• ISSN 1008-505X
  • CN 11-3996/S

大豆磷铁养分胁迫响应的FER基因鉴定及FER1缓解铁毒作用

吴丽霞, 欧斯艳, 麦翠珊, 黄丽雅, 张亚楠, 邓雅茹, 李方剑, 王金祥

吴丽霞, 欧斯艳, 麦翠珊, 黄丽雅, 张亚楠, 邓雅茹, 李方剑, 王金祥. 大豆磷铁养分胁迫响应的FER基因鉴定及FER1缓解铁毒作用[J]. 植物营养与肥料学报, 2023, 29(1): 81-96. DOI: 10.11674/zwyf.2022046
引用本文: 吴丽霞, 欧斯艳, 麦翠珊, 黄丽雅, 张亚楠, 邓雅茹, 李方剑, 王金祥. 大豆磷铁养分胁迫响应的FER基因鉴定及FER1缓解铁毒作用[J]. 植物营养与肥料学报, 2023, 29(1): 81-96. DOI: 10.11674/zwyf.2022046
WU Li-xia, OU Si-yan, MAI Cui-shan, HUANG Li-ya, ZHANG Ya-nan, DENG Ya-ru, LI Fang-jian, WANG Jin-xiang. Responses of FER family genes in Glycine max to low phosphorus stress and iron toxicity and the role of GmFER1 in iron toxicity tolerance[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 81-96. DOI: 10.11674/zwyf.2022046
Citation: WU Li-xia, OU Si-yan, MAI Cui-shan, HUANG Li-ya, ZHANG Ya-nan, DENG Ya-ru, LI Fang-jian, WANG Jin-xiang. Responses of FER family genes in Glycine max to low phosphorus stress and iron toxicity and the role of GmFER1 in iron toxicity tolerance[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 81-96. DOI: 10.11674/zwyf.2022046

大豆磷铁养分胁迫响应的FER基因鉴定及FER1缓解铁毒作用

基金项目: 广东省科技计划项目(2021B1212040008);国家重点研发项目(2021YFF1000500);华南农业大学2019年大学生创新创业训练计划项目(201910564201)。
详细信息
    作者简介:

    吴丽霞 E-mail: 528927199@qq.com

    通讯作者:

    王金祥 E-mail: jinxwang@scau.edu.cn

Responses of FER family genes in Glycine max to low phosphorus stress and iron toxicity and the role of GmFER1 in iron toxicity tolerance

  • 摘要:
    目的 

    FERRITIN (FER)是一类保守铁蛋白,对于维持铁的稳态及铁代谢中起重要作用。通过鉴定大豆FERRITIN (GmFER)基因家族的组成及其对低磷、铁毒等养分胁迫的响应,为今后研究FER功能奠定基础。

    方法 

    GmFER基因进行生物信息学分析,根据其编码的GmFER氨基酸序列,用ProtParam tool网站计算了GmFER家族的相对分子质量、氨基酸组成和等电点(PI);用PSORT网站预测GmFERs蛋白定位;从Phytozome网站下载GmFER家族的氨基酸序列与基因启动子序列,用 MEME 预测GmFER家族序列中的保守基序;用MEGA X对GmFERs进行进化分析,用最大似然法重建进化树;通过定量PCR分析GmFER对低磷、铁毒等养分胁迫的响应,构建GmFER1基因启动子融合GUS 报告基因的载体与GmFER1超表达载体,进一步分析GmFER1基因启动子活性和对铁毒的响应,以及异源超表达GmFER1对拟南芥耐受铁毒的影响。

    结果 

    大豆基因组有12个GmFER基因,对GmFERs进行进化分析,发现GmFERs可以分为4个亚组(亚组Ⅰ~Ⅳ),其中GmFER3、GmFER7、GmFER8、GmFER10和GmFER11属于亚组Ⅰ,GmFER2和GmFER9同属亚组Ⅱ;GmFER5和禾本科植物水稻和玉米的FER同属亚组Ⅲ,GmFER1、GmFER4、GmFER6、GmFER12属于亚组Ⅳ;通过MEME预测,GmFER家族序列中的保守基序有3个;蛋白亚细胞定位预测显示,大豆FER蛋白可定位于细胞质、线粒体和叶绿体。运用定量PCR技术检测GmFER基因在大豆根和叶的表达水平,发现12个GmFER基因在响应磷铁养分胁迫时存在差异,其中GmFER1GmFER4GmFER5GmFER6GmFER12受低磷诱导,GmFER1GmFER4GmFER12表达受铁毒诱导;对GmFER1启动子的活性进行分析,发现铁毒促进GmFER1启动子在根系的活性;在铁毒胁迫下,与野生型Col-0比,超表达GmFER1显著提高了拟南芥的主根长、侧根数目、侧根密度、叶绿素含量和鲜重,增强了耐铁毒的能力。

    结论 

    大豆基因组共有12个FER基因,GmFER基因响应低磷或铁毒等养分胁迫。超表达GmFER1可促进主根生长,增加侧根密度,提高叶绿素含量,增加植株鲜重,表明GmFER1在缓解铁毒胁迫方面起重要作用。

    Abstract:
    Objectives 

    FERRITIN (FER) is a kind of conserved ferritin. FER plays important roles in maintaining iron ion homeostasis and iron metabolism. We identified Glycine max FERRITIN (FER) genes, determined the responses of GmFERs to low P stress and Fe toxicity, and deciphered the roles of GmFER1 in iron tolerance via heterologous expression.

    Methods 

    The GmFER genes were identified via bioinformatics technique. Based on the encoded amino acid sequence of GmFERs, the relative molecular weight, amino acid composition and isoelectric point (PI) of GmFER family were calculated by ProtParam program. The subcellular localization of GmFERs was predicted by PSORT. The MEME suite was used to explore the conserved motifs in GmFER family. The phylogenetic tree was reconstructed by maximum likelihood method via MEGA X. Quantitative real time PCR was used to analyze the responses of GmFERs to low phosphorus (P) and iron toxicity. We constructed the vector of GmFER1 gene promoter fused with GUS reporter gene and overexpressing GmFER1 vector, and further analyzed the promoter activity of GmFER1 gene and its response to iron toxicity in Arabidopsis, as well as the effect on Arabidopsis thaliana tolerance to iron toxicity.

    Results 

    Soybean genome encodes 12 FERs. GmFERs can be divided into four subgroups (subgroups Ⅰ–Ⅳ), among which GmFER3, GmFER7, GmFER8, GmFER10 and GmFER11 belong to subgroup Ⅰ, GmFER2 and GmFER9 belong to subgroup Ⅱ; together with FERs from gramineous rice and maize, GmFER5 belongs to subgroup Ⅲ, and GmFER1, GmFER4, GmFER6, and GmFER12 belong to subgroup Ⅳ. The MEME suite predicted that there were three conserved motifs in the GmFER family. Subcellular localization prediction revealed that GmFERs appear to be localized in cytoplasm, mitochondria and chloroplast. Quantitative real time PCR analysis showed that 12 GmFER genes were differentially responsive to P and iron nutrient stress. Among them, GmFER1, GmFER4, GmFER5, GmFER6 and GmFER12 were induced by low P, and the expression of GmFER1, GmFER4, and GmFER12 was induced by iron toxicity. Iron toxicity promoted the activity of GmFER1 promoter in roots. Under iron toxicity stress, compared with wild-type Col-0, overexpressing GmFER1 significantly increased the length of primary root, number of lateral roots, lateral root density, chlorophyll content, and fresh weight of Arabidopsis, thus enhancing iron toxicity resistance.

    Conclusions 

    Soybean genome encodes 12 GmFERs. GmFER genes respond to low P or iron toxicity. Overexpression of GmFER1 improves the growth of transgenic Arabidopsis under iron toxicity via promoting primary root growth, lateral root formation, increasing lateral root density, chlorophyll content and fresh weight. Our results indicate that GmFER1 plays important roles in alleviating iron toxicity stress and enhancing the ability of plants to tolerate iron toxicity.

