• ISSN 1008-505X
  • CN 11-3996/S

滴施不同水溶性磷肥对石灰性土壤磷分布及玉米磷素吸收利用的影响

刘道, 刘梦洁, 梁飞, 李全胜, 田宇欣, 贾宏涛

刘道, 刘梦洁, 梁飞, 李全胜, 田宇欣, 贾宏涛. 滴施不同水溶性磷肥对石灰性土壤磷分布及玉米磷素吸收利用的影响[J]. 植物营养与肥料学报, 2022, 28(9): 1720-1733. DOI: 10.11674/zwyf.2022029
引用本文: 刘道, 刘梦洁, 梁飞, 李全胜, 田宇欣, 贾宏涛. 滴施不同水溶性磷肥对石灰性土壤磷分布及玉米磷素吸收利用的影响[J]. 植物营养与肥料学报, 2022, 28(9): 1720-1733. DOI: 10.11674/zwyf.2022029
LIU Dao, LIU Meng-jie, LIANG Fei, LI Quan-sheng, TIAN Yu-xin, JIA Hong-tao. Effects of water-soluble phosphorus fertilizer on distribution of phosphorus in calcareous soil and utilization of phosphorus by maize[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1720-1733. DOI: 10.11674/zwyf.2022029
Citation: LIU Dao, LIU Meng-jie, LIANG Fei, LI Quan-sheng, TIAN Yu-xin, JIA Hong-tao. Effects of water-soluble phosphorus fertilizer on distribution of phosphorus in calcareous soil and utilization of phosphorus by maize[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1720-1733. DOI: 10.11674/zwyf.2022029

滴施不同水溶性磷肥对石灰性土壤磷分布及玉米磷素吸收利用的影响

基金项目: 兵团中青年领军人才计划 (2018CB026);兵团南疆重点产业重新发展支撑计划(2021DB015);国家自然科学基金资助项目(31460550) 。
详细信息
    作者简介:

    刘道 E-mail:2429927642@qq.com

    通讯作者:

    梁飞 E-mail: liangfei3326@126.com

    贾宏涛 E-mail: jht@xjau.edu.cn

Effects of water-soluble phosphorus fertilizer on distribution of phosphorus in calcareous soil and utilization of phosphorus by maize

  • 摘要:
    目的 

    磷的形态影响着其施入土壤后的移动分布。研究滴灌施肥中不同水溶性磷肥在石灰性土壤中的分布特征及玉米对磷素的吸收和利用,为滴灌玉米生产中的磷肥选择提供理论依据。

    方法 

    于2018—2020年在新疆石河子市实验站开展滴灌玉米田间试验,选用玉米品种‘郑单958’作为试验材料。试验共设磷酸脲(UP)、磷酸二氢钾(MKP)、聚磷酸铵(APP)、磷酸二铵(DAP)、磷酸一铵(MAP)、不施磷肥(CK) 6个处理,除CK不施磷肥外,其余处理灌溉量及氮磷钾投入量均相同。玉米开花期和成熟期,分别在滴头下、根系、宽行3个位点,在垂直方向0—10、10—20、20—40 cm处采集土样,测定pH、速效磷和全磷含量。采集玉米地上部植物样品,测定茎、叶、穗器官磷素含量。在完熟期测产,计算磷肥利用效率等指标。

    结果 

    与DAP和CK处理相比,UP处理能显著降低0—40 cm土层土壤pH,开花期UP处理土壤pH较CK和DAP分别降低了0.20和0.32个单位,成熟期分别降低了0.24和0.31个单位,MAP、APP和MKP也不同程度地降低了滴头下0—10 cm土层土壤pH。UP处理土壤有效磷在0—40 cm土层的分布最均匀,APP处理10—20 cm土壤速效磷含量显著高于UP和MAP。玉米开花期APP、UP、MAP处理土壤速效磷含量较DAP分别增加了65.47%、44.18%和23.14%,成熟期分别增加了58.08%、40.13%和127.89%。APP处理的玉米穗、叶和总磷素积累量均最高,开花期较DAP分别显著增加了29.22%、43.97%和22.43%,成熟期较DAP分别增加了65.39%、26.63%和50.60%。APP、UP、MAP处理的玉米产量没有显著差异,较DAP分别增产了18.03%、11.64%和9.46%,磷肥利用率分别较DAP增加了29.62个百分点、13.65个百分点和9.93个百分点。APP处理的磷肥偏生产力和磷肥农学效率分别较DAP增加了18.03%和174.96%。相关分析表明,玉米产量和磷素积累量与0—20 cm土层的土壤有效磷含量正相关,与20—40 cm土层土壤速效磷含量负相关或相关性较弱。

    结论 

    速效磷的分布与土壤pH的变化高度一致。酸性水溶性磷肥可不同程度地降低玉米根系周围土壤pH,磷酸脲的影响范围可达滴头周围0—40 cm土层,磷酸二氢钾、聚磷酸铵和磷酸一铵仅在滴头周围0—10 cm土层范围内有影响,而磷酸二铵对土壤pH无显著影响。滴施磷酸脲土壤中速效磷在0—40 cm土层中的分布较均匀,其在10—20 cm土层中的速效磷含量低于聚磷酸铵并高于其他磷肥处理。磷肥利用率与10—20 cm土层速效磷含量极显著相关。因此,滴施聚磷酸铵的玉米产量和磷肥利用率高于其它磷肥处理。综合3年试验结果,在新疆滴灌玉米生产中,水溶性磷肥中以聚磷酸铵最优,其次是磷酸脲和磷酸一铵等酸性磷肥,应减少磷酸二铵等碱性磷肥的施用。

    Abstract:
    Objectives 

    The property of phosphorus (P) fertilizers affects the movement and distribution of P in soil. We studied the distribution characteristics of different water-soluble P fertilizers in calcareous soil and the absorption and utilization of P by maize with fertigation.

    Methods 

    The field test of drip irrigation corn was carried out at the experimental station of Shihezi City, Xinjiang from 2018 to 2020. The maize variety ‘Zhengdan 958’ was selected as the test material. Six treatments were set up in the experiment: urea phosphate (UP), potassium dihydrogen phosphate (MKP), ammonium polyphosphate (APP), diammonium phosphate (DAP), monoammonium phosphate (MAP), and no phosphate fertilizer (CK). The irrigation and total NPK input amount were the same for the five fertilizer treatments except for CK. Soil samples were collected at 0–10, 10–20, and 20–40 cm layer in the vertical direction at three sites of the dripper in the horizontal direction, the root system, and the wide row at the flowering and mature stages of maize. The pH value, available phosphorus and total phosphorus content of the samples were measured. The aboveground plant samples of maize were collected, and the phosphorus content in stem, leaf and ear organs were determined. The maize yield was measured at the mature stage of maize, and the fertilizer utilization efficiency and other indicators were calculated.

    Results 

    Compared with CK and DAP, acid water soluble phosphorous fertilizer reduced soil pH to some extent. UP significantly reduced soil pH in 0–40 cm of soil around dripper: the decrements were 0.20 and 0.32 units at flowering stage, and 0.24 and 0.31 units at maturity. MKP, APP and MAP reduced soil pH within 0–10 cm distance to the drippers. UP increased soil available P in 0–40 cm soil depth and the available P was evenly distributed across 0–40 cm soil layer. The available P in 0–20 cm soil depth under UP was lower than APP, but higher than that of MAP. Compared with DAP, the soil available P content in 0–20 cm soil of APP, UP and MAP treatments were 65.47%, 44.18% and 23.14% higher at maize flowering stage, and 58.08%, 40.13% and 127.89% higher at mature stage, respectively. APP treatment had the highest P accumulation in ears, leaves and the entire plant of maize, which were 29.22%, 43.97% and 22.43% higher than DAP at flowering stage , and 65.39%, 26.63% and 50.60% higher at mature stages (P<0.05). The yield in APP, UP and MAP was similar, but was 18.03%, 11.64% and 9.46% higher than DAP. The phosphate fertilizer utilization rate in APP, UP and MAP was 29.62, 13.65 and 9.93 percentage points higher than DAP, respectively. The phosphorus fertilizer partial factor productivity and phosphorus fertilizer agronomic efficiency treated by APP increased by 18.03% and 174.96%, respectively, compared with DAP. The correlation analysis showed that the yield and P accumulation of maize were significantly correlated with the soil available P content in 0–20 cm layer, weakly correlated with the soil available P content in 20–40 cm layer.

    Conclusions 

    The distribution of P in soil was highly correlated with that of soil pH. The drip application of acidic water-soluble phosphate fertilizers could reduce the soil pH to varying degrees. Urea phosphate could significantly reduce soil pH in 0 to 40 cm range around dripper, so it had the higher and uniform available P content in 0–40 cm soil layer, while the other fertilizers’ impacts were limited within a distance of 10 cm near the dripper. However, APP had the highest available P in the 10–20 cm soil layer, and recorded the highest P accumulation in maize. APP had higher correlation of soil available P accumulation within 10–20 cm depth , and the highest P fertilizer utilization rate. Overall, ammonium polyphosphate, urea phosphate and monoammonium phosphate could be selected for maize fertigation in Xinjiang, and diammonium phosphate should be avoided.

