Optimal plant density and potassium application rate for spring maize under drip-fertigation in Northeast China
-
摘要:[目的]
适宜的种植密度和施肥量是实现春玉米高产和高肥料利用效率的重要因素。研究东北半干旱区滴灌水肥一体化条件下种植密度和施钾量对春玉米产量、效益、养分转运及吸收利用的影响,为进一步挖掘东北玉米产量潜力提供科学依据。
[方法]田间试验于2018—2019年在吉林省半干旱区乾安县赞字乡父字村进行,供试玉米品种为‘富民985’。试验采用完全区组设计,设置60000、75000、90000株/hm2 3个种植密度(分别记作D1、D2和D3)和0、60、90、120、150 kg/hm2 和5个施钾(K2O)量(分别记作K0、K1、K2、K3和K4)。分析玉米氮磷钾积累、分配与转运特征及产量、效益和钾素利用率。
[结果]同一施钾量下,玉米产量和效益均以D2密度下最高,该密度下两年的玉米平均产量较D1和D3密度下分别提高了8.1%和5.3%,效益分别提高了10.3%和9.4%。在这3个密度下,玉米产量均随施钾量的增加而增加。D1密度下,当K2O量≥90 kg/hm2时,产量和效益的增幅不再明显;而D2和D3密度下,当K2O量≥120 kg/hm2 时,产量和效益增幅不再明显。随施钾量的增加,不同种植密度下钾素吸收利用率、农学利用率和偏生产力均呈下降趋势,但同一钾量下的钾素利用率均以D2密度下的处理最高。种植密度和施钾量对玉米吐丝前后氮、磷、钾素累积量有显著的交互作用,D2K3处理促进了吐丝前氮、磷、钾养分的积累及向籽粒的转运,提高了吐丝后氮、磷、钾同化量及对籽粒的贡献率,进而提高了籽粒氮、磷、钾积累量。相关分析结果表明,玉米吐丝前后氮、磷、钾素积累量与籽粒产量均呈极显著正相关(r=0.636~0.971),其中吐丝后的相关性高于吐丝前。
[结论]在东北半干旱区,滴灌水肥一体化条件下,密度和钾肥互作显著影响玉米产量、养分吸收、转运和钾素利用率。最佳密度和施钾量组合是75000 株/hm2配合K2O 120 kg/hm2。
Abstract:[Objectives]Appropriate plant density and fertilizer application rate are important factors to achieve high yield and fertilizer efficiency of crop production. We studied the suitable combination of plant density and potash application rate for the spring maize production in Northeast China under semiarid climate area.
[Methods]A field experiment was conducted from 2018 to 2019 in Qian'an County, Jilin Province, with maize cultivar ‘Fumin 985’ as tested material. A complete block design was used, including plant densities of 60000 plants/hm2 (D1), 75000 plants/hm2 (D2) and 90000 plants/hm2 (D3), and potassium application rates of K2O 0, 60, 90, 120 and 150 kg/hm2 (recorded as K0, K1, K2, K3 and K4, respectively). The accumulation, distribution and translocation of NPK, yield, benefit and K utilization efficiency of maize were investigated.
[Results]Under the same K2O application rate, the highest maize yield and benefit were recorded in D2 treatment. Compared to D1 and D3, D2 increased the average maize yield by 8.1% and 5.3%, and increased the benefit by 10.3% and 9.4%. Regardless of plant densities, the maize yield increased with the increase of K2O rate; however, the yield and benefit increase were similar under D1 when K2O was ≥90 kg/hm2, and under D2 and D3 when K2O was ≥120 kg/hm2. The K recovery efficiency, agronomic efficiency and partial factor productivity decreased with increasing K2O application rate, but they remained higher in D2 than in D1 and D3 in the same K rate. The planting density and K2O rate had significant interaction on the accumulation of N, P and K before and after silking stage. D2K3 increased the accumulation and transfer of N, P and K to the grains before silking stage, and increased the assimilation of N, P and K and their contribution rates to grains after silking stage. The correlation analysis showed that the accumulation of N, P and K before and after silking stage and the grain yield were highly significantly correlated (r=0.636–0.971), and the correlation coefficients after silking stage were higher than those before silking stage.
[Conclusions]Planting density and K fertilizer interactions significantly affected maize yield, nutrient uptake, translocation and K-use-efficiency under drip irrigation with integration of water and fertilizer in the semi-arid region of Northeast China. The best combination was planting density of 75000 plants/hm2 and K2O rate of 120 kg/hm2 under fertigation.
-
Keywords:
- drip-fertigation /
- spring maize /
- plant density /
- potassium application rate /
- yield /
- potassium utilization efficiency /
- benefit
-
东北半干旱区是我国重要的玉米产区,占东北玉米种植面积的30%以上[1]。该区域光热资源丰富,但受降雨量低(年均降雨量350~450 mm)和季节分布不均的影响,使该区域玉米单产显著低于东北玉米平均单产水平[2]。近年来,滴灌水肥一体化技术已在东北半干旱区得到广泛应用[3]。但在滴灌水肥一体化条件下,栽培措施仍沿用传统方式,未能充分发挥滴灌水肥一体化增产潜力。在面对我国人口压力、可耕地面积日趋紧张的背景下,如何进一步提高该地区玉米产量,是当前东北半干旱区亟待解决的问题。
玉米高产通常以较高的生物量为前提,而养分吸收是其基础[4]。种植密度和养分管理是玉米生产中重要的调控因子。适宜种植密度可使玉米充分利用光热资源构建良好群体结构,为玉米群体提供适宜生物量,使单位面积玉米穗数、穗粒数和籽粒质量得到协同发展[5-6],进而实现玉米高产。在养分管理中,钾是作物生长发育需要的大量营养元素之一,在光合作用、光合产物运转、气孔运动调节、韧皮部运输、品质和抗逆性提高等方面发挥着重要作用[7]。与此同时,施钾可进一步提高氮代谢酶活性,如谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)[8-9],并与磷存在着互促作用[10]。在高产目标下,作物需要吸收大量的钾,钾需求量与氮素相当。然而土壤中的钾主要以矿物态形式存在,仅小部分钾对作物有效[11],所以化学钾肥成为了作物钾素的主要来源[12-13]。但在东北地区普遍存在着玉米种植密度低和钾肥施用不足等现象,不仅影响了玉米产量,而且导致了土壤钾素不断耗竭[14]。因此,有必要优化玉米种植密度和适量增施钾肥,达到玉米优质高产的目标。目前,有关不同种植密度和施钾量对玉米生长发育和产量影响的研究报道较多,研究者普遍认为,滴灌水肥一体化能保证土壤水分和养分在玉米各生育期充分供应,可大幅提高玉米种植密度[15],且玉米产量与种植密度在一定范围内呈显著正相关。然而当种植密度过高时,会使植株个体发育不良,玉米产量降低[16]。而钾肥用量不足,不仅会影响作物光合作用、物质的转运与抗倒伏能力,还会影响植株对氮、磷养分的吸收,限制作物的增产潜力[11]。但当钾肥过量供应时,作物产量不再提高,反而会造成钾素奢侈吸收[17]。因此,种植密度和施钾量在玉米生长中只有维持平衡、协调的关系, 才能发挥对玉米生长最佳的互作效应,保证玉米正常生长。前人研究中虽然已有较多关于养分管理与不同种植密度对作物产量、光合特性、根系生长和养分吸收的影响,但多为氮肥施用与种植密度组合研究。而东北半干旱地区滴灌水肥一体化条件下,不同钾肥用量结合密度变化对玉米养分吸收、分配与利用的影响研究还鲜见报道。因此,我们进行了为期2年的田间定位试验,在滴灌条件下,通过研究种植密度与钾肥用量交互作用对玉米产量、产量构成、养分吸收利用的影响机制,明确产量、养分吸收利用协同提高的适宜钾肥用量和种植密度,以期为东北半干旱地区春玉米高产高效栽培提供理论依据。
1. 材料与方法
1.1 试验地概况
试验于2018—2019年在吉林省乾安县吉林省农业科学院乾安实验站(35°28′ N, 104°44′ E)开展,该地海拔2000 m,无霜期140天,年均日照时数2 476.6 h,年均气温6.4℃,多年平均降水425 mm,属典型的中温带半干旱区。玉米生育期气象数据 (平均温度、降水量) 通过试验点的自动气象站获取(图1)。试验区农田土壤为典型淡黑钙土,2018年种植前0—20 cm土壤基本养分状况为:有机质含量17.4 g/kg,土壤水解性氮含量98.9 mg/kg,土壤有效磷含量15.0 mg/kg,土壤速效钾含量109.4 mg/kg,pH 8.06。
1.2 试验设计
试验采用不同种植密度和施钾量的双因素设计,分别为3个种植密度(60000、75000和 90000株/hm2,分别记作D1、D2和D3)和5个施钾(K2O)水平(0、60、90、120和150 kg/hm2,分别记作K0、K1、K2、K3和K4)的完全组合,共计15个处理。小区面积40 m2,重复3次。各处理氮肥(N)和磷肥(P2O5)用量一致,分别为220和90 kg/hm2。氮肥按20%基肥+30%拔节肥+20%大喇叭口肥+20%抽雄肥+10%灌浆肥施用,磷肥按40%基肥+60%大喇叭口肥施用,钾肥按60%基肥+40%大喇叭口肥施用。肥料品种分别为尿素(N 46%)、磷酸一铵(N 12%,P2O5 61%)和氯化钾(K2O 60%)。供试玉米品种为富民985,2018和2019年玉米种植日期分别为5月7日和5月3日。采用浅埋滴灌种植,玉米播种后,将滴灌带铺设于宽行中间,每条滴灌带浇灌2行玉米。各处理两年玉米生育期灌水定额均为240 mm,其中在玉米播前、苗期和拔节期分别灌水20 mm,大喇叭口期、吐丝期和灌浆期分别灌水60 mm,共计6次,各处理单独用水表控制同等灌水量。每小区单配18 L压差式施肥罐,施肥开始前按各处理所需氮、磷、钾肥放入施肥罐,充满水后搅拌至完全溶解。在施肥前先滴清水30 min,然后打开施肥阀施肥,施肥时间为120 min,施肥后继续滴清水30 min。收获日期分别为9月30日和10月2日。其他田间管理按玉米常规生产田进行。
1.3 样品采集与测定
1.3.1 养分积累与转运
于玉米吐丝期(R1)和生理成熟期(PM)采集各处理具有代表性玉米植株5株,带回室内按不同器官(茎、叶、穗轴和籽粒)分开,以105℃杀青30 min,然后以80℃烘干至恒重后粉碎,测定样品氮(凯氏定氮法)、磷(钒钼黄比色法)、钾(火焰光度计法)养分含量,并计算养分转运量、转运率、转运养分贡献率和积累养分贡献率,计算公式如下:
养分转运量(kg/hm2)= 吐丝期植株地上部养分积累量-成熟期植株地上部营养器官养分积累量;
养分转运率(%)= 养分转运量/吐丝期植株地上部养分积累量 × 100;
转运养分贡献率(%)= 养分转运量/籽粒养分积累量 × 100;
积累养分贡献率= 100%-转运养分贡献率。