  • 铁是植物必需的微量元素,但细胞内铁的含量过高,则会因铁的强氧化能力产生氧化胁迫[1],因此铁的吸收和利用必须精确调控,才能维持植物细胞内铁稳态。双子叶植物如拟南芥 (Arabidopsis thaliana)和番茄 (Solanum lycopersicum)采用机制Ⅰ进行铁吸收,三价铁被还原为二价铁后通过根细胞膜上的铁转运子进入根细胞;在低铁环境下通过增加根的还原能力,促进质子的外排和还原剂的释放,促进铁的吸收[2]。番茄转录因子Fer是最早被鉴定的关键铁营养调节因子,它是一个细胞核定位的bHLH蛋白[3]Fer在番茄根尖的表达不依赖于铁的供应,其在转录水平调节番茄根的发育和生理进而调节铁营养。FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT)是拟南芥铁信号网络的核心转录因子,FIT与bHLH38/39/100/101互作而调控下游缺铁响应基因FERRIC REDUCTION OXIDASE2 (FRO2)、IRON-REGULATED TRANSPORTER1 (IRT1)的表达[4]

    FERRITIN (FER)是一类保守的铁蛋白,FER对维持铁离子的稳态以及铁代谢起重要作用[5]。动物FER蛋白一般位于细胞质,而植物FER蛋白一般定位于质体和线粒体[6]。拟南芥含有4个FER基因 (AtFER1~AtFER4),拟南芥FER基因受过量铁、H2O2、冷害以及ABA诱导表达,在其启动子区域存在铁响应元件 (IDS)[7]。敲除拟南芥FER1可导致叶片在光照条件下早衰,以及光合效率下降和叶绿素降解[8]AtFER4位于线粒体,但fer4突变体表型和野生型没有差别,对铁毒、盐害、冷害和百草枯处理引起的氧化胁迫没有作用[6]AtFER1AtFER3AtFER4在根、叶均快速 (6 h)受铁诱导表达,尤其是AtFER1;与野生型相比,在500 μmol/L Fe (Ⅲ)-EDTA培养条件下,拟南芥fer1-3-4三突变体根积累的铁明显少[9]。FER蛋白不仅作为一种铁贮藏蛋白,还参与保护植物,避免因过量铁导致的氧化胁迫。在正常铁营养条件下,fer1-3-4三突变体根部过氧化氢酶 (catalase, CAT)活性和野生型没有差别,但在过量铁条件下,fer1-3-4和野生型拟南芥根部CAT活性增加,但fer1-3-4突变体CAT活性增加幅度比野生型多40%[9]。超表达FER基因可增强葡萄 (Vitis vinifera)耐受非生物胁迫的能力[10]。超表达小麦 (Triticum aestivum L.) FER-5B可以增强小麦的耐热能力和清除ROS相关的非生物胁迫逆境耐受能力[11]。用水稻 (Oryza sativa)种子贮藏蛋白 (Glutelin promoter, GluB-1)启动子驱动大豆 (Glycine max) FERRITIN基因在水稻表达,提高水稻种子铁含量[12]。大豆SFerH1 SFerH2可形成异源多聚体,大豆Ferritin基因表达可提高凤梨 (Ananas Mill)铁和锌的含量,以及酵母 (Saccharomyces cerevisiae)铁的含量[13-14]。大豆FER基因受100 μmol/L柠檬酸铁诱导表达,大豆FER基因的表达量在种子发育早期积累, 后期表达量下降[15]。在烟草 (Nicotiana tabacum)超量表达大豆FER基因 (Glyma.18g205800)提高烟草耐低铁能力,增加转基因烟草的叶绿素含量和过氧化物酶(peroxidase,POD)活性[16]

    我国南方酸性土常存在有效磷含量低,pH偏低以及铁含量过高的问题,因此南方大豆需适应低磷和铁过量的双重胁迫。磷铁营养间存在相互作用,酸性土壤中铁含量过高会导致土壤有效磷含量降低;磷的存在也会影响铁的有效性,从而影响铁响应基因的调节。水稻叶子缺铁失绿只在磷供给充分的条件下出现[17-18]。水稻HRZs (Hemerythrin Motif-Containing Really Interesting New Gene and Zinc-Finger Protein1) 是磷铁营养互作的节点。低铁诱导E3酶基因HRZ 表达,HRZ与水稻磷信号关键成员PHR2互作促进PHR2在K319和K328的泛素化,进而促进PHR2的降解;另一方面,水稻PHR负调控HRZ的转录[19]。因此PHR/HRZ是调控水稻磷铁营养及平衡的关键成员。Aluminum Sensitive3 (ALS3) 基因突变导致拟南芥在低磷条件下根系积累Fe3+,其主根生长对低磷过敏感[20]LPR1 (Low Phosphate Root1)和lpr2 (Low Phosphate Root1)编码铁氧化酶 (ferroxidase),lpr1lpr2突变体对低磷不敏感,根系积累较少的铁;遗传分析证明,ALS3LPR1/2在一个信号通路[21]。近年来的转录组分析发现,植物FER基因表达水平受磷水平调节[17]。这暗示FER基因可能在磷铁互作方面起作用。

    虽然对拟南芥FER基因的研究和了解较多,但对大豆FER基因的研究还不深入。本研究以大豆为试验材料进行分析,旨在为今后深入研究大豆FER功能打下基础。

    采用的大豆品种为粤春03-3 (YC03-3),拟南芥为哥伦比亚生态型 (Columbia-0,Col-0)。

    以4个拟南芥FER蛋白的氨基酸序列为参考,在植物基因组数据库Phytozome网站 (https://phytozome-next.jgi.doe.gov)对大豆 (Glycine max Wm82.a2.v1)蛋白质组进行BLASTP比对,比对矩阵为BLOSUM62,E值设定为1e-25;结合保守的FER 结构域 (PF00210)分析,获得大豆FER基因及其编码蛋白序列。以大豆、拟南芥 (Arabidopsis thaliana TAIR10)、水稻 (Oryza sativa v7.0)、玉米 (Zea mays B84 v1.2)、番茄 (Solanum lycopersicum ITAG4.0)、马铃薯 (Solanum tuberosum v6.1)等作物蛋白质组的FER蛋白的氨基酸序列为基础,使用软件MEGA X,用最大似然法重建植物FER蛋白进化树,bootstrap值设定为100。

    根据大豆基因组以及转录组序列,用PerlPrimer程序设计特异的GmFER定量PCR引物 (表1)。按照常规的定量PCR方法进行扩增,并计算GmFER的相对表达水平,内参基因为GmEF1a (Glyma.17G186600)。定量PCR仪器为实时荧光定量PCR仪 (Applied Biosystems 7500,Foster City,USA)。

    表  1  载体构建及定量PCR相关引物
    Table  1.  Vector construction and primers used for quantitative PCR
    引物 Primer引物序列 Primer sequence用途 Application
    GmFER1.qFGGTCTTTCTAAGGGTGTTGGTG定量 PCR Quantitative PCR
    GmFER1.qRCTTGAAGAACTTTGCAAGTCCT定量 PCR Quantitative PCR
    GmFER2.qFCAGCATGCTGAGATTATGATGG定量 PCR Quantitative PCR
    GmFER2.qRTGCCAAACAGTATTACCATGTC定量 PCR Quantitative PCR
    GmFER3.qFCTCATTAGAGAAGCTAACGAACG定量 PCR Quantitative PCR
    GmFER3.qRCTCATTAGAGAAGCTAACGAACG定量 PCR Quantitative PCR
    GmFER4.qFAGAACTATGCTGATGAGTCCGA定量 PCR Quantitative PCR
    GmFER4.qRTTCCTTGAAGAACTTGGCAAGTC定量 PCR Quantitative PCR
    GmFER5.qFCGTTTGAGGAAGATCGTGATGG定量 PCR Quantitative PCR
    GmFER5.qRGAGGTAGCTCCTCCAGATCC定量 PCR Quantitative PCR
    GmFER6.qFAATATCAGAATACTCGCGGTGGA定量 PCR Quantitative PCR
    GmFER6.qRTCGCTTTCAATGAAGTCTGCC定量 PCR Quantitative PCR
    GmFER7.qFAAATACACCGATGACTGCGAG定量 PCR Quantitative PCR
    GmFER7.qRAGCAAGTTCCATTGCATACAG定量 PCR Quantitative PCR
    GmFER8.qFACGTTGACGAATCTGAGTCC定量 PCR Quantitative PCR
    GmFER8.qRTAATGACAGAGCGAGTTCCA定量 PCR Quantitative PCR
    GmFER9.qFTGTGGCTAAGGTCTCTAAGGAG定量 PCR Quantitative PCR
    GmFER9.qRGTACTCCACGTTGATCTGTGC定量 PCR Quantitative PCR
    GmFER10.qFGCATCAATGTTTATGCCAACACC定量 PCR Quantitative PCR
    GmFER10.qRGTGGTTGTTGGAGTCCTTGG定量 PCR Quantitative PCR
    GmFER11.qFCTTGCTCGCCAGAAGTACAC定量 PCR Quantitative PCR
    GmFER11.qRCCTCGCTTGTTCTGATATTCCA定量 PCR Quantitative PCR
    GmFER12.qFTGAAATATCAGAACACTCGCGG定量 PCR Quantitative PCR
    GmFER12.qRGCTTTCAATGAAGTCGGCCA定量 PCR Quantitative PCR
    GmFER1.oxFTTGTACAAAAAAGCAGGCTATGGCCCTTTCTTGCTCCAAAGT过表达 Overexpression
    GmFER1.oxRGTACAAGAAAGCTGGGTTTATACATGATCTTCATCGTG过表达 Overexpression
    GmFER1.proFTTGTACAAAAAAGCAGGCTATAGTCATGTTAGCAATCAT启动子分析 Promotor analysis
    GmFER1.proRGTACAAGAAAGCTGGGTAATTCAATGGCGGATATTGA启动子分析 Promotor analysis
    GmEF1a.qFTGCAAAGGAGGCTGCTAACT定量 PCR Quantitative PCR
    GmEF1a.qRCAGCATCACCGTTCTTCAAA定量 PCR Quantitative PCR
    AtEF1a.qFCTGGAGGTTTTGAGGCTGGTAT定量 PCR Quantitative PCR
    AtEF1a.qRCCAAGGGTGAAAGCAAGAAGA定量 PCR Quantitative PCR
    下载: 导出CSV 
    | 显示表格

    根据GmFER1的cDNA序列,利用引物扩增GmFER1的ORF,然后按照基于重组克隆 (gateway clone)的方法构建pMDC32-GmFER1超表达载体,35S启动子驱动GmFER1的表达。

