Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

土壤水分时间变异对油麦菜水分利用效率的影响机制

刘迪川, 王转, 朱国龙, 龙怀玉, 徐爱国, 张认连

刘迪川, 王转, 朱国龙, 龙怀玉, 徐爱国, 张认连. 土壤水分时间变异对油麦菜水分利用效率的影响机制[J]. 植物营养与肥料学报, 2022, 28(9): 1673-1684. DOI: 10.11674/zwyf.2021680
引用本文: 刘迪川, 王转, 朱国龙, 龙怀玉, 徐爱国, 张认连. 土壤水分时间变异对油麦菜水分利用效率的影响机制[J]. 植物营养与肥料学报, 2022, 28(9): 1673-1684. DOI: 10.11674/zwyf.2021680
LIU Di-chuan, WANG Zhuan, ZHU Guo-long, LONG Huai-yu, XU Ai-guo, ZHANG Ren-lian. Mechanism of soil moisture temporal variance affecting water use efficiency of romaine lettuce (Lactuca sativa L. var. longifolia)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1673-1684. DOI: 10.11674/zwyf.2021680
Citation: LIU Di-chuan, WANG Zhuan, ZHU Guo-long, LONG Huai-yu, XU Ai-guo, ZHANG Ren-lian. Mechanism of soil moisture temporal variance affecting water use efficiency of romaine lettuce (Lactuca sativa L. var. longifolia)[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1673-1684. DOI: 10.11674/zwyf.2021680

土壤水分时间变异对油麦菜水分利用效率的影响机制

基金项目: 国家重点研发计划项目(2018YFE0112300);中央级公益性科研院所基本科研业务费专项资金项目(No. Y2020PT37)
详细信息
    作者简介:

    刘迪川 E-mail: 441770807@qq.com

    通讯作者:

    龙怀玉 E-mail: longhuaiyu@caas.cn

    徐爱国 E-mail: xuaiguo@caas.cn

Mechanism of soil moisture temporal variance affecting water use efficiency of romaine lettuce (Lactuca sativa L. var. longifolia)

  • 摘要:
    目的 

    土壤水分根据其随时间的变异情况可分为稳定性和波动性土壤水分,稳定的土壤水分有利于提高作物的水分利用效率。我们研究了土壤水分的时间变异影响油麦菜水分、养分吸收利用效率的机制。

    方法 

    以油麦菜(Lactuca sativa L. var. longifolia)为供试作物于遮阳网室内进行盆栽试验。设两个供水处理:传统浇灌(traditional irrigation, TI)和负压灌溉(negative pressure irrigation,NPI),其所提供的土壤水分分别为波动性土壤水分和稳定性土壤水分。供水处理于油麦菜4叶期开始运行,用土壤水分仪测定土壤含水量,每两天测定一次,处理28天后收获。于NPI开始运行的第1、11、21和28 天,测定油麦菜株高、叶片数、最大叶长和最大叶宽,同时用LI-6400便携式光合仪测定油麦菜叶片净光合速率(Pn)、胞间CO2浓度(Ci)、蒸腾速率(Tr)和气孔导度(Gs),生化方法分析叶片抗旱生理指标游离脯氨酸(Pro)、丙二醛(MDA)、脱落酸(ABA)、水杨酸(SA)、可溶性蛋白(SP)和可溶性糖(SS)以及稳定碳同位素比值(δ13C)和分辨率(Δ13C)的变化。

    结果 

    NPI和TI的累计灌水量和平均土壤体积含水量处于基本相同的水平,NPI土壤体积含水量的变异系数为5.0%,属于稳定性土壤水分,TI的变异系数为10.3%,属于波动性土壤水分。NPI处理油麦菜株高、最大叶长和最大叶宽分别显著高于TI 103.8%、155.4%和62.5%。NPI处理4次监测的各项光合参数值大多高于TI,第11 天的TrGs值,以及收获时(处理第28天)的Ci均显著高于TI。收获时NPI处理油麦菜的产量、水分利用效率、叶片含磷量、氮磷钾养分吸收量和Δ13C明显高于TI,根冠比、脱落酸含量、可溶性糖含量和δ13C明显低于TI。Δ13C与水分利用效率呈正相关,与土壤水分变异系数呈显著负相关。

    结论 

    相较于传统浇灌提供的波动性土壤水分,负压灌溉提供的稳定土壤水分降低或者避免了土壤水分胁迫,促进了油麦菜地上部的生长发育、光合作用、养分吸收和水分利用效率。

    Abstract:
    Objective 

    Stable soil moisture is beneficial for improving crop water use efficiency. Here, we investigate the mechanism of how stable soil moisture affect water and nutrient utilization efficiency of romaine lettuce.

    Method 

    The pot experiment was conducted in a screen house using romaine lettuce (Lactuca sativa L. var. longifolia) as the experimental crop. Traditional irrigation (TI) and negative pressure irrigation (NPI) were set up to provide fluctuating and stable soil moisture. At the 4-leaf stage of romaine lettuce growth, the treatments were imposed. We used a soil moisture meter to measure the soil moisture content every two days. The crop was harvested 28 days after treatment. The plant height, leaf number, and the most extended leaf length and width were measured on the 1st, 11th, 21st, and 28th day of treatment imposition. The net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), transpiration rate (Tr), and stomatal conductance (Gs) of romaine lettuce leaves were measured via a Li-6400 portable photosynthesis system simultaneously. The free proline (Pro), malondialdehyde (MDA), abscisic acid (ABA), salicylic acid (SA), soluble protein (SP), soluble sugars (SS), and stable carbon isotope ratios (δ13C) and discrimination (Δ13C) in romaine lettuce leaves were determined.

    Result 

    The cumulative amount of irrigation and mean soil moisture content under NPI and TI were similar. However, the coefficient of variation (CV) of soil moisture content under NPI was 5.0%, indicating the stable soil moisture, and was 10.3% under TI, showing fluctuating soil moisture. Plant height, the most extended leaf length, and leaf width of romaine lettuce in NPI were 103.8%, 155.4%, and 62.5% higher than in TI. The Pn, Ci, Tr, and Gs values in NPI were higher than in TI. Similarly, the Tr and Gs on the 11th day and Ci on the 28th day in NPL were (P<0.05) higher than in TI. The yield, water-use-efficiency, leaf P content, the NPK uptake, and the δ13C were (P<0.05) higher in NPI than in TI at harvest, while root/shoot ratio, ABA, SS, and Δ13C were (P<0.05) lower than in TI. Δ13C was positively correlated with water-use efficiency and negatively correlated with the CV of soil moisture.

    Conclusions 

    Compared with the fluctuating soil moisture in TI, the negative pressure irrigation created stable soil moisture, thus avoiding the possible temporal drought stress for romaine lettuce. This promoted photosynthesis, nutrient uptake, and water-use-efficiency of romaine lettuce and achieved high shoot growth.

