007-6220.2020.08.008

    Kou C L, Luo X S. Study on the regularity, prevention and control of farmland non-point source pollution in Henan province [J]. Phosphate & Compound Fertilizer, 2020, (8): 27-29. DOI: 10.3969/j.issn.1007-6220.2020.08.008

    [14] 马清霞, 王朝辉, 惠晓丽, 等. 基于产量和养分含量的旱地小麦施磷量和土壤有效磷优化[J]. 中国农业科学, 2019, 52(1): 73–85. Ma Q X, Wang Z H, Hui X L, et al. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production[J]. Scientia Agricultura Sinica, 2019, 52(1): 73–85. DOI: 10.3864/j.issn.0578-1752.2019.01.008

    Ma Q X, Wang Z H, Hui X L, et al. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents dryland wheat production [J]. Scientia Agricultura Sinica, 2019, 52(1): 78-85. DOI: 10.3864/j.issn.0578-1752.2019.01.008

    [15] 马悦, 田怡, 于杰, 等. 北方麦区土壤有效磷阈值及小麦产量、籽粒氮磷钾含量对监控施肥的响应[J]. 植物营养与肥料学报, 2021, 27(10): 1675–1691. Ma Y, Tian Y, Yu J, et al. Threshhold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675–1691. DOI: 10.11674/zwyf.2021109

    Ma Y, Tian Y, Yu J, et al. Threshhold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675-1691. DOI: 10.11674/zwyf.2021109

    [16] 孙慧敏. 施磷量和施磷方式对小麦品质、产量和氮素利用的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2004.

    Sun H M. Effect of amount and method of phosphorus applied on quality, yield and nitrogen utilization in winter wheat[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2004.

    [17] 冯媛媛, 申艳, 徐明岗, 等. 施磷量与小麦产量的关系及其对土壤、气候因素的响应[J]. 植物营养与肥料学报, 2019, 25(4): 683–691. Feng Y Y, Shen Y, Xu M G, et al. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683–691. DOI: 10.11674/zwyf.18171

    Feng Y Y, Shen Y, Xu M G, et al. Relationship between phosphorus application amount and grain yield of wheat and its response to soil and climate factors [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 683-691. DOI: 10.11674/zwyf.18171

    [18] 薛华龙, 娄梦玉, 李雪, 等. 施磷水平对不同茬口下冬小麦生长发育及产量的影响[J]. 中国农业科学, 2021, 54(17): 3712–3725. Xue H L, Lou M Y, Li X, et al. Effects of phosphorus application levels on growth and yield of winter wheat under different crops for rotation[J]. Scientia Agricultura Sinica, 2021, 54(17): 3712–3725. DOI: 10.3864/j.issn.0578-1752.2021.17.013

    Xue H L, Lou M Y, Li X, et al. Effects of phosphorus application levels on growth and yield of winter wheat under different crops for rotation[J]. Scientia Agricultura Sinica, 2021, 54(17): 3712-3725. DOI: 10.3864/j.issn.0578-1752.2021.17.013

    [19] 郭文善, 封超年. 小麦开花后源库关系分析[J]. 作物学报, 1995, 21(3): 334–340. Guo W S, Feng C N. Analysis of source-sink relationships in post-opening wheat[J]. Acta Agronomica Sinica, 1995, 21(3): 334–340. DOI: 10.3321/j.issn:0496-3490.1995.03.013

    Guo W S, Feng C N. Analysis of source-library relationships in post-opening wheat [J]. Acta Agronomica Sinica, 1995, 21(3): 334-340. DOI: 10.3321/j.issn:0496-3490.1995.03.013

    [20] 刘冲, 贾永红, 张金汕, 等. 播种方式和施磷对冬小麦群体结构、光合特性和产量的影响[J]. 应用生态学报, 2020, 31(3): 919–928. Liu C, Jia Y H, Zhang J S, et al. Effects of seeding pattern and phosphorus application on population structure, photosynthetic characteristics and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 919–928. DOI: 10.13287/j.1001-9332.202003.009

    Liu C, Jia Y H, Zhang J S, et al. Effects of seeding pattern and phosphorus application on population structure, photosynthetic characteristics and yield of winter wheat[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 919-928. DOI: 10.13287/j.1001-9332.202003.009

    [21] 胡洋山, 汤颖子, 李治, 等. 小麦分蘖成穗数相关分子标记在重组自交系(RIL)群体中的有效性验证及实用性评价[J]. 麦类作物学报, 2018, 38(1): 8–15. Hu Y S, Tang Y Z, Li Z, et al. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population[J]. Journal of Triticeae Crops, 2018, 38(1): 8–15. DOI: 10.7606/j.issn.1009-1041.2018.01.02