    扩增GmFER1的启动子序列,通过重组克隆的方法,利用pMDC162载体构建proGmFER1::GUS的报告载体。测序无误后,按常规分子生物学方法转化GV3101农杆菌。

    采用砂培法进行大豆YCO3-3种子催芽。当种子萌发到两片初生叶(子叶)已完全展开,第一片三出复叶还没有完全打开、主根长为8~10 cm时,选择正常、长势一致的幼苗移栽至正常营养液培养。

    待第一片三出复叶完全展开而第二片三出复叶未完全展开时,对幼苗进行如下处理:正常磷 (NP, 500 µmol/L KH2PO4)、低磷 (LP, 25 µmol/L KH2PO4)、正常铁 (NF,50 μmol/L Fe-EDTA)、高铁 (HF,500 μmol/L Fe-EDTA)、其中正常磷和正常铁的营养液成分相同。每个处理4个生物学重复。经过14天的长期处理后采样,液氮冷冻,−80℃保存。

    用花序浸泡法转化拟南芥[22],得到单拷贝插入转基因T3代纯合材料后,提取转基因材料莲座叶RNA,反转录后进行定量PCR,确定GmFER1的转录水平。内参基因为拟南芥AtEF1a (At1g07940)。

    构建proGmFER1::GUS的报告载体后,转化拟南芥,通过潮霉素筛选获得单拷贝插入的转基因材料。对植株进行GUS染色,在立体显微镜下观察拍照,分析启动子活性。

    对拟南芥进行正常铁 (50 μmol/L) 和铁毒处理 (500 μmol/L)。将成熟饱满的Col-0与两个超表达GmFER1拟南芥株系 (OE-1、OE-9)种子分别播种于含有正常营养的1/2 MS培养基上,放置在4℃低温层积处理2天,然后将其转移到人工气候培养箱进行培养,光照/黑暗周期为16 h/8 h,温度周期为23℃/21℃,光照强度为100 μmol/(m2·s),相对湿度为70%。3天后分别挑选若干株长势一致的野生型与超表达GmFER1拟南芥幼苗于铁毒培养基上,每个处理3次重复,生长7天后收样,测定相关根系指标,在体视镜下统计侧根数目。取6株拟南芥苗称重,测量Col-0与超表达GmFER1拟南芥 (OE-1)在正常铁与铁毒条件培养10天后的鲜重。参照文献[23]中的方法,用80%丙酮提取叶片的叶绿素,分别在645 nm与663 nm下测定光吸收值,计算叶片的总叶绿素含量。

    基于大豆蛋白质组序列 (https://phytozome-next.jgi.doe.gov),以拟南芥4个FER蛋白的氨基酸序列为种子序列,进行迭代BLASTP比对, 结合保守的FER 结构域 (PF00210)分析筛选,确定大豆基因组存在12个FER基因,命名为GmFER1GmFER12 (表2)。根据其编码的GmFER氨基酸序列,用ProtParam程序 (http://www.expasy.org/tools/protparam.html)分析其相对分子质量、氨基酸组成和等电点 (PI)。大豆FER蛋白的氨基酸数目范围为89~265,其中GmFER2、GmFER5和GmFER10氨酸酸数目较少,分别为136、89、141个;除GmFER3外,其他GmFER等电点都小于6 (表2)。

    表  2  大豆FER基因家族及编码蛋白信息
    Table  2.  Soybean FER gene family and encoded protein information
    基因名称
    Gene name
    基因编号
    Gene code
    染色体位置
    Chromosome position
    蛋白定位
    Protein location
    外显子数目
    Number of exons
    氨基酸数目
    Amino acid number
    分子量
    Molecule weight
    等电点 (PI)
    Isoelectric point
    GmFER1Glyma.01G124500Chr01:42969803..42973300 reverse叶绿体 Chloroplast825729 KD5.77
    GmFER2Glyma.02G230400Chr02:41799131..41800314 forward细胞核 Nuclear613616 KD5.54
    GmFER3Glyma.02G262500Chr02:44848704..44851315 forward叶绿体 Chloroplast725028 KD6.41
    GmFER4Glyma.03G050100Chr03:6536627..6540105 forward叶绿体 Chloroplast825929 KD5.94
    GmFER5Glyma.05G095400Chr05:24717005..24740291 reverse细胞质 Cytoplasmic58910 KD5.44
    GmFER6Glyma.07G155200Chr07:19063418..19066342 reverse叶绿体 Chloroplast825028 KD5.71
    GmFER7Glyma.11G232600Chr11:32791010..32794579 reverse线粒体基质 Mitochondrial matrix825629 KD5.36
    GmFER8Glyma.14G056800Chr14:4541230..4543915 forward叶绿体 Chloroplast824727 KD5.64
    GmFER9Glyma.14G197500Chr14:46280213..46282933 forward叶绿体 Chloroplast826530 KD5.56
    GmFER10Glyma.18G004600Chr18:367188..368739 reverse细胞质 Cytoplasmic414116 KD5.79
    GmFER11Glyma.18G024600Chr18:1821792..1824932 forward叶绿体 Chloroplast824828 KD5.44
    GmFER12Glyma.18G205800Chr18:48947661..48950635 reverse叶绿体 Chloroplast825028 KD5.72
    下载: 导出CSV 
    | 显示表格

    根据GmFERs的氨基酸序列,用PSORT网址 (https://psort.hgc.jp)预测蛋白亚细胞定位。发现GmFER1、GmFER3、GmFER4、GmFER6、GmFER8、GmFER9、GmFER11、GmFER12的蛋白定位在叶绿体,GmFER5和GmFER10定位在细胞质,GmFER2定位在细胞核,GmFER7定位在线粒体基质中 (表2)。

    从Phytozome网站下载GmFER家族的氨基酸序列与基因启动子序列。用MEME Suite (https://meme-suite.org/meme/index.html)预测GmFER家族序列中的保守基序 (Motif),发现GmFER1、GmFER3、GmFER4、GmFER6、GmFER7、GmFER8、GmFER9、GmFER11、GmFER12均具有3个保守基序,而GmFER2只有两个保守基序,GmFER5、GmFER10只有一个保守基序 (图1a)。我们用T-coffee程序对大豆FER蛋白的氨基酸序列进行了比对 (alignment)。如图1b所示,大豆FER家族氨基酸序列的同源程度较高,3个保守的基序 (Motif)分别用红色、蓝色和绿色的方框标示。

    图  1  GmFER蛋白家族的保守区域预测
    注:用MEME程序分析大豆FER蛋白家族的保守基序,GmFER含有3个保守的基序,用T-coffee程序对GmFER氨基酸序列进行了同源比对;图a为GmFER蛋白保守的3个基序(motif)及其分布位置,图b为GmFER蛋白氨基酸序列同源比对
    Figure  1.  Conservative region prediction of GmFER protein family
    Note: Analysis of conserved motifs of soybean FER protein family by MEME program, GmFER contains three conserved motifs. Alignment of GmFER amino acids by T-coffee. Figure a shows the hree conserved motifs and their distribution positions of GmFERs. Figure b shows the homologous alignment of amino acid sequence of GmFER protein

    利用alphafold程序 (https://www.alphafold.ebi.ac.uk/)对GmFER蛋白的三维结构进行了预测分析。发现GmFER1、GmFER2、GmFER4、GmFER6、GmFER8、GmFER12 均具有7个α-螺旋 (alpha-helix),GmFER4还具有2个β-折叠 (beta-sheet);GmFER3、GmFER7、GmFER9和GmFER11具有6个α-螺旋;而GmFER5和GmFER10 分别只具有 4个和3个α-螺旋 (图2)。

    图  2  GmFER三维结构图
    Figure  2.  Three-D structural chart of GmFERs

    以大豆GmFER蛋白家族的氨基酸序列作为参考,在Phytozome网站 (https://phytozome-next.jgi.doe.gov/index.php)上进行同源蛋白的比对,选取4个拟南芥 (AT)、3个马铃薯 (Soltu)、2个玉米 (Zm)、2个水稻 (Os)、2个番茄 (Solyc)等共25个FER蛋白重建进化树。如图3所示,GmFER可以分为4个亚组 (亚组 I~IV),其中GmFER3、GmFER7、GmFER8、GmFER10和GmFER11属于亚组I,GmFER2和GmFER9同属亚组II;GmFER5独属于亚组III,和禾本科植物水稻和玉米的FER同属亚组III;GmFER1、GmFER4、GmFER6、GmFER12属于亚组IV。

    图  3  大豆FER蛋白家族进化分析
    注:Gm—大豆;AT—拟南芥;Zm—玉米;Os—水稻;Solyc—番茄;Soltu—马铃薯。树图中蛋白编号AT5G01600、AT3G11050、AT3G56090和AT2G40300对应的蛋白分别是AtFER1、AtFER2、AtFER3和AtFER4。用MEGA X进行进化分析[24],用最大似然法重建进化树,两两之间的距离估计使用JTT+G模型,这一分析涉及25个蛋白质序列,总共分析286个位点;自展值测试设定为100次重复,自展值重复率少于50%的值没有在图中显示
    Figure  3.  Evolutionary analysis of soybean FER protein family
    Note: Gm—Glycine max; AT—Arabidopsis thaliana; Zm—Zea mays; Os—Oryza sativa; Solyc—Solanum lycopersicum; Soltu—Solanum tuberosum. The code AT5G01600, AT3G11050, AT3G56090 and AT2G40300 represent gene of AtFER1, AtFER2, AtFER3 and AtFER4. Evolutionary analysis was by MEGA X[24], the maximum likelihood method was used to reconstruct the evolutionary tree, the distance between two pairs of genes was estimated using JTT + G model, and 25 amino acid sequences were involved and a total of 286 loci were analyzed. The bootstrap test is set to 100 repetitions, and the value with bootstrap replicates less than 50% is not shown in the figure.