  • 土壤水分状况是作物产量的主要影响因子之一,良好的土壤水分状况往往更有利于作物生产,而土壤水分“良好”的标准长期争议不休[1]。长久以来,人们普遍认为适宜作物生长的土壤水分含量象征着良好的水分状况,但是自根冠通讯和缺水补偿理论被提出并应用于实践以来[2-3],土壤水分状况的“良好”标准逐渐与作物的水分利用效率相关联,引发了灌溉技术更新,先后提出了如调亏灌溉[4]、分根区交替灌溉[5]等灌溉技术,试图用更少的水分输入换取更多的产量输出,已有大量研究表明这些技术能够显著地提高作物水分利用效率。如Zapata-Sierra等[6]对橙树的研究表明,调亏灌溉可在减少5%的灌水量的同时提高4%的产量;Malejane等[7]发现莴苣在不同程度水分亏缺下表现出相似的产量,并指出亏缺灌溉提高了其叶片酚含量和抗氧化活性;Liang等[8]发现相比常规灌溉,分根区交替灌溉显著提升了粘玉米的水分利用效率。但这些技术会导致土壤水分重复着由“高”到“低”、再跳跃到“高”的剧烈变化,土壤水分随时间变异很大[9]。也许是准确监测土壤水分时间变异性比较困难的缘故,很少有学者将土壤水分时间变异性与作物水分利用效率进行关联研究。

    负压灌溉技术(negative pressure irrigation,NPI),有学者也称之为压力势差–作物主动汲水技术(pressure potential difference-crop initative drawing water, P-CIDW)、植物控制灌溉技术(plant-controlled subsurface drip irrigation),是一种以作物蒸腾吸力为驱动力,驱使灌溉水转变为土壤水,继而供作物根系吸收的新型灌溉技术,可以实现作物自发地从土壤中获取水分,并保持土壤水分的长期稳定[10],为研究土壤水分时间变异性对作物的影响提供一种方法保障。Zhao等[11]对比了NPI、滴灌和浇灌,发现油菜在NPI下的产量、品质和水分利用效率都得到了显著的提升;Zhang等[12]也认为NPI相比浇灌更有利于玉米的水分高效利用,并抑制其根系的生长;也有研究指出NPI下存在明显的水肥耦合效应,NPI下水肥一体对多种作物的水分养分利用都具有促进作用[13-14]。朱国龙等[15]认为NPI下作物的水分高效利用来源于其所提供的弱时间变异土壤水分 ;王转等[9]的研究结果也支持了这一观点,并指出稳定性土壤水分可以抵消一定程度上的水分胁迫。上述研究都证明了一点,即NPI所提供的稳定土壤水分是一种能够提高作物水分利用效率的“良好”土壤水分状况,但很少有研究探究其中的生理学机制。

    为了探索土壤水分时间变异影响作物水分养分高效利用的生理学机制,本研究选用油麦菜这种对水分需求量大,对土壤水分响应敏感的蔬菜作物作为试验对象[16],试图通过对其光合特性、生物量分配、养分吸收、抗旱生理和稳定碳同位素的研究,分析稳定土壤水分条件下油麦菜高效利用水分的生理学机制,从而为土壤水分–作物关系研究以及高效节水灌溉技术的发展提供理论依据。

    盆栽试验于2019年8—10月在北京市中国农业科学院内遮阴网室(39°57′37′′N, 116°20′0.9′′E )内进行。试验地属于温带大陆性气候,全年平均气温约为12.3℃,无霜期约为200天,年平均降水量约为556 mm。供试土壤取自位于河北廊坊的中国农业科学院廊坊国际高新技术产业园(39°36′53′′N, 116°36′89′′E) 0—20 cm耕作层。土壤采回后,进行风干、磨碎、过2 mm筛后混匀,装于长42 cm、宽26 cm、高25 cm的盆中,每盆中装填土壤23 kg。供试土壤为砂壤土(砂粒78.69%、粉粒13.53%、黏粒7.78%),容重为1.43 g/cm3,田间持水量(V/V)为28.0%,pH 8.25。

    试验共设置两个灌溉方法处理,分别为负压灌溉(NPI)和传统浇灌(TI),每个处理设置6个重复。NPI装置由控压装置(重液式负压阀)、储水桶(内径26.2 cm)、灌水器(陶土管,长 26 cm,外径 19 mm,内径 7.3 mm)三部分组成,通过硅胶软管连接,灌水器插入盆中土壤[15]。当作物根系吸水使得土壤水势降低到所设置的压力差时,土壤通过灌水器从储水桶中吸水,阻止土壤水势进一步下降,从而维持土壤水分的基本稳定[10]。NPI处理通过–9 kPa的负压阀供水,TI处理设置浇灌上下限为田间持水量的70%~90%。

    供试作物为油麦菜(Lactuca sativa L. var. longifolia),品种为‘美利剑’。于2019年8月20日播种,每盆播6穴。播种前,每盆均施入尿素8.35 g、过磷酸钙4.57 g和硫酸钾2.56 g,施肥后用铲子将肥料与土壤混合均匀,提前浇水5 L使其充分渗透土壤,测得播种时土壤初始体积含水量为26.4%。待幼苗稳定后进行定苗,挑选长势均匀的幼苗每穴留下一株。苗期管理措施相同,均为传统浇灌。待大部分油麦菜长至4片叶子时(9月16日)启动NPI装置控水直至油麦菜成熟收获(10月12日),共控水28天。

    启动NPI装置开始控水后,每隔一天测定一次土壤含水量,测定时间统一为下午5:00—6:00。使用 AZS-100 定时定位 TDR 土壤水分仪(北京澳作生态仪器有限公司)测定土壤含水量,测量深度为 0—10 cm,每盆共测定4个点,分别位于两株油麦菜之间,并与灌水器平行。每个处理分别测定3个重复(即3盆),求其平均值。

    通过土壤水分随时间变化的变异系数来判断土壤水分变化过程。变异系数的计算公式为[17]

    CV=s/θ×100% (1)

    式中,s 为土壤含水量的标准差,θ 为土壤含水量的平均值。当 CV≤10% 时为弱变异,当 10%<CV<100% 时为中等变异,当 CV≥100% 时为强变异。

    TI处理在每次浇灌后记录当次灌水量;NPI处理于每天下午5:00读取NPI装置水位管的水位高度,计算水位差,水位差乘以储水桶底面积即为灌水量,单位L。

    于NPI开始运行(即控水开始)第1、11、21和28天测定油麦菜的株高、叶片数、最大叶长和最大叶宽,共测定4次。

    油麦菜叶片净光合速率、胞间CO2浓度、蒸腾速率和气孔导度均通过LI-6400便携式光合仪测定,与生长指标同步测定。

    收获后将油麦菜植株表面泥土擦去,将地上部和地下部分别称重,地上部鲜重即为产量。随后将地上部和根部放入105℃烘箱中杀青30 min,在75℃条件下烘干至恒重,即为干物质量。分别称取地上部和地下部干物质重,计算根冠比。

    单株耗水量计算公式为[9]

    ETk=(MkΔW)/n=[Mk(θmkθmk1)×ms/ρw]/n (2)

    式中,ETk为第k时间段单株油麦菜的耗水量(L),Mk为第k时间段的灌水量(L),ΔW为土壤储水量变化量(L),n为盆中的植株数,θmk为第k时刻土壤的质量含水量(%),θmk1为第k上一时刻土壤的质量含水量(%),ms为盆钵中土体质量(kg),ρw为水的密度(1 g/cm3)。

    单株油麦菜产量水分利用效率(water use efficiency, WUE)=单株鲜重/单株耗水量。

    叶片全氮含量采用凯氏定氮法测定。全磷和全钾含量通过微波消解,ICP (电感耦合等离子光谱发生仪)法测定。

    叶片游离脯氨酸和丙二醛分别参照食品安全国家标准(GB 5009.124—2016)和(GB 5009.181—2016)的方法进行测定。脱落酸参照(SN/T 4591—2016)采用液相色谱–质谱法进行测定。水杨酸参照(SN/T4675.15—2016)采用液相色谱法进行测定。可溶性蛋白和可溶性糖均通过UV (分光光度)法测定。

    碳同位素通过Vario Pyro Cube元素分析仪和Isoprime-100稳定同位素质谱仪联用进行测定,并根据下式计算油麦菜叶片碳同位素组成δ13C[18]

    δ13C=[(13C/12C)P(13C/12C)PDB]/(13C/12C)PDB (3)