1.3.2 钾素利用率
钾素利用率包括钾素吸收利用率(REK)、农学利用率(AEK)和偏生产力(PFPK),其计算公式如下:
钾素吸收利用率(REK,%)=(施钾区植株钾积累量-不施钾区植株钾积累量)/施钾量×100;
钾素农学利用率(AEK,kg/kg)=(施钾区玉米产量-不施钾区玉米产量)/施钾量;
钾素偏生产力 (PFPK,kg/kg)= 施钾区籽粒产量/施钾量。
1.3.3 产量、产量构成因素与效益计算
于玉米成熟期选择每小区中间4行,测定穗数,并在自然风干后(籽粒水分≤20%),人工脱粒,用 PM-8188 谷物水分测定仪测定籽粒含水量,并折算成 14% 标准含水量,按测产面积折算成单位面积产量。与此同时,选择10个代表性果穗,测定穗粒数和千粒重。
净收入(元/hm2)=玉米产量×玉米价格-生产投入成本(包括种子、肥料、农药、滴灌设备和种植收获人工成本)。
1.4 数据处理与分析
采用 Excel 2016 整理汇总数据,密度与钾肥的主效应及两因素间交互作用应用 SPSS 19.0 软件一般线性模型(GLM)多因素方差分析,处理间差异采用 Duncan多重比较检验,P<0.05为差异显著。用 Sigma Plot 14.0 软件绘图。
2. 结果与分析
2.1 玉米产量与产量构成因素及效益分析
2.1.1 玉米产量与产量构成因素
种植密度和施钾量对玉米产量均具有显著影响,且两因素间的交互效应达显著水平(表1)。就种植密度而言,两年玉米产量均表现为D2>D3>D1,与D1和D3处理相比,D2处理下各施钾处理两年的平均玉米产量增幅分别为8.1%和5.3%,差异均达显著水平(P<0.05)。就钾肥用量而言,不同种植密度下施钾处理玉米产量均显著高于K0处理(P<0.05),并随施钾量的增加产量呈增加趋势。其中在D1密度下,当施钾量≥90 kg/hm2时,产量增幅不再显著(P>0.05);而在D2和D3密度下,当施钾量≥120 kg/hm2时,产量增幅不再显著(P>0.05)。
表 1 不同种植密度和施钾量下玉米产量与构成因素Table 1. Maize yield and its components under different plant densities and potassium application rates处理
Treatment2018 2019 产量
Yield
(kg/hm2)穗数
Ears
(No./hm2)穗粒数
Grain number
per ear千粒重 (g)
1000-grain weight产量
Yield
(kg/hm2)穗数
Ears
(No./hm2)穗粒数
Grain number
per ear千粒重 (g)
1000-grain weightD1 K0 9875 c 59000 a 580.8 c 326.6 c 9605 c 59500 a 577.9 c 320.0 c K1 10879 b 58500 a 603.9 b 341.8 b 10554 b 58500 a 592.4 b 334.1 b K2 11295 a 59500 a 614.5 a 351.2 a 11015 a 59500 a 617.9 a 341.1 a K3 11396 a 59000 a 618.4 a 350.5 a 11072 a 59750 a 620.0 a 343.9 a K4 11465 a 59750 a 620.6 a 350.6 a 11162 a 59750 a 619.9 a 344.1 a 平均 Average 10982 59150 607.6 344.1 10682 59400 605.6 336.6 D2 K0 10819 d 74000 a 507.3 d 324.1 c 10613 d 74000 a 486.3 d 311.1 c K1 11520 c 73500 a 527.3 c 333.0 b 11206 c 73500 a 504.5 c 321.9 b K2 12044 b 74000 a 548.2 b 335.6 b 11581 b 74000 a 517.9 b 325.2 b K3 12494 a 74000 a 562.5 a 339.0 a 12048 a 74000 a 531.2 a 331.6 a K4 12533 a 73750 a 565.0 a 340.9 a 12192 a 73750 a 532.9 a 333.0 a 平均 Average 11882 73850 542.1 334.6 11528 73850 514.6 324.6 D3 K0 10099 d 88500 a 426.5 d 305.5 d 10019 d 89250 a 409.2 d 305.5 d K1 10887 c 87000 a 438.9 c 317.3 c 10693 c 89000 a 431.0 c 314.3 c K2 11347 b 86250 a 452.6 b 324.7 b 11054 b 88250 a 442.1 b 319.7 b K3 11815 a 85500 a 466.7 a 333.5 a 11545 a 87500 a 453.9 a 327.2 a K4 12017 a 87250 a 467.4 a 333.8 a 11665 a 89250 a 451.3 a 327.9 a 平均 Average 11233 86900 450.4 323.0 10995 88650 437.5 318.9 方差分析 ANOVA 密度 Density (D) ** ** ** ** ** ** ** ** 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ** * * ns ** * 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level. ns—Not significant; *—P<0.05; **—P<0.01.就产量构成而言,种植密度对穗数、穗粒数和千粒重影响显著,施钾量对穗粒数和千粒重影响显著,而对穗数影响不显著。种植密度和施钾量对玉米穗粒数和千粒重表现出显著的交互效应。就种植密度而言,玉米穗数随种植密度的增加呈增加趋势,而穗粒数和千粒重均表现为随种植密度的增加呈降低趋势。在相同密度下,施钾显著增加了玉米穗粒数和千粒重(P<0.05),并随施钾量的提高两指标整体呈增加趋势;其中在D1密度下,当施钾量≥90 kg/hm2时,穗粒数和千粒重增幅不再显著(P>0.05);在D2和D3密度下,当施钾量≥120 kg/hm2时,穗粒数和千粒重增幅不再显著(P>0.05)。而在同一密度下不同施钾处理间玉米穗数差异未达显著水平(P>0.05)。
密度对玉米穗数、穗粒数和千粒重均具有显著影响(图2),其中对穗数影响最大,而对穗粒数和千粒重具有负效应。施钾对玉米穗粒数和千粒重影响显著,对玉米穗数影响不显著,其中对穗粒数影响最大。而穗数、穗粒数和千粒重均对产量影响显著,其中穗数影响最大,后依次为穗粒数和千粒重。
2.1.2 经济效益
种植密度对总收入、种子支出和净收入具有显著影响,而施钾量对总收入、肥料支出和净收入影响显著,两因素对总收入和净收入的交互效应达到了显著水平(表2)。就种植密度而言,虽然提高种植密度显著增加了种子支出,但两年净收入均表现为D2>D3>D1,与D1和D3处理相比,D2处理下各施钾处理两年平均净收入增幅分别为10.3%和9.4%,差异均达显著水平(P<0.05)。就钾肥用量而言,不同种植密度下施钾处理净收入均显著高于K0处理(P<0.05),并随着施钾量的增加净收入整体呈增加趋势。其中在D1密度下,当施钾量≥90 kg/hm2时,净收入增幅不再显著(P>0.05);而在D2和D3密度下,当施钾量≥120 kg/hm2时,净收入增幅不再显著(P>0.05)。
表 2 不同种植密度和施钾量下玉米生产效益(yuan/hm2)Table 2. Benefit of maize production as affected by plant density and potassium application rate处理
Treatment2018 2019 总收入
Gross income肥料支出
Fertilizer cost种子支出
Seed cost其他支出
Other cost净收入
Net income总收入
Gross income肥料支出
Fertilizer cost种子支出
Seed cost其他支出
Other cost净收入
Net incomeD1 K0 15998 c 1580 e 720 2900 10798 c 15560 c 1580 e 720 2900 10360 c K1 17623 b 1830 d 720 2900 12173 b 17097 b 1830 d 720 2900 11647 b K2 18299 a 1955 c 720 2900 12724 a 17844 a 1955 c 720 2900 12269 a K3 18461 a 2080 b 720 2900 12761 a 17936 a 2080 b 720 2900 12236 a K4 18574 a 2205 a 720 2900 12749 a 18083 a 2205 a 720 2900 12258 a 平均 Average 17791 1930 720 2900 12241 17304 1930 720 2900 11754 D2 K0 17527 d 1580 e 900 2900 12147 d 17193 d 1580 e 900 2900 11813 d K1 18662 c 1830 d 900 2900 13032 c 18154 c 1830 d 900 2900 12524 c K2 19512 b 1955 c 900 2900 13757 b 18761 b 1955 c 900 2900 13006 b K3 20241 a 2080 b 900 2900 14361 a 19518 a 2080 b 900 2900 13638 a K4 20304 a 2205 a 900 2900 14299 a 19751 a 2205 a 900 2900 13746 a 平均 Average 19249 1930 900 2900 13519 18675 1930 900 2900 12945 D3 K0 16360 d 1580 e 1080 2900 10800 d 16231 d 1580 e 1080 2900 10671 d K1 17636 c 1830 d 1080 2900 11826 c 17323 c 1830 d 1080 2900 11513 c K2 18383 b 1955 c 1080 2900 12448 b 17908 b 1955 c 1080 2900 11973 b K3 19141 a 2080 b 1080 2900 13081 a 18703 a 2080 b 1080 2900 12643 a K4 19468 a 2205 a 1080 2900 13283 a 18898 a 2205 a 1080 2900 12713 a 平均 Average 18198 1930 1080 2900 12288 17813 1930 1080 2900 11903 方差分析 ANOVA 密度 Density (D) ** ns ** ** ** ns ** ** 施钾量 K rate (K) ** ** ns ** ** ** ns ** D×K * ns ns * * ns ns * 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。玉米 1.62 元/kg,N 4.78 元/kg,P2O5 5.87 元/kg,K2O 4.17 元/kg,种子36 元/kg;其他支出包括机械、滴灌设备、农药和水电费等费用等。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著; ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. Maize 1.62 yuan/kg, N 4.78 yuan/kg, P2O5 5.87 yuan/kg, K2O 4.17 yuan/kg, seed 36 yuan/kg; other costs include machinery, drip irrigation equipment, pesticides and utilities. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.2.2 氮、磷、钾积累特征
2.2.1 氮、磷、钾积累量
种植密度和施钾量对玉米吐丝期(R1)和生理成熟期(PM)氮、磷、钾积累量均具有显著影响,且两因素间的交互效应均达到了显著水平(图3)。不同种植密度间,各处理同期玉米氮、磷、钾积累量均表现为D2>D3>D1。与D1和D3相比,D2处理两年吐丝期氮、磷、钾平均积累量分别提高6.0%、11.1%、6.4%和2.9%、5.5%、3.4%;成熟期氮、磷、钾平均积累量分别提高4.6%、11.1%、6.5%和3.2%、4.6%、3.7%;其中D2与D1处理差异达显著水平(P<0.05)。就钾肥用量而言,各种植密度下施钾处理吐丝期和成熟期玉米氮、磷、钾积累量均显著高于K0处理(P<0.05),并随施钾量的增加氮、磷、钾积累量整体呈增加趋势,其中在D1密度下,当施钾量≥90 kg/hm2时,玉米吐丝期和成熟期氮、磷、钾积累量增幅不再显著(P>0.05);在D2和D3密度下,当施钾量≥120 kg/hm2时,玉米吐丝期和成熟期氮、磷、钾积累量增幅不再显著(P>0.05)。说明适宜的钾肥用量可有效提高玉米养分吸收,而钾肥过量供应不会使玉米养分积累量进一步提高。