    Hu Y S, Tang Y Z, Li Z, et al. Evaluation and validation of molecular markers associated with maximum tiller number and spike number per unit area of wheat in a RIL population[J]. Journal of Triticeae Crops, 2018, 38(1): 8-15. DOI: 10.7606/j.issn.1009-1041.2018.01.02

    [22] 封超年, 朱新开, 王龙俊, 等. 小麦茎蘖成穗率与产量关系及其调控[J]. 江苏农业研究, 1999, 20(3): 1–7. Feng C N, Zhu X K, Wang L J, et al. Relationship of earing percentage of main stems and tillers to grain yield and its regulation in wheat[J]. Jiangsu Agricutural Research, 1999, 20(3): 1–7.

    Feng C N, Zhu X K, Wang L J, et al. Relationship of earing percentage of main stems and tillers to grain yield and its regulation in wheat[J]. Jiangsu Agricutural Research, 1999(3): 1-7.

    [23] 陈梦楠, 高志强, 孙敏, 等. 旱地小麦深施磷肥对群体动态及产量形成的影响[J]. 山西农业大学学报(自然科学版), 2016, 36(6): 395–399. Chen M N, Gao Z Q, Sun M, et al. Effect of deep application of phosphorus fertilizer on population dynamics and yield components of dryland wheat[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(6): 395–399.

    Chen M N, Gao Z Q, Sun M, et al. Effect of deep application of phosphorus fertilizer on population dynamics and yield components of dryland wheat[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2016, 36(6): 395.

    [24] 陈世平, 陈金团. 不同施磷量对水稻产量、品质及磷肥利用率的影响[J]. 安徽农学通报, 2019, 25(13): 57–58, 109. Chen S P, Chen J T. Effects of different phosphorus application rates on yield, quality and phosphate fertilizer utilization efficiency of rice submission date[J]. Anhui Agricultural Science Bulletin, 2019, 25(13): 57–58, 109.

    Chen S P, Chen J T. Effects of different phosphorus application rates on yield, quality and phosphate fertilizer utilization efficiency of rice submission date[J]. Anhui Agricultural Science Bulletin, 2019, 25(13): 3.

    [25] 叶优良, 王玲敏, 黄玉芳, 等. 施氮对小麦干物质累积和转运的影响[J]. 麦类作物学报, 2012, 32(3): 488–493. Ye Y L, Wang L M, Huang Y F, et al. Effect of nitrogen application on dry matter accumulation and translocation in wheat[J]. Journal of Triticeae Crops, 2012, 32(3): 488–493. DOI: 10.7606/j.issn.1009-1041.2012.03.020

    Ye Y L, Wang L M, Huang Y F, et al. Effect of nitrogen application on dry matter accumulation and translocation in wheat [J]. Journal of Triticeae Crops, 2012, 32(3): 488-493. DOI: 10.7606/j.issn.1009-1041.2012.03.020

    [26] 宋勤璟, 贾永红, 张金汕, 等. 施磷量对春小麦干物质积累、分配及产量的影响[J]. 新疆农业科学, 2016, 53(11): 1988–1998. Song Q J, Jia Y H, Zhang J S, et al. Effect of different phosphate application on accumulation and partitioning of dry matter and yield of spring wheat[J]. Xinjiang Agricultural Sciences, 2016, 53(11): 1988–1998.

    Song Q J, Jia Y H, Zhang J C, et al. Effect of different phosphate application on accumulation and partitioning of dry matter and yield of spring wheat[J]. Xinjiang Agricultural Sciences, 2016, 53(11): 1988-1998.

    [27] 阳显斌, 张锡洲, 李廷轩, 等. 施磷量对不同磷效率小麦氮、磷、钾积累与分配的影响[J]. 核农学报, 2012, 26(1): 141–149. Yang X B, Zhang X Z, Li T X, et al. Effects of applied P amount on nitrogen, phosphorus and potassium accumulation and distribution in wheat of different phosphorus use efficiency[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(1): 141–149.

    Yang X B, Zhang X Z, Li T X, et al. Effects of applied P amount on nitrogen, phosphorus and potassium accumulation and distribution in wheat of different phosphorus use efficiency[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(1): 141-149.