    通过NCBI网站 (https://www.ncbi.nlm.nih.gov)进行同源蛋白的比对,发现GmFER1、GmFER4、GmFER6和GmFER12与AtFER1高度同源,其中,GmFER1与AtFER1的同源性 (identity)为75%。分析的6种植物间FER蛋白的蛋白质序列同源性介于54%~91%。

    基于拟南芥FER基因受PHR1、bHLH105/IRL等转录因子调控,启动子区域存在IDRS (Iron-Dependent Regulatory Sequence)、G-BOX以及P1BS (PHR1-binding sequence)等元件[25] 。本研究分析了大豆FER基因是否存在这些顺式元件。从Phytozome网站下载大豆 (W82.a2版本) FER基因启动子序列,即从起始密码子ATG上游截取2000 bp序列进行上述3个响应元件分析。如表3所示,大豆FER基因启动子没有IDRS序列,仅GmFER8启动子含有G-box元件,GmFER8GmFER9GmFER10启动子含有P1BS元件。

    表  3  大豆FER基因启动子元件及其位置
    Table  3.  Promoter elements and their positions in soybean FER gene
    基因 GeneIDRS 元件 IDRS (CACGAGCCCTCCAC)G盒子元件 G-box (GTCGAC)P1BS元件 P1BS (GNATATNC)
    GmFER1无 No无 No无 No
    GmFER2无 No无 No无 No
    GmFER3无 No无 No无 No
    GmFER4无 No无 No无 No
    GmFER5无 No无 No无 No
    GmFER6无 No无 No无 No
    GmFER7无 No无 No无 No
    GmFER8无 No1个 One (–928~922)1个 One (–357~349)
    GmFER9无 No无 No1个One (–1385~1377)
    GmFER10无 No无 No1个One (–153~146)
    GmFER11无 No无 No无 No
    GmFER12无 No无 No无 No
    注:括号内为启动子元件位置,起始密码子ATG的A位置为0,往前为启动子区域,为负数,“-928”代表5′—UTR前第928个碱基,其他类推。
    Note: Inside the bracket is the position of promoter element, the position A of the start codon ATG is 0, and the promoter region is forward, with a negative number, and "–928" represents the 928th base before the 5′—UTR, and so on.
    下载: 导出CSV 
    | 显示表格

    从大豆公共数据库网站 (www.soybase.org)下载了大豆FER基因在不同器官的表达水平数据,制成热图。GmFER11是所有GmFER基因在叶中的表达水平最高的;GmFER8GmFER4GmFER3在花内的表达水平位于前三;GmFER1GmFER12在种子中的表达量最高;GmFER8、GmFER12GmFER3在根的表达水平相对较高;而GmFER12在根瘤的表达水平最高 (图4A)。但因为当时 (2010)大豆基因组和转录组序列还不完善,没有注释GmFER10基因。因此图4A没有显示GmFER10相关结果

    图  4  GmFER基因在不同部位(A)以及不同胁迫条件(B)下的表达水平热图
    注:A图颜色标尺显示表达值范围,单位是RPKM (reads per kilobase/million),从最高表达水平级别(红色)到最低表达水平级别(蓝色);图B颜色标尺显示GmFER基因表达水平的变化程度(倍数,log2FC)。A图X轴项目中的DAF表示受精后天数,10DAF—受精后10天,其他类推,B图X轴项目括号中的L、R分别表示叶、根。–P—低磷胁迫 (0 μmol/L KH2PO4);–K—低钾胁迫 (0.5 mmol/L KCl);–Fe—低铁胁迫 [50 μmol/L Fe(NO3)3·9H2O];–Zn—低锌胁迫 (0 μmol/L ZnSO4);Al—铝毒胁迫 (25 μmol/L AlCl3)。
    Figure  4.  Heat map of expression levels of GmFER genes in different parts and under different stress conditions
    Note: The color bar in Figure A shows the range of expression values, the numerical unit is RPKM (reads per kilobase/million), from the highest expression level (red) to the lowest expression level (blue). The color bar in Figure B shows fold changes of expression level (log2FC). DAF in the X axis is abbreviation of days after fertilization, 10DAF—10 days after fertilization, and so on, and the L and R in parentheses of X axis in figure B represent leaf and root. –P—Low phosphorus stress (0 μmol/L KH2PO4); –K—Low potassium stress (0.5 mmol/L KCl); –Fe—Low iron stress [50 μmol/L Fe(NO3)3·9H2O]; –Zn—Low zinc stress (0 μmol/L ZnSO4); Al—Al poison stress (25 μmol/L AlCl3)

    通过查阅文献,分析了GmFER基因对养分、干旱等胁迫的响应图4B所示,GmFER1GmFER4在大豆根受铝毒诱导表达[26]GmFER4GmFER8GmFER12受干旱诱导,而GmFER7GmFER11被干旱胁迫抑制表达[27];在低铁条件下,GmFER7GmFER11在叶的表达受抑制[28];在低钾条件下,GmFER4GmFER6在叶的表达受抑制,而GmFER11在根表达受抑制[29];缺锌胁迫会导致GmFER1在叶上调表达,而GmFER1在根下调表达[30]。缺磷胁迫导致植株根中的GmFER6GmFER11GmFER12上调表达[31]。这些结果说明,大豆FER蛋白可能参与应答和应对多种养分及干旱等非生物胁迫。

    为了鉴定GmFER基因对低磷胁迫的响应,运用定量PCR技术检测GmFER基因在大豆根和叶的表达水平。对大豆进行了长期 (14天)低磷 (LP)胁迫处理,然后分别提取根、叶的RNA进行了定量PCR分析。与正常磷 (NP)相比,LP条件下在根上调表达的有GmFER1GmFER4GmFER6GmFER7、GmFER12 (P<0.05);在叶明显上调表达的有GmFER1GmFER5GmFER6GmFER7、GmFER8、GmFER12 (P<0.05);在根和叶均受LP诱导的有GmFER1、GmFER6、GmFER7、GmFER12;而GmFER3在根叶均不响应LP胁迫 (图5)我们尝试了很多对引物检测GmFER2GmFER9GmFER10表达水平,但PCR结果均不好,因此没有展示这3个基因的结果。

    图  5  正常磷和低磷下GmFER基因在根部和叶片中的相对表达水平
    注:数据为3次重复平均值。NP—正常磷处理(500 µmol/L KH2PO4);LP—低磷处理(25 µmol/L KH2PO4)。 柱上*、**、***、****分别表示低磷(LP)与正常磷(NP)之间差异达 0.05、0.01、0.001、0.0001显著水平,ns表示差异不显著
    Figure  5.  The relative expressions of GmFERs in root and leaves of soybean under nomal and low P treatments
    Note: The data were average of 3 replicates. NP—Normal P treatment (500 µmol/L KH2PO4); LP—Low P treatment (25 µmol/L KH2PO4). *, **, *** and **** above the bars indicate significant difference between LP and NP at 0.05, 0.01, 0.001 and 0.0001 levels, respectively, and ns indicates no significant difference

    过去的研究表明,拟南芥FER基因表达受铁调控,且在高铁条件下蛋白水平增加以结合铁,缓解过多铁带来的胁迫。为了明确GmFERs对铁毒 (过量铁)的响应,我们检测了GmFERs在大豆根和叶的表达水平。设置对照正常铁 (NF,50 μmol/L Fe)、高铁 (HF,500 μmol/L Fe),进行长期 (14天)培养。然后分别提取根、叶的RNA,进行定量PCR分析。与NF相比,HF诱导GmFER1GmFER6在根表达,HF诱导GmFER6GmFER11在叶表达 (图6)。这些结果暗示GmFER1GmFER6GmFER11 在缓解大豆铁毒胁迫方面起重要作用。

    图  6  高铁与正常铁下GmFER基因在根部和叶片中的相对表达水平(t检验)
    注:数据为3次重复平均值。NF正常铁处理(50 µmol/L Fe-EDTA);HF高铁处理(500 µmol/L Fe-EDTA)。
    Figure  6.  The relative expression level of GmFERs in root and leaves of soybean under high and normaliron Fe treatments (t-test)
    Note: The data were average of 3 replicates. NF—Normal iron treatment (50 µmol/L Fe-EDTA); HF—High iron treatment (500 µmol/L Fe-EDTA).