图 3 不同种植密度和施钾量下玉米氮、磷、钾积累量注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。R1—吐丝期;PM—生理成熟期。D—密度;K—施钾量;D×K表示密度和施钾量间的交互作用;*—P<0.05;**—P<0.01。柱上不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。帽子代表不同密度间差异显著性;ns—不显著;*—P<0.05。Figure 3. Accumulation of N, P and K under different plant densities and potassium application ratesNote: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. R1—Silking stage; PM—Physiological maturity. D—Density; K—K treatments; D×K indicate the interaction between density and K rate; *—P<0.05; **—P<0.01. Different lowercase letters above the bars mean significant difference among K application rates under the same density at the 0.05 level. The cap represent the significant difference among different densities; ns—Not significant; *—P<0.052.2.2 玉米吐丝前后地上部氮磷钾分配比例
由图4可知,就种植密度而言,不同种植密度间玉米吐丝期至成熟期氮、磷、钾积累量占植株氮、磷、钾总量比例均无显著性差异(P>0.05)。而不同种植密度下施钾处理玉米吐丝期至成熟期氮、磷、钾积累量占植株氮、磷、钾总量的比例均高于K0处理,并随施钾量的增加占比整体呈增加趋势;其中在D1密度下,当施钾量≥90 kg/hm2时,玉米吐丝期至成熟期氮、磷、钾积累量占植株氮、磷、钾总量比例增幅不再显著(P>0.05);在D2和D3密度下,当施钾量≥120 kg/hm2时,玉米吐丝期至成熟期氮、磷、钾积累量占植株氮、磷、钾总量比例增幅不再显著(P>0.05)。
图 4 不同种植密度和施钾量下玉米吐丝前后地上部氮磷钾积累量占整株氮磷钾积累量的比例注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。V3—三叶苗期;R1—吐丝期;PM—生理成熟期。柱中不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。Figure 4. Proportions of above-ground N, P and K accumulation in the whole plant before and after silking stage of maize under different plant densities and potassium application ratesNote: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. V3—Vegetative third leaf; R1—Silking stage; PM—Physiological maturity. Different lowercase letters in the bars mean significant difference among K application rates under the same density at the 0.05 level2.3 氮、磷、钾转运特征
种植密度对养分转运量具有显著影响,而对养分转运率、转运养分贡献率和积累养分贡献率影响不显著;施钾量对养分转运量、转运养分贡献率和积累养分贡献率均影响显著,对养分转运率影响不显著;而两因素对养分转运量的交互作用达显著水平(表3、表4、表5)。不同种植密度间,玉米氮、磷、钾转运量均表现为D2>D3>D1。与D1和D3相比,D2处理两年平均氮、磷、钾转运量分别提高9.3%、9.8%、12.9%和4.3%、4.2%和7.4%,差异均达到显著水平(P<0.05)。从钾肥用量来看,不同种植密度下施钾处理氮、磷、钾转运量均显著高于K0处理(P<0.05),并随施钾量的增加转运量整体呈增加趋势;其中在D1密度下,当施钾量≥90 kg/hm2时,玉米氮、磷、钾转运量增幅不再显著(P>0.05);在D2和D3密度下,当施钾量≥120 kg/hm2时,玉米氮、磷、钾转运量增幅不再显著(P>0.05)。氮、磷、钾转运贡献率随施钾量增加整体呈降低趋势,而氮、磷、钾积累贡献率则随施钾量的增加整体呈增加趋势,其中在D1密度下,当施钾量≥90 kg/hm2时,氮、磷、钾积累贡献率增幅不再显著,而在D2和D3密度下,当施钾量≥120 kg/hm2时,氮、磷、钾积累贡献率增幅不再显著(P>0.05)。
表 3 不同种植密度和施钾量下玉米氮素转运Table 3. Nitrogen translocation of maize under different plant densities and potassium application rates密度
Density钾处理
K treatment2018 2019 氮素转运量
NT
(kg/hm2)氮素转运率
NTE
(%)氮素转运贡献率
NTCRV
(%)氮素积累贡献率
NACRV
(%)氮素转运量
NT
(kg/hm2)氮素转运率
NTE
(%)氮素转运贡献率
NTCRV
(%)氮素积累贡献率
NACRV
(%)D1 K0 52.8 c 45.6 a 48.5 a 51.5 c 51.0 c 45.4 a 47.6 a 52.4 c K1 56.6 b 46.3 a 47.0 b 53.0 b 55.7 b 46.3 a 45.7 b 54.3 b K2 59.8 a 47.0 a 44.9 c 55.1 a 58.1 a 46.5 a 44.2 c 55.8 a K3 60.1 a 46.8 a 45.2 c 54.8 a 58.5 a 46.1 a 44.3 c 55.7 a K4 61.1 a 46.9 a 45.2 c 54.8 a 58.6 a 45.9 a 43.9 c 56.1 a 平均
Average58.1 46.5 46.2 53.8 56.4 46.0 45.1 54.9 D2 K0 58.4 d 47.2 a 51.2 a 48.8 d 56.3 c 48.1 a 49.5 a 50.5 c K1 62.5 c 48.5 a 49.8 b 50.2 c 59.3 b 47.6 a 47.4 b 52.6 b K2 63.6 b 47.3 a 47.2 c 52.8 b 62.2 b 48.1 a 47.1 b 52.9 b K3 67.1 a 48.1 a 45.9 d 54.1 a 64.3 a 47.5 a 45.8 c 54.2 a K4 67.7 a 48.1 a 46.0 d 54.0 a 64.0 a 46.7 a 45.7 c 54.3 a 平均
Average63.9 47.8 48.0 52.0 61.2 47.6 47.1 52.9 D3 K0 54.7 d 46.4 a 50.1 a 49.9 c 54.7 d 47.3 a 48.7 a 51.3 c K1 57.0 c 45.7 a 48.5 b 51.5 b 57.6 c 47.1 a 46.6 b 53.4 b K2 60.3 b 46.3 a 47.9 b 52.1 b 59.6 b 47.6 a 46.5 b 53.5 b K3 64.6 a 48.1 a 46.3 c 53.7 a 62.3 a 47.2 a 44.9 c 55.1 a K4 64.8 a 48.0 a 46.5 c 53.5 a 63.9 a 47.8 a 44.8 c 55.2 a 平均
Average60.3 46.9 47.9 52.1 59.6 47.4 46.3 53.7 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。NT—氮素转运量;NTE—氮素转运率;NTCRV—氮素转运贡献率;NACRV—氮素积累贡献率。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. NT—N translocation; NTE—N translocation efficiency; NTCRV—N translocation conversion rate of vegetative organ; NACRV—N accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.表 4 不同种植密度和施钾量下玉米磷素转运Table 4. Phosphorus translocation of maize under different plant densities and potassium application rates密度
Density钾处理
K treatment2018 2019 磷素转运量
PT
(kg/hm2)磷素转运率
PTE
(%)磷素转运贡献率
PTCRV
(%)磷素积累贡献率
PACRV
(%)磷素转运量
PT
(kg/hm2)磷素转运率
PTE
(%)磷素转运贡献率
PTCRV
(%)磷素积累贡献率
PACRV
(%)D1 K0 10.0 c 75.1 a 57.5 a 42.5 c 10.1 c 74.4 a 55.9 a 44.1 c K1 11.0 b 75.3 a 55.8 b 44.2 b 10.7 b 73.6 a 54.4 b 45.6 b K2 11.6 a 73.7 a 53.4 c 46.6 a 11.5 a 74.0 a 52.6 c 47.4 a K3 11.7 a 73.8 a 53.7 c 46.3 a 11.7 a 73.7 a 52.7 c 47.3 a K4 11.9 a 73.7 a 53.6 c 46.4 a 11.8 a 73.7 a 52.8 c 47.2 a 平均
Average11.2 74.3 54.8 45.2 11.2 73.9 53.7 46.3 D2 K0 10.7 d 74.0 a 57.0 a 43.0 c 11.1 d 74.1 a 56.6 a 43.4 c K1 11.3 c 70.9 a 55.1 b 44.9 b 11.9 c 73.8 a 54.3 b 45.7 b K2 12.2 b 71.8 a 54.8 b 45.2 b 12.4 b 72.8 a 53.4 b 46.6 b K3 13.2 a 73.7 a 53.1 c 46.9 a 13.2 a 73.0 a 51.7 c 48.3 a K4 13.4 a 73.8 a 53.3 c 46.7 a 13.3 a 72.6 a 51.8 c 48.2 a 平均
Average12.2 72.8 54.7 45.3 12.4 73.3 53.6 46.4 D3 K0 10.6 d 75.1 a 57.5 a 42.5 c 10.4 d 75.5 a 56.7 a 43.3 c K1 11.0 c 72.0 a 54.7 b 45.3 b 11.1 c 74.2 a 54.0 b 46.0 b K2 12.0 b 73.4 a 54.3 b 45.7 b 12.0 b 74.8 a 53.6 b 46.4 b K3 12.9 a 74.9 a 52.4 c 47.6 a 12.6 a 74.8 a 52.1 c 47.9 a K4 13.0 a 73.7 a 52.9 c 47.1 a 12.6 a 74.5 a 51.7 c 48.3 a 平均
Average11.9 73.8 54.4 45.6 11.7 74.8 53.6 46.4 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。PT—磷素转运量;PTE—磷素转运率;PTCRV—磷素转运贡献率;PACRV—磷素积累贡献率。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note:D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. PT—P translocation; PTE—P translocation efficiency; PTCRV—P translocation conversion rate of vegetative organ; PACRV—P accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 leve; ns—Not significant; *—P<0.05; **—P<0.01.表 5 不同种植密度和施钾量下玉米钾素转运Table 5. Potassium translocation of maize under different plant densities and potassium application rates密度
Density钾处理
K treatment2018 2019 钾素转运量
KT
(kg/hm2)钾素转运率
KTE
(%)钾素转运贡献率
KTCRV
(%)钾素积累贡献率
KACRV
(%)钾素转运量
KT
(kg/hm2)钾素转运率
KTE
(%)钾素转运贡献率
KTCRV
(%)钾素积累贡献率
KACRV
(%)D1 K0 17.7 c 16.4 a 68.4 a 31.6 c 16.8 c 13.9 a 67.2 a 32.8 c K1 19.6 b 15.8 a 66.3 b 33.7 b 18.6 b 14.2 a 65.4 b 34.6 b K2 22.6 a 16.0 a 64.3 c 35.7 a 21.1 a 15.3 a 62.7 c 37.3 a K3 23.6 a 16.7 a 64.2 c 35.8 a 21.9 a 15.8 a 63.4 c 36.6 a K4 23.1 a 16.2 a 63.4 c 36.6 a 21.2 a 15.2 a 62.9 c 37.1 a 平均