    式中,(13C/12C)P表示油麦菜样品的13C和12C比值,(13C/12C)PDB表示标准物质PDB的13C和12C比值。

    油麦菜叶片碳同位素分辨率Δ13C根据下式计算[18]

    Δ13C=(δ13CAδ13C)/(1+δ13C/1000) (4)

    式中,δ13CA为大气CO213C和12C比值。

    试验数据均采用Microsoft Excel 2016进行处理,SPSS 21.0进行统计分析,Origin Pro 2019和R 3.6.3绘图。

    图1显示,控水期间内,NPI和TI下土壤体积含水量分别为22.4%±0.30%和22.0%±0.36%,相差仅为0.4%,分别相当于田间最大持水量的80.0 %和78.6 %,差异不显著(P=0.20, >0.05),可视为同一土壤含水量水平。在整个生育期内,NPI和TI的单盆累计灌水量均值分别为15.6和15.4 L,相差0.2 L,差异不显著 (P=0.93, >0.05),也可视为同一灌水量水平。然而,NPI土壤体积含水量随时间变化的变异系数为5.0%±1.1%,属于弱变异,而TI的变异系数为10.3%±1.0%,属于中等变异,且显著高于NPI (P=0.03, <0.05)。换言之,NPI和TI处理形成了平均含水量基本相同而时间变异性差别显著的土壤水分,即稳定性土壤水分和波动性土壤水分。在后续分析中通过对比分析油麦菜在稳定性和波动性土壤水分下的差异,来研究土壤水分时间变异性对油麦菜的影响。

    图  1  土壤体积含水量和累计灌水量的动态变化
    注:TI—传统浇灌处理;NPI—负压灌溉处理。CV—土壤含水量变异系数
    Figure  1.  Dynamic changes of soil volumetric moisture content and cumulative irrigation
    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. CV—Coefficient of variation in soil moisture

    图2表明,控水开始时,NPI和TI处理油麦菜的长势均匀,生长状况一致,株高、叶片数、最大叶长和最大叶宽的均值分别为4 cm、4个、5.9 cm、1.7 cm。在控水期间,油麦菜各项农艺性状指标均随时间呈增长趋势,且增长速度逐渐趋于缓慢。在收获时,NPI处理的油麦菜株高、叶片数、最大叶长和最大叶宽分别为(14.8±0.8) cm、(14.7±1.5) 、(34.5±3.9) cm和(4.3±0.6) cm,在控水期间分别平均增加了10.8 cm、10.7 、28.6 cm和2.6 cm,而TI处理的油麦菜株高、叶片数、最大叶长和最大叶宽分别为(9.3±2.1) cm、(11.7±1.2) 、(17.1±1.3) cm和(3.3± 0.3) cm,控水期内的平均增量分别为5.3 cm、7.7 、11.2 cm和1.6 cm。对比发现,NPI处理油麦菜株高、叶片数、最大叶长和最大叶宽在收获时均高于TI,其中株高、最大叶长和最大叶宽的差异达到显著性水平(P<0.05),它们在控水期间内的增量分别高于TI 103.8%、155.4%和62.5%。

    图  2  油麦菜株高、叶片数、最大叶长和最大叶宽的动态变化
    注:TI—传统浇灌处理;NPI—负压灌溉处理
    Figure  2.  Dynamic changes of plant height, number of leaves, the most extended leaf length and width of romaine lettuce
    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment

    图3显示,控水开始时,NPI和TI处理油麦菜的各项光合参数均无显著性差异;在第11天时,NPI处理油麦菜的各项光合参数均高于TI,其中TrGs的差异达到了显著性水平(P<0.05);在第21天时,NPI处理油麦菜的各项光合参数依然高于TI,但差异均未达到显著性水平;在第28天时,NPI处理油麦菜的Pn略低于TI,而其余指标均高于TI,其中仅Ci的差异显著(P<0.05)。

    图  3  油麦菜光合效率参数的动态变化
    注:TI—传统浇灌处理;NPI—负压灌溉处理
    Figure  3.  Dynamic changes of photosynthesis parameters of romaine lettuce
    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment

    表1所示,在生物量分配上,NPI处理油麦菜的产量和干物质量分别高于TI 131.5%和43.8%,而根冠比则低于TI 71.4%,其中产量和根冠比差异极显著(P<0.01)和显著(P<0.05)。在水分利用上,NPI处理油麦菜的耗水量和水分利用效率分别高于TI 11.3%和123.0%,其中水分利用效率差异显著(P<0.01)。在养分利用上,NPI处理油麦菜叶片的全氮、全磷、全钾含量分别高于TI 4.5%、31.0%和3.0%,其中全磷含量的差异显著(P<0.05)。在养分吸收上,NPI处理油麦菜地上部的氮、磷、钾吸收量分别显著高于TI 49.0%、88.2%和38.0%。

    表  1  油麦菜的生物量分配、水分利用、养分含量和吸收
    Table  1.  The biomass allocation, water utilization, nutrient content and uptake of romaine lettuce
    指标 Index处理 Treatment显著性 Significance
    NPITI
    产量 Yield (g/plant)31.27±6.8312.74±1.240.010**
    干物质量 Dry matter (g/plant)1.84±0.331.28±0.030.097
    根冠比 Root/shoot ratio0.07±0.020.12±0.010.023*
    耗水量 Water consumption (L/pot)3.16±0.962.84±0.300.606
    水分利用效率 WUE (g/kg)10.08±1.184.52±0.630.002**
    全氮含量 Total Ncontent (mg/g)40.32±2.2138.58±5.300.628
    全磷含量 Total P content (mg/g)2.35±0.231.80±0.120.020*
    全钾含量 Total K content (mg/g)51.12±3.1349.65±2.050.532
    吸氮量 N uptake (mg/palnt)73.78±10.1749.31±7.410.028*
    吸磷量 P uptake (mg/plant)4.31±0.752.29±0.180.011*
    吸钾量 K uptake (mg/plant)87.54±15.4563.38±2.680.027*
    注:TI—传统浇灌处理;NPI—负压灌溉处理;*、**代表两处理间差异在0.05、0.01水平显著。
    Note: WUE—Water use efficiency; TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. *, ** represent significant difference between two treatments at the 0.05 and 0.01 levels.
    下载: 导出CSV 
    | 显示表格

    为了探索不同土壤水分变化过程中油麦菜的水分利用状况,进一步检测了油麦菜叶片中的游离脯氨酸(Pro)、丙二醛(MDA)、脱落酸(ABA)、水杨酸(SA)、可溶性蛋白(SP)和可溶性糖(SS)等6种生理指标(图4)。它们以不同形式参与植物对水分胁迫的响应,可反映植物的抗旱能力[19-22]。通过对比发现,NPI处理油麦菜叶片的脱落酸、水杨酸、可溶性蛋白和可溶性糖的含量分别低于TI 70.9%、27.7%、17.7%和18.7%,其中脱落酸和可溶性糖的差异显著(P<0.05);丙二醛的含量和TI几乎一致,相差仅1.2%;而游离脯氨酸则高于TI 139.4%,但差异并不显著。

    图  4  油麦菜叶片游离脯氨酸、丙二醛、脱落酸、水杨酸及可溶性蛋白、可溶性糖含量
    注:TI—传统浇灌处理;NPI—负压灌溉处理;*代表两处理间差异在0.05水平显著
    Figure  4.  Contents of free proline, malondialdehyde, abscisic acid, salicylic acid, soluble protein and soluble sugar in romaine lettuce leaves
    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. * represent significant difference between two treatments at the 0.05 level

    稳定碳同位素不仅能反映光合过程中固定CO2的情况,也可以指示植物对水分的利用以及对水分胁迫的适应状况[23]。由成熟油麦菜叶片中稳定碳同位素比值(δ13C)和分辨率(Δ13C)(图5)可知,NPI的δ13C明显低于TI 7.9个百分点,而Δ13C明显高于TI 11.1个百分点 (P<0.01)。