    基于GmFER1响应铁毒胁迫 (图6),为了进一步分析GmFER1基因的启动子活性及对铁毒的响应,我们构建了GmFER1基因启动子融合GUS 报告基因的载体,然后转化拟南芥,得到了proGmFER1::GUS-1、proGmFER1::GUS-3、proGmFER1::GUS-4 等3个报告基因株系。根据预试验结果选择proGmFER1::GUS-4 进行后续试验。

    为了探究不同铁浓度条件下GmFER1启动子的组织活性,播proGmFER1:: GUS-4的转基因拟南芥种子于正常基质,在正常条件下生长3天后,将幼苗移到缺铁 (LF,0 μmol/L Fe)、正常铁 (NF,50 μmol/L Fe)、和铁毒 (HF,500 μmol/L Fe)不同的铁浓度环境中,培养7天后,进行GUS染色。将染色后的根尖放置在显微镜下进行观察。在NF条件下,GmFER1启动子在主根根尖分生区、延长区及成熟区活动,不在根冠活动;和NF处理相比,HF处理7天后的植株主根GUS染色程度更深 (图7),说明铁毒增强GmFER1启动子活动。这与定量PCR结果一致。

    图  7  不同铁浓度处理7天植株根部的GUS染色
    Figure  7.  GUS staining of plant roots treated with different iron concentrations for 7 days
    Note: LF—Iron deficiency (0 μmol/L); NF—Normal iron (50 μmol/L); HF—Iron toxicity, (500 μmol/L)

    为了探究不同铁毒处理时间下GmFER1启动子的组织化学定位,播种proGmFER1::GUS-4的转基因拟南芥种子于正常基质,在正常条件下生长3天后,将幼苗移到HF条件基质中,分别进行0、3、24 h的铁毒处理。从整株染色后的植株可以看出,植株的根、茎、叶均能观察到GUS染色,且随着铁毒处理时间的增长,GUS染色的范围增大、程度更深 (图8)。

    图  8  不同铁毒处理时间后植株叶与根部位的GUS染色
    Figure  8.  GUS staining of leaves and roots after different hours of iron toxicity treatment

    与0、3 h 铁毒处理的植株叶片相比,经过24 h铁毒处理过后的植株叶片GUS染色更加明显 (图8),这就说明在植株的叶片部位,随着铁毒处理时间的延长,GmFER1基因启动子活动增强。

    0 h 铁毒处理的植株根尖,几乎没有GUS染色;3 h 铁毒处理的植株根尖,仔细观察会发现有弱的染色;24 h铁毒处理的植株根尖,整个主根根尖部分都观察到有明显的GUS染色 (图8)。

    图7图8结果说明,短期 (3 、24 h)和长期 (7天)铁毒胁迫均促进GmFER1启动子在根和叶的活动。

    为了初步探究GmFER1的功能,我们构建GmFER1超表达载体并转化野生型拟南芥Col-0,筛选获得T3代纯合转基因材料 (GmFER1OE-1、GmFER1OE-8、GmFER1OE-9、GmFER1OE-10)。定量PCR分析发现GmFER1OE-1与GmFER1OE-9转基因株系中GmFER1的相对表达量显著增加 (图9),因此选择GmFER1OE-1与GmFER1OE-9进行后续实验。

    图  9  GmFER1 过表达株系鉴定
    注:**、***、****分别表示Col-0与各株在0.01、0.001、0.0001水平差异显著
    Figure  9.  Identification of overexpressing GmFER1 lines
    Note: **, ***, **** indicate the difference between each line and Col-0, respectively

    鉴于GmFER1受铁毒诱导,因此重点分析GmFER1超量表达对拟南芥耐铁毒 (HF)的影响。Col-0、GmFER1OE-1、GmFER1OE-9在正常条件培养3天,然后移到HF下培养7天后测定根系相关参数。在NF条件下,Col-0、GmFER1OE-1和GmFER1OE-9 的主根长度和侧根密度没有差异 (数据未列出)。和NF相比,HF处理抑制Col-0主根的生长和增加侧根密度,这与文献报道一致[22]。在HF条件下,GmFER1OE-1和GmFER1OE-9的主根长度明显比Col-0的长,分别是Col-0的1.36倍和1.32倍 (P <0.001,图10 a, b )。

    图  10  GmFER1超表达增加拟南芥在铁毒条件下主根长度、侧根数目和侧根密度
    注:B图X轴中Col-0、OE-1、OE-9分别表示哥伦比亚野生型拟南芥、GmFER1超表达株系1、GmFER1超表达株系9。*、**、***、****分别表示GmFER1基因超表达材料与野生型之间的差异在0.05、0.01、0.001、0.0001水平差异显著。箱形图中下面一条线代表25%的数值,中间的一条线代表中位数,上面一条线代表75%的数值,中间的点代表平均数,方柱上方突出来的点为异常数值
    Figure  10.  Overexpression of GmFER1 increases the primary root length, lateral root number, and density of lateral root in Arabidopsis under iron toxicity
    Note: Col-0, OE-1 and OE-9 in the X-axis of figure B represent Columbia wild-type Arabidopsis, GmFER1 overexpression strain 1 and GmFER1 overexpression strain 9, respectively. *, **, *** and **** above the bars indicate the difference between GmFER1 gene overexpression material and wild type at significant level of 0.05, 0.01, 0.001 and 0.0001, respectively. In the box plot, the bottom line represent 25% of the values, the middle line represent the median, the upper line represent 75% of the values, the middle point is the average, and the prominent point on the square column is the anomaly value

    在HF条件下GmFER1OE-1和GmFER1OE-9的侧根数明显比Col-0多,和Col-0比,两个超表达系侧根数目分别增加 253% 和 188% (P<0.001,图10 b)。

    在HF条件下,GmFER1OE-1和GmFER1OE-9的侧根密度分别是Col-0的 1.9和 1.5 倍 (P<0.05,图10 b )。

    GmFER1超量表达除了能改善拟南芥在HF条件下根系的生长与发育,还能改善植株的整体生长状况。因为GmFER1OE-1材料GmFER1的表达水平比GmFER1OE-9材料的高 (图9),后续试验采用GmFER1OE-1材料。在对照正常铁 (NF, 50 µmol/L Fe)条件下,GmFER1OE-1和Col-0 的鲜重和叶绿素含量没有差异。在HF (500 µmol/L Fe)处理下,与Col-0相比,GmFER1OE-1材料的鲜重明显比Col-0的大,是Col-0的1.09倍 (P<0.001,图11)。在HF条件下,GmFER1基因超表达材料GmFEROE-1的叶绿素含量明显比Col-0高,是Col-0的1.05倍 (P<0.05)。这些结果说明,GmFER1超表达改善根系生长和发育,提高了植株中叶绿素含量,增加鲜重,GmFER1超表达增强拟南芥对铁毒的耐受能力。

    图  11  超表达GmFER1增加拟南芥在铁毒下鲜重和叶绿素含量
    注:Col-0、OE-1分别表示哥伦比亚野生型拟南芥、GmFER1超表达株系。*、**分别表示GmFER1基因超表达材料与野生型之间的差异在0.05、0.01水平显著,ns表示差异不显著
    Figure  11.  Overexpression of GmFER1 increases the fresh weight and chlorophyll content in Arabidopsis under iron toxicity
    Note: Col-0, OE-1 represent Columbia wild-type Arabiolopsis, GmFER1 overexpression strain. NF—Normal iron (50 μmol/L); HF—Iron toxicity (500 μmol/L). * and ** above the bars indicate significant difference between GmFER1 gene overexpression material and wild type at 0.05 and 0.01 levels, ns indicates no significant difference

    铁是植物生长发育所必需的微量元素。但在有氧条件下,铁能够与H2O2反应 (Fenton反应)生成活性氧 (ROS),过多ROS对植物是有害的。因此植物铁的吸收、转运以及在细胞内的分布受到严格调控。FER作为植物体内储存结合铁的蛋白,在植物生长发育、氧化胁迫相关的逆境抵抗和维持铁营养稳态方面起重要作用。动物细胞主要通过转录后水平调控FER[32],而植物FER主要在转录水平受到调控[32]

    陈华涛等[15]分析了大豆FER基因家族,没有本研究报道的GmFER2GmFER5GmFER9GmFER10 (表2)。本研究发现,大豆12个FER基因共分为 4个亚组 (图3)。GmFER1、GmFER4、GmFER6、GmFER12与AtFER1同属一个亚组,表明同源性高。蛋白亚细胞定位预测显示,大豆FER蛋白可定位于细胞质、线粒体或叶绿体 (表2)。拟南芥基因组只有4个FER基因,而大豆具有12个,这可能与大豆基因组更大更复杂有关。GmFER12GmFER8在根瘤和根中的表达水平高 (图4A),说明这两个基因可能在调节根和根瘤铁稳态和抗氧化胁迫方面起重要作用。此外,GmFER1GmFER12在大豆种子中的表达水平高 (图4A),暗示利用这两个基因进行作物遗传转化,可以提高作物种子中的铁含量。

    拟南芥FER基因启动子元件还存在G-BOX元件 (CACGTG)。在铁不过量的条件下,ILR3通过结合在FER基因的G-BOX元件从而抑制FER1FER3FER4的转录[24-25]。而和IRL3同组的其他bHLH转录因子,如bHLH34、bHLH104 和bHLH115则不抑制FER的转录,IRL3的调控作用需要bHLH47/PYE与其蛋白互作[25]。大豆基因组也存在很多bHLH基因,推测大豆bHLH也调控GmFER的转录。明确哪些bHLH类转录因子直接结合在GmFERs基因启动子及其互作元件,将有助揭示GmFERs的转录调节机制。ZmFer1AtFer1基因启动子存在IDRS元件,IDRS元件仅与ZmFer1AtFer1在低铁条件下转录受抑制关联,而不负责氧化胁迫导致的FER转录增强[32],但GmFERs启动子上没有IDRS元件 (表3)。