Average21.3 16.2 65.3 34.7 19.9 14.9 64.3 35.7 D2 K0 20.3 d 16.2 a 66.6 a 33.4 c 18.7 d 14.5 a 70.3 a 29.7 c K1 23.2 c 16.9 a 64.4 b 35.6 b 20.3 c 14.6 a 65.1 b 34.9 b K2 25.2 b 16.8 a 63.5 b 36.5 b 22.0 b 15.2 a 65.9 b 34.1 b K3 27.0 a 17.1 a 61.0 c 39.0 a 23.8 a 15.5 a 62.3 c 37.7 a K4 27.6 a 17.3 a 60.1 c 39.9 a 24.0 a 15.6 a 62.4 c 37.6 a 平均
Average24.7 16.9 63.1 36.9 21.8 15.1 65.2 34.8 D3 K0 19.1 c 16.3 a 68.7 a 31.3 c 17.0 d 13.7 a 68.5 a 31.5 c K1 22.1 b 16.2 a 66.0 b 34.0 b 19.2 c 14.3 a 65.1 b 34.9 b K2 22.9 b 16.2 a 64.6 bc 35.4 ab 20.8 b 14.7 a 64.6 b 35.4 b K3 25.3 a 16.5 a 63.8 c 36.2 a 22.4 a 15.4 a 62.5 c 37.5 a K4 24.9 a 17.1 a 64.0 c 36.0 a 22.7 a 15.5 a 62.2 c 37.8 a 平均
Average22.9 16.5 65.4 34.6 20.4 14.7 64.6 35.4 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. KT—K translocation; KTE—K translocation efficiency; KTCRV—K translocation conversion rate of vegetative organ; KACRV—K accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.2.4 钾素利用率
种植密度和施钾量对钾素吸收利用率、农学利用率和偏生产力均具有显著影响,且两因素的交互作用达到了显著水平(图5)。不同种植密度间,玉米钾素吸收利用率、农学利用率和偏生产力均表现为D2>D3>D1。与D1和D3相比,D2处理钾素吸收利用率分别提高8.6和2.6个百分点;钾素农学利用率分别提高8.4和6.2 kg/kg;钾素偏生产力分别提高8.4和6.2 kg/kg,差异均达显著水平(P<0.05)。从钾肥用量来看,不同种植密度下施钾处理钾素吸收利用率、农学利用率和偏生产力均随施钾量的增加呈下降趋势。
图 5 不同种植密度和施钾量下玉米钾素利用率注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。D—密度;K—施钾量;D×K表示密度和施钾量间的交互作用;*—P<0.05;**—P<0.01。柱上不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。帽子代表不同密度间差异显著性;*—P<0.05Figure 5. Potassium utilization efficiency of maize under different plant densities and potassium application ratesNote: REK—K recovery efficiency; AEK—K agronomic efficiency; PEPK—K partial factor productivity. D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. D—Density; K—K treatments; D×K indicate the interaction between density and K rate; *—P<0.05; **—P<0.01. Different lowercase letters above the bars mean significant difference among K application rates under the same density at the 0.05 level. The cap represents the significant difference among different densities; *—P<0.052.5 不同种植密度和施钾量下玉米不同生育时期养分吸收与产量和养分积累总量的关系
相关性分析结果(表6)显示,苗期至吐丝期和吐丝期至成熟期氮、磷、钾积累量与产量及氮、磷、钾积累总量均呈极显著正相关(r=0.636~0.971)。其中吐丝期至成熟期氮、磷、钾积累量与产量(r=0.701~0.728)及氮(r=0.915~0.946)、磷(r=0.869~0.971)、钾(r=0.854~0.945)积累总量的相关性均高于苗期至吐丝期氮、磷、钾积累量与产量(r=0.636~0.683)及氮(r=0.859~0.894)、磷(r=0.834~0.929)、钾(r=0.826~0.884)积累总量的相关性。
表 6 玉米不同生育时期养分吸收与产量和养分积累总量的关系Table 6. The correlation of nutrient absorption with yield and total nutrient accumulation at different growth stages of maize指标
Index氮素积累量
N accumulation磷素积累量
P accumulation钾素积累量
K accumulationV3—R1 R1—PM V3—R1 R1—PM V3—R1 R1—PM 产量 Yield 0.683** 0.728** 0.671** 0.701** 0.636** 0.708** 氮积累总量 Total N accumulation 0.894** 0.946** 0.867** 0.924** 0.859** 0.915** 磷积累总量 Total P accumulation 0.878** 0.894** 0.929** 0.971** 0.834** 0.869** 钾积累总量 Total K accumulation 0.826** 0.854** 0.842** 0.945** 0.884** 0.936** 注:V3—三叶苗期;R1—吐丝期;PM—生理成熟期。**—P<0.01。
Note: V3—Vegetative third leaf; R1—Silking stage; PM—Physiological maturity. **—P<0.01.3. 讨论
3.1 种植密度和施钾量对玉米产量的影响
合理密植通过增加群体数量,改善冠层结构,利用群体优势提高光能、水分和养分利用效率[18-20],是作物获得高产的重要栽培措施之一。对于玉米而言,单位面积穗数、穗粒数和千粒重决定着玉米产量的高低,各产量性能指标间的协调是实现高产的基础[21-22]。本研究发现,在相同施钾量下,随种植密度的增加,玉米个体竞争加剧,会降低单株玉米穗粒数与千粒重;当种植密度增加至75000 株/hm2水平时,由于群体增产效应大于单株降低产量效应,使其产量最高(表1)。但当种植密度过高(90000 株/hm2)时,玉米个体生存空间急剧降低,水、肥、光等资源竞争进一步加剧[23],光合物质向籽粒分配比例降低,使玉米穗粒数和千粒重下降,对产量的影响程度远大于单位面积穗数的增加,导致玉米产量显著下降。可见协调个体与群体的生长矛盾,在提高群体数量的同时,保持较高的单株生产能力是密植玉米获得高产的关键。与此同时,肥料运筹也是调控玉米生长的关键栽培措施之一。本研究中,密度由60000 株/hm2增加至75000 株/hm2时,其获得较高玉米产量所需的施钾量也由90 kg/hm2增加到了120 kg/hm2。可能的机理是适宜增加种植密度后,需通过适当增加施钾量,促进光合产物的生产与运输[24],使库容(穗粒数)和充实度(粒重)增加[25],提高玉米产量。此外,虽然增加种植密度和钾肥用量会使生产成本有所提高,但显著提高了玉米产量,实现了收益增加。
3.2 不同种植密度和施钾量对玉米养分吸收、分配和转运的影响
种植密度和钾肥用量作为玉米生产的主要调控措施,对玉米氮、磷、钾养分吸收积累与分配具有显著影响。相关研究指出,作物生育后期叶片光合作用与产量有密切关系,粒重形成中的碳大部分(74.8%~92.8%)来源于该阶段叶片的光合作用[26]。其生育后期养分积累与作物产量密切相关[27-28]。本研究结果也表明,玉米产量与玉米吐丝后养分积累的相关性高于吐丝前(表6)。但李朝苏等[29]指出,虽然作物生育后期物质积累对籽粒的贡献率高于花前,但生育前期干物质积累量与产量也呈显著的正相关关系。对玉米而言,拔节至吐丝阶段是玉米营养生长的重要时期,该阶段养分积累直接影响穗分化质量。因此,提高玉米前期养分积累总量和生育后期养分积累比例,对提高玉米产量至关重要。本研究结果表明,随着种植密度的增加,玉米地上部氮、磷、钾积累量呈先增加后降低趋势(图3),种植密度为60000 株/hm2时,尽管群体透光条件好,但由于群体积累养分相对较少,导致群体养分积累量低于75000 株/hm2密度水平,而当群体密度增加至90000 株/hm2时,则导致群体过大,遮蔽严重,冠层内光照条件不充足,影响光合作用,导致氮、磷、钾积累量下降。而种植密度由60000 株/hm2增加至75000 株/hm2,同时将钾肥由90 kg/hm2增加至120 kg/hm2时,可显著提高D2处理(75000 株/hm2)氮、磷、钾积累量。可见,适宜的钾肥用量,是作物利用适宜种植密度充分发挥群体优势进行光合作用而生产营养物质的保障。此外,施用钾肥还可提高玉米吐丝后氮、磷、钾养分所占比例(图4),可能的机理是施钾可增加作物叶绿素、可溶性蛋白含量,提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性,并降低过氧化物酶(POD)活性、膜脂过氧化作用,延缓叶片衰老[30-31],进而增加玉米生育后期营养体氮、磷、钾素积累总量。
籽粒养分累积是由吐丝前累积的氮、磷、钾养分转移和吐丝后养分累积(持绿)共同作用的结果[32]。较高的籽粒养分积累量需要吐丝前营养体的转运和吐丝后养分积累的协同提高。而两部分营养源对籽粒养分贡献率受不同品种特性、生态环境及栽培措施的影响显著[15, 25-26]。本研究中,增加密度和施钾量均提高了氮、磷、钾素转运量,尽管不同施钾处理间氮、磷、钾转运率差异未达显著水平(表3、表4、表5),但绝对转运量上差异达显著水平,其中以75000 株/hm2和施钾量120 kg/hm2条件下氮、磷、钾转运量较高。说明适度提高群体数量和钾肥用量可促进玉米营养生长阶段养分的吸收,并使源器官中储存更多的养分向籽粒转运。本研究还发现,施钾提高了玉米吐丝后积累养分对籽粒的贡献率,并在一定范围内随施钾量的增加该贡献率呈显著增加趋势。其主要原因为适宜的钾肥用量可提高玉米生育后期光合速率,促进玉米生育后期营养器官中有机物的合成,利于光合产物向籽粒的运输与分配,提高玉米籽粒养分含量[33-34]。
3.3 不同种植密度和施钾量对玉米钾素利用率的影响
肥料利用效率反映了作物–土壤–肥料三者间关系的动态参数,由作物产量、养分吸收总量和肥料投入量共同决定[35]。优化协调肥料与种植密度的互作关系,是提高玉米产量和钾素利用效率的有效途径。程前等[36]研究表明,适宜增密可提高玉米产量和肥料利用效率。但也有较多的研究表明,随着肥料用量的增加,作物肥料利用效率呈显著下降趋势。往往作物获得最高产量和经济效益的施肥量,其利用效率并非最高[17, 25,37]。本研究结果表明,玉米钾素利用率随种植密度的增加呈先增后降趋势,其中以75000 株/hm2密度下钾素利用率最高(图5)。说明适宜的群体结构可增加玉米产量和养分积累量,进而提高了肥料利用效率。在75000 株/hm2密度下,虽然K3 (K2O 120 kg/hm2)处理钾肥吸收利用率、农学利用效率和偏生产力均低于K1 (K2O 60 kg/hm2)和K2 (K2O 90 kg/hm2)处理,但可获得较高的产量和养分吸收量,而与K4 (K2O 150 kg/hm2)处理相比,玉米产量差异不显著(P>0.05),钾素利用率显著提高。可见低施钾量虽然可获得较高的钾素利用率,但是以牺牲玉米产量和严重耗竭土壤钾素为代价的;而过量施钾不仅不会显著提高玉米产量,同时钾素利用率显著降低。因此,适当增加种植密度并结合适宜施钾量能够保证玉米生育期养分供给,促进玉米养分吸收,增加籽粒产量,提高钾素利用率,实现玉米高产高效目标。
4. 结论
种植密度和施钾量对玉米养分吸收、转运和利用有显著的交互作用。适度增加种植密度和施钾量可以显著提高玉米氮、磷、钾养分积累量,两者互作可充分发挥群体增产潜力,实现钾肥供应与玉米钾素需求之间的平衡。通过调控种植密度和施钾量,优化玉米最适单位面积穗数、穗粒数和千粒重是提高玉米产量和收益的重要途径。在东北半干旱区滴灌水肥一体化条件下,玉米种植密度从常规的60000 株/hm2增加到75000 株/hm2,施钾量从常规的90 kg/hm2增加至120 kg/hm2,可实现玉米高产高效。
-
图 3 不同种植密度和施钾量下玉米氮、磷、钾积累量
注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。R1—吐丝期;PM—生理成熟期。D—密度;K—施钾量;D×K表示密度和施钾量间的交互作用;*—P<0.05;**—P<0.01。柱上不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。帽子代表不同密度间差异显著性;ns—不显著;*—P<0.05。