    [28]

    Bnejdi F, Gazzah M E. Epistasis and genotype-by-environment interaction of gain protein in durum wheat[J]. Genetics and Molecular Biology, 2010, 33(1): 125–130. DOI: 10.1590/S1415-47572010000100021

    [29] 王旭东, 于振文. 施磷对小麦产量和品质的影响[J]. 山东农业科学, 2003, (6): 35–36. Wang X D, Yu Z W. Effect of applying phosphorus on yield and quality of wheat[J]. Shandong Agricultural Sciences, 2003, (6): 35–36. DOI: 10.3969/j.issn.1001-4942.2003.06.016

    Wang X D, Yu Z W. Effect of applying phosphorus on yield and quality of wheat [J]. Shandong Agricultural Sciences, 2003, (6): 35-36. DOI: 10.3969/j.issn.1001-4942.2003.06.016

    [30] 邢丹, 李淑文, 夏博, 等. 磷肥施用对冬小麦产量及土壤氮素利用的影响[J]. 应用生态学报, 2015, 26(2): 437–442. Xing D, Li S W, Xia B, et al. Effects of phosphorus fertilization on yield of winter wheat and utilization of soil nitrogen[J]. Chinese Journal of Applied Ecology, 2015, 26(2): 437–442. DOI: 10.13287/j.1001-9332.20141223.009

    Xing D, Li S W, Xia B, et al. Effects of phosphorus fertilization on yield of winter wheat and utilization of soil nitrogen [J]. Chinese Journal of Applied Ecology, 2015, 2(26): 437-442. DOI: 10.13287/j.1001-9332.20141223.009

    [31] 丁珊珊, 徐宁彤, 徐明岗. 长期定位施肥对暗棕壤磷素肥力的影响[J]. 安徽农业科学, 2009, 37(29): 14295–14297. Ding S S, Xu N T, Xu M G. Effects of long-term located fertilization on phosphorus fertility of Alfisol[J]. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14295–14297. DOI: 10.13989/j.cnki.0517-6611.2009.29.067

    Ding S S, Xu N T, Xu M G. Effects of long-term located fertilization on phosphorus fertility of Alfisol [J]. Journal of Anhui Agricultural Sciences, 2009, 37(29): 14295-14297. DOI: 10.13989/j.cnki.0517-6611.2009.29.067

    [32] 周春菊, 张嵩午, 王林权. 冷、暖型小麦不同器官的磷素含量及其转运研究[J]. 土壤通报, 2010, 41(4): 947–951. Zhou C J, Zhang S W, Wang L Q. Phosphorus contents in different organs of CTW and WTW genotypes and their remobilization during grain filling[J]. Chinese Journal of Soil Science, 2010, 41(4): 947–951. DOI: 10.19336/j.cnki.trtb.2010.04.036

    Zhou C J, Zhang S W, Wang L Q. Phosphorus contents in different organs of CTW and WTW genotypes and their remobilization during grain filling[J]. Chinese Journal of Soil Science, 2010, 41(4): 947-951. DOI: 10.19336/j.cnki.trtb.2010.04.036

    [33] 陈远学, 刘静, 陈新平, 等. 四川几种轮套作体系的产量及小麦玉米磷素利用效率研究[J]. 土壤通报, 2014, 45(5): 1175–1182. Chen Y X, Liu J, Chen X P, et al. Studies on yields and phosphorus use efficiency of wheat and maize with different rotation and relay-intercropping systems in Sichuan[J]. Chinese Journal of Soil Science, 2014, 45(5): 1175–1182. DOI: 10.19336/j.cnki.trtb.2014.05.025

    Chen Y X, Liu J, Chen X P, et al. Studies on yields and phosphorus use efficiency of wheat and maize with different rotation and relay-intercropping systems in Sichuan [J]. Chinese Journal of Soil Science, 2014, 45(5): 1175-1182. DOI: 10.19336/j.cnki.trtb.2014.05.025

    [34] 史燕捷, 金梦灿, 朱远芃, 等. 水稻秸秆还田下磷肥减量对小麦产量及养分利用效率的影响[J]. 中国土壤与肥料, 2020, (1): 75–81. Shi Y J, Jin M C, Zhu Y P, et al. Effects of reducing phosphorus fertilizer on wheat yield and nutrient use efficiency under rice straw return condition[J]. Soil and Fertilizer Sciences in China, 2020, (1): 75–81. DOI: 10.11838/sfsc.1673-6257.19069

    Shi Y J, Jin M C, Zhu Y F, et al. Effects of reducing phosphorus fertilizer on wheat yield and nutrient use efficiency under rice straw return condition[J]. Soil and Fertilizer Sciences in China, 2020, (1): 75-81. DOI: 10.11838/sfsc.1673-6257.19069