    拟南芥PHR1和PHL1是磷信号转导通路非常关键的转录因子,结合下游低磷胁迫响应基因,如PHT1 (Phosphater Transporter1)、 SPX (SYG1/PHO81/XPR1)等启动子的P1BS (PHR1 binding sequence)元件。AtFER1启动子上也存在P1BS元件,且AtFER1受低磷诱导; 而在phr1 phl1双突变体中,AtFER1不受低磷诱导。在低磷条件下,phr1 phl1双突变体铁的浓度比野生型高,phr1 phl1双突变体叶片铁的分布发生了改变[33]。这说明PHR1和PHL1调节铁稳态。本研究发现,GmFER1GmFER4GmFER5GmFER6GmFER7、GmFER8、GmFER12在根或叶受低磷诱导 (图5)。启动子元件分析发现,大豆GmFER8GmFER9GmFER10启动子均存在P1BS元件 (表3)。暗示大豆PHR类转录因子可能调节这3个GmFER基因的转录。

    本研究通过定量PCR检测了在HF (铁毒)供给水平下GmFER基因的表达模式,发现GmFER1GmFER6GmFER11基因受铁毒诱导表达 (图6)。但因为技术和引物特异性问题,尽管尝试了很多次,但误差还是特别大,因此没有展示GmFER2GmFER10 的定量PCR结果。数据挖掘分析发现,大豆FER基因还受钾、磷、锌、铝毒、干旱等胁迫的调控 (图4B),这说明GmFER基因可能通过调控铁稳态和或ROS的水平而参与应答这些非生物胁迫。本研究发现低铁抑制GmFER7GmFER11的表达 (图4B),外施柠檬酸铁诱导大豆FER基因表达[15]; 外施铁快速诱导AtFER1AtFER3AtFER4在拟南芥根、叶的表达[10]。这说明外源铁水平调节FER基因转录机制是保守的。需指出的是,在拟南芥FER1-FER14启动子还存在其他逆境响应元件。

    IRT1是铁转运蛋白,也被认为是铁转运受体 (transceptor)。CaFer1与铁转运子IRT1互作[34], 至于GmFER是否与大豆IRT互作还需研究。在木薯 (Cassava)表达拟南芥IRT1AtFER1可以提高块状根中铁的含量和锌的含量,分别提高7~18倍以及3~10倍[35]。 这说明,将来通过合成生物学技术,同时将大豆IRTFER、FRONAS等多个和铁营养相关的基因转入大豆、水稻、玉米等作物,可增加种子铁含量,改善人类健康。

    过多铁抑制拟南芥主根分生区长度、主根长度、平均一级侧根长度以及侧根密度[9]。与此一致的是,超表达GmFER1可以改善转基因拟南芥在高铁 (铁毒)下的生长,促进主根生长、侧根形成和侧根密度 (图10);增加叶绿素含量和鲜重 (图11),耐受铁毒的能力增强,但具体的生理和分子机制还需要深入研究。考虑到GmFER1与AtFER1蛋白的同源性高达75%,推测GmFER1调节拟南芥在过量铁条件下根系发育的机制是保守的。

    本研究揭示大豆基因组共有12个FER基因,明确了受低磷胁迫或铁毒胁迫诱导的GmFER基因,超表达GmFER1改善拟南芥根系的生长,增强拟南芥耐铁毒的能力。本研究为今后深入研究GmFER的功能提供了线索,今后需要利用基因编辑技术深入研究大豆FER基因家族的功能。

  • 图  1   GmFER蛋白家族的保守区域预测

    注:用MEME程序分析大豆FER蛋白家族的保守基序,GmFER含有3个保守的基序,用T-coffee程序对GmFER氨基酸序列进行了同源比对;图a为GmFER蛋白保守的3个基序(motif)及其分布位置,图b为GmFER蛋白氨基酸序列同源比对

    Figure  1.   Conservative region prediction of GmFER protein family

    Note: Analysis of conserved motifs of soybean FER protein family by MEME program, GmFER contains three conserved motifs. Alignment of GmFER amino acids by T-coffee. Figure a shows the hree conserved motifs and their distribution positions of GmFERs. Figure b shows the homologous alignment of amino acid sequence of GmFER protein

    图  2   GmFER三维结构图

    Figure  2.   Three-D structural chart of GmFERs

    图  3   大豆FER蛋白家族进化分析

    注:Gm—大豆;AT—拟南芥;Zm—玉米;Os—水稻;Solyc—番茄;Soltu—马铃薯。树图中蛋白编号AT5G01600、AT3G11050、AT3G56090和AT2G40300对应的蛋白分别是AtFER1、AtFER2、AtFER3和AtFER4。用MEGA X进行进化分析[24],用最大似然法重建进化树,两两之间的距离估计使用JTT+G模型,这一分析涉及25个蛋白质序列,总共分析286个位点;自展值测试设定为100次重复,自展值重复率少于50%的值没有在图中显示

    Figure  3.   Evolutionary analysis of soybean FER protein family

    Note: Gm—Glycine max; AT—Arabidopsis thaliana; Zm—Zea mays; Os—Oryza sativa; Solyc—Solanum lycopersicum; Soltu—Solanum tuberosum. The code AT5G01600, AT3G11050, AT3G56090 and AT2G40300 represent gene of AtFER1, AtFER2, AtFER3 and AtFER4. Evolutionary analysis was by MEGA X[24], the maximum likelihood method was used to reconstruct the evolutionary tree, the distance between two pairs of genes was estimated using JTT + G model, and 25 amino acid sequences were involved and a total of 286 loci were analyzed. The bootstrap test is set to 100 repetitions, and the value with bootstrap replicates less than 50% is not shown in the figure.

    图  4   GmFER基因在不同部位(A)以及不同胁迫条件(B)下的表达水平热图

    注:A图颜色标尺显示表达值范围,单位是RPKM (reads per kilobase/million),从最高表达水平级别(红色)到最低表达水平级别(蓝色);图B颜色标尺显示GmFER基因表达水平的变化程度(倍数,log2FC)。A图X轴项目中的DAF表示受精后天数,10DAF—受精后10天,其他类推,B图X轴项目括号中的L、R分别表示叶、根。–P—低磷胁迫 (0 μmol/L KH2PO4);–K—低钾胁迫 (0.5 mmol/L KCl);–Fe—低铁胁迫 [50 μmol/L Fe(NO3)3·9H2O];–Zn—低锌胁迫 (0 μmol/L ZnSO4);Al—铝毒胁迫 (25 μmol/L AlCl3)。

    Figure  4.   Heat map of expression levels of GmFER genes in different parts and under different stress conditions

    Note: The color bar in Figure A shows the range of expression values, the numerical unit is RPKM (reads per kilobase/million), from the highest expression level (red) to the lowest expression level (blue). The color bar in Figure B shows fold changes of expression level (log2FC). DAF in the X axis is abbreviation of days after fertilization, 10DAF—10 days after fertilization, and so on, and the L and R in parentheses of X axis in figure B represent leaf and root. –P—Low phosphorus stress (0 μmol/L KH2PO4); –K—Low potassium stress (0.5 mmol/L KCl); –Fe—Low iron stress [50 μmol/L Fe(NO3)3·9H2O]; –Zn—Low zinc stress (0 μmol/L ZnSO4); Al—Al poison stress (25 μmol/L AlCl3)

    图  5   正常磷和低磷下GmFER基因在根部和叶片中的相对表达水平

    注:数据为3次重复平均值。NP—正常磷处理(500 µmol/L KH2PO4);LP—低磷处理(25 µmol/L KH2PO4)。 柱上*、**、***、****分别表示低磷(LP)与正常磷(NP)之间差异达 0.05、0.01、0.001、0.0001显著水平,ns表示差异不显著

    Figure  5.   The relative expressions of GmFERs in root and leaves of soybean under nomal and low P treatments

    Note: The data were average of 3 replicates. NP—Normal P treatment (500 µmol/L KH2PO4); LP—Low P treatment (25 µmol/L KH2PO4). *, **, *** and **** above the bars indicate significant difference between LP and NP at 0.05, 0.01, 0.001 and 0.0001 levels, respectively, and ns indicates no significant difference

    图  6   高铁与正常铁下GmFER基因在根部和叶片中的相对表达水平(t检验)

    注:数据为3次重复平均值。NF正常铁处理(50 µmol/L Fe-EDTA);HF高铁处理(500 µmol/L Fe-EDTA)。

    Figure  6.   The relative expression level of GmFERs in root and leaves of soybean under high and normaliron Fe treatments (t-test)

    Note: The data were average of 3 replicates. NF—Normal iron treatment (50 µmol/L Fe-EDTA); HF—High iron treatment (500 µmol/L Fe-EDTA).