  • 磷作为作物的重要营养元素之一,施用磷肥有利于提高土壤中有效磷水平,从而满足作物的生长需求[1]。磷在土壤中的移动性弱[2],易与土壤中的离子产生化学沉淀或被土壤吸附固定,降低对作物的有效性[3]。新疆以石灰性土壤为主,土壤中大量的Ca2+易与磷肥产生沉淀[4]。水肥一体化是将肥料随水滴施至作物根系周围的一项高效灌溉施肥技术[5]。张国桥等[6]研究发现,以全部追肥的方式滴施液体磷肥可显著改善玉米生育后期的磷素营养,并提高产量和磷肥利用率,其磷肥利用率可达40.6%。研究表明,水肥一体化技术能够增加磷在土壤中的移动性[7],减少固定,促进作物对磷素的吸收[5,8]。磷酸二氢钾、磷酸一铵、磷酸二铵、磷酸脲及聚磷酸铵等水溶性磷肥在水肥一体化中的应用比例也逐年增加[9-10]。由于磷肥性质不同,施入土壤后的肥效存在明显差异[11]。滴施磷酸脲较聚磷酸铵和磷酸一铵酸化土壤的效果更强,而聚磷酸铵在土壤中的移动和分布高于磷酸一铵和磷酸脲[12]。王莎莎[13]研究表明,在石灰性土壤中施用磷酸一铵提高土壤速效磷含量的效果好于焦磷酸钾、聚磷酸铵。亢龙飞等[10]研究表明,在壤质和粘质石灰性土壤中,磷的移动性均表现为聚磷酸>焦磷酸>磷酸脲。本研究选择水肥一体化中目前主要施用的5种水溶性磷肥进行田间试验,系统研究其滴施后土壤pH、速效磷、全磷的分布特征,及其对玉米产量和磷素吸收利用的影响,为滴灌玉米水肥一体化生产中的磷肥选择提供理论依据,同时为区域作物磷肥高效利用和玉米高产稳产提供数据支持。

    本试验于2018—2020年在新疆石河子市的农业农村部作物高效用水实验站(45°38′N,86°09′E)进行。研究区域位于天山北麓的冲积扇平原,属于典型的温带大陆性气候,玉米生育期内年均气温22.4℃,降雨量为111.4 mm,潜在蒸发量1942 mm,蒸降比16.9>10。试验土壤为灌耕灰漠土,试验前耕层土壤有机质为7.14 g/kg、碱解氮34.30 mg/kg、速效磷13.10 mg/kg、全磷0.85 g/kg、速效钾130.50 mg/kg、pH 8.72、田间持水量17.70 cm3/cm3。2018—2020 年玉米生育期内平均降水和气温变化如图1 所示。

    图  1  2018—2020年玉米生育期内温度和降水量变化
    Figure  1.  Changes in temperature and precipitation during the maize growing period from 2018 to 2020

    供试玉米品种:郑单958。

    供试肥料包括:尿素(Urea,N≥46.4%,颗粒);磷酸脲(UP,N≥17%,P2O5≥44%,粉剂);磷酸二氢钾(MKP,P2O5≥52%,K2O≥34%,晶体);聚磷酸铵(APP,N≥11%,P2O5≥37%,液体);磷酸二铵(DAP,N≥18%,P2O5≥46%,粉剂);磷酸一铵(MAP,N≥12%,P2O5≥61%,粉剂);硫酸钾(K2SO4,K2O≥51%,粉剂)。

    供试滴灌带:内镶式滴灌带,滴头间距30 mm,滴头流量2.0 L/h,工作压力0.15 Mpa。

    本试验共设6个处理,分别为:磷酸脲(UP)、磷酸二氢钾(MKP)、聚磷酸铵(APP)、磷酸二铵(DAP)、磷酸一铵(MAP),以不施磷肥为对照(CK)。除CK外,其余各处理灌水量和氮磷钾投入量均相同。总灌水量4800 m3/hm2,肥料投入量为N 240 kg/hm2、P2O5 120 kg/hm2、K2O 60 kg/hm2。各处理具体灌水施肥时间、肥料用量和灌水量见表1。每个处理3次重复,随机区组设计,共18个小区,每个小区110 m2 (5.5 m×20 m)。2018—2020年玉米播种日期分别为:4月28日、4月30日和4月26日。采用1膜1管2行,(30+80) cm不等行距的种植模式,种植密度为126000株/hm2。采用内镶式滴灌带进行灌溉,每次各小区灌溉量均一致。各处理灌水施肥采用单独灌溉和单独施肥罐,灌水量和施肥量均由水表、施肥罐和阀门共同控制,满足试验要求。其它管理措施与普遍采用的田间生产管理措施一致。

    表  1  玉米生育期施肥量(kg/hm2)及灌水量
    Table  1.  Fertilization and irrigation at different maize growth stages
    处理 Treatment化肥 FertilizerVEV6V8V12VTR1R2R3R4总计 Total
    UP尿素 Urea0727272727262.5600482.5
    磷酸脲 Urea phosphate45.545.56363.563.53727270372
    硫酸钾 K2SO40182727372318140164
    MKP尿素 Urea09191100919182550601
    磷酸一铵 Ammonium dihydrogen phosphate3691400000059
    磷酸二氢钾 KH2PO40274141503227230241
    APP尿素 Urea0828289918273550554
    聚磷酸铵 Ammonium polyphosphate33333641412718160245
    硫酸钾 K2SO40182727362318140163
    DAP尿素 Urea0736477737368500478
    磷酸二铵 Diammonium phosphate45505959593624230355
    硫酸钾 K2SO40182727362318140163
    MAP尿素 Urea0828291828273550547
    磷酸一铵 Ammonium dihydrogen phosphate36364545452718180270
    硫酸钾 K2SO40182727362318140163
    CK尿素 Urea199494105949484550639
    硫酸钾 K2SO40182727362318140163
    灌溉量 Amount of irrigation (m3/hm2)3105805805805805805805204904800
    注:表中VE、V6、V8、V12、VT、R1、R2、R3和R4分别代表玉米的出苗、拔节、小喇叭口、大喇叭口、抽雄、开花—吐丝、籽粒建成、乳熟和蜡熟期。
    Note: In the table, VE, V6, V8, V12, VT, R1, R2, R3 and R4 represent the emergence, jointing, small trumpet stage, big trumpet stage, tasseling, flowering–silking, blister, milk and wax stage of maize.
    下载: 导出CSV 
    | 显示表格

    分别在玉米开花期(2018年7月18日、2019年7月14日、2020年7月15日)和成熟期(2018年8月25日、2019年8月22日、2020年9月2日)采集植物样品,每个处理取地上植株4株,按器官(穗、茎秆和叶片)分开烘干。同时,在滴头和植株正下方以及宽行处,各点依次相距15 cm,采集0—10、10—20 和20—40 cm深土壤样品。

    土壤pH以1∶2.5的土水比浸提,PHSJ-4F pH 计测定。土壤速效磷含量采用NaHCO3浸提—钼锑抗比色法测定。土壤全磷含量采用HClO4–H2SO4消煮,钼锑抗比色法测定[14]。植物含磷量采用H2SO4–H2O2消煮—钒钼黄比色法测定[14]

    玉米成熟后,每小区取出20个果穗称鲜重并风干后考种,折标准水(14%),参照李广浩等[15]的方法计算单位面积产量,计算公式如下:

    产量(kg/hm2)=单株产量×成穗率×126000/1000×[1–籽粒含水率(%)]/(1–14%)。

    玉米磷素积累、磷肥利用率、磷肥偏生产力以及磷肥农学效率计算公式如下:

    玉米各器官磷素积累量(kg/hm2)=各器官磷浓度(g/kg)×单位面积干物质质量(kg/hm2)/1000[12]

    磷肥利用率(%)=(施磷肥区作物吸收养分量-不施磷肥区作物吸收养分量)/养分投入量;

    磷肥偏生产力(kg/kg)=籽粒产量/磷养分投入量;

    磷肥农学效率(kg/kg)=(施磷肥处理产量–不施磷肥处理产量)/磷养分投入量。

    采用SPSS 26.0软件对试验数据进行方差分析(ANOVA)及差异显著性检验(LSD);图表制作采用Origin 2021和Excel 2016完成。

    图2可知,与CK相比,滴施UP处理可显著降低滴灌头0—40 cm的土壤pH,降幅在0.20~0.24个单位;MKP、APP和MAP处理仅在0—10 cm土层pH显著低于CK。DAP处理各土层pH没有显著变化。UP处理开花期土壤pH均值较CK和DAP分别降低了0.20和0.32个单位;成熟期UP处理土壤pH较CK和DAP分别降低了0.24和0.31个单位。

    图  2  玉米开花期和成熟期不同磷肥处理土壤pH随滴头距离的变化
    注:图中为2018—2020年的平均数据,其中坐标轴“0”点为滴管头,“15”点为玉米正下方,“30”点为宽行取样点。UP、MKP、APP、DAP、MAP和CK分别代表磷酸脲、磷酸二氢钾、聚磷酸铵、磷酸二铵、磷酸一铵和不施磷肥处理
    Figure  2.  Soil pH in different distances from dripper as affected by phosphorous fertilizers at flowering and maturity stages of maize
    Note: The figure shows the average data from 2018 to 2020, in which the“0”point of the coordinate axis is the dropper head, the“15”point is directly below the maize, and the“30”point is the wide row sampling point. UP, MKP, APP, DAP, MAP and CK represent urea phosphate, potassium dihydrogen phosphate, ammonium polyphosphate, diammonium phosphate, monoammonium phosphate and no phosphate fertilizer treatments in turn

    图3可知,与CK相比,滴施磷肥能显著增加各土层速效磷含量,距滴头越远,土壤速效磷含量越低。APP、UP和MAP处理0—40 cm各土层速效磷含量均显著高于DAP,分布更均匀。开花期,APP处理10—20 cm土层速效磷含量显著高于UP和MAP,20—40 cm土层速效磷含量均显著高于MAP处理;APP处理成熟期0—10 cm土层速效磷含量显著高于MAP,10—20 cm土层速效磷含量显著高于UP和MAP,20—40 cm土层速效磷含量3个处理间无显著差异。玉米开花期APP、UP、MAP处理土壤速效磷含量较DAP分别增加了65.47%、44.18%和23.14%,成熟期分别增加了58.08%、40.13%和127.89%。5种磷肥中,滴施聚磷酸铵有利于增加土壤速效磷含量及其在深层土壤中的分布,其次是磷酸脲和磷酸一铵;滴施磷酸二铵土壤速效磷含量最低,且主要分布在0—20 cm土层中。