Figure 3. Accumulation of N, P and K under different plant densities and potassium application rates
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. R1—Silking stage; PM—Physiological maturity. D—Density; K—K treatments; D×K indicate the interaction between density and K rate; *—P<0.05; **—P<0.01. Different lowercase letters above the bars mean significant difference among K application rates under the same density at the 0.05 level. The cap represent the significant difference among different densities; ns—Not significant; *—P<0.05
图 4 不同种植密度和施钾量下玉米吐丝前后地上部氮磷钾积累量占整株氮磷钾积累量的比例
注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。V3—三叶苗期;R1—吐丝期;PM—生理成熟期。柱中不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。
Figure 4. Proportions of above-ground N, P and K accumulation in the whole plant before and after silking stage of maize under different plant densities and potassium application rates
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. V3—Vegetative third leaf; R1—Silking stage; PM—Physiological maturity. Different lowercase letters in the bars mean significant difference among K application rates under the same density at the 0.05 level
图 5 不同种植密度和施钾量下玉米钾素利用率
注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。D—密度;K—施钾量;D×K表示密度和施钾量间的交互作用;*—P<0.05;**—P<0.01。柱上不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著。帽子代表不同密度间差异显著性;*—P<0.05
Figure 5. Potassium utilization efficiency of maize under different plant densities and potassium application rates
Note: REK—K recovery efficiency; AEK—K agronomic efficiency; PEPK—K partial factor productivity. D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. D—Density; K—K treatments; D×K indicate the interaction between density and K rate; *—P<0.05; **—P<0.01. Different lowercase letters above the bars mean significant difference among K application rates under the same density at the 0.05 level. The cap represents the significant difference among different densities; *—P<0.05
表 1 不同种植密度和施钾量下玉米产量与构成因素
Table 1 Maize yield and its components under different plant densities and potassium application rates
处理
Treatment2018 2019 产量
Yield
(kg/hm2)穗数
Ears
(No./hm2)穗粒数
Grain number
per ear千粒重 (g)
1000-grain weight产量
Yield
(kg/hm2)穗数
Ears
(No./hm2)穗粒数
Grain number
per ear千粒重 (g)
1000-grain weightD1 K0 9875 c 59000 a 580.8 c 326.6 c 9605 c 59500 a 577.9 c 320.0 c K1 10879 b 58500 a 603.9 b 341.8 b 10554 b 58500 a 592.4 b 334.1 b K2 11295 a 59500 a 614.5 a 351.2 a 11015 a 59500 a 617.9 a 341.1 a K3 11396 a 59000 a 618.4 a 350.5 a 11072 a 59750 a 620.0 a 343.9 a K4 11465 a 59750 a 620.6 a 350.6 a 11162 a 59750 a 619.9 a 344.1 a 平均 Average 10982 59150 607.6 344.1 10682 59400 605.6 336.6 D2 K0 10819 d 74000 a 507.3 d 324.1 c 10613 d 74000 a 486.3 d 311.1 c K1 11520 c 73500 a 527.3 c 333.0 b 11206 c 73500 a 504.5 c 321.9 b K2 12044 b 74000 a 548.2 b 335.6 b 11581 b 74000 a 517.9 b 325.2 b K3 12494 a 74000 a 562.5 a 339.0 a 12048 a 74000 a 531.2 a 331.6 a K4 12533 a 73750 a 565.0 a 340.9 a 12192 a 73750 a 532.9 a 333.0 a 平均 Average 11882 73850 542.1 334.6 11528 73850 514.6 324.6 D3 K0 10099 d 88500 a 426.5 d 305.5 d 10019 d 89250 a 409.2 d 305.5 d K1 10887 c 87000 a 438.9 c 317.3 c 10693 c 89000 a 431.0 c 314.3 c K2 11347 b 86250 a 452.6 b 324.7 b 11054 b 88250 a 442.1 b 319.7 b K3 11815 a 85500 a 466.7 a 333.5 a 11545 a 87500 a 453.9 a 327.2 a K4 12017 a 87250 a 467.4 a 333.8 a 11665 a 89250 a 451.3 a 327.9 a 平均 Average 11233 86900 450.4 323.0 10995 88650 437.5 318.9 方差分析 ANOVA 密度 Density (D) ** ** ** ** ** ** ** ** 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ** * * ns ** * 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level. ns—Not significant; *—P<0.05; **—P<0.01.表 2 不同种植密度和施钾量下玉米生产效益(yuan/hm2)
Table 2 Benefit of maize production as affected by plant density and potassium application rate
处理
Treatment2018 2019 总收入
Gross income肥料支出
Fertilizer cost种子支出
Seed cost其他支出
Other cost净收入
Net income总收入
Gross income肥料支出
Fertilizer cost种子支出
Seed cost其他支出
Other cost净收入
Net incomeD1 K0 15998 c 1580 e 720 2900 10798 c 15560 c 1580 e 720 2900 10360 c K1 17623 b 1830 d 720 2900 12173 b 17097 b 1830 d 720 2900 11647 b K2 18299 a 1955 c 720 2900 12724 a 17844 a 1955 c 720 2900 12269 a K3 18461 a 2080 b 720 2900 12761 a 17936 a 2080 b 720 2900 12236 a K4 18574 a 2205 a 720 2900 12749 a 18083 a 2205 a 720 2900 12258 a 平均 Average 17791 1930 720 2900 12241 17304 1930 720 2900 11754 D2 K0 17527 d 1580 e 900 2900 12147 d 17193 d 1580 e 900 2900 11813 d K1 18662 c 1830 d 900 2900 13032 c 18154 c 1830 d 900 2900 12524 c K2 19512 b 1955 c 900 2900 13757 b 18761 b 1955 c 900 2900 13006 b K3 20241 a 2080 b 900 2900 14361 a 19518 a 2080 b 900 2900 13638 a K4 20304 a 2205 a 900 2900 14299 a 19751 a 2205 a 900 2900 13746 a 平均 Average 19249 1930 900 2900 13519 18675 1930 900 2900 12945 D3 K0 16360 d 1580 e 1080 2900 10800 d 16231 d 1580 e 1080 2900 10671 d K1 17636 c 1830 d 1080 2900 11826 c 17323 c 1830 d 1080 2900 11513 c K2 18383 b 1955 c 1080 2900 12448 b 17908 b 1955 c 1080 2900 11973 b K3 19141 a 2080 b 1080 2900 13081 a 18703 a 2080 b 1080 2900 12643 a K4 19468 a 2205 a 1080 2900 13283 a 18898 a 2205 a 1080 2900 12713 a 平均 Average 18198 1930 1080 2900 12288 17813 1930 1080 2900 11903 方差分析 ANOVA 密度 Density (D) ** ns ** ** ** ns ** ** 施钾量 K rate (K) ** ** ns ** ** ** ns ** D×K * ns ns * * ns ns * 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。玉米 1.62 元/kg,N 4.78 元/kg,P2O5 5.87 元/kg,K2O 4.17 元/kg,种子36 元/kg;其他支出包括机械、滴灌设备、农药和水电费等费用等。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著; ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. Maize 1.62 yuan/kg, N 4.78 yuan/kg, P2O5 5.87 yuan/kg, K2O 4.17 yuan/kg, seed 36 yuan/kg; other costs include machinery, drip irrigation equipment, pesticides and utilities. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.表 3 不同种植密度和施钾量下玉米氮素转运
Table 3 Nitrogen translocation of maize under different plant densities and potassium application rates
密度
Density钾处理
K treatment2018 2019 氮素转运量
NT
(kg/hm2)氮素转运率
NTE
(%)氮素转运贡献率
NTCRV
(%)氮素积累贡献率
NACRV
(%)氮素转运量
NT
(kg/hm2)氮素转运率
NTE
(%)氮素转运贡献率
NTCRV