    [35] 张凤华, 刘建玲, 廖文华. 农田磷的环境风险及评价研究进展[J]. 植物营养与肥料学报, 2008, 14(4): 797–805. Zhang F H, Liu J L, Liao W H. Environmental risk and assessment of agricultural phosphorus: A review[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 797–805. DOI: 10.11674/zwyf.2008.0428

    Zhang F H, Liu J L, Liao W H. Environmental risk and assessment of agricultural phosphorus: A review [J]. Plant Nutrition and Fertilizers Science, 2008, 14(4): 797-805. DOI: 10.11674/zwyf.2008.0428

    [36] 赵靓, 侯振安, 李水仙, 等. 磷肥用量对土壤速效磷及玉米产量和养分吸收的影响[J]. 玉米科学, 2014, 22(2): 123–128. Zhao L, Hou Z A, Li S X, et al. Effect of phosphorus application on soil available phosphorus content and yield and nutrient uptake of maize[J]. Journal of Maize Sciences, 2014, 22(2): 123–128. DOI: 10.3969/j.issn.1005-0906.2014.02.024

    Zhao L, Hou Z A, Li S X, et al. Effect of phosphorus application on soil available phosphorus content and yield and nutrient uptake of maize[J]. Journal of Maize Sciences, 2014, 22(2): 123-128. DOI: 10.3969/j.issn.1005-0906.2014.02.024

    [37] 王生录. 黄土高原旱地磷肥残效及利用效率研究[J]. 水土保持研究, 2003, 10(1): 71–75.

    Wang S L, Study on residual effect of phosphorus fertilizer and use efficiency in dryland of Loess Plateau[J]. Research of Soil and Water Conservation, 2003, 10(1): 71–75.

    [38]

    Mercik S, Németh K. Effects of 60-year N, P, K and Ca fertilization on EUF-nutrient fractions in the soil and on yields of rye and potato crops[J]. Plant and Soil, 1985, 83(1): 151–159. DOI: 10.1007/BF02182725

    [39] 李银水, 鲁剑巍, 廖星, 等. 磷肥用量对油菜产量及磷素利用效率的影响[J]. 中国油料作物学报, 2011, 33(1): 52–56. Li Y S, Lu J W, Liao X, et al. Effect of phosphorus application rate on yield and fertilizer-phosphorus utilization efficiency in rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2011, 33(1): 52–56.

    Li Y S, Lu J W, Liao X, et al. Effect of phosphorus application rate on yield and fertilizer -phosphorus utilization efficiency in rapeseed [J]. Chinese Journal of Oil Crop Sciences, 2011, 33(1): 052-056.

    [40]

    Otto W M, Kilian W H. Response of soil phosphorus content, growth and yield of wheat to long-term phosphorus fertilization in a conventional cropping system[J]. Nutrient Cycling in Agroecosystems, 2001, 61(3): 283–292. DOI: 10.1023/A:1013725207016

  • 期刊类型引用(24)