    图  5  油麦菜叶片中碳同位素比值(δ13C)和分辨率(Δ13C)
    注:TI—传统浇灌处理;NPI—负压灌溉处理;**表示两处理间差异在0.01水平显著
    Figure  5.  δ13C and Δ13C of romaine lettuce leaf
    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. ** represent significant difference between two treatments at the 0.01 level

    为了探索土壤水分时间变异性与油麦菜水分利用效率、光合作用参数、抗旱生理指标、养分吸收效率和Δ13C之间的关系,将上述指标进行相关性分析(图6)。结果表明,土壤水分变异系数与抗旱生理指标(ABA和SS)呈显著正相关,与光合作用参数(CiTrGs)、养分吸收(N、P和K)效率、水分利用效率和Δ13C呈显著负相关。

    图  6  土壤水分时间变异与油麦菜各项指标的相关分析
    注:CV—土壤含水量变异系数;Pro—游离脯氨酸;MDA—丙二醇;ABA—脱落酸;SA—水杨酸;SP—可溶性蛋白 ;SS—可溶性糖;Pn—净光合速率;Ci—胞间CO2 浓度;Tr—蒸腾速率;Gs—气孔导度;TN—叶片全氮;TP—叶片全磷;TK—叶片全钾;Nu—氮吸收量;Pu—磷吸收量;Ku—钾吸收量;Y—产量;D—干物质量;R/S—根冠比;WUE—水分利用效率;Δ13C—稳定碳同位素分辨率。图中右上角球体大小代表相关系数的绝对值,相关系数绝对值越大,球体越大; 球的颜色代表相关系数的正负,正相关为蓝色,负相关为红色,颜色越深则相关系数绝对值越大。球中*号代表相关系数在 0.05 水平显著;左下角数据为相关系数。
    Figure  6.  Correlation analysis among soil moisture temporal variance and different indexes of romaine lettuce
    Note: CV—Coefficient of variation in soil moisture; Pro—Free proline; MDA—Malondialdehyde; ABA—Abscisic acid; SA—Salicylic acid; SP—Soluble protein; SS—Soluble sugar; Pn—Net photosynthetic rate; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; Gs—Stomatal conductance; TN—Leaf total N; TP—Leaf total P; TK—Leaf total K; Nu—N uptake; Pu—P uptake; Ku—K uptake; Y—Yield; D—Dry matter; R/S—Root/shoot ratio; WUE—Water-use-efficiency; Δ13C—Resolution of stable carbonisotope. In the figure, the sphere size in the upper right corner represent the absolute value of the correlation coefficient, and the greater the absolute value, the larger the sphere. The color of the ball represents the positive and negative correlation coefficient, with the positive correlation in blue and the negative correlation in red, and the darker the color, the greater the absolute value of the correlation coefficient. The * in the ball represents the correlation coefficient at the 0.05 level and the lower left data is the correlation coefficient.

    本研究通过两种灌溉方式(NPI和TI)形成稳定和波动的土壤水分状况,探讨了土壤水分变化过程对油麦菜生理生长和水分利用的影响。研究结果表明,在灌水量、土壤平均含水量一致的情况下,相比波动性土壤水分,稳定性土壤水分明显提升了油麦菜的产量和水分利用效率(WUE) (图1表1),且油麦菜的WUE与土壤水分变异系数呈显著负相关(图6)。许多研究表明负压灌溉比传统灌溉具有更高的水分利用效率,如高翔等[24]发现负压灌溉下紫叶生菜的水分利用效率比滴灌和浇灌更高;罗朋[25]对山地果树的研究指出负压灌溉比畦灌更有利于产量形成。从理论[10]上前人研究结果[11-15]和本研究结果均表明负压灌溉下土壤水分相较其他灌溉方式更为稳定。此外,一些灌溉频率相关研究[26-27]也表明,合理加大灌溉频率能实现高效节水的农业生产,其原因正是频繁合理的灌溉能降低土壤水分的波动程度,使土壤含水量保持在适宜作物生长的水平从而提高其对水分的获取和利用。因此,降低土壤水分时间变异性、提高土壤水分稳定性有利于提高作物水分利用效率和产量可能是一种普遍规律。

    研究了6种常用于评价植物水分胁迫程度的生理指标,其中脱落酸和可溶性糖在NPI处理油麦菜叶片中的含量明显低于TI,且均与土壤水分变异系数呈显著正相关(图4图6)。上述两项指标在TI处理油麦菜叶片显著高于NPI反映了植株可能受到了一定程度的水分胁迫,这与TI处理的土壤水分波动有关:在达到灌溉下限(70% 田间持水量)浇水前,土壤水分含量会有一段时间处于70% 田间持水量左右,这在莴苣科蔬菜作物的生产中被视为缺水临界指标或是轻度胁迫[28],表明浇水前油麦菜短暂地处于轻度水分胁迫中。这也解释了为何游离脯氨酸、丙二醛、水杨酸和可溶性蛋白在不同土壤水分变化过程下无显著差异:Koenigshofer等[29]发现游离脯氨酸在受到短期水分胁迫时主要保护根尖和叶基的分生组织,而不会积累于叶片成熟区域;丙二醛可指示细胞质膜受损程度,张晓勤等[20]指出短期轻微的水分胁迫并不会损伤细胞质膜;La等[22]则表示水杨酸在水分胁迫下和脱落酸之间有拮抗关系,当脱落酸含量升高时,植物内源水杨酸水平受到抑制;可溶性蛋白在轻度水分胁迫下含量变化不明显[30]。NPI处理下,油麦菜在控水期间一直处于适宜生长的土壤含水量(80% 田间持水量),几乎不会受到水分胁迫。换言之,在土壤平均含水量相同时,稳定性土壤水分相比波动性土壤水分使植物受到更少地水分胁迫,植株水分状况更加良好,而这可能就是油麦菜水分利用效率提升的原因。

    更好的水分状况促进了油麦菜地上部的生长(图2),NPI处理成熟油麦菜的各项农艺性状指标均高于TI,其中株高、最大叶长和最大叶宽的差异显著。叶片数、最大叶长和最大叶宽的差异代表着稳定土壤水分下油麦菜具有更大面积的可食用部位。同时,NPI处理油麦菜根冠比显著低于TI (表1),说明波动土壤水分下暂时性的水分胁迫促进了根系生长,而稳定土壤水分下油麦菜积累的干物质能更多地分配到地上部,而不是用于生长不可食用的根系[31]。同样受到水分状况影响的还有油麦菜的光合作用,在整个控水期间NPI油麦菜的CiTrGs均高于TI,其中TrGs在第11天时差异显著,Ci在收获时差异显著(图3),且在收获时它们均与土壤水分变异系数呈显著负相关(图6),这与前人研究结果一致,即负压灌溉下生长的作物表现出更高的光合作用强度[10, 13]TrGs的差异也佐证了NPI处理油麦菜的水分状况优于TI——稳定土壤水分条件下更高的TrGs说明植株吸水能力更强,叶片含水量更充足[32]。光合参数中仅有Pn在收获时略低于TI,这可能是因为彼时NPI处理油麦菜已经成熟了一段时间,相比TI刚成熟的叶片光合作用受到抑制[33]。综上可以推断稳定性土壤水分更有利于油麦菜地上部的生长和光合作用。