    图  3  玉米开花期和成熟期不同磷肥处理土壤速效磷(AP)的分布
    注:图中为2018—2020年的平均数据,其中坐标轴“0”点为滴管头,“15”点为玉米正下方,“30”点为宽行取样点。UP、MKP、APP、DAP、MAP和CK分别代表磷酸脲、磷酸二氢钾、聚磷酸铵、磷酸二铵、磷酸一铵和不施磷肥处理
    Figure  3.  Distribution of soil available phosphorus (AP) under different phosphorus fertilizer treatments at maize flowering and maturity stages
    Note: The figure shows the average data from 2018 to 2020, in which the“0”point of the coordinate axis is the dropper head, the“15”point is directly below the corn, and the“30”point is the wide row sampling point. UP, MKP, APP, DAP, MAP and CK represent urea phosphate, potassium dihydrogen phosphate, ammonium polyphosphate, diammonium phosphate, monoammonium phosphate and no phosphate fertilizer treatments in turn

    表2表3可知,土壤全磷含量均呈现出随着与滴头水平或垂直距离的增加而降低的趋势。滴施磷肥处理间土壤全磷含量无显著差异,但均显著高于CK。玉米成熟期APP和UP处理 20—40 cm土层中全磷含量均显著高于CK,分别较CK增加了21.62%和17.57%;其余处理间无显著差异(表3)。滴施磷肥能增加土壤中的全磷含量,其中聚磷酸铵和磷酸脲有利于增加下层土壤的全磷含量。

    表  2  施用不同磷肥处理下土壤全磷含量的水平分布(g/kg)
    Table  2.  Horizontal distribution of soil total phosphorus content under different phosphate fertilizer treatments
    距滴头水平距离 (cm)
    Horizontal distance to dripper
    处理
    Treatment
    开花期 Flowering stage成熟期 Maturity stage
    201820192020平均 Average201820192020平均 Average
    0
    (滴头下方
    Under dripper)
    UP1.06 a1.13 a1.09 a1.09 a 1.02 ab1.12 a1.00 a1.05 a
    MKP1.06 a1.11 a1.10 a1.09 a1.06 a1.11 a1.00 a1.05 a
    APP1.06 a1.05 a1.10 a1.07 a1.03 ab1.01 a0.99 a1.01 a
    DAP1.06 a1.08 a1.10 a1.08 a1.08 a1.08 a1.00 a1.05 a
    MAP1.02 ab1.06 a1.08 a1.05 a1.04 ab1.03 a0.99 a1.02 a
    CK0.96 b0.82 a0.91 a0.90 b0.94 b0.80 a0.84 b0.86 b
    10
    (根部下方
    Under root)
    UP1.03 a0.98 a0.99 ab1.00 a0.98 ab0.90 a0.90 ab0.92 a
    MKP1.00 a0.99 a0.94 ab0.98 a1.04 a1.01 a0.94 a0.99 a
    APP1.02 a0.96 a0.98 ab0.99 a0.95 ab0.90 a0.93 ab0.93 a
    DAP0.98 a0.99 a0.97 ab0.98 a1.00 ab0.92 a0.92 ab0.95 a
    MAP1.01 a0.98 a1.01 a1.00 a1.00 ab0.98 a0.95 a0.98 a
    CK0.87 b0.73 b0.86 b0.82 b0.89 b0.76 a0.79 b0.81 b
    20
    (在宽行内
    Inside wide line)
    UP0.92 a0.86 a0.91 a0.90 a0.88 a0.79 a0.86 a0.84 a
    MKP0.89 a0.92 a0.88 a0.90 a0.85 a0.85 a0.87 a0.86 a
    APP0.95 a0.88 a0.91 a0.91 a0.92 a0.82 a0.87 a0.87 a
    DAP0.89 a0.92 a0.91 a0.91 a0.92 a0.89 a0.86 a0.89 a
    MAP0.96 a0.93 a0.94 a0.94 a0.91 a0.82 a0.85 a0.86 a
    CK0.85 a0.67 a0.76 b0.76 b0.75 a0.69 a0.74 a0.73 b
    平均值
    Average
    UP1.00 ab0.99 a1.00 a0.99 a0.97 ab0.93 ab0.92 a0.95 a
    MKP0.98 ab1.01 a0.97 a0.99 a0.98 ab0.99 a0.94 a0.97 a
    APP1.01 a0.96 a1.00 a0.98 a0.97 ab0.91 ab0.93 a0.95 a
    DAP0.98 ab1.00 a0.99 a0.99 a1.00 a0.97 ab0.93 a0.96 a
    MAP0.99 ab0.99 a1.01 a0.99 a0.98 ab0.94 ab0.93 a0.96 a
    CK0.89 b0.74 b0.84 a0.83 b 0.86 b0.75 b0.79 b0.79 b
    注:同列数据后不同字母表示相同距离内不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments within the same distance at the 5% level.
    下载: 导出CSV 
    | 显示表格
    表  3  施用不同磷肥土壤全磷含量的垂直变化(g/kg)
    Table  3.  Vertical distribution of soil total phosphorus content under different phosphorus fertilizer treatments
    垂直距离 (cm)
    Vertical distance
    处理
    Treatment
    开花期 Flowering stage成熟期 Maturing stage
    201820192020平均 Average201820192020平均 Average
    0—10UP1.02 a1.1a b1.04 a1.05 a 0.99 ab1.05 a0.96 a1.00 a
    MKP0.98 a1.14 ab1.01 a1.04 a1.07 a1.22 a1.02 a1.10 a
    APP1.05 a1.04 ab1.11 a1.06 a1.01 ab1.01 ab0.99 a1.00 a
    DAP1.04 a1.23 a1.13 a1.13 a1.07 a1.23 a1.04 a1.11 a
    MAP1.02 a1.11 ab1.08 a1.07 a1.04 ab1.07 a0.99 a1.04 a
    CK0.91 a0.83 b0.86 a0.87 b0.92 b0.78 b0.85 b0.85 b
    10—20UP1.02 a0.98 a1.00 ab1.00 a0.96 a0.93 a0.94 a0.94 a
    MKP1.01 a1.03 a0.93 ab0.99 a0.99 a0.96 a0.95 a0.97 a
    APP1.02 a0.94 a0.99 ab0.98 a0.95 a0.86 a0.92 ab0.91 a
    DAP1.00 a1.00 a0.99 ab0.99 a0.99 a0.90 a0.95 a0.95 a
    MAP1.01 a0.98 a1.01 a1.00 a1.02 a0.94 a0.94 a0.97 a
    CK0.91 a0.71 b0.85 b0.82 b0.85 a0.78 a0.79 b0.81 b
    20—40UP0.98 a0.88 a0.95 a0.94 a0.93 a0.82 a0.86 a0.87 a
    MKP0.95 a0.86 a0.97 a0.92 a0.89 a0.79 a0.84 a0.84 ab
    APP0.97 a0.91 a0.89 a0.92 a0.94 a0.86 a0.88 a0.90 a
    DAP0.90 a0.76 ab0.87 a0.84 ab0.94 a0.77 a0.79 a0.83 ab
    MAP0.95 a0.88 a0.94 a0.93 a0.90 a0.82 a0.85 a0.85 ab
    CK0.85 a0.69 b0.82 a0.79 b0.81 a0.69 a0.73 a0.74 b
    平均
    Average
    UP1.00 a0.99 a1.00 a0.99 a0.97 a0.93 a0.92 a0.95 a
    MKP0.98 a1.01 a0.97 ab0.99 a0.98 a0.99 a0.94 a0.97 a
    APP1.01 a0.96 a1.00 a0.98 a0.97 a0.91 a0.93 a0.95 a
    DAP0.98 a1.00 a0.99 a0.99 a1.00 a0.97 a0.93 a0.96 a
    MAP0.99 a0.99 a1.01 a0.99 a0.98 a0.94 a0.93 a0.96 a
    CK0.89 b0.74 a0.84 b0.83 b 0.86 b0.75 b0.79 a0.79 b
    注:同列数据后不同字母表示同一土层不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments in the same soil layer at the 5% level.
    下载: 导出CSV 
    | 显示表格

    表4可知,玉米地上部总磷素积累量均呈现为APP>UP>MAP>MKP>DAP>CK的趋势。开花期各处理间的各器官磷素积累量的3年平均值无显著性差异,但每个年际内差异显著;2018年APP、UP和MAP处理总磷素积累量均显著高于其余处理,穗、叶器官磷素积累量APP处理显著高于其余处理;茎磷素积累量MKP最高,差异显著;2019年APP处理总磷素积累量均显著高于MKP、DAP和CK处理;2020年APP处理总磷素积累量显著高于其余处理,穗磷素积累量APP、UP和MAP处理显著高于CK,叶磷素积累量APP显著高于DAP和CK,茎磷素积累量APP处理显著高于UP、MAP和CK。成熟期APP处理穗和总磷素积累量均显著高于其余处理,各处理间茎磷素积累量的均值无显著性差异,各单个年际内APP处理多显著高于CK。开花期APP处理穗、叶和总磷素积累量均值分别较CK增加92.87%、66.00%和75.86%,较DAP增加29.22%、43.97%和22.43%;成熟期较CK分别增加101.48%、64.73%和98.16%,较DAP增加65.39%、26.63%和50.60%。

    表  4  施用不同磷肥处理下玉米各器官磷素积累量
    Table  4.  Phosphorus accumulation in various organs of miaze under different phosphorus fertilizer treatments
    年份
    Year
    处理
    Treatment
    开花期磷积累量 (kg/hm2)
    P accumulation at flowering stage
    成熟期磷积累量 (kg/hm2)
    P accumulation at maturity stage