(%)氮素积累贡献率
NACRV
(%)D1 K0 52.8 c 45.6 a 48.5 a 51.5 c 51.0 c 45.4 a 47.6 a 52.4 c K1 56.6 b 46.3 a 47.0 b 53.0 b 55.7 b 46.3 a 45.7 b 54.3 b K2 59.8 a 47.0 a 44.9 c 55.1 a 58.1 a 46.5 a 44.2 c 55.8 a K3 60.1 a 46.8 a 45.2 c 54.8 a 58.5 a 46.1 a 44.3 c 55.7 a K4 61.1 a 46.9 a 45.2 c 54.8 a 58.6 a 45.9 a 43.9 c 56.1 a 平均
Average58.1 46.5 46.2 53.8 56.4 46.0 45.1 54.9 D2 K0 58.4 d 47.2 a 51.2 a 48.8 d 56.3 c 48.1 a 49.5 a 50.5 c K1 62.5 c 48.5 a 49.8 b 50.2 c 59.3 b 47.6 a 47.4 b 52.6 b K2 63.6 b 47.3 a 47.2 c 52.8 b 62.2 b 48.1 a 47.1 b 52.9 b K3 67.1 a 48.1 a 45.9 d 54.1 a 64.3 a 47.5 a 45.8 c 54.2 a K4 67.7 a 48.1 a 46.0 d 54.0 a 64.0 a 46.7 a 45.7 c 54.3 a 平均
Average63.9 47.8 48.0 52.0 61.2 47.6 47.1 52.9 D3 K0 54.7 d 46.4 a 50.1 a 49.9 c 54.7 d 47.3 a 48.7 a 51.3 c K1 57.0 c 45.7 a 48.5 b 51.5 b 57.6 c 47.1 a 46.6 b 53.4 b K2 60.3 b 46.3 a 47.9 b 52.1 b 59.6 b 47.6 a 46.5 b 53.5 b K3 64.6 a 48.1 a 46.3 c 53.7 a 62.3 a 47.2 a 44.9 c 55.1 a K4 64.8 a 48.0 a 46.5 c 53.5 a 63.9 a 47.8 a 44.8 c 55.2 a 平均
Average60.3 46.9 47.9 52.1 59.6 47.4 46.3 53.7 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。NT—氮素转运量;NTE—氮素转运率;NTCRV—氮素转运贡献率;NACRV—氮素积累贡献率。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. NT—N translocation; NTE—N translocation efficiency; NTCRV—N translocation conversion rate of vegetative organ; NACRV—N accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.表 4 不同种植密度和施钾量下玉米磷素转运
Table 4 Phosphorus translocation of maize under different plant densities and potassium application rates
密度
Density钾处理
K treatment2018 2019 磷素转运量
PT
(kg/hm2)磷素转运率
PTE
(%)磷素转运贡献率
PTCRV
(%)磷素积累贡献率
PACRV
(%)磷素转运量
PT
(kg/hm2)磷素转运率
PTE
(%)磷素转运贡献率
PTCRV
(%)磷素积累贡献率
PACRV
(%)D1 K0 10.0 c 75.1 a 57.5 a 42.5 c 10.1 c 74.4 a 55.9 a 44.1 c K1 11.0 b 75.3 a 55.8 b 44.2 b 10.7 b 73.6 a 54.4 b 45.6 b K2 11.6 a 73.7 a 53.4 c 46.6 a 11.5 a 74.0 a 52.6 c 47.4 a K3 11.7 a 73.8 a 53.7 c 46.3 a 11.7 a 73.7 a 52.7 c 47.3 a K4 11.9 a 73.7 a 53.6 c 46.4 a 11.8 a 73.7 a 52.8 c 47.2 a 平均
Average11.2 74.3 54.8 45.2 11.2 73.9 53.7 46.3 D2 K0 10.7 d 74.0 a 57.0 a 43.0 c 11.1 d 74.1 a 56.6 a 43.4 c K1 11.3 c 70.9 a 55.1 b 44.9 b 11.9 c 73.8 a 54.3 b 45.7 b K2 12.2 b 71.8 a 54.8 b 45.2 b 12.4 b 72.8 a 53.4 b 46.6 b K3 13.2 a 73.7 a 53.1 c 46.9 a 13.2 a 73.0 a 51.7 c 48.3 a K4 13.4 a 73.8 a 53.3 c 46.7 a 13.3 a 72.6 a 51.8 c 48.2 a 平均
Average12.2 72.8 54.7 45.3 12.4 73.3 53.6 46.4 D3 K0 10.6 d 75.1 a 57.5 a 42.5 c 10.4 d 75.5 a 56.7 a 43.3 c K1 11.0 c 72.0 a 54.7 b 45.3 b 11.1 c 74.2 a 54.0 b 46.0 b K2 12.0 b 73.4 a 54.3 b 45.7 b 12.0 b 74.8 a 53.6 b 46.4 b K3 12.9 a 74.9 a 52.4 c 47.6 a 12.6 a 74.8 a 52.1 c 47.9 a K4 13.0 a 73.7 a 52.9 c 47.1 a 12.6 a 74.5 a 51.7 c 48.3 a 平均
Average11.9 73.8 54.4 45.6 11.7 74.8 53.6 46.4 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2;K4—150 kg/hm2。PT—磷素转运量;PTE—磷素转运率;PTCRV—磷素转运贡献率;PACRV—磷素积累贡献率。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note:D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. PT—P translocation; PTE—P translocation efficiency; PTCRV—P translocation conversion rate of vegetative organ; PACRV—P accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 leve; ns—Not significant; *—P<0.05; **—P<0.01.表 5 不同种植密度和施钾量下玉米钾素转运
Table 5 Potassium translocation of maize under different plant densities and potassium application rates
密度
Density钾处理
K treatment2018 2019 钾素转运量
KT
(kg/hm2)钾素转运率
KTE
(%)钾素转运贡献率
KTCRV
(%)钾素积累贡献率
KACRV
(%)钾素转运量
KT
(kg/hm2)钾素转运率
KTE
(%)钾素转运贡献率
KTCRV
(%)钾素积累贡献率
KACRV
(%)D1 K0 17.7 c 16.4 a 68.4 a 31.6 c 16.8 c 13.9 a 67.2 a 32.8 c K1 19.6 b 15.8 a 66.3 b 33.7 b 18.6 b 14.2 a 65.4 b 34.6 b K2 22.6 a 16.0 a 64.3 c 35.7 a 21.1 a 15.3 a 62.7 c 37.3 a K3 23.6 a 16.7 a 64.2 c 35.8 a 21.9 a 15.8 a 63.4 c 36.6 a K4 23.1 a 16.2 a 63.4 c 36.6 a 21.2 a 15.2 a 62.9 c 37.1 a 平均
Average21.3 16.2 65.3 34.7 19.9 14.9 64.3 35.7 D2 K0 20.3 d 16.2 a 66.6 a 33.4 c 18.7 d 14.5 a 70.3 a 29.7 c K1 23.2 c 16.9 a 64.4 b 35.6 b 20.3 c 14.6 a 65.1 b 34.9 b K2 25.2 b 16.8 a 63.5 b 36.5 b 22.0 b 15.2 a 65.9 b 34.1 b K3 27.0 a 17.1 a 61.0 c 39.0 a 23.8 a 15.5 a 62.3 c 37.7 a K4 27.6 a 17.3 a 60.1 c 39.9 a 24.0 a 15.6 a 62.4 c 37.6 a 平均
Average24.7 16.9 63.1 36.9 21.8 15.1 65.2 34.8 D3 K0 19.1 c 16.3 a 68.7 a 31.3 c 17.0 d 13.7 a 68.5 a 31.5 c K1 22.1 b 16.2 a 66.0 b 34.0 b 19.2 c 14.3 a 65.1 b 34.9 b K2 22.9 b 16.2 a 64.6 bc 35.4 ab 20.8 b 14.7 a 64.6 b 35.4 b K3 25.3 a 16.5 a 63.8 c 36.2 a 22.4 a 15.4 a 62.5 c 37.5 a K4 24.9 a 17.1 a 64.0 c 36.0 a 22.7 a 15.5 a 62.2 c 37.8 a 平均
Average22.9 16.5 65.4 34.6 20.4 14.7 64.6 35.4 方差分析 ANOVA 密度 Density (D) ** ns ns ns ** ns ns ns 施钾量 K rates (K) ** ns ** ** ** ns ** ** D×K * ns ns ns * ns ns ns 注:D1—60000 株/hm2;D2—75000 株/hm2;D3—90000 株/hm2。K0—0 kg/hm2;K1—60 kg/hm2;K2—90 kg/hm2;K3—120 kg/hm2。同列数据后不同小写字母表示同一密度下不同施钾量处理间在0.05水平差异显著;ns—不显著;*—P<0.05;**—P<0.01。
Note: D1—60000 plants/hm2; D2—75000 plants/hm2; D3—90000 plants/hm2. K0—0 kg/hm2; K1—60 kg/hm2; K2—90 kg/hm2; K3—120 kg/hm2; K4—150 kg/hm2. KT—K translocation; KTE—K translocation efficiency; KTCRV—K translocation conversion rate of vegetative organ; KACRV—K accumulation conversion rate of vegetative organ. Values followed by different lowercase letters in the same column indicate significant difference among K application rates under the same density at the 0.05 level; ns—Not significant; *—P<0.05; **—P<0.01.表 6 玉米不同生育时期养分吸收与产量和养分积累总量的关系
Table 6 The correlation of nutrient absorption with yield and total nutrient accumulation at different growth stages of maize
指标
Index氮素积累量
N accumulation磷素积累量
P accumulation钾素积累量
K accumulationV3—R1 R1—PM V3—R1 R1—PM V3—R1 R1—PM 产量 Yield 0.683** 0.728** 0.671** 0.701** 0.636** 0.708** 氮积累总量 Total N accumulation 0.894** 0.946** 0.867** 0.924** 0.859** 0.915** 磷积累总量 Total P accumulation 0.878** 0.894** 0.929** 0.971** 0.834** 0.869** 钾积累总量 Total K accumulation 0.826** 0.854** 0.842** 0.945** 0.884** 0.936** 注:V3—三叶苗期;R1—吐丝期;PM—生理成熟期。**—P<0.01。
Note: V3—Vegetative third leaf; R1—Silking stage; PM—Physiological maturity. **—P<0.01. -
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2019. National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2019.