    表1可知,NPI处理油麦菜对氮、磷、钾的吸收量均显著高于TI,而只有磷含量在NPI下显著高于TI,这表明氮、钾吸收量的增加源于NPI油麦菜更高的生物量,磷素吸收量的增加同时归因于NPI下生物量的增加和对磷素亲和力的增加。植物通过根系吸收土壤养分,吸收量主要取决于土壤中养分的有效性和作物根系的吸收能力。从土壤养分的角度来看,前人研究已经发现稳定性土壤水分有利于土壤养分的有效性,如李迪等[34]和张敬禹等[35]的研究均表明负压灌溉促进了养分转化相关的土壤酶活性,提高了土壤碱解氮、有效磷和速效钾的含量,喻科凡[13]也发现稳定土壤水分能提高土壤氮、磷、钾养分的有效性。本研究没有检测土壤养分含量,但由油麦菜叶片全磷含量在两处理间的显著差异可以推测稳定性土壤水分下土壤磷的有效性可能得到了提升。在干湿交替的过程中,土壤团粒结构发生改变[36],影响磷素迁移的同时增加了磷吸附点位[37-38],导致土壤对磷的吸附能力增加,磷有效性降低[39]。相比之下稳定土壤水分可以更好地维持土壤团粒结构,这可能是土壤磷有效性增加的原因。从根系吸收的角度来看,相比TI处理,NPI油麦菜的根冠比显著降低,也就是根系质量份额降低了,而对养分的吸收却并未受到抑制,反而增加了,说明稳定土壤水分下油麦菜根系的单位吸收量可能更高(表1)。Zhang等[12]的研究支持这一看法,他们发现负压灌溉在抑制玉米根系生长的同时显著提升其根系活力,而根系活力指示了根系吸收和合成的能力[40]。综合前人研究和本研究结果,我们推测:一方面稳定性土壤水分能够提高土壤养分的有效性,使之更容易为作物所吸收;另一方面稳定土壤水分条件下作物根系吸收养分的能力更强。

    植物光合作用能分馏大气中的13C,导致叶片中13C与12C的比值(δ13C)低于大气,通过植物和大气δ13C的差值可以计算Δ13C[18],它反映了植物体内碳固定转移的信息,因而广泛应用于植物光合作用以及水分利用的相关研究中[23]。植物Δ13C和水分利用效率的关系众说纷纭,虽然有研究[41-42]表示Δ13C与水分利用效率呈正相关或无相关;但更多的研究认为Δ13C与水分利用效率呈负相关[43],包括对C3植物小麦[44]、番茄[45]及C4植物玉米[46]等的研究。对比上述研究之后,可发现:认为Δ13C与水分利用效率呈负相关的研究多在水分胁迫条件下进行的,Δ13C随水分胁迫程度的上升而下降,而由于植物的缺水补偿效应,水分利用效率升高[3]。油麦菜是C3植物,碳素以CO2的形式进入卡尔文循环的羧化阶段[47],在这个过程中,稳定土壤水分下更高的CiTrGs会促使油麦菜优先同化12C,增强植株对13C的分馏效应,从而提升Δ13C[48]。这解释了本研究中Δ13C与CiTrGs三项光合参数的正相关性(图6),及其在不同土壤水分变化过程下的差异和其与土壤水分变异系数的负相关性(图5图6)。同时,Δ13C与脱落酸和可溶性糖含量呈显著负相关(图6),这表明Δ13C确实随水分胁迫程度的上升而降低。而从前文3.1可知,在本研究中稳定土壤水分能通过降低油麦菜的水分胁迫程度提升其水分利用效率,因此Δ13C与水分利用效率也呈正相关(图6)。因此,可以推测油麦菜Δ13C能够直接反映的是植株的水分状况,而非水分利用效率,植物体内Δ13C对于植物水分利用的指示意义是通过其对受胁迫程度的反应间接形成的。通过Δ13C评价植物的水分利用状况时一定要考虑到植物的品种、土壤水分条件等因素对两者之间相关性的影响。

    与传统浇灌形成的波动性土壤水分相比,负压灌溉所提供的稳定性土壤水分减小了油麦菜受水分胁迫的程度,促进了油麦菜的地上部生长、光合作用以及养分吸收能力,从而显著提升了油麦菜的产量和水分利用效率。此外,尽管油麦菜叶片Δ13C与水分利用效率表现出了显著的相关性,但Δ13C本质上反映了植株水分胁迫程度。

  • 图  1   土壤体积含水量和累计灌水量的动态变化

    注:TI—传统浇灌处理;NPI—负压灌溉处理。CV—土壤含水量变异系数

    Figure  1.   Dynamic changes of soil volumetric moisture content and cumulative irrigation

    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. CV—Coefficient of variation in soil moisture

    图  2   油麦菜株高、叶片数、最大叶长和最大叶宽的动态变化

    注:TI—传统浇灌处理;NPI—负压灌溉处理

    Figure  2.   Dynamic changes of plant height, number of leaves, the most extended leaf length and width of romaine lettuce

    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment

    图  3   油麦菜光合效率参数的动态变化

    注:TI—传统浇灌处理;NPI—负压灌溉处理

    Figure  3.   Dynamic changes of photosynthesis parameters of romaine lettuce

    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment

    图  4   油麦菜叶片游离脯氨酸、丙二醛、脱落酸、水杨酸及可溶性蛋白、可溶性糖含量

    注:TI—传统浇灌处理;NPI—负压灌溉处理;*代表两处理间差异在0.05水平显著

    Figure  4.   Contents of free proline, malondialdehyde, abscisic acid, salicylic acid, soluble protein and soluble sugar in romaine lettuce leaves

    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. * represent significant difference between two treatments at the 0.05 level

    图  5   油麦菜叶片中碳同位素比值(δ13C)和分辨率(Δ13C)

    注:TI—传统浇灌处理;NPI—负压灌溉处理;**表示两处理间差异在0.01水平显著

    Figure  5.   δ13C and Δ13C of romaine lettuce leaf

    Note: TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. ** represent significant difference between two treatments at the 0.01 level

    图  6   土壤水分时间变异与油麦菜各项指标的相关分析

    注:CV—土壤含水量变异系数;Pro—游离脯氨酸;MDA—丙二醇;ABA—脱落酸;SA—水杨酸;SP—可溶性蛋白 ;SS—可溶性糖;Pn—净光合速率;Ci—胞间CO2 浓度;Tr—蒸腾速率;Gs—气孔导度;TN—叶片全氮;TP—叶片全磷;TK—叶片全钾;Nu—氮吸收量;Pu—磷吸收量;Ku—钾吸收量;Y—产量;D—干物质量;R/S—根冠比;WUE—水分利用效率;Δ13C—稳定碳同位素分辨率。图中右上角球体大小代表相关系数的绝对值,相关系数绝对值越大,球体越大; 球的颜色代表相关系数的正负,正相关为蓝色,负相关为红色,颜色越深则相关系数绝对值越大。球中*号代表相关系数在 0.05 水平显著;左下角数据为相关系数。

    Figure  6.   Correlation analysis among soil moisture temporal variance and different indexes of romaine lettuce

    Note: CV—Coefficient of variation in soil moisture; Pro—Free proline; MDA—Malondialdehyde; ABA—Abscisic acid; SA—Salicylic acid; SP—Soluble protein; SS—Soluble sugar; Pn—Net photosynthetic rate; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; Gs—Stomatal conductance; TN—Leaf total N; TP—Leaf total P; TK—Leaf total K; Nu—N uptake; Pu—P uptake; Ku—K uptake; Y—Yield; D—Dry matter; R/S—Root/shoot ratio; WUE—Water-use-efficiency; Δ13C—Resolution of stable carbonisotope. In the figure, the sphere size in the upper right corner represent the absolute value of the correlation coefficient, and the greater the absolute value, the larger the sphere. The color of the ball represents the positive and negative correlation coefficient, with the positive correlation in blue and the negative correlation in red, and the darker the color, the greater the absolute value of the correlation coefficient. The * in the ball represents the correlation coefficient at the 0.05 level and the lower left data is the correlation coefficient.