    Spike

    Leaf

    Stem
    合计
    Total

    Spike

    Leaf

    Stem
    合计
    Total
    2018UP22.54 b13.88 b25.00 b61.42 a 69.92 b13.85 a4.60a b88.37 b
    MKP20.09 c12.19 d29.15 a61.43 a60.57 c10.01 b4.53 ab75.11 c
    APP25.67 a17.04 a19.89 c62.60 a86.77 a13.30 a5.05 ab105.12 a
    DAP20.71 c12.16 d20.76 c53.63 b49.49 d10.17 b4.07 b63.73 d
    MAP20.71 c12.60 cd16.28 d49.59 c65.20 c9.43 b5.36 a79.99 c
    CK14.72 d12.91 c14.93 e42.56 d50.74 d5.57 c2.39 c58.70 e
    2019UP8.26 a11.26 ab20.40 a39.92 a62.57 b9.74 ab7.23 a79.54 b
    MKP5.64 c9.59 bc15.71 b30.94 c64.12 b8.79 ab7.54 a80.45 b
    APP9.02 a12.60 a20.99 a42.61 a81.72 a9.90 a9.54 a101.16 a
    DAP6.08 c8.00 cd16.67 b30.75 c58.62 b6.23 c9.48 a74.33 b
    MAP7.09 b9.10 bcd18.72 ab34.91 b65.57 b7.62 bc8.32 a81.51 b
    CK2.58 d7.17 d11.12 c20.87 d36.34 c3.66 d2.86 b42.86 c
    2020UP7.43 a24.27 ab27.34 b59.04 b65.11 b12.85 a14.00 a91.95 b
    MKP6.67 ab22.13 ab30.73 ab59.53 b57.65 bc10.11 a12.12 ab79.88 bc
    APP8.30 a27.64 a34.38 a70.32 a89.48 a10.03 a11.55 ab111.07 a
    DAP6.47 ab19.63 bc32.9a b58.99 b48.50 cd9.84 a14.32 a72.66 cd
    MAP7.52 a22.59 ab27.06 b57.17 b58.78 bc11.91 a14.28 a84.96 bc
    CK4.99 b14.43 c16.96 c36.38 c40.96 d10.09 a7.54 b58.59 d
    平均
    Average
    UP12.74 a16.47 a24.25 a53.46 a65.87 b12.15 a8.61 a86.62 b
    MKP10.80 a14.64 a25.20 a50.63 a60.78 bc9.64 ab8.06 a78.48 bc
    APP14.33 a19.09 a25.09 a58.51 a85.99 a11.08 a8.71 a105.78 a
    DAP11.09 a13.26 a23.44 a47.79 a52.20 c8.75 ab9.29 a70.24 c
    MAP11.77 a14.76 a20.69 a47.22 a63.18 b9.65 ab9.32 a82.15 b
    CK7.43 a11.50 a14.34 a33.27 a 42.68 d6.44 b4.26 a53.38 d
    注:同列数据后不同字母表示同一年份不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments in the same year at the 5% level.
    下载: 导出CSV 
    | 显示表格

    表5可知,玉米产量整体呈现出APP>UP>MAP>MKP>DAP>CK的趋势。由于年际间气候变化的影响,玉米产量年际间有一定差异,各处理平均产量年际之间多无显著性差异,但各处理产量在每个年际内差异显著。2018年APP处理产量显著高于MKP、DAP以及CK处理,UP处理显著高于CK;2019年APP和UP处理产量显著高于CK,其余处理间无显著差异;2020年APP处理产量显著高于DAP和CK,UP、MAP和MKP 处理产量显著高于CK。APP处理平均产量较DAP和CK分别增产18.03%和31.60%,UP较DAP和CK分别增产11.64%和24.47%,MAP较DAP和CK分别增产9.46%和22.04%。

    表  5  施用不同磷肥处理下玉米产量及磷肥利用效率
    Table  5.  Maize yield and P fertilizer utilization efficiency under different phosphorus fertilizer treatments
    年份
    Year
    处理
    Treatment
    产量 (kg/hm2)
    Yield
    磷肥利用率 (%)
    P fertilizer
    utilization efficiency
    磷肥偏生产力 (kg/kg)
    P fertilizer partial
    factor productivity
    磷肥农学效率 (kg/kg)
    P agronomic
    efficiency
    2018UP12298.07 ab24.73 b102.48 ab13.10 ab
    MKP11921.30 bc13.68 c99.34 b9.96a b
    APP13493.84 a38.68 a112.45 a23.06 a
    DAP11537.21 bc4.19 d96.14 b6.76 b
    MAP12075.77 abc17.74 c100.63 ab11.25 ab
    CK10726.22 c
    2019UP16297.45 a30.57 b135.81 a38.52 a
    MKP14631.33 ab31.33 b121.93 a24.64 a
    APP16852.46 a48.58 a140.44 a43.15 a
    DAP14117.99 ab26.23 b117.65 a20.36 a
    MAP15774.94 ab32.21 b131.46 a34.17 a
    CK11674.59 b
    2020UP18117.48 ab27.81 b150.98 ab24.91 ab
    MKP17943.18 ab17.74 bc149.53 ab23.46 ab
    APP19040.84 a43.74 a158.67 a32.60 a
    DAP16186.94 bc11.73 c134.89 b8.82 b
    MAP17950.99 ab21.98 bc149.59 ab23.52 ab
    CK15128.40 c
    注:同列数据后不同字母表示同一年内份不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments within the same year at the 5% level.
    下载: 导出CSV 
    | 显示表格

    磷肥利用率、磷肥偏生产力和磷肥农学效率均与产量呈现出一致的变化规律,均表现为:APP>UP>MAP>MKP>DAP。APP处理3年平均磷肥利用率为43.67%,较DAP增加了29.62%;UP较DAP增加了13.65个百分点;MAP较DAP增加了9.93个百分点。APP处理的磷肥农学效率显著高于DAP,其余处理间差异不显著。各处理的磷肥偏生产力3年平均值之间差异较小,但2018和2020年APP处理显著高于DAP。APP处理的磷肥偏生产力和磷肥农学效率分别较DAP增加了18.03%和174.96% (表5)。

    图4可知,各土层速效磷含量均与全磷含量呈正相关,与土壤pH呈负相关;并随着土层的加深相关性增强。玉米开花期到成熟期土壤速效磷含量与全磷含量、土壤pH的相关性增强,而全磷含量与土壤pH相关性降低。10—20 cm土层速效磷含量与全磷含量达到显著性正相关,与土壤pH显著性负相关(P<0.05);土壤全磷含量与土壤pH极显著负相关(P<0.01)。开花期20—40 cm土层土壤速效磷含量与全磷含量达到极显著正相关(P<0.01),与土壤pH显著负相关(P<0.05);成熟期 20—40 cm土层速效磷含量与全磷含量呈极显著正相关(P<0.01),全磷含量与土壤pH显著负相关(P<0.05)。土壤pH的降低能够提高土壤有效磷含量,且随着土层的加深其影响加大。

    图  4  土壤速效磷(AP)含量、pH和全磷(TP)含量的相关性
    Figure  4.  Correlation of soil available phosphorus (AP) content, pH and total phosphorus (TP) content
    *—P < 0.05,**—P < 0.01

    表6可知,在等磷量投入下,玉米地上部总磷素积累量与各土层速效磷含量呈正相关;其中除与成熟期20—40 cm土层速效磷含量呈显著正相关外(P<0.05),与其余土层速效磷含量均为极显性正相关(P<0.01)。磷肥的利用率、偏生产力和农学效率与土层速效磷含量多呈正相关,其中10—20 cm土层速效磷含量与磷肥利用率呈极显著正相关。土壤速效磷含量的增加有利于增加玉米地上部磷累积量,提高磷肥利用率。

    表  6  不同土层速效磷含量与玉米地上部各器官磷素积累量、产量和磷肥利用效率的相关性
    Table  6.  Correlation of available phosphorus content in different soil layers with phosphorus accumulation of various organs in the shoots of maize, yield and P fertilizer use efficiency
    时期
    Stage
    土层
    Soil layer
    (cm)
    磷素积累量 P accumulation产量
    Yield
    磷肥利用率
    P fertilizer
    utilization
    efficiency
    磷肥偏生产力
    P partial factor
    productivity
    磷肥农学效率
    P agronomic
    efficiency

    Spike

    Leaf

    Stem
    总量
    Total
    开花期
    Flowering
    0—100.73**0.79**0.210.81**0.370.270.200.12
    10—200.83**0.40–0.030.75**0.230.66**0.130.42
    20—400.82**0.60*0.040.79**0.260.4750.220.28
    成熟期
    Maturating
    0—100.88**0.500.040.81**0.240.510.040.26
    10—200.86**0.450.150.83**0.450.67**0.360.54*
    20—400.61*0.70**–0.240.55*–0.090.148–0.12–0.04
    *—P<0.05,**—P<0.01.
    下载: 导出CSV 
    | 显示表格