    图  7   不同铁浓度处理7天植株根部的GUS染色

    Figure  7.   GUS staining of plant roots treated with different iron concentrations for 7 days

    Note: LF—Iron deficiency (0 μmol/L); NF—Normal iron (50 μmol/L); HF—Iron toxicity, (500 μmol/L)

    图  8   不同铁毒处理时间后植株叶与根部位的GUS染色

    Figure  8.   GUS staining of leaves and roots after different hours of iron toxicity treatment

    图  9   GmFER1 过表达株系鉴定

    注:**、***、****分别表示Col-0与各株在0.01、0.001、0.0001水平差异显著

    Figure  9.   Identification of overexpressing GmFER1 lines

    Note: **, ***, **** indicate the difference between each line and Col-0, respectively

    图  10   GmFER1超表达增加拟南芥在铁毒条件下主根长度、侧根数目和侧根密度

    注:B图X轴中Col-0、OE-1、OE-9分别表示哥伦比亚野生型拟南芥、GmFER1超表达株系1、GmFER1超表达株系9。*、**、***、****分别表示GmFER1基因超表达材料与野生型之间的差异在0.05、0.01、0.001、0.0001水平差异显著。箱形图中下面一条线代表25%的数值,中间的一条线代表中位数,上面一条线代表75%的数值,中间的点代表平均数,方柱上方突出来的点为异常数值

    Figure  10.   Overexpression of GmFER1 increases the primary root length, lateral root number, and density of lateral root in Arabidopsis under iron toxicity

    Note: Col-0, OE-1 and OE-9 in the X-axis of figure B represent Columbia wild-type Arabidopsis, GmFER1 overexpression strain 1 and GmFER1 overexpression strain 9, respectively. *, **, *** and **** above the bars indicate the difference between GmFER1 gene overexpression material and wild type at significant level of 0.05, 0.01, 0.001 and 0.0001, respectively. In the box plot, the bottom line represent 25% of the values, the middle line represent the median, the upper line represent 75% of the values, the middle point is the average, and the prominent point on the square column is the anomaly value

    图  11   超表达GmFER1增加拟南芥在铁毒下鲜重和叶绿素含量

    注:Col-0、OE-1分别表示哥伦比亚野生型拟南芥、GmFER1超表达株系。*、**分别表示GmFER1基因超表达材料与野生型之间的差异在0.05、0.01水平显著,ns表示差异不显著

    Figure  11.   Overexpression of GmFER1 increases the fresh weight and chlorophyll content in Arabidopsis under iron toxicity

    Note: Col-0, OE-1 represent Columbia wild-type Arabiolopsis, GmFER1 overexpression strain. NF—Normal iron (50 μmol/L); HF—Iron toxicity (500 μmol/L). * and ** above the bars indicate significant difference between GmFER1 gene overexpression material and wild type at 0.05 and 0.01 levels, ns indicates no significant difference

    表  1   载体构建及定量PCR相关引物

    Table  1   Vector construction and primers used for quantitative PCR

    引物 Primer引物序列 Primer sequence用途 Application
    GmFER1.qFGGTCTTTCTAAGGGTGTTGGTG定量 PCR Quantitative PCR
    GmFER1.qRCTTGAAGAACTTTGCAAGTCCT定量 PCR Quantitative PCR
    GmFER2.qFCAGCATGCTGAGATTATGATGG定量 PCR Quantitative PCR
    GmFER2.qRTGCCAAACAGTATTACCATGTC定量 PCR Quantitative PCR
    GmFER3.qFCTCATTAGAGAAGCTAACGAACG定量 PCR Quantitative PCR
    GmFER3.qRCTCATTAGAGAAGCTAACGAACG定量 PCR Quantitative PCR
    GmFER4.qFAGAACTATGCTGATGAGTCCGA定量 PCR Quantitative PCR
    GmFER4.qRTTCCTTGAAGAACTTGGCAAGTC定量 PCR Quantitative PCR
    GmFER5.qFCGTTTGAGGAAGATCGTGATGG定量 PCR Quantitative PCR
    GmFER5.qRGAGGTAGCTCCTCCAGATCC定量 PCR Quantitative PCR
    GmFER6.qFAATATCAGAATACTCGCGGTGGA定量 PCR Quantitative PCR
    GmFER6.qRTCGCTTTCAATGAAGTCTGCC定量 PCR Quantitative PCR
    GmFER7.qFAAATACACCGATGACTGCGAG定量 PCR Quantitative PCR
    GmFER7.qRAGCAAGTTCCATTGCATACAG定量 PCR Quantitative PCR
    GmFER8.qFACGTTGACGAATCTGAGTCC定量 PCR Quantitative PCR
    GmFER8.qRTAATGACAGAGCGAGTTCCA定量 PCR Quantitative PCR
    GmFER9.qFTGTGGCTAAGGTCTCTAAGGAG定量 PCR Quantitative PCR
    GmFER9.qRGTACTCCACGTTGATCTGTGC定量 PCR Quantitative PCR
    GmFER10.qFGCATCAATGTTTATGCCAACACC定量 PCR Quantitative PCR
    GmFER10.qRGTGGTTGTTGGAGTCCTTGG定量 PCR Quantitative PCR
    GmFER11.qFCTTGCTCGCCAGAAGTACAC定量 PCR Quantitative PCR
    GmFER11.qRCCTCGCTTGTTCTGATATTCCA定量 PCR Quantitative PCR
    GmFER12.qFTGAAATATCAGAACACTCGCGG定量 PCR Quantitative PCR
    GmFER12.qRGCTTTCAATGAAGTCGGCCA定量 PCR Quantitative PCR
    GmFER1.oxFTTGTACAAAAAAGCAGGCTATGGCCCTTTCTTGCTCCAAAGT过表达 Overexpression
    GmFER1.oxRGTACAAGAAAGCTGGGTTTATACATGATCTTCATCGTG过表达 Overexpression
    GmFER1.proFTTGTACAAAAAAGCAGGCTATAGTCATGTTAGCAATCAT启动子分析 Promotor analysis
    GmFER1.proRGTACAAGAAAGCTGGGTAATTCAATGGCGGATATTGA启动子分析 Promotor analysis
    GmEF1a.qFTGCAAAGGAGGCTGCTAACT定量 PCR Quantitative PCR
    GmEF1a.qRCAGCATCACCGTTCTTCAAA定量 PCR Quantitative PCR
    AtEF1a.qFCTGGAGGTTTTGAGGCTGGTAT定量 PCR Quantitative PCR
    AtEF1a.qRCCAAGGGTGAAAGCAAGAAGA定量 PCR Quantitative PCR
    下载: 导出CSV

    表  2   大豆FER基因家族及编码蛋白信息

    Table  2   Soybean FER gene family and encoded protein information

    基因名称
    Gene name
    基因编号
    Gene code
    染色体位置
    Chromosome position
    蛋白定位
    Protein location
    外显子数目
    Number of exons
    氨基酸数目
    Amino acid number
    分子量
    Molecule weight
    等电点 (PI)
    Isoelectric point
    GmFER1Glyma.01G124500Chr01:42969803..42973300 reverse叶绿体 Chloroplast825729 KD5.77
    GmFER2Glyma.02G230400Chr02:41799131..41800314 forward细胞核 Nuclear613616 KD5.54
    GmFER3Glyma.02G262500Chr02:44848704..44851315 forward叶绿体 Chloroplast725028 KD6.41
    GmFER4Glyma.03G050100Chr03:6536627..6540105 forward叶绿体 Chloroplast825929 KD5.94
    GmFER5Glyma.05G095400Chr05:24717005..24740291 reverse细胞质 Cytoplasmic58910 KD5.44
    GmFER6Glyma.07G155200Chr07:19063418..19066342 reverse叶绿体 Chloroplast825028 KD5.71
    GmFER7Glyma.11G232600Chr11:32791010..32794579 reverse线粒体基质 Mitochondrial matrix825629 KD5.36
    GmFER8Glyma.14G056800Chr14:4541230..4543915 forward叶绿体 Chloroplast824727 KD5.64
    GmFER9Glyma.14G197500Chr14:46280213..46282933 forward叶绿体 Chloroplast826530 KD5.56
    GmFER10Glyma.18G004600Chr18:367188..368739 reverse细胞质 Cytoplasmic414116 KD5.79
    GmFER11Glyma.18G024600Chr18:1821792..1824932 forward叶绿体 Chloroplast824828 KD5.44
    GmFER12Glyma.18G205800Chr18:48947661..48950635 reverse叶绿体 Chloroplast825028 KD5.72
    下载: 导出CSV

    表  3   大豆FER基因启动子元件及其位置

    Table  3   Promoter elements and their positions in soybean FER gene

    基因 GeneIDRS 元件 IDRS (CACGAGCCCTCCAC)G盒子元件 G-box (GTCGAC)P1BS元件 P1BS (GNATATNC)
    GmFER1无 No无 No无 No
    GmFER2无 No无 No无 No
    GmFER3无 No无 No无 No
    GmFER4无 No无 No无 No
    GmFER5无 No无 No无 No
    GmFER6无 No无 No无 No
    GmFER7无 No无 No无 No
    GmFER8无 No1个 One (–928~922)1个 One (–357~349)
    GmFER9无 No无 No1个One (–1385~1377)
    GmFER10无 No无 No1个One (–153~146)
    GmFER11无 No无 No无 No
    GmFER12无 No无 No无 No
    注:括号内为启动子元件位置,起始密码子ATG的A位置为0,往前为启动子区域,为负数,“-928”代表5′—UTR前第928个碱基,其他类推。
    Note: Inside the bracket is the position of promoter element, the position A of the start codon ATG is 0, and the promoter region is forward, with a negative number, and "–928" represents the 928th base before the 5′—UTR, and so on.
    下载: 导出CSV
  • [1] 王哲, 孙亿敬, 李娇爱, 等. 高等植物铁元素的吸收、转位和调控[J]. 上海师范大学学报(自然科学版), 2017, 46(5): 729–739. Wang Z, Sun Y J, Li J A, et al. Absorption, translocation and regulation of iron in higher plants[J]. Journal of Shanghai Normal University (Natural Science Edition), 2017, 46(5): 729–739.