    表  1   油麦菜的生物量分配、水分利用、养分含量和吸收

    Table  1   The biomass allocation, water utilization, nutrient content and uptake of romaine lettuce

    指标 Index处理 Treatment显著性 Significance
    NPITI
    产量 Yield (g/plant)31.27±6.8312.74±1.240.010**
    干物质量 Dry matter (g/plant)1.84±0.331.28±0.030.097
    根冠比 Root/shoot ratio0.07±0.020.12±0.010.023*
    耗水量 Water consumption (L/pot)3.16±0.962.84±0.300.606
    水分利用效率 WUE (g/kg)10.08±1.184.52±0.630.002**
    全氮含量 Total Ncontent (mg/g)40.32±2.2138.58±5.300.628
    全磷含量 Total P content (mg/g)2.35±0.231.80±0.120.020*
    全钾含量 Total K content (mg/g)51.12±3.1349.65±2.050.532
    吸氮量 N uptake (mg/palnt)73.78±10.1749.31±7.410.028*
    吸磷量 P uptake (mg/plant)4.31±0.752.29±0.180.011*
    吸钾量 K uptake (mg/plant)87.54±15.4563.38±2.680.027*
    注:TI—传统浇灌处理;NPI—负压灌溉处理;*、**代表两处理间差异在0.05、0.01水平显著。
    Note: WUE—Water use efficiency; TI—Traditional irrigation treatment; NPI—Negative pressure irrigation treatment. *, ** represent significant difference between two treatments at the 0.05 and 0.01 levels.
    下载: 导出CSV
  • [1] 冯广龙, 刘昌明. 土壤水分对作物根系生长及分布的调控作用[J]. 生态农业研究, 1996, (3): 5–9. Feng G L, Liu C M, Wang L. Roles of soil water in regulating root growth and distribution[J]. Eco-Agriculture Research, 1996, (3): 5–9.

    Feng G L, Liu C M, Wang L. Roles of soil water in regulating root growth and distribution[J]. Chinese Journal of Eco-Agriculture, 1996, (03): 5-9.

    [2]

    Gollan T, Davies W J, Schurr U, et al. Control of gas exchange: evidence for root-shoot communication on drying soil[J]. Annales des Sciences Forestières, 1989, 46(S): 393–400.

    [3] 周磊, 甘毅, 欧晓彬, 等. 作物缺水补偿节水的分子生理机制研究进展[J]. 中国生态农业学报, 2011, 19(1): 217–225. Zhou L, Gan Y, Ou X B, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production[J]. Chinese Journal of Eco-Agriculture, 2011, 19(1): 217–225. DOI: 10.3724/SP.J.1011.2011.00217

    Zhou L, GAN Y, OU X B, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production[J]. Chinese Journal of Eco-Agriculture, 2011, 19(01): 217-225 DOI: 10.3724/SP.J.1011.2011.00217

    [4] 马守臣, 张伟强, 段爱旺. 不同亏缺灌溉方式对冬小麦产量及水分利用效率的影响[J]. 灌溉排水学报, 2019, 38(8): 9–14. Ma S C, Zhang W Q, Duan A W. Effects of different deficit irrigation modes on grain yield and water use efficiency of winter wheat[J]. Journal of Irrigation and Drainage, 2019, 38(8): 9–14.

    Ma S C, Zhang W Q, Duan A W. Effects of different deficit irrigation modes on grain yield and water use efficiency of winter wheat[j]. Journal of Irrigation and Drainage, 2019, 38(8): 9-14.

    [5] 郑健, 潘占鹏, 颜斐, 等. 基于Meta评价控制性分根交替灌溉的作物水分利用效率[J]. 江苏大学学报(自然科学版), 2019, 40(3): 332–337. Zheng J, Pan Z P, Yan F, et al. Evaluation of crop water use efficiency for controlled root-dividing alternate irrigation based on Meta-analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(3): 332–337.

    Zheng J, Pan Z P, Yan F, et al. Evaluation of crop water use efficiency for controlled root-dividing alternate irrigation based on Meta-analysis[J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(3): 332-337.

    [6]

    Zapata-Sierra A J, Manzano-Agugliaro F. Controlled deficit irrigation for orange trees in Mediterranean countries[J]. Journal of Cleaner Production, 2017, 162: 130–140. DOI: 10.1016/j.jclepro.2017.05.208

    [7]

    Malejane D N, Tinyani P, Soundy P, et al. Deficit irrigation improves phenolic content and antioxidant activity in leafy lettuce varieties[J]. Food Science & Nutrition, 2018, 6(2): 334–341.

    [8]

    Liang H, Li F, Nong M. Effects of alternate partial root-zone irrigation on yield and water use of sticky maize with fertigation[J]. Agricultural Water Management, 2013, 116: 242–247. DOI: 10.1016/j.agwat.2012.08.003

    [9] 王转, 朱国龙, 龙怀玉, 等. 土壤水分时间变异对玉米生长及水分效率的影响[J]. 中国农业科技导报, 2020, 22(11): 153–164. Wang Z, Zhu G L, Long H Y, et al. Effects of temporal variation of soil moisture on the growth and water use efficiency of maize[J]. Journal of Agricultural Science and Technology, 2020, 22(11): 153–164. DOI: 10.13304/j.nykjdb.2019.0648

    Wang Z, Zhu G L, Long H Y, et al. Effects of temporal variation of soil moisture on the growth and water use efficiency of maize[J]. Journal of Agricultural Science and Technology, 2020, 22(11): 153-164. DOI: 10.13304/j.nykjdb.2019.0648

    [10] 龙怀玉, 武雪萍, 张淑香, 等. 作物主动汲水技术内涵与研究进展[J]. 农业工程学报, 2020, 36(23): 139–152. Long H Y, Wu X P, Zhang S X, et al. Connotation and research progress of crop initiate water drawing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 139–152. DOI: 10.11975/j.issn.1002-6819.2020.23.017

    Long H Y, Wu X P, Zhang S X, et al. Connotation and research progress of crop initiate water drawing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 139-152. DOI: 10.11975/j.issn.1002-6819.2020.23.017

    [11]

    Zhao X, Gao X, Zhang S, et al. Improving the growth of rapeseed (Brassica chinensis L. ) and the composition of rhizosphere bacterial communities through negative pressure irrigation[J]. Water, Air, & Soil Pollution, 2019, 230(1): 9.

    [12]

    Zhang J, Ji J, Wang P, et al. Molecular mechanism of negative pressure irrigation inhibiting root growth and improving water use efficiency in maize[J]. Plant and Soil, 2022, 472: 127–143. DOI: 10.1007/s11104-021-05190-7

    [13] 喻科凡. 水肥供应模式对烤烟生长、水分利用及土壤养分平衡的影响[D]. 北京: 中国农业科学院硕士学位论文, 2021.

    Yu K F. Effects of water and fertilizer supply patterns on growth, water use and soil nutrient balance of flue-cured tobacco[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2021

    [14] 李生平, 武雪萍, 龙怀玉, 等. 负压水肥一体化灌溉对黄瓜产量和水、氮利用效率的影响[J]. 植物营养与肥料学报, 2017, 23(2): 416–426. Li S P, Wu X P, Long H Y, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 416–426. DOI: 10.11674/zwyf.16196

    Li S P, Wu X P, Long H Y, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(02): 416-426. DOI: 10.11674/zwyf.16196

    [15] 朱国龙, 王转, 龙怀玉, 等. 负压供水下土壤水分对樱桃萝卜生长及水分利用效率的影响[J]. 中国农业科技导报, 2020, 22(12): 127–136. Zhu G L, Wang Z, Long H Y, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Agricultural Science and Technology, 2020, 22(12): 127–136. DOI: 10.13304/j.nykjdb.2019.0953

    Zhu G L, Wang Z, Long H Y, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Agricultural Science and Technology, 2020, 22(12): 127-136. DOI: 10.13304/j.nykjdb.2019.0953

    [16]

    Damerum A, Smith H K, Clarkson G, et al. The genetic basis of water-use efficiency and yield in lettuce[J]. BMC Plant Biology, 2021, 21(1): 237. DOI: 10.1186/s12870-021-02987-7

    [17]

    Hillel D. Applications of soil physics[J]. Engineering Geology, 1982, 19(1): 70–71.