    在石灰性土壤中,磷的有效性和移动性与磷肥本身的组成、形态等息息相关[9-13,16]。本研究表明,滴施磷肥后,土壤速效磷含量均呈现出随着与滴头距离的增加而降低的规律,其中0—20 cm土层的速效磷含量较高,这与杨国江等[17]研究结果一致。水肥一体化施磷虽然能够增加磷素在土壤中的移动性,但由于石灰性土壤的固定,导致H2PO4主要积累在表层,在滴头附近出现聚集,且随着与灌水器距离的增加而逐渐减少[17]。本研究表明,APP处理土壤速效磷含量显著高于其余处理,且土层中磷素分布更均匀,深层土壤中速效磷含量亦更高,其次是UP和MAP,DAP移动性最差;这与张国桥等[6]、亢龙飞等[10]和张皓禹等[12]的田间试验结果一致,也与余凯凯等[18]和Wang等[19]的室内土柱模拟试验结果相近。其原因可能是:(1)五种水溶性磷肥中,除DAP是碱性磷肥外,其余均是酸性磷肥,尤其UP属于强酸性磷肥,施入土壤后较DAP和CK能降低土壤pH;而石灰性土壤pH的降低可增加磷在土壤中的移动性[11]。(2)磷酸脲、磷酸一铵等正磷酸盐类肥料施入石灰性土壤后易与土壤中的Ca2+、Fe3+、Al3+等离子或粘土矿物发生固定作用,使可溶性磷降低,在土壤中的运移受阻[20];与正磷酸盐类肥料相比,APP属于聚合态磷[21],施入土壤后只有水解为正磷酸盐才可被土壤固定,在一定时间内减少了磷的化学沉淀固定,利于聚磷酸盐在土壤中的运移[22]。APP还能释放PPA (多聚磷酸),可降低土壤中的低活性与中活性磷,增加土壤高活性磷比例[10,23-24],且随着肥料持续的水解作用,高活性磷不会随着植物的吸收而出现减少,从而提高其有效性[25]。综上所述,石灰性土壤中滴施不同水溶性磷肥时土壤pH和磷素分布特征具有显著差异;滴施UP等酸性磷肥能够降低土壤pH;滴施APP、UP和MAP土壤中的磷素移动性较强,有利于速效磷在土壤中的均匀分布,并提高深层土壤中的速效磷含量;而DAP容易在滴头附近形成土壤pH较高的区域,不利于磷素运移。因此,在石灰性土壤的滴灌磷肥选择中应优先考虑聚磷酸盐,其次是酸性磷肥,应减少碱性磷肥的施用。

    提高土壤中的有效磷水平有利于促进玉米对磷素的吸收,从而达到磷素的高效利用[11]。本研究表明,玉米地上部磷素积累量均呈现出APP>UP>MAP>MKP>DAP>CK的趋势,且与各土层速效磷含量呈显著正相关。磷素的吸收利用直接影响着作物的生长和发育,从而影响作物的产量[26]。本研究表明,各处理玉米产量、磷肥利用率、磷肥偏生产力及磷肥农学效率与玉米地上部磷素积累的规律相同,均表现为APP最高,其次是UP和MAP,这与张皓禹等[12]、傅瑞斌等[27]和熊子怡等[28]研究结果相似。本研究表明,APP处理土层速效磷分布更均匀,这样利于玉米磷素吸收和产量的增加[18]。聚磷酸盐在土壤中的水解速率也因石灰性土壤高pH的影响变缓慢,达到持续缓控释放的效果,从而提高了磷肥的利用效率[28-29]。另外,聚磷酸铵不仅含有作物所需的氮素和磷素,还可提高石灰性土壤中微量元素的有效性,有利于作物增产[24,30]。综上所述,在滴灌玉米生产中滴施APP、UP和MAP不仅能增加玉米产量,还能促进玉米对磷素的吸收,达到提高磷肥利用效率的目的。

    除磷酸二铵外,滴施其他酸性水溶性磷肥不同程度地降低玉米根系周围土壤pH,其中磷酸脲可显著降低0—40 cm土壤pH,而磷酸二氢钾、聚磷酸铵和磷酸一铵仅在滴头附近0—10 cm距离降低土壤pH。土壤速效磷含量的分布与pH高度一致,开花期和成熟期,滴施磷酸脲的土壤中有效磷在0—40 cm土层中的分布更均匀,但10—20 cm土壤中的速效磷含量低于聚磷酸铵处理,高于其他磷肥处理。磷肥利用率与10—20 cm土层速效磷含量极显著相关。因此,滴施聚磷酸铵的玉米产量和磷素利用率均高于其他磷肥处理。综合考虑,石灰性土壤上进行滴灌施肥时,应优先选择聚磷酸铵,其次是磷酸脲和磷酸一铵,应减少磷酸二铵等碱性肥料的施用。

  • 图  1   2018—2020年玉米生育期内温度和降水量变化

    Figure  1.   Changes in temperature and precipitation during the maize growing period from 2018 to 2020

    图  2   玉米开花期和成熟期不同磷肥处理土壤pH随滴头距离的变化

    注:图中为2018—2020年的平均数据,其中坐标轴“0”点为滴管头,“15”点为玉米正下方,“30”点为宽行取样点。UP、MKP、APP、DAP、MAP和CK分别代表磷酸脲、磷酸二氢钾、聚磷酸铵、磷酸二铵、磷酸一铵和不施磷肥处理

    Figure  2.   Soil pH in different distances from dripper as affected by phosphorous fertilizers at flowering and maturity stages of maize

    Note: The figure shows the average data from 2018 to 2020, in which the“0”point of the coordinate axis is the dropper head, the“15”point is directly below the maize, and the“30”point is the wide row sampling point. UP, MKP, APP, DAP, MAP and CK represent urea phosphate, potassium dihydrogen phosphate, ammonium polyphosphate, diammonium phosphate, monoammonium phosphate and no phosphate fertilizer treatments in turn

    图  3   玉米开花期和成熟期不同磷肥处理土壤速效磷(AP)的分布

    注:图中为2018—2020年的平均数据,其中坐标轴“0”点为滴管头,“15”点为玉米正下方,“30”点为宽行取样点。UP、MKP、APP、DAP、MAP和CK分别代表磷酸脲、磷酸二氢钾、聚磷酸铵、磷酸二铵、磷酸一铵和不施磷肥处理

    Figure  3.   Distribution of soil available phosphorus (AP) under different phosphorus fertilizer treatments at maize flowering and maturity stages

    Note: The figure shows the average data from 2018 to 2020, in which the“0”point of the coordinate axis is the dropper head, the“15”point is directly below the corn, and the“30”point is the wide row sampling point. UP, MKP, APP, DAP, MAP and CK represent urea phosphate, potassium dihydrogen phosphate, ammonium polyphosphate, diammonium phosphate, monoammonium phosphate and no phosphate fertilizer treatments in turn

    图  4   土壤速效磷(AP)含量、pH和全磷(TP)含量的相关性

    Figure  4.   Correlation of soil available phosphorus (AP) content, pH and total phosphorus (TP) content

    *—P < 0.05,**—P < 0.01

    表  1   玉米生育期施肥量(kg/hm2)及灌水量

    Table  1   Fertilization and irrigation at different maize growth stages

    处理 Treatment化肥 FertilizerVEV6V8V12VTR1R2R3R4总计 Total
    UP尿素 Urea0727272727262.5600482.5
    磷酸脲 Urea phosphate45.545.56363.563.53727270372
    硫酸钾 K2SO40182727372318140164
    MKP尿素 Urea09191100919182550601
    磷酸一铵 Ammonium dihydrogen phosphate3691400000059
    磷酸二氢钾 KH2PO40274141503227230241
    APP尿素 Urea0828289918273550554
    聚磷酸铵 Ammonium polyphosphate33333641412718160245
    硫酸钾 K2SO40182727362318140163
    DAP尿素 Urea0736477737368500478
    磷酸二铵 Diammonium phosphate45505959593624230355
    硫酸钾 K2SO40182727362318140163
    MAP尿素 Urea0828291828273550547
    磷酸一铵 Ammonium dihydrogen phosphate36364545452718180270
    硫酸钾 K2SO40182727362318140163
    CK尿素 Urea199494105949484550639
    硫酸钾 K2SO40182727362318140163
    灌溉量 Amount of irrigation (m3/hm2)3105805805805805805805204904800
    注:表中VE、V6、V8、V12、VT、R1、R2、R3和R4分别代表玉米的出苗、拔节、小喇叭口、大喇叭口、抽雄、开花—吐丝、籽粒建成、乳熟和蜡熟期。
    Note: In the table, VE, V6, V8, V12, VT, R1, R2, R3 and R4 represent the emergence, jointing, small trumpet stage, big trumpet stage, tasseling, flowering–silking, blister, milk and wax stage of maize.
    下载: 导出CSV

    表  2   施用不同磷肥处理下土壤全磷含量的水平分布(g/kg)

    Table  2   Horizontal distribution of soil total phosphorus content under different phosphate fertilizer treatments

    距滴头水平距离 (cm)
    Horizontal distance to dripper
    处理
    Treatment
    开花期 Flowering stage成熟期 Maturity stage
    201820192020平均 Average201820192020平均 Average
    0
    (滴头下方
    Under dripper)
    UP1.06 a1.13 a1.09 a1.09 a 1.02 ab1.12 a1.00 a1.05 a
    MKP1.06 a1.11 a1.10 a1.09 a1.06 a1.11 a1.00 a1.05 a
    APP1.06 a1.05 a1.10 a1.07 a1.03 ab1.01 a0.99 a1.01 a
    DAP1.06 a1.08 a1.10 a1.08 a1.08 a1.08 a1.00 a1.05 a
    MAP1.02 ab1.06 a1.08 a1.05 a1.04 ab1.03 a0.99 a1.02 a
    CK0.96 b0.82 a0.91 a0.90 b0.94 b0.80 a0.84 b0.86 b
    10
    (根部下方
    Under root)
    UP1.03 a0.98 a0.99 ab1.00 a0.98 ab0.90 a0.90 ab0.92 a
    MKP1.00 a0.99 a0.94 ab0.98 a1.04 a1.01 a0.94 a0.99 a
    APP1.02 a0.96 a0.98 ab0.99 a0.95 ab0.90 a0.93 ab0.93 a
    DAP0.98 a0.99 a0.97 ab0.98 a1.00 ab0.92 a0.92 ab0.95 a
    MAP1.01 a0.98 a1.01 a1.00 a1.00 ab0.98 a0.95 a0.98 a
    CK0.87 b0.73 b0.86 b0.82 b0.89 b0.76 a0.79 b0.81 b
    20
    (在宽行内
    Inside wide line)
    UP0.92 a0.86 a0.91 a0.90 a0.88 a0.79 a0.86 a0.84 a
    MKP0.89 a0.92 a0.88 a0.90 a0.85 a0.85 a0.87 a0.86 a
    APP0.95 a0.88 a0.91 a0.91 a0.92 a0.82 a0.87 a0.87 a
    DAP0.89 a0.92 a0.91 a0.91 a0.92 a0.89 a0.86 a0.89 a
    MAP0.96 a0.93 a0.94 a0.94 a0.91 a0.82 a0.85 a0.86 a
    CK0.85 a0.67 a0.76 b0.76 b0.75 a0.69 a0.74 a0.73 b
    平均值
    Average
    UP1.00 ab0.99 a1.00 a0.99 a0.97 ab0.93 ab0.92 a0.95 a
    MKP0.98 ab1.01 a0.97 a0.99 a0.98 ab0.99 a0.94 a0.97 a
    APP1.01 a0.96 a1.00 a0.98 a0.97 ab0.91 ab0.93 a0.95 a
    DAP0.98 ab1.00 a0.99 a0.99 a1.00 a0.97 ab0.93 a0.96 a
    MAP0.99 ab0.99 a1.01 a0.99 a0.98 ab0.94 ab0.93 a0.96 a
    CK0.89 b0.74 b0.84 a0.83 b 0.86 b0.75 b0.79 b0.79 b
    注:同列数据后不同字母表示相同距离内不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments within the same distance at the 5% level.
    下载: 导出CSV