[2] Li Q, Xu C, Yin C X, et al. Evaluation of fertigation technique for phosphorus application of maize in the semi-arid region of Northeast China[J]. Plant, Soil and Environment, 2019, 65(8): 401–407. DOI: 10.17221/287/2019-PSE
[3] 侯云鹏, 王立春, 李前, 等. 覆膜滴灌条件下基于玉米产量和土壤磷素平衡的磷肥适用量研究[J]. 中国农业科学, 2019, 52(20): 3573–3584. Hou Y P, Wang L C, Li Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J]. Scientia Agricultura Sinica, 2019, 52(20): 3573–3584. DOI: 10.3864/j.issn.0578-1752.2019.20.008 Hou Y P, Wang L C, Li Q, et al. Research on optimum phosphorus fertilizer rate based on maize yield and phosphorus balance in soil under film mulched drip irrigation conditions[J]. Scientia Agricultura Sinica, 2019, 52(20): 3573–3584. DOI: 10.3864/j.issn.0578-1752.2019.20.008
[4] Manderscheid R, Pacholski A, Frühauf C, et al. Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation[J]. Field Crops Research, 2009, 110(3): 185–196. DOI: 10.1016/j.fcr.2008.08.002
[5] 肖万欣, 刘晶, 史磊, 等. 氮密互作对不同株型玉米形态、光合性能及产量的影响[J]. 中国农业科学, 2017, 50(19): 3690–3701. Xiao W X, Liu J, Shi L, et al. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types[J]. Scientia Agricultura Sinica, 2017, 50(19): 3690–3701. DOI: 10.3864/j.issn.0578-1752.2017.19.006 Xiao W X, Liu J, Shi L, et al. Effect of nitrogen and density interaction on morphological traits, photosynthetic property and yield of maize hybrid of different plant types[J]. Scientia Agricultura Sinica, 2017, 50(19): 3690–3701. DOI: 10.3864/j.issn.0578-1752.2017.19.006
[6] 王玉, 赵财, 樊志龙, 等. 行距及密度影响玉米密植潜力的干物质累积和产量构成机制[J]. 中国生态农业学报(中英文), 2020, 28(5): 652–661. Wang Y, Zhao C, Fan Z L, et al. Characteristics of dry matter accumulation and yield formation of dense planting maize in different row spacings[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 652–661. Wang Y, Zhao C, Fan Z L, et al. Characteristics of dry matter accumulation and yield formation of dense planting maize in different row spacings[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 652–661.
[7] Hou W F, Xue X X, Li X K, et al. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China[J]. Field Crops Research, 2019, 236: 14–23. DOI: 10.1016/j.fcr.2019.03.006
[8] Hu W, Zhao W Q, Yang J S, et al. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L. ) boll during the boll development stage[J]. Plant Physiology and Biochemistry, 2016, 101: 113–123. DOI: 10.1016/j.plaphy.2016.01.019
[9] Zahoor R, Zhao W Q, Abid M, et al. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L. ) functional leaf under drought stress[J]. Journal of Plant Physiology, 2017, 215: 30–38. DOI: 10.1016/j.jplph.2017.05.001
[10] 李见云, 介晓磊, 谭金芳, 等. 施钾对不同小麦品种氮素、磷素吸收利用的影响[J]. 土壤通报, 2004, 35(2): 191–194. Li J Y, Jie X L, Tan J F, et al. Effect of potassium on nitrogen and phosphorus utilization by wheat different varieties[J]. Chinese Journal of Soil Science, 2004, 35(2): 191–194. DOI: 10.3321/j.issn:0564-3945.2004.02.022 Li J Y, Jie X L, Tan J F, et al. Effect of potassium on nitrogen and phosphorus utilization by wheat different varieties[J]. Chinese Journal of Soil Science, 2004, 35(2): 191–194. DOI: 10.3321/j.issn:0564-3945.2004.02.022
[11] 肖克, 唐静, 李继福, 等. 长期水稻-冬油菜轮作模式下钾肥的适宜用量[J]. 作物学报, 2017, 43(8): 1226–1233. Xiao K, Tang J, Li J F, et al. Optimum amount of potassium fertilizer applied under continuous rice-rapeseed rotation[J]. Acta Agronomica Sinica, 2017, 43(8): 1226–1233. DOI: 10.3724/SP.J.1006.2017.01226 Xiao K, Tang J, Li J F, et al. Optimum amount of potassium fertilizer applied under continuous rice-rapeseed rotation[J]. Acta Agronomica Sinica, 2017, 43(8): 1226–1233. DOI: 10.3724/SP.J.1006.2017.01226
[12] Subba R A, Srinivasarao C, Srivastava S. Potassium status and crop response to potassium on the soils of agroecological regions of India. IPI Research Topics No.20, International Potash Institute, Horgen, Switzerland, 2011.
[13] Li J F, Lu J W, Ren T, et al. Crop straw can optimize potassium fertilization strategies in rice cropping system[J]. Better Crops, 2014, 98(3): 13–15.
[14] Qiu S J, Xie J G, Zhao S C, et al. Long-term effects of potassium fertilization on yield, efficiency, and soil fertility status in a rain-fed maize system in northeast China[J]. Field Crops Research, 2014, 163: 1–9. DOI: 10.1016/j.fcr.2014.04.016
[15] 侯云鹏, 孔丽丽, 李前, 等. 东北半干旱区滴灌施肥条件下高产玉米干物质与养分的积累分配特性[J]. 中国农业科学, 2019, 52(20): 3559–3572. Hou Y P, Kong L L, Li Q, et al. The accumulation and distribution characteristics on dry matter and nutrients of high-yielding maize under drip irrigation and fertilization conditions in semi-arid region of northeastern China[J]. Scientia Agricultura Sinica, 2019, 52(20): 3559–3572. DOI: 10.3864/j.issn.0578-1752.2019.20.007 Hou Y P, Kong L L, Li Q, et al. The accumulation and distribution characteristics on dry matter and nutrients of high-yielding maize under drip irrigation and fertilization conditions in semi-arid region of northeastern China[J]. Scientia Agricultura Sinica, 2019, 52(20): 3559–3572. DOI: 10.3864/j.issn.0578-1752.2019.20.007
[16] 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应[J]. 植物营养与肥料学报, 2021, 27(1): 54–65. Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54–65. DOI: 10.11674/zwyf.20233 Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54–65. DOI: 10.11674/zwyf.20233
[17] 侯云鹏, 张磊, 孔丽丽, 等. 施钾对不同肥力土壤玉米钾素吸收、分配及产量的影响[J]. 中国生态农业学报, 2013, 21(11): 1333–1339. Hou Y P, Zhang L, Kong L L, et al. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333–1339. DOI: 10.3724/SP.J.1011.2013.01333 Hou Y P, Zhang L, Kong L L, et al. Effect of potassium application rate on potassium absorption, distribution and yield of spring maize under different soil fertilities[J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1333–1339. DOI: 10.3724/SP.J.1011.2013.01333
[18] 唐心龙, 刘莹, 秦喜彤, 等. 玉米光能利用率和产量对密度、施氮量及其互作的响应[J]. 植物营养与肥料学报, 2021, 27(10): 1864–1873. Tang X L, Liu Y, Qin X T, et al. Response of light use efficiency and grain yield of maize to planting density and nitrogen application rate[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1864–1873. DOI: 10.11674/zwyf.2021112 Tang X L, Liu Y, Qin X T, et al. Response of light use efficiency and grain yield of maize to planting density and nitrogen application rate[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1864–1873. DOI: 10.11674/zwyf.2021112
[19] 李广浩, 刘娟, 董树亭, 等. 密植与氮肥用量对不同耐密型夏玉米品种产量及氮素利用效率的影响[J]. 中国农业科学, 2017, 50(12): 2247–2258. Li G H, Liu J, Dong S T, et al. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006 Li G H, Liu J, Dong S T, et al. Effects of close planting and nitrogen application rates on grain yield and nitrogen utilization efficiency of different density-tolerance maize hybrids[J]. Scientia Agricultura Sinica, 2017, 50(12): 2247–2258. DOI: 10.3864/j.issn.0578-1752.2017.12.006
[20] 张平良, 郭天文, 刘晓伟, 等. 密度和施氮量互作对全膜双垄沟播玉米产量、氮素和水分利用效率的影响[J]. 植物营养与肥料学报, 2019, 25(4): 579–590. Zhang P L, Guo T W, Liu X W, et al. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579–590. DOI: 10.11674/zwyf.18128 Zhang P L, Guo T W, Liu X W, et al. Effect of plant density and nitrogen application rate on yield, nitrogen and water use efficiencies of spring maize under whole plastic-film mulching and double-furrow sowing[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 579–590. DOI: 10.11674/zwyf.18128
[21] 魏廷邦, 胡发龙, 赵财, 等. 氮肥后移对绿洲灌区玉米干物质积累和产量构成的调控效应[J]. 中国农业科学, 2017, 50(15): 2916–2927. Wei T B, Hu F L, Zhao C, et al. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in Oasis irrigation areas[J]. Scientia Agricultura Sinica, 2017, 50(15): 2916–2927. Wei T B, Hu F L, Zhao C, et al. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in Oasis irrigation areas[J]. Scientia Agricultura Sinica, 2017, 50(15): 2916–2927.