    [18]

    Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 503–537. DOI: 10.1146/annurev.pp.40.060189.002443

    [19] 任倩倩, 孙纪霞, 张德顺, 等. 干旱胁迫下不同绣球品种生理响应与抗旱性评价[J]. 浙江农业学报, 2021, 33(10): 1852–1860. Ren Q Q, Sun J X, Zhang D S, et al. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1852–1860. DOI: 10.3969/j.issn.1004-1524.2021.10.08

    Ren Q Q, Sun J X, Zhang D S, et al. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1852-1860. DOI: 10.3969/j.issn.1004-1524.2021.10.08

    [20] 张晓勤, 吴克利, 薛大伟. 湿害对不同大麦基因型抗氧化酶系统的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 315–320. Zhang X Q, Wu K L, Xue D W. Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2009, 35(3): 315–320.

    Zhang X Q, Wu K L, Xue D W. Effects of waterlogging stress on antioxidative enzyme system in different barley genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(03): 315-320.

    [21] 贾瑞丰, 杨曾奖, 徐大平, 等. 干旱胁迫对降香黄檀幼苗生长及内源激素含量的影响[J]. 生态环境学报, 2013, 22(7): 1136–1140. Jia R F, Yang Z J, Xu D P, et al. Growth and endogenous hormone content of Dalbergia odorifera seedlings under drought stress[J]. Ecology and Environmental Sciences, 2013, 22(7): 1136–1140. DOI: 10.3969/j.issn.1674-5906.2013.07.008

    Jia R F, Yang Z J, Xu D P, et al. Growth and endogenous hormone content of Dalbergia odorifera seedlings under drought stress[J]. Ecology and Environmental Sciences, 2013, 22(07): 1136-1140. DOI: 10.3969/j.issn.1674-5906.2013.07.008

    [22]

    La V H, Lee B, Islam M T, et al. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus[J]. Environmental and Experimental Botany, 2019, 157: 1–10. DOI: 10.1016/j.envexpbot.2018.09.013

    [23] 陈英华, 胡俊, 李裕红, 等. 碳稳定同位素技术在植物水分胁迫研究中的应用[J]. 生态学报, 2004, 24(5): 1027–1033. Chen Y H, Hu J, Li Y H, et al. Application of stable carbon isotope techniques to research into water stress[J]. Acta Ecologica Sinica, 2004, 24(5): 1027–1033. DOI: 10.3321/j.issn:1000-0933.2004.05.025

    Chen Y H, Hu J, Li Y H, et al. Application of stable carbon isotope techniques to research into water stress[J]. Acta Ecologica Sinica, 2004, 24(5): 1027-1033. DOI: 10.3321/j.issn:1000-0933.2004.05.025

    [24] 高翔, 张淑香, 龙怀玉. 负压灌溉提高紫叶生菜的水分利用效率和根际微生物多样性[J]. 植物营养与肥料学报, 2019, 25(8): 1434–1440. Gao X, Zhang S X, Long H Y. Improving water use efficiency and rhizosphere microbial diversity of purple leaf lettuce using negative pressure irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1434–1440. DOI: 10.11674/zwyf.18245

    Gao X, Zhang S X, Long H Y. Improving water use efficiency and rhizosphere microbial diversity of purple leaf lettuce using negative pressure irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(8): 1434-1440. DOI: 10.11674/zwyf.18245

    [25] 罗朋. 负压灌溉对山地果树土壤水分及产量的影响研究[J]. 山西水利科技, 2017, (3): 80–83, 88. Luo P. Study on the effect of negative pressure irrigation on soil moisture and fruit production in mountain fruit tree[J]. Shanxi Hydrotechnics, 2017, (3): 80–83, 88. DOI: 10.3969/j.issn.1006-8139.2017.03.029

    Luo P. Study on the Effect of negative pressure irrigation on soil moisture and fruit production in mountain fruit tree[J]. Shanxi Hydrotechnics, 2017(3): 80-83, 88. DOI: 10.3969/j.issn.1006-8139.2017.03.029

    [26]

    Silas A S, Joslanny H V, Diego B D S F, et al. Impact of irrigation frequency and planting density on bean’s morpho-physiological and productive traits[J]. Water, 2020, 12(9): 2468. DOI: 10.3390/w12092468

    [27]

    Puértolas J, Albacete A, Dodd I C. Irrigation frequency transiently alters whole plant gas exchange, water and hormone status, but irrigation volume determines cumulative growth in two herbaceous crops[J]. Environmental and Experimental Botany, 2020, 176: 104101. DOI: 10.1016/j.envexpbot.2020.104101

    [28] 谢慧婷. 基于红外热成像技术的生菜缺水指标的研究[D]. 福建福州: 福建农林大学硕士学位论文, 2016.

    Xie H T. Identification of lettuce water indicator using infrared thermography[D]. Fuzhou: MS Thesis of Fujian Agriculture and Forestry University, 2016

    [29]

    Koenigshofer H, Loeppert H. The up-regulation of proline synthesis in the meristematic tissues of wheat seedlings upon short-term exposure to osmotic stress[J]. Journal of Plant Physiology, 2019, 237: 21–29. DOI: 10.1016/j.jplph.2019.03.010

    [30] 史玉炜, 王燕凌, 李文兵, 等. 水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J]. 新疆农业大学学报, 2007, 30(2): 5–8. Shi Y W, Wang Y L, Li W B, et al. Effects of water stress on soluble protein, soluble sugar and proline content in tamarix hispida[J]. Journal of Xinjiang Agricultural University, 2007, 30(2): 5–8. DOI: 10.3969/j.issn.1007-8614.2007.02.002

    Shi Y W, Wang Y L, Li W B, et al. Effects of water stress on soluble protein, soluble sugar and proline content in tamarix hispida[J]. Journal of Xinjiang Agricultural University, 2007(02): 5-8. DOI: 10.3969/j.issn.1007-8614.2007.02.002

    [31]

    Ma X, Sanguinet K A, Jacoby P W. Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth[J]. Agricultural Water Management, 2020, 231: 105993. DOI: 10.1016/j.agwat.2019.105993

    [32] 于贵瑞等. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京: 科学出版社, 2010.

    Yu G R . Ecophysiology of plant photosynthesis, transpiration, and water use[M]. Beijing: Science Press, 2010.

    [33] 吴青青. 三种阔叶树不同生长时期叶片的光合特性及环境响应[D]. 江苏南京: 南京林业大学硕士学位论文, 2015.

    Wu Q Q. Study on the photosynthetic characteristics and environmental response for leaves of various growth periods of three kinds of broadleaf trees[D]. Nanjing: MS Thesis of Nanjing Forestry University, 2015.