    表  3   施用不同磷肥土壤全磷含量的垂直变化(g/kg)

    Table  3   Vertical distribution of soil total phosphorus content under different phosphorus fertilizer treatments

    垂直距离 (cm)
    Vertical distance
    处理
    Treatment
    开花期 Flowering stage成熟期 Maturing stage
    201820192020平均 Average201820192020平均 Average
    0—10UP1.02 a1.1a b1.04 a1.05 a 0.99 ab1.05 a0.96 a1.00 a
    MKP0.98 a1.14 ab1.01 a1.04 a1.07 a1.22 a1.02 a1.10 a
    APP1.05 a1.04 ab1.11 a1.06 a1.01 ab1.01 ab0.99 a1.00 a
    DAP1.04 a1.23 a1.13 a1.13 a1.07 a1.23 a1.04 a1.11 a
    MAP1.02 a1.11 ab1.08 a1.07 a1.04 ab1.07 a0.99 a1.04 a
    CK0.91 a0.83 b0.86 a0.87 b0.92 b0.78 b0.85 b0.85 b
    10—20UP1.02 a0.98 a1.00 ab1.00 a0.96 a0.93 a0.94 a0.94 a
    MKP1.01 a1.03 a0.93 ab0.99 a0.99 a0.96 a0.95 a0.97 a
    APP1.02 a0.94 a0.99 ab0.98 a0.95 a0.86 a0.92 ab0.91 a
    DAP1.00 a1.00 a0.99 ab0.99 a0.99 a0.90 a0.95 a0.95 a
    MAP1.01 a0.98 a1.01 a1.00 a1.02 a0.94 a0.94 a0.97 a
    CK0.91 a0.71 b0.85 b0.82 b0.85 a0.78 a0.79 b0.81 b
    20—40UP0.98 a0.88 a0.95 a0.94 a0.93 a0.82 a0.86 a0.87 a
    MKP0.95 a0.86 a0.97 a0.92 a0.89 a0.79 a0.84 a0.84 ab
    APP0.97 a0.91 a0.89 a0.92 a0.94 a0.86 a0.88 a0.90 a
    DAP0.90 a0.76 ab0.87 a0.84 ab0.94 a0.77 a0.79 a0.83 ab
    MAP0.95 a0.88 a0.94 a0.93 a0.90 a0.82 a0.85 a0.85 ab
    CK0.85 a0.69 b0.82 a0.79 b0.81 a0.69 a0.73 a0.74 b
    平均
    Average
    UP1.00 a0.99 a1.00 a0.99 a0.97 a0.93 a0.92 a0.95 a
    MKP0.98 a1.01 a0.97 ab0.99 a0.98 a0.99 a0.94 a0.97 a
    APP1.01 a0.96 a1.00 a0.98 a0.97 a0.91 a0.93 a0.95 a
    DAP0.98 a1.00 a0.99 a0.99 a1.00 a0.97 a0.93 a0.96 a
    MAP0.99 a0.99 a1.01 a0.99 a0.98 a0.94 a0.93 a0.96 a
    CK0.89 b0.74 a0.84 b0.83 b 0.86 b0.75 b0.79 a0.79 b
    注:同列数据后不同字母表示同一土层不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments in the same soil layer at the 5% level.
    下载: 导出CSV

    表  4   施用不同磷肥处理下玉米各器官磷素积累量

    Table  4   Phosphorus accumulation in various organs of miaze under different phosphorus fertilizer treatments

    年份
    Year
    处理
    Treatment
    开花期磷积累量 (kg/hm2)
    P accumulation at flowering stage
    成熟期磷积累量 (kg/hm2)
    P accumulation at maturity stage

    Spike

    Leaf

    Stem
    合计
    Total

    Spike

    Leaf

    Stem
    合计
    Total
    2018UP22.54 b13.88 b25.00 b61.42 a 69.92 b13.85 a4.60a b88.37 b
    MKP20.09 c12.19 d29.15 a61.43 a60.57 c10.01 b4.53 ab75.11 c
    APP25.67 a17.04 a19.89 c62.60 a86.77 a13.30 a5.05 ab105.12 a
    DAP20.71 c12.16 d20.76 c53.63 b49.49 d10.17 b4.07 b63.73 d
    MAP20.71 c12.60 cd16.28 d49.59 c65.20 c9.43 b5.36 a79.99 c
    CK14.72 d12.91 c14.93 e42.56 d50.74 d5.57 c2.39 c58.70 e
    2019UP8.26 a11.26 ab20.40 a39.92 a62.57 b9.74 ab7.23 a79.54 b
    MKP5.64 c9.59 bc15.71 b30.94 c64.12 b8.79 ab7.54 a80.45 b
    APP9.02 a12.60 a20.99 a42.61 a81.72 a9.90 a9.54 a101.16 a
    DAP6.08 c8.00 cd16.67 b30.75 c58.62 b6.23 c9.48 a74.33 b
    MAP7.09 b9.10 bcd18.72 ab34.91 b65.57 b7.62 bc8.32 a81.51 b
    CK2.58 d7.17 d11.12 c20.87 d36.34 c3.66 d2.86 b42.86 c
    2020UP7.43 a24.27 ab27.34 b59.04 b65.11 b12.85 a14.00 a91.95 b
    MKP6.67 ab22.13 ab30.73 ab59.53 b57.65 bc10.11 a12.12 ab79.88 bc
    APP8.30 a27.64 a34.38 a70.32 a89.48 a10.03 a11.55 ab111.07 a
    DAP6.47 ab19.63 bc32.9a b58.99 b48.50 cd9.84 a14.32 a72.66 cd
    MAP7.52 a22.59 ab27.06 b57.17 b58.78 bc11.91 a14.28 a84.96 bc
    CK4.99 b14.43 c16.96 c36.38 c40.96 d10.09 a7.54 b58.59 d
    平均
    Average
    UP12.74 a16.47 a24.25 a53.46 a65.87 b12.15 a8.61 a86.62 b
    MKP10.80 a14.64 a25.20 a50.63 a60.78 bc9.64 ab8.06 a78.48 bc
    APP14.33 a19.09 a25.09 a58.51 a85.99 a11.08 a8.71 a105.78 a
    DAP11.09 a13.26 a23.44 a47.79 a52.20 c8.75 ab9.29 a70.24 c
    MAP11.77 a14.76 a20.69 a47.22 a63.18 b9.65 ab9.32 a82.15 b
    CK7.43 a11.50 a14.34 a33.27 a 42.68 d6.44 b4.26 a53.38 d
    注:同列数据后不同字母表示同一年份不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments in the same year at the 5% level.
    下载: 导出CSV

    表  5   施用不同磷肥处理下玉米产量及磷肥利用效率

    Table  5   Maize yield and P fertilizer utilization efficiency under different phosphorus fertilizer treatments

    年份
    Year
    处理
    Treatment
    产量 (kg/hm2)
    Yield
    磷肥利用率 (%)
    P fertilizer
    utilization efficiency
    磷肥偏生产力 (kg/kg)
    P fertilizer partial
    factor productivity
    磷肥农学效率 (kg/kg)
    P agronomic
    efficiency
    2018UP12298.07 ab24.73 b102.48 ab13.10 ab
    MKP11921.30 bc13.68 c99.34 b9.96a b
    APP13493.84 a38.68 a112.45 a23.06 a
    DAP11537.21 bc4.19 d96.14 b6.76 b
    MAP12075.77 abc17.74 c100.63 ab11.25 ab
    CK10726.22 c
    2019UP16297.45 a30.57 b135.81 a38.52 a
    MKP14631.33 ab31.33 b121.93 a24.64 a
    APP16852.46 a48.58 a140.44 a43.15 a
    DAP14117.99 ab26.23 b117.65 a20.36 a
    MAP15774.94 ab32.21 b131.46 a34.17 a
    CK11674.59 b
    2020UP18117.48 ab27.81 b150.98 ab24.91 ab
    MKP17943.18 ab17.74 bc149.53 ab23.46 ab
    APP19040.84 a43.74 a158.67 a32.60 a
    DAP16186.94 bc11.73 c134.89 b8.82 b
    MAP17950.99 ab21.98 bc149.59 ab23.52 ab
    CK15128.40 c
    注:同列数据后不同字母表示同一年内份不同处理间在5%水平差异显著。
    Note: Values followed by different letters in the same column indicate significant difference among treatments within the same year at the 5% level.
    下载: 导出CSV