    Wang Z, Sun Y J, Li J A, et al. Absorption, translocation and regulation of iron in higher plants[J]. Journal of Shanghai Normal University (Natural Science Edition), 2017, 46(5): 729-739.

    [2] 段立红,丁红,李文学, 等. 机理Ⅰ植物铁吸收与运输的分子机制[J]. 植物营养与肥料学报, 2007, 13(4): 739–744. Duan L H, Ding H, Li W X, et al. Mechanism I molecular mechanism of iron absorption and transport in plants[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 739–744.

    Duan L H, Ding H, Li W X, et al. Mechanism I molecular mechanism of iron absorption and transport in plants[J]. Journal of Plant Nutrition and Fertilizers, 2007, (4): 739-744.

    [3]

    Ling H Q, Bauer P, Bereczky Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(21): 13938–13943. DOI: 10.1073/pnas.212448699

    [4]

    Yuan Y, Wu H, Wang N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research, 2008, 18(3): 385–397. DOI: 10.1038/cr.2008.26

    [5]

    Theil E C. Ferritin: Structure, gene regulation, and cellular function in animals, plants, and microorganisms[J]. Annual Review of Biochemistry, 1987, 56(1): 289–315. DOI: 10.1146/annurev.bi.56.070187.001445

    [6]

    Tarantino D, Casagrande F, Soave C, et al. Knocking out of the mitochondrial AtFer4 ferritin does not alter response of Arabidopsis plants to abiotic stresses[J]. Journal of Plant Physiology, 2010, 167(6): 453–460. DOI: 10.1016/j.jplph.2009.10.015

    [7]

    Petit J M, Briat J F, Lobreaux S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family[J]. Biochemical Journal, 2001, 359 (Pt 3): 575–582.

    [8]

    Murgia I, Vazzola V, Tarantino D, et al. Knock-out of the ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis[J]. Plant Physiology and Biochemistry, 2007, 45(12): 898–907. DOI: 10.1016/j.plaphy.2007.09.007

    [9]

    Reyt G, Boudouf S, Boucherez J, et al. Iron- and ferritin-dependent reactive oxygen species distribution: Impact on Arabidopsis root system architecture[J]. Molecular Plant, 2015, 8(3): 439–453. DOI: 10.1016/j.molp.2014.11.014

    [10]

    Zok A, Oláh R, Hideg É, et al. Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine[J]. Plant Cell Tissue and Organ Culture, 2010, 100(3): 339–344. DOI: 10.1007/s11240-009-9641-8

    [11]

    Zang X, Geng X, Wang F, et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging[J]. BMC Plant Biology, 2017, 17(1): 14. DOI: 10.1186/s12870-016-0958-2

    [12]

    Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene[J]. Nature Biotechnology, 1999, 17(3): 282–286. DOI: 10.1038/7029

    [13]

    Mhatre M, Srinivas L, Ganapathi T R. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene[J]. Biological Trace Element Research, 2011, 144(1/3): 1219–1228.

    [14]

    de Llanos R, Martínez-Garay C A, Fita-Torró J, et al. Soybean ferritin expression in Saccharomyces cerevisiae modulates iron accumulation and resistance to elevated iron concentrations[J]. Applied and Environmental Microbiology, 2016, 82(10): 3052–3060.

    [15] 陈华涛, 陈新, 顾和平, 等. 大豆铁蛋白 (Ferritin) 基因家族的克隆与表达[J]. 中国油料作物学报, 2012, 34(6): 586–591. Chen H T, Chen X, Gu H P, et al. Cloning and expression analysis of soybean ferritin gene family[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(6): 586–591.

    Chen H T, Chen X, Gu H P, et al. Cloning and expression analysis of soybean ferritin gene family[J]. Chinese Journal of Oil Crop Sciences, 2012, 34(6): 586-591.

    [16] 姜廷波, 唐鑫华, 李凤娟, 等. 铁蛋白基因表达对烟草耐低铁能力的影响[J]. 植物学通报, 2008, 25(2): 167–175. Jiang T B, Tang X H, Li F J, et al. Effects of ferritin gene expression on transgenic tobacco for low iron tolerance[J]. Chinese Bulleting Botany, 2008, 25(2): 167–175.

    Jiang T B, Tang X H, Li F J, et al. Effects of ferritin gene expression on transgenic tobacco for low iron tolerance[J]. Chin Bull Bot, 2008, 25(2): 167-175.

    [17]

    Zheng L Q, Huang F L, Narsai R, et al. Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings[J]. Plant Physiology, 2009, 151(1): 262–274. DOI: 10.1104/pp.109.141051

    [18]

    Wasaki J, Yonetani R, Kuroda S, et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots[J]. Plant Cell and Environment, 2003, 26(9): 1515–1523. DOI: 10.1046/j.1365-3040.2003.01074.x

    [19]

    Guo M, Ruan W, Zhang Y, et al. A reciprocal inhibitory module for Pi and iron signaling[J]. Molecular Plant, 2022, 15(1): 138–150. DOI: 10.1016/j.molp.2021.09.011

    [20]

    Dong J, Piñeros M A, Li X, et al. An Arabidopsis ABC transporter mediates phosphate deficiency-induced remodeling of root architecture by modulating iron homeostasis in roots[J]. Molecular Plant, 2016, 10(2): 244–259.

    [21]

    Müller J, Toev T, Heisters M, et al. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability[J]. Developmental Cell, 2015, 33(2): 216–230. DOI: 10.1016/j.devcel.2015.02.007

    [22]

    Clough S J, Bent A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735–743. DOI: 10.1046/j.1365-313x.1998.00343.x

    [23]

    Hye-In N, Zaigham S, Yanniv D, et al. Interdependent iron and phosphorus availability controls photosynthesis through retrograde signaling[J]. Nature Communications, 2021, 12(1): 7211. DOI: 10.1038/s41467-021-27548-2

    [24]

    Kumar S, Stecher G, Li M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547–1549. DOI: 10.1093/molbev/msy096

    [25]

    Tissot N, Robe K, Gao F, et al. Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3[J]. New Phytologist, 2019, 223(3): 1433–1446. DOI: 10.1111/nph.15753

    [26]

    Zhao L J, Cui J J, Cai Y Y, et al. Comparative transcriptome analysis of two contrasting soybean varieties in response to aluminum toxicity[J]. International Journal of Molecular Sciences, 2020, 21(12): 4316. DOI: 10.3390/ijms21124316

    [27]

    Belamkar V, Weeks N T, Bharti A K, et al. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress[J]. BMC Genomics, 2014, 15: 950. DOI: 10.1186/1471-2164-15-950

    [28]

    Daniel R K, Chantal E M, Asheesh K S, et al. Comparing early transcriptomic responses of 18 soybean (Glycine max) genotypes to iron stress[J]. International Journal of Molecular Sciences, 2021, 22(21): 11643. DOI: 10.3390/ijms222111643

    [29]

    Wang C, Chen H F, Hao Q N, et al. Transcript profile of the response of two soybean genotypes to potassium deficiency[J]. PLoS ONE, 2012, 7(7): e39856. DOI: 10.1371/journal.pone.0039856

    [30]

    Zeng H Q, Zhang X, Ding M, et al. Transcriptome profiles of soybean leaves and roots in response to zinc deficiency[J]. Physiologia Plantarum, 2018, 167(3): 330–351.

    [31]

    Zeng H Q, Wang G P, Zhang Y Q, et al. Genome wide identification of phosphate deficiency responsive genes in soybean roots by high throughput sequencing[J]. Plant and Soil, 2016, 398(1/2): 207–227.

    [32]

    Petit J M, van Wuytswinkel O, Briat J F, et al. Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron[J]. Journal of Biological Chemistry, 2001, 276(8): 5584–5590. DOI: 10.1074/jbc.M005903200

    [33]

    Bournier M, Tissot N, Mari S, et al. Arabidopsis ferritin 1 (AtFer1) gene regulation by the phosphate starvation response 1 (AtPHR1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis[J]. Journal of Biological Chemistry, 2013, 288(31): 22670–22680. DOI: 10.1074/jbc.M113.482281

    [34]

    Parveen S, Pandey A, Jameel N, et al. Transcriptional regulation of chickpea ferritin CaFer1 influences its role in iron homeostasis and stress response[J]. Journal of Plant Physiology, 2018, 222: 9–16. DOI: 10.1016/j.jplph.2017.12.015

    [35]

    Narayanan N, Beyene G, Chauhan R D, et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin[J]. Nature Biotechnology, 2019, 37(2): 144–151. DOI: 10.1038/s41587-018-0002-1

图(11)  /  表(3)
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  693
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 录用日期:  2022-05-16
  • 网络出版日期:  2022-11-23
  • 刊出日期:  2023-01-24

目录

/

返回文章
返回