    [34] 李迪, 龙怀玉, 王宁, 等. 连续负压供水对辣椒种植土壤速效养分及酶活性的影响[J]. 中国土壤与肥料, 2018, (4): 21–27. Li D, Long H Y, Wang N, et al. Effect of continuous negative pressure water supply on soil nutrients and soil bioactivities[J]. Soil and Fertilizer Sciences in China, 2018, (4): 21–27. DOI: 10.11838/sfsc.20180404

    Li D, Long H Y, Wang N, et al. Effect of continuous negative pressure water supply on soil nutrients and soil bioactivities[J]. Soil and Fertilizer Sciences in China, 2018(4): 21-27. DOI: 10.11838/sfsc.20180404

    [35] 张敬禹, 何晓蕾, 孙佳玉, 等. 负压灌溉对茄子养分吸收和土壤养分环境的影响[J]. 干旱地区农业研究, 2021, 39(4): 1–11, 20. Zhang J Y, He X L, Sun J Y, et al. Effect of negative water pressure irrigation on nutrient uptake of eggplant and soil nutrient environ-ment[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 1–11, 20. DOI: 10.7606/j.issn.1000-7601.2021.04.01

    Zhang J Y, He X L, Sun J Y, et al. Effect of negative water pressure irrigation on nutrient uptake of eggplant and soil nutrient environment[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 1-11, 20. DOI: 10.7606/j.issn.1000-7601.2021.04.01

    [36] 尧水红. 干湿交替强度对旱地土壤结构形成及水稻秸秆分解过程的相互作用的影响[D]. 江苏南京: 南京农业大学硕士学位论文, 2005.

    Yao S H. Soil biophysical processes involved in decomposition of rice straw incorporated in upland soils under wetting and drying cycles for stabilization of soil carbon pools and soil structure[D]. Nanjing, Jiang su: MS Thesis of Nanjing Agricultural University, 2005

    [37] 单保庆, 尹澄清, 于静, 等. 降雨-径流过程中土壤表层磷迁移过程的模拟研究[J]. 环境科学学报, 2001, 21(1): 7–12. Shan B Q, Yin C Q, Yu J, et al. Study on phosphorus transport in the surface layer of soil with rainfall simulation method[J]. Acta Scientiae Circumstantiae, 2001, 21(1): 7–12. DOI: 10.3321/j.issn:0253-2468.2001.01.002

    Shan B Q, Yin C Q, Yu J, et al. Study on phosphorus transport in the surface layer of soil with rainfall simulation method[J]. Acta Scientiae Circumstantiae, 2001, 21(1): 7-12. DOI: 10.3321/j.issn:0253-2468.2001.01.002

    [38]

    Peltovuori T, Soinne H. Phosphorus solubility and sorption in frozen, air-dried and field-moist soil[J]. European Journal of Soil Science, 2005, 56(6): 821–826.

    [39] 王里奥, 黄川, 詹艳慧, 等. 三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究[J]. 长江流域资源与环境, 2006, 15(5): 593–597. Wang L A, Huang C, Zhan Y H, et al. Flooding and subsequent air-drying on adsorption, desorption and release of phosphorus of soil in drawdown areas in three gorges reservoir[J]. Resources and Envir-onment in the Yangtze Basin, 2006, 15(5): 593–597. DOI: 10.3969/j.issn.1004-8227.2006.05.010

    Wang L A, Huang C, Zhan Y H, et al. Flooding and subsequent air-drying on adsorption, desorption and release of phosphorus of soil in drawdown areas in three gorges reservoir[J]. Resources and Environment in the Yangtze Basin, 2006, 15(5): 593-597. DOI: 10.3969/j.issn.1004-8227.2006.05.010

    [40] 白宝璋, 金锦子, 白崧, 等. 玉米根系活力TTC测定法的改良[J]. 玉米科学, 1994, 2(4): 44–47. Bai B Z, Jin J Z, Bai S, et al. Improvement of TTC method determining root activity in corn[J]. Journal of Maize Sciences, 1994, 2(4): 44–47.

    Bai B Z, Jin J Z, Bai S, et al. Improvement of TTC Method Determining Root Activity in Corn[J]. Maize Science, 1994, (4): 44-47.

    [41]

    Delucia E H, Schlesinger W H. Resource-use efficiency and drought tolerance in adjacent Great Basin and Sierran plants[J]. Ecology, 1991, 72(1): 51–58. DOI: 10.2307/1938901

    [42]

    Saranga Y, Flash I, Paterson A H, et al. Carbon isotope ratio in cotton varies with growth stage and plant organ[J]. Plant Science, 1999, 142(1): 47–56. DOI: 10.1016/S0168-9452(99)00004-7

    [43] 樊金娟, 宁静, 孟宪菁, 等. C3植物叶片稳定碳同位素对温度、湿度的响应及其在水分利用中的研究进展[J]. 土壤通报, 2012, 43(6): 1502–1507. Fan J J, Ning J, Meng X J, et al. Stable carbon isotopic compositions of C3 plant responses to the temperature and moisture and their application in water use efficiency[J]. Chinese Journal of Soil Science, 2012, 43(6): 1502–1507.

    Fan J J, Ning J, Meng X J, et al. Stable Carbon Isotopic Compositions of C3 Plant Responses to the Temperature and Moisture and their Application in Water Use Efficiency[J]. Chinese Journal of Soil Science, 2012, 43(6): 1502-1507.

    [44]

    Cabrera-Bosquet L, Molero G, Bort J, et al. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants[J]. Annals of Applied Biology, 2007, 151(3): 277–289. DOI: 10.1111/j.1744-7348.2007.00195.x

    [45] 魏镇华, 杜太生, 张娟, 等. 利用碳同位素分辨率表征沟灌番茄水分利用效率[J]. 农业工程学报, 2013, 29(7): 58–65. Wei Z H, Du T S, Zhang J, et al. Stable carbon isotope discrimination on water use efficiency of field tomato under furrow irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 58–65.

    Wei Z H, Du T S, Zhang J, et al. Stable carbon isotope discrimination on water use efficiency of field tomato under furrow irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 58-65.

    [46] 张丛志, 张佳宝, 赵炳梓, 等. 玉米水分利用效率、碳稳定同位素判别值和比叶面积之间的关系[J]. 作物学报, 2009, 35(6): 1115–1121. Zhang C Z, Zhang J B, Zhao B Z, et al. Relationships among water use efficiency, carbon isotope discrimination, and specific leaf area in maize[J]. Acta Agronomica Sinica, 2009, 35(6): 1115–1121. DOI: 10.3724/SP.J.1006.2009.1115

    Zhang C Z, Zhang J B, Zhao B Z, et al. Relationships among water use efficiency, carbon isotope discrimination, and specific leaf area in maize[J]. Acta Agronomica Sinica, 2009, 35(06): 1115-1121. DOI: 10.3724/SP.J.1006.2009.1115

    [47] 邱念伟, 王颖. 卡尔文循环中的细节问题[J]. 生物学通报, 2011, 46(9): 15–19. Qiu N W, Wang Y. Details in Calvin cycle[J]. Bulletin of Biology, 2011, 46(9): 15–19. DOI: 10.3969/j.issn.0006-3193.2011.09.006

    Qiu W N, Wang Y. Details in Calvin cycle[J]. Bulletin of Biology, 2011, 46(9): 15-19. DOI: 10.3969/j.issn.0006-3193.2011.09.006

    [48]

    Farquhar G D, O'Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Functional Plant Biology, 1982, 9(2): 121. DOI: 10.1071/PP9820121

  • 期刊类型引用(1)

    1. 张鑫,刘迪川,龙怀玉,徐孟泽,徐爱国,张认连. 土壤水分时间变异性对糜子拔节期水分利用效率的影响. 灌溉排水学报. 2023(07): 18-24 . 百度学术

    其他类型引用(3)

图(6)  /  表(1)
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  573
  • PDF下载量:  46
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-12-27
  • 录用日期:  2022-03-14
  • 网络出版日期:  2022-09-25
  • 刊出日期:  2022-09-24

目录

/

返回文章
返回