    表  6   不同土层速效磷含量与玉米地上部各器官磷素积累量、产量和磷肥利用效率的相关性

    Table  6   Correlation of available phosphorus content in different soil layers with phosphorus accumulation of various organs in the shoots of maize, yield and P fertilizer use efficiency

    时期
    Stage
    土层
    Soil layer
    (cm)
    磷素积累量 P accumulation产量
    Yield
    磷肥利用率
    P fertilizer
    utilization
    efficiency
    磷肥偏生产力
    P partial factor
    productivity
    磷肥农学效率
    P agronomic
    efficiency

    Spike

    Leaf

    Stem
    总量
    Total
    开花期
    Flowering
    0—100.73**0.79**0.210.81**0.370.270.200.12
    10—200.83**0.40–0.030.75**0.230.66**0.130.42
    20—400.82**0.60*0.040.79**0.260.4750.220.28
    成熟期
    Maturating
    0—100.88**0.500.040.81**0.240.510.040.26
    10—200.86**0.450.150.83**0.450.67**0.360.54*
    20—400.61*0.70**–0.240.55*–0.090.148–0.12–0.04
    *—P<0.05,**—P<0.01.
    下载: 导出CSV
  • [1]

    Costa S, Souza E D, Anghinoni I, et al. Patterns in phosphorus and corn root distribution and yield in long-term tillage systems with fertilizer application[J]. Soil & Tillage Research, 2010, 109(1): 41–49.

    [2] 张钟先. 磷素在土壤中的扩散规律[J]. 水土保持研究, 1987, (2): 27–34. Zhang Z X. The diffusion law of phosphorus in soil[J]. Research of Soil and Water Conservation, 1987, (2): 27–34.

    Zhang Z X. The diffusion law of phosphorus in soil[J]. Research of Soil and Water Conservation, 1987, (2): 27-34.

    [3]

    Gao Y J, Wang X W, Shah J A, Chu G X. Polyphosphate fertilizers increased maize (Zea mays L. ) P, Fe, Zn, and Mn uptake by decreasing P fixation and mobilizing microelements in calcareous soil[J]. Journal of Soils and Sediments, 2019, 20(1): 1–11.

    [4]

    Wen Z H, Shen J B, Blackwell M, et al. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment[J]. Pedosphere, 2016, 26(1): 62–73. DOI: 10.1016/S1002-0160(15)60023-6

    [5] 侯振安, 李品芳, 龚江, 王艳娜. 不同滴灌施肥策略对棉花氮素吸收和氮肥利用率的影响[J]. 土壤学报, 2007, 44(4): 702–708. Hou Z A, Li P F, Gong J, Wang Y N. Effects of different drip irrigation fertilization strategies on cotton nitrogen absorption and nitrogen use efficiency[J]. Acta Pedologica Sinica, 2007, 44(4): 702–708. DOI: 10.3321/j.issn:0564-3929.2007.04.018

    Hou Z A, Li P F, Gong J, Wang Y N. Effects of different drip irrigation fertilization strategies on cotton nitrogen absorption and nitrogen use efficiency[J]. Acta Pedologica Sinica, 2007, 44(4): 702-708. DOI: 10.3321/j.issn:0564-3929.2007.04.018

    [6] 张国桥, 王静, 刘涛, 等. 水肥一体化施磷对滴灌玉米产量、磷素营养及磷肥利用效率的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1103–1109. Zhang G Q, Wang J, Liu T, et al. Effect of integrated water and fertilizer application of phosphorus on corn yield, phosphorus nutrition and phosphorus fertilizer use efficiency under drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1103–1109. DOI: 10.11674/zwyf.2014.0506

    Zhang G Q, Wang J, Liu T, et al. Effect of integrated water and fertilizer application of phosphorus on corn yield, phosphorus nutrition and phosphorus fertilizer use efficiency under drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1103-1109. DOI: 10.11674/zwyf.2014.0506

    [7]

    Mohammad M J, Hammouri A, Ferdows A E. Phosphorus fertigation and preplant conventional soil application of drip irrigated summer squash[J]. Journal of Agronomy, 2004, 3(3): 162–169. DOI: 10.3923/ja.2004.162.169

    [8]

    Martinez-Hernandez J J, Bar-Yosef B, Kafkafi U. Effect of surface and subsurface drip fertigation on sweet corn rooting, uptake, dry matter production and yield[J]. Irrigation Science, 1991, 12(3): 153–159.

    [9]

    Yang J X, Xie W J, Kong X J, et al. Reactive extrusion of ammonium polyphosphate in a twin-screw extruder: Polydispersity improvement[J]. Chemical Engineering and Processing:Process Intensification, 2018, 133: 58–65. DOI: 10.1016/j.cep.2018.09.019

    [10] 亢龙飞, 王静, 朱丽娜, 褚贵新. 不同形态磷酸盐及施用方式对石灰性土壤磷移动性和有效性的影响[J]. 植物营养与肥料学报, 2020, 26(7): 1179–1187. Kang L F, Wang J, Zhu L N, Chu G X. Effects of different forms of phosphate and application methods on the mobility and availability of phosphorus in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1179–1187. DOI: 10.11674/zwyf.19436

    Kang L F, Wang J, Zhu L N, Chu G X. Effects of different forms of phosphate and application methods on the mobility and availability of phosphorus in calcareous soil[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(7): 1179-1187. DOI: 10.11674/zwyf.19436

    [11] 赵红华, 危常州, 侯建伟, 等. 滴灌下酸性物质对石灰性土壤磷有效性及作物吸收的影响[J]. 土壤, 2015, 47(5): 847–852. Zhao H H, Wei C Z, Hou J W, et al. The effect of acidic substances on the availability of phosphorus in calcareous soil and crop uptake under drip irrigation[J]. Soils, 2015, 47(5): 847–852. DOI: 10.13758/j.cnki.tr.2015.05.005

    Zhao H H, Wei C Z, Hou J W, et al. The effect of acidic substances on the availability of phosphorus in calcareous soil and crop uptake under drip irrigation[J]. Soils, 2015, 47(5): 847-852. DOI: 10.13758/j.cnki.tr.2015.05.005

    [12] 张皓禹, 张君, 张凤麟, 等. 滴灌条件下不同磷肥品种对土壤磷有效性及玉米产量的影响[J]. 水土保持学报, 2019, 33(2): 189–195. Zhang H Y, Zhang J, Zhang F L, et al. Effects of different phosphate fertilizer varieties on soil phosphorus availability and corn yield under drip irrigation[J]. Journal of Soil and Water Conservation, 2019, 33(2): 189–195. DOI: 10.13870/j.cnki.stbcxb.2019.02.030

    Zhang H Y, Zhang J, Zhang F L, et al. Effects of different phosphate fertilizer varieties on soil phosphorus availability and corn yield under drip irrigation[J]. Journal of Soil and Water Conservation, 2019, 33(2): 189-195. DOI: 10.13870/j.cnki.stbcxb.2019.02.030

    [13] 王莎莎. 不同磷肥品种及表面活性剂对磷在土壤中移动性的影响[D]. 广州: 华南农业大学硕士学位论文, 2016.

    Wang S S, Effects of different phosphorus fertilizer varieties and surfactants on phosphorus mobility in soil[D]. Guangzhou: MS Thesis of South China Agricultural University, 2016.

    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Soil and agrochemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press, 2000.

    [15] 李广浩, 董树亭, 赵斌, 等. 不同土壤水分状况下实现夏玉米高产及氮素高效的控释尿素用量研究[J]. 植物营养与肥料学报, 2018, 24(3): 579–589. Li G H, Dong S T, Zhao B, et al. Study on the dosage of controlled-release urea to achieve high yield and high nitrogen efficiency of summer maize under different soil moisture conditions[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 579–589. DOI: 10.11674/zwyf.17277

    Li G H, Dong S T, Zhao B, et al. Study on the dosage of controlled-release urea to achieve high yield and high nitrogen efficiency of summer maize under different soil moisture conditions[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 579-589. DOI: 10.11674/zwyf.17277

    [16] 谷秋荣, 杨占平, 王秋杰, 等. 不同灌水量对土壤氮磷钾养分移动的影响[J]. 干旱地区农业研究, 2002, 20(4): 30–33. Gu Q R, Yang Z P, Wang Q J, et al. Effects of different irrigation rates on soil nitrogen, phosphorus and potassium nutrient movement[J]. Agricultural Research in the Arid Areas, 2002, 20(4): 30–33. DOI: 10.3321/j.issn:1000-7601.2002.04.007

    Gu Q R, Yang Z P, Wang Q J, et al. Effects of different irrigation rates on soil nitrogen, phosphorus and potassium nutrient movement[J]. Agricultural Research in the Arid Areas, 2002, 20(4): 30-33. DOI: 10.3321/j.issn:1000-7601.2002.04.007

    [17] 杨国江, 彭懿, 尹飞虎, 石磊. 滴灌磷肥在灰漠土中运移的研究[J]. 中国土壤与肥料, 2020, (6): 138–146. Yang G J, Peng Y, Yin F H, Shi L. Research on the transportation of phosphate fertilizer in the gray desert soil by drip irrigation[J]. Soil and Fertilizer Sciences in China, 2020, (6): 138–146. DOI: 10.11838/sfsc.1673-6257.19503

    Yang G J, Peng Y, Yin F H, Shi L. Research on the transportation of phosphate fertilizer in the gray desert soil by drip irrigation[J]. Soil and Fertilizer Sciences in China, 2020, (6): 138-146. DOI: 10.11838/sfsc.1673-6257.19503

    [18] 余凯凯, 裴海荣, 郭景丽, 李圣君. 不同磷源在碱性土壤中的淋溶特征研究[J]. 肥料与健康, 2021, 48(4): 25–28. Yu K K, Pei H R, Guo J L, Li S J. Study on the leaching characteristics of different phosphorus sources in alkaline soils[J]. Fertilizer & Health, 2021, 48(4): 25–28. DOI: 10.3969/j.issn.2096-7047.2021.04.005

    Yu K K, Pei H R, Guo J L, Li S J. Study on the leaching characteristics of different phosphorus sources in alkaline soils[J]. Fertilizer & Health, 2021, 48(4): 25-28. DOI: 10.3969/j.issn.2096-7047.2021.04.005

    [19]

    Wang X W, Gao Y J, Hu B W, Chu G X. Comparison of the hydrolysis characteristics of three polyphosphates and their effects on soil P and micronutrient availability[J]. Soil Use and Management, 2019, 35(4): 664–674. DOI: 10.1111/sum.12526

    [20] 李天安, 王玉, 刘芳, 等. 不同剖面层次土壤磷素运移研究[J]. 土壤与环境, 2002, 11(3): 290–293. Li T A, Wang Y, Liu F, et al. Study on the transport of soil phosphorus at different profile levels[J]. Soil and Environmental Sciences, 2002, 11(3): 290–293.