    1. 王鹏博,张冬霞,乔唱唱,黄明,王贺正. 秸秆还田和施磷量对豫西旱地小麦土壤酶活性和产量形成的影响. 作物学报. 2025(02): 534-547 . 百度学术
    2. 尚磊,杨栗恒,王孟雪,王鹏. 连续秸秆还田对大豆产量、磷素吸收特征及土壤磷组分的影响. 大豆科学. 2025(01): 106-116 . 百度学术
    3. 苏明,吴佳瑞,洪自强,李翻过,周甜,吴宏亮,康建宏. 西北半干旱区马铃薯块茎淀粉形成及产量对磷肥减量的响应. 作物学报. 2025(03): 713-727 . 百度学术
    4. 康国章,王鹏飞,李艳,王金凤,韩巧霞. 小麦高效吸收利用磷素机制研究进展. 植物营养与肥料学报. 2025(04): 800-809 . 本站查看
    5. 赵蕾蕾,舒艺周,漆增连,周凌翔,吴加香. 酸性土壤施用含聚合磷肥料对玉米生长性状及产量的影响. 中国土壤与肥料. 2025(04): 162-170 . 百度学术
    6. 何依龙,周文利,常会庆. 不同施磷量对小麦-玉米种植体系土壤磷吸附-解吸特征的影响. 河南科技大学学报(自然科学版). 2025(03): 91-96+104+120-121 . 百度学术
    7. 曾祥,孔雪琴,刘强,程红岩,李世清,岳善超,沈玉芳. 施磷量与施磷方式对旱地土壤磷组分及小麦磷吸收利用的影响. 水土保持学报. 2025(03): 315-324 . 百度学术
    8. 张晶,赵超,裴雪霞,张慧芋,党建友,张定一. 氮磷配施和化肥减施对小麦生长、养分利用及产量性状的影响. 核农学报. 2024(01): 179-189 . 百度学术
    9. 陈丽,寇心悦,党亚爱,牛一楠,包书尚,沈玉芳. 麦季施磷量对小麦-玉米轮作产量及土壤有效磷的影响. 麦类作物学报. 2024(02): 185-194 . 百度学术
    10. 徐梦珠,秦志翔,张帆,崔云浩,王军娥,张毅,石玉. 不同供磷水平对青椒幼苗生长、光合作用及矿质元素吸收的影响. 西北农林科技大学学报(自然科学版). 2024(02): 104-112 . 百度学术
    11. 张俊豪,柴雪茹,马嵩科,张冬霞,张静,乔唱唱,李爽,黄明,王贺正. 秸秆还田配施磷肥对豫西旱地小麦碳同化物积累的影响及其生理机制. 草业学报. 2024(06): 89-104 . 百度学术
    12. 杨启睿,李岚涛,张铎,王雅娴,盛开,王宜伦. 施磷对夏花生产量品质、光温生理特性及根系形态的影响. 作物学报. 2024(07): 1841-1854 . 百度学术
    13. 牛帅帅,郭大勇,杜鹃,周子琪,刘海燕,刘雪涛,沈艺歌,杜金磊,陈丰,李亚娟. 磷肥种类及施磷水平对冬小麦生长发育和土壤磷库的影响. 麦类作物学报. 2024(08): 1048-1055 . 百度学术
    14. 张艳艳,刘淋茹,袁鑫茹,张荣,王璐媛,段剑钊,贺利,王永华,郭天财,冯伟. 不同水分条件下施磷对冬小麦穗花结实及光合特性的影响. 生态学报. 2024(14): 6331-6345 . 百度学术
    15. 解迎双,李建科,李晓蓉,王波,张淼,刘阿静,祁光增,雷春妮,白兴斌. 紫外可见分光光度法测定土壤中有效磷的含量及其在淫羊藿实验田施肥过程中的应用. 理化检验-化学分册. 2024(07): 692-696 . 百度学术
    16. 胡彩霞,杨东霞,刘红恩,刘亥扬,刘立杰,张玉鹏,许嘉阳,秦世玉,李畅,睢福庆,聂兆君. 磷硒配施对冬小麦硒吸收及根际土壤微生物群落的影响. 中国土壤与肥料. 2024(06): 157-167 . 百度学术
    17. 张孟鸽,李永梅,范茂攀,赵吉霞,鲁泽让,王婷. 高肥力土壤下马铃薯磷肥利用及投入阈值研究. 农业环境科学学报. 2024(08): 1838-1845 . 百度学术
    18. 张盈盈,胡丹丹,马春晖,张前兵. 菌磷耦合对紫花苜蓿土壤酶活性、磷含量及干物质产量的影响. 中国草地学报. 2024(09): 54-64 . 百度学术
    19. 寇心悦,桑丽智,沈玉芳. 麦季不同施磷量对麦玉和麦豆轮作体系作物产量及磷效率的影响. 水土保持学报. 2024(05): 252-261+271 . 百度学术
    20. 刘少华,刘凯,廖欢,甘浩天,侯振安. 不同磷肥滴施对土壤有效磷时空分布、棉花产量及磷肥利用率的影响. 植物营养与肥料学报. 2023(07): 1323-1332 . 本站查看
    21. 张艳艳,关涵文,刘淋茹,贺利,段剑钊,王晨阳,郭天财,冯伟. 不同水分条件下施磷对冬小麦穗花发育及产量的影响. 作物学报. 2023(10): 2753-2765 . 百度学术
    22. 童童,梅帅,刘莹,常珺枫,梁华忠,范其龙,王强,马友华. 基于GIS的环巢湖地区土壤养分空间变异特征研究. 农业环境科学学报. 2023(07): 1522-1531 . 百度学术
    23. 冯海萍. 施磷对宁南山区花椰菜产量、磷素利用效率及平衡的影响. 北方园艺. 2023(17): 7-14 . 百度学术
    24. 马悦,张应榕,王娟红,张曼,车庆轩,陈波浪. 磷肥滴施对膜下滴灌棉田土壤磷形态及磷肥利用率的影响. 棉花学报. 2023(05): 378-397 . 百度学术

    其他类型引用(31)

图(3)  /  表(7)
计量
  • 文章访问数:  2321
  • HTML全文浏览量:  902
  • PDF下载量:  135
  • 被引次数: 55
出版历程
  • 收稿日期:  2021-12-19
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-09-24

目录

/

返回文章
返回