[22] Zhai L C, Xie R Z, Ming B, et al. Evaluation and analysis of intraspecific competition in maize: A case study on plant density experiment[J]. Journal of Integrative Agriculture, 2018, 17(10): 2235–2244. DOI: 10.1016/S2095-3119(18)61917-3
[23] 张鹤宇, 高聚林, 王志刚, 等. 增密减氮对不同耐密性春玉米品种产量和光合特性的影响[J]. 北方农业学报, 2018, 46(5): 26–34. Zhang H Y, Gao J L, Wang Z G, et al. Effects of increasing planting density and decreasing nitrogen rate on yield and physiological characteristics of different density-tolerance maize hybrids[J]. Journal of Northern Agriculture, 2018, 46(5): 26–34. DOI: 10.3969/j.issn.2096-1197.2018.05.04 Zhang H Y, Gao J L, Wang Z G, et al. Effects of increasing planting density and decreasing nitrogen rate on yield and physiological characteristics of different density-tolerance maize hybrids[J]. Journal of Northern Agriculture, 2018, 46(5): 26–34. DOI: 10.3969/j.issn.2096-1197.2018.05.04
[24] Pettigrew W T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton[J]. Physiologia Plantarum, 2008, 133: 670–681. DOI: 10.1111/j.1399-3054.2008.01073.x
[25] 侯云鹏, 杨建, 孔丽丽, 等. 施钾对春玉米产量、养分吸收及分配的影响[J]. 玉米科学, 2015, 23(4): 124–131. Hou Y P, Yang J, Kong L L, et al. Effects of potassium fertilizer application on yield, nutrient absorption and distribution of spring maize[J]. Journal of Maize Sciences, 2015, 23(4): 124–131. DOI: 10.13597/j.cnki.maize.science.20150422 Hou Y P, Yang J, Kong L L, et al. Effects of potassium fertilizer application on yield, nutrient absorption and distribution of spring maize[J]. Journal of Maize Sciences, 2015, 23(4): 124–131. DOI: 10.13597/j.cnki.maize.science.20150422
[26] 孙雪芳, 丁在松, 侯海鹏, 等. 不同春玉米品种花后光合物质生产特点及碳氮含量变化[J]. 作物学报, 2013, 39(7): 1284–1292. Sun X F, Ding Z S, Hou H P, et al. Post-anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize[J]. Acta Agronomica Sinica, 2013, 39(7): 1284–1292. DOI: 10.3724/SP.J.1006.2013.01284 Sun X F, Ding Z S, Hou H P, et al. Post-anthesis photosynthetic assimilation and the changes of carbon and nitrogen in different varieties of spring maize[J]. Acta Agronomica Sinica, 2013, 39(7): 1284–1292. DOI: 10.3724/SP.J.1006.2013.01284
[27] Yan P, Zhang Q, Shuai X F, et al. Interaction between plant density and nitrogen management strategy in improving maize grain yield and nitrogen use efficiency on the North China Plain[J]. Journal of Agricultural Science, 2015, 1(6): 1–11.
[28] Guo J M, Wang Y H, Fan T L, et al. Designing corn management strategies for high yield and high nitrogen use efficiency[J]. Agronmy Journal., 2016, 108(2): 922–929. DOI: 10.2134/agronj2015.0435
[29] 李朝苏, 汤永禄, 吴春, 等. 施氮量对四川盆地小麦生长及灌浆的影响[J]. 植物营养与肥料学报, 2015, 21(4): 873–883. Li C S, Tang Y L, Wu C, et al. Effect of N rate on growth and grain filling of wheat in Sichuan Basin[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 873–883. DOI: 10.11674/zwyf.2015.0406 Li C S, Tang Y L, Wu C, et al. Effect of N rate on growth and grain filling of wheat in Sichuan Basin[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 873–883. DOI: 10.11674/zwyf.2015.0406
[30] 于振文, 张炜, 岳寿松, 等. 钾营养对冬小麦光合作用和衰老的影响[J]. 作物学报, 1996, 22(3): 305–312. Yu Z W, Zhang W, Yue S S, et al. Effect of potassium on photosynthesis and senescence in winter wheat[J]. Acta Agronomica Sinica, 1996, 22(3): 305–312. DOI: 10.3321/j.issn:0496-3490.1996.03.008 Yu Z W, Zhang W, Yue S S, et al. Effect of potassium on photosynthesis and senescence in winter wheat[J]. Acta Agronomica Sinica, 1996, 22(3): 305–312. DOI: 10.3321/j.issn:0496-3490.1996.03.008
[31] 何萍, 金继运. 氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响[J]. 植物营养与肥料学报, 1999, 5(4): 289–296. He P, Jin J Y. Effect of N and K nutrition on changes of endogenous hormone and metabolism of active oxygen during leaf senescence in spring maize[J]. Journal of Plant Nutrition and Fertilizers, 1999, 5(4): 289–296. DOI: 10.3321/j.issn:1008-505X.1999.04.001 He P, Jin J Y. Effect of N and K nutrition on changes of endogenous hormone and metabolism of active oxygen during leaf senescence in Spring maize[J]. Plant Nutrition and Fertilizer Science, 1999, 5(4): 289–296. DOI: 10.3321/j.issn:1008-505X.1999.04.001
[32] 李婷, 李世清, 占爱, 等. 地膜覆盖、氮肥与密度及其互作对黄土旱塬春玉米氮素吸收、转运及生产效率的影响[J]. 中国农业科学, 2018, 51(8): 1504–1517. Li T, Li S Q, Zhan A, et al. Effects of film mulching, nitrogen fertilizer, plant density and its interaction on nitrogen accumulation, translocation and production efficiency of spring maize on dryland of Loess Plateau[J]. Scientia Agricultura Sinica, 2018, 51(8): 1504–1517. DOI: 10.3864/j.issn.0578-1752.2018.08.008 Li T, Li S Q, Zhan A, et al. Effects of film mulching, nitrogen fertilizer, plant density and its interaction on nitrogen accumulation, translocation and production efficiency of Spring maize on Dryland of Loess Plateau[J]. Scientia Agricultura Sinica, 2018, 51(8): 1504–1517. DOI: 10.3864/j.issn.0578-1752.2018.08.008
[33] 耿玉辉, 李刚, 曹秀艳, 等. 氮、钾不同营养水平对春玉米氮代谢的影响[J]. 玉米科学, 2009, 17(6): 101–104. Geng Y H, Li G, Cao X Y, et al. Effects of different N and K levels on nitrogen metabolism of spring maize[J]. Journal of Maize Sciences, 2009, 17(6): 101–104. DOI: 10.13597/j.cnki.maize.science.2009.06.029 Geng Y H, Li G, Cao X Y, et al. Effects of different N and K levels on nitrogen metabolism of Spring maize[J]. Journal of Maize Sciences, 2009, 17(6): 101–104. DOI: 10.13597/j.cnki.maize.science.2009.06.029
[34] 陈建忠, 肖荷霞, 毛彩云, 等. 钾肥对玉米子粒灌浆的影响研究[J]. 玉米科学, 2008, 16(6): 146–148. Chen J Z, Xiao H X, Mao C Y, et al. Study on grouting of corn seeds in the condition of fertilizing K2O[J]. Journal of Maize Sciences, 2008, 16(6): 146–148. DOI: 10.13597/j.cnki.maize.science.2008.06.038 Chen J Z, Xiao H X, Mao C Y, et al. Study on grouting of corn seeds in the condition of fertilizing K2O[J]. Journal of Maize Sciences, 2008, 16(6): 146–148. DOI: 10.13597/j.cnki.maize.science.2008.06.038
[35] 侯云鹏, 孔丽丽, 徐新朋, 等. 基于养分专家系统推荐施肥在东北玉米上的长期综合效应[J]. 农业工程学报, 2021, 37(19): 129–138. Hou Y P, Kong L L, Xu X P, et al. Long-term comprehensive effects of recommended fertilization based on nutrient expert system of maize in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(19): 129–138. DOI: 10.11975/j.issn.1002-6819.2021.19.015 Hou Y P, Kong L L, Xu X P, et al. Long-term comprehensive effects of recommended fertilization based on nutrient expert system of maize in Northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 129–138. DOI: 10.11975/j.issn.1002-6819.2021.19.015
[36] 程前, 李广浩, 陆卫平, 等. 增密减氮提高夏玉米产量和氮肥利用效率[J]. 植物营养与肥料学报, 2020, 26(6): 1035–1046. Cheng Q, Li G H, Lu W P, et al. Increasing planting density and decreasing nitrogen rate increase yield and nitrogen use efficiency of Summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392 Cheng Q, Li G H, Lu W P, et al. Increasing planting density and decreasing nitrogen rate increase yield and nitrogen use efficiency of Summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1035–1046. DOI: 10.11674/zwyf.19392
[37] 李珺, 刘双全, 仇少君, 等. 典型黑土不同施氮量对马铃薯产量和氮素利用率的影响[J]. 植物营养与肥料学报, 2020, 26(5): 850–857. Li J, Liu S Q, Qiu S J, et al. Effects of different nitrogen rates on potato yield and nitrogen use efficiency in a typical black soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 850–857. DOI: 10.11674/zwyf.19348 Li J, Liu S Q, Qiu S J, et al. Effects of different nitrogen rates on potato yield and nitrogen use efficiency in a typical black soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 850–857. DOI: 10.11674/zwyf.19348
-
期刊类型引用(7)
1. 宋杰,王少祥,李亮,黄金苓,赵斌,张吉旺,任佰朝,刘鹏. 施钾量对夏玉米氮、磷、钾吸收利用和籽粒产量的影响. 作物学报. 2023(02): 539-551 . 百度学术
2. 王壮志,杨蕊,李秀,张程翔,王小燕. 施氮量对江汉平原中低产田小麦产量及氮素吸收利用的影响. 核农学报. 2023(01): 159-168 . 百度学术
3. 毛丽萍,盛兵扬,张鸿博,阿依谢木,沈禹颖. 钾添加对燕麦生长及其钾积累和分配的影响. 草地学报. 2023(06): 1744-1753 . 百度学术
4. 柳开楼,都江雪,马常宝,曲潇琳,韩天富,刘淑军,黄晶,李亚贞,申哲,张璐,李冬初,张会民. 中国主要旱作粮食耕地土壤钾素的时空演变特征. 土壤学报. 2023(03): 673-684 . 百度学术
5. 王姣琳,黄晓萌,王博博,徐新朋,丁文成,杨兰芳,仇少君,赵士诚,何萍. 长江流域中稻施肥增产效应及其影响因素. 华中农业大学学报(自然科学版). 2022(02): 105-114 . 百度学术
6. 李顺晋,安雨丽,崔玉涛,李浩然,陈新平,张伟. 中国小麦生产的磷肥用量优化潜力及其对产量、籽粒营养和环境效应的影响. 浙江农业学报. 2021(08): 1358-1366 . 百度学术
7. 苟振宇,郭丽琢,高玉红,夏张祥,王月萍,刘亚辉. 钾硅肥配施对旱地胡麻干物质积累及籽粒灌浆的影响. 中国农学通报. 2021(20): 17-25 . 百度学术
其他类型引用(9)