    Li T A, Wang Y, Liu F, et al. Study on the transport of soil phosphorus at different profile levels[J]. Soil and Environmental Sciences, 2002, 11(3): 290-293.

    [21] 杨旭, 张承林, 胡义熬, 邓兰生. 农用聚磷酸铵在土壤中的有效性研究进展及在农业上的应用[J]. 中国土壤与肥料, 2018, (3): 1–6. Yang X, Zhang C L, Hu Y A, Deng L S. Research progress on the effectiveness of agricultural ammonium polyphosphate in soil and its application in agriculture[J]. Soil and Fertilizer Sciences in China, 2018, (3): 1–6. DOI: 10.11838/sfsc.20180301

    Yang X, Zhang C L, Hu Y A, Deng L S. Research progress on the effectiveness of agricultural ammonium polyphosphate in soil and its application in agriculture[J]. Soil and Fertilizer Sciences in China, 2018, (3): 1-6. DOI: 10.11838/sfsc.20180301

    [22]

    Torres-Dorante L O, Claassen N, Steingrobe B, Hans-Werner O. Fertilizer-use efficiency of different inorganic polyphosphate sources: Effects on soil P availability and plant P acquisition during early growth of corn[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4): 509–515. DOI: 10.1002/jpln.200520584

    [23] 王静. 不同施磷策略对磷在土壤中移动、转化及磷肥利用率的影响[D]. 新疆石河子: 石河子大学硕士学位论文, 2016.

    Wang J. The effect of different phosphorus application strategies on the movement and transformation of phosphorus in the soil and phosphorus fertilizer use efficiency[D]. Shihezi, Xinjiang: MS Thesis of Shihezi University, 2016.

    [24] 高艳菊, 亢龙飞, 褚贵新. 不同聚合度和聚合率的聚磷酸磷肥对石灰性土壤磷与微量元素有效性的影响[J]. 植物营养与肥料学报, 2018, 24(5): 1294–1302. Gao Y J, Kang L F, Chu G X. Effects of polyphosphate phosphate fertilizers with different polymerization degrees and polymerization rates on the availability of phosphorus and trace elements in calcareous soils[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1294–1302. DOI: 10.11674/zwyf.18002

    Gao Y J, Kang L F, Chu G X. Effects of polyphosphate phosphate fertilizers with different polymerization degrees and polymerization rates on the availability of phosphorus and trace elements in calcareous soils[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1294-1302. DOI: 10.11674/zwyf.18002

    [25] 郭大勇, 袁玉玉, 曾祥, 等. 石灰性土壤施用不同磷肥对玉米苗期生长和土壤无机磷组分的影响[J]. 水土保持学报, 2021, 35(4): 243–249. Guo D Y, Yuan Y Y, Zeng X, et al. Effects of applying different phosphate fertilizers in calcareous soil on maize seedling growth and soil inorganic phosphorus components[J]. Journal of Soil and Water Conservation, 2021, 35(4): 243–249. DOI: 10.13870/j.cnki.stbcxb.2021.04.034

    Guo D Y, Yuan Y Y, Zeng X, et al. Effects of applying different phosphate fertilizers in calcareous soil on maize seedling growth and soil inorganic phosphorus components[J]. Journal of Soil and Water Conservation, 2021, 35(4): 243-249. DOI: 10.13870/j.cnki.stbcxb.2021.04.034

    [26] 覃潇敏, 潘浩男, 肖靖秀, 等. 施磷水平对玉米大豆间作系统氮素吸收与分配的影响[J]. 植物营养与肥料学报, 2021, 27(7): 1173–1184. Tan X M, Pan H N, Xiao J X, et al. Effect of phosphorus application level on nitrogen absorption and distribution in maize and soybean intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1173–1184. DOI: 10.11674/zwyf.20569

    Tan X M, Pan H N, Xiao J X, et al. Effect of phosphorus application lLevel on nitrogen absorption and distribution in maize and soybean intercropping system[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1173-1184. DOI: 10.11674/zwyf.20569

    [27] 傅瑞斌, 徐绍霞, 张海波, 等. 聚磷酸铵在轻度盐碱地玉米种植上的肥效[J]. 磷肥与复肥, 2018, 33(7): 37–38, 42. Fu R B, Xu S X, Zhang H B, et al. Fertilizer effect of ammonium polyphosphate on corn planting in mild saline-alkali land[J]. Phosphate & Compound Fertilizer, 2018, 33(7): 37–38, 42. DOI: 10.3969/j.issn.1007-6220.2018.07.013

    Fu R B, Xu S X, Zhang H B, et al. Fertilizer effect of ammonium polyphosphate on corn planting in mild saline- alkali land[J]. Phosphate & Compound Fertilizer, 2018, 33(7): 37-38, 42. DOI: 10.3969/j.issn.1007-6220.2018.07.013

    [28] 熊子怡, 邱烨, 郭琳钰, 等. 聚磷酸铵在土壤中有效性的变化及其影响因素[J]. 植物营养与肥料学报, 2020, 26(8): 1473–1480. Xiong Z Y, Qiu Y, Guo L Y, et al. Changes in the availability of ammonium polyphosphate in soil and its influencing factors[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1473–1480. DOI: 10.11674/zwyf.19486

    Xiong Z Y, Qiu Y, Guo L Y, et al. Changes in the availability of ammonium polyphosphate in soil and its influencing factors[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1473-1480. DOI: 10.11674/zwyf.19486

    [29]

    Hamilton J G, Hilger D, Peak D. Mechanisms of tripolyphosphate adsorption and hydrolysis on goethite[J]. Journal of Colloid and Interface Science, 2017, 491: 190–198.

    [30]

    Coetzee P E, Ceronio G M, Preez C C D. Effect of phosphorus and nitrogen sources on essential nutrient concentration and uptake by maize (Zea mays L.) during early growth and development[J]. South African Journal of Plant and Soil, 2017, 34(1): 55–64.

  • 期刊类型引用(9)

    1. 覃书伟,黄美卉,杨光,刘敏,郭欢,李亚航,张霞,曹爱萍. 不同水肥管理对红花生长的影响及红花根际解磷菌的筛选和鉴定. 微生物学报. 2024(02): 548-564 . 百度学术
    2. 牛帅帅,郭大勇,杜鹃,周子琪,刘海燕,刘雪涛,沈艺歌,杜金磊,陈丰,李亚娟. 磷肥种类及施磷水平对冬小麦生长发育和土壤磷库的影响. 麦类作物学报. 2024(08): 1048-1055 . 百度学术
    3. 古扎丽努尔·依明太,衡通. 新疆玉米节水灌溉技术研究进展. 南方农业. 2024(13): 245-249 . 百度学术
    4. 马培根,王开勇,刘旭,刘懂飞,崔文理,杨俊. 磷酸脲型酸性水溶肥的制备及其在石灰性土壤大豆种植上的应用效果. 生态产业科学与磷氟工程. 2024(08): 67-70 . 百度学术
    5. 卢圆明,王科捷,杨乔乔,王佳,康建宏. 引黄灌区滴灌水肥一体化下氮磷肥配施对春玉米干物质转运及肥料利用率的影响. 西南农业学报. 2023(03): 488-496 . 百度学术
    6. 刘少华,刘凯,廖欢,甘浩天,侯振安. 不同磷肥滴施对土壤有效磷时空分布、棉花产量及磷肥利用率的影响. 植物营养与肥料学报. 2023(07): 1323-1332 . 本站查看
    7. 李建峰,杨延龙,马超,鄂玉联,孙文广,王静,胡艳飞,郑继亮. 施用含不同磷源和腐殖酸液体肥料对棉花生长发育和磷肥利用率的影响. 肥料与健康. 2023(04): 38-43 . 百度学术
    8. 阳琴,徐博,占丰瑞,赵华,李虹颖,熊启中,孙瑞波,李硕,张朝春,叶新新. 不同分子量碳源对砂姜黑土磷素有效性和玉米磷吸收的影响. 土壤. 2023(05): 1001-1007 . 百度学术
    9. 朱灿灿,付森杰,秦娜,王春义,代书桃,宋迎辉,魏昕,李君霞. 磷肥施用深度对谷子根系分布、氮素吸收利用和产量的影响. 河南农业科学. 2023(12): 22-30 . 百度学术

    其他类型引用(8)

图(4)  /  表(6)
计量
  • 文章访问数:  2265
  • HTML全文浏览量:  579
  • PDF下载量:  84
  • 被引次数: 17
出版历程
  • 收稿日期:  2022-01-16
  • 录用日期:  2022-06-28
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-09-24

目录

/

返回文章
返回