Effects of nitrogen application rate on maize yield and nitrogen metabolism after anthesis under shallow buried drip irrigation
-
摘要:目的
研究浅埋滴灌下不同施氮量对玉米产量和花后氮代谢的影响,为西辽河平原玉米丰产与氮素资源高效管理提供理论依据。
方法玉米浅埋滴灌水肥一体化定位试验在内蒙古自治区通辽市科尔沁区农业高新科技示范区连续进行了3年。设置N 0、150、210和300 kg/hm2 4个处理,分别记为N0、N150、N210和N300。完熟期测定玉米植株氮含量、干物质积累量和产量及产量构成因素,开花期至成熟期定期取样测定氮代谢相关酶活性、光合氮素利用效率和非结构性碳水化合物含量。
结果N300处理与N210处理3年玉米产量差异不显著,但显著高于N150处理;N300、N210处理玉米穗粒数、千粒重无显著差异,但均显著高于N150处理,穗粒数较N150处理分别提高15.70%、10.85%,千粒重分别提高了9.78%、5.82%。N210处理氮肥偏生产力、氮肥农学效率、氮肥生理利用率和氮素吸收效率均高于N300处理,3年平均较N300处理分别提高37.01%、29.84%、10.10%和28.89%。N300处理花后氮素积累量高于N210处理,但二者转运量差异均不显著。N300处理与N210处理花后氮代谢酶活性、光合氮素利用效率和非结构性碳水化合物含量的差异均不显著,且二者均显著高于N150处理,其中氮代谢酶活性和光合氮素利用效率的差异在花后10天开始显现,非结构性碳水化合物含量差异的显著变化则在花后30天开始。
结论西辽河平原灌区玉米浅埋滴灌水氮一体化条件下,施氮210~300 kg/hm2增加了植株氮素吸收转运,提高了氮素利用效率,增强了花后氮代谢酶活性和保持了花后氮素光合生产能力,进而促进产量提高。施氮量210 kg/hm2与300 kg/hm2之间没有显著产量差异,但前者氮肥利用效率显著增加,因此,施氮量210 kg/hm2是较为经济合理的施氮量。
Abstract:ObjectivesThe effects of different nitrogen (N) application rates on maize yield and nitrogen metabolism after anthesis under shallow buried drip irrigation were studied.
MethodsA three-year field experiment of water and fertilizer integration was carried out in Horqin agricultural high technology demonstration zone, Tongliao City, Inner Mongolia Autonomous Region. The test material was maize, and drip irrigation pipes were buried in shallow soil. The study had four N application rates 0, 150, 210 and 300 kg/hm2, and were denoted as N0, N150, N210 and N300, respectively. From anthesis to maturity stage, plant samples were regularly collected for the measurement of the activities of enzymes related to N metabolism, the photosynthetic and N use efficiency, and non-structural carbohydrate content. At maturity, the N content, dry matter accumulation, yield and yield components were determined.
ResultsThe yield of N300 was similar with N210, but significantly higher than that of N150. The grain number per ear and 1000-grain weight in N300 and N210 were significantly higher than N150 treatment, with average increment by 15.70% and 10.85% in grain number per ear , and by 9.78% and 5.82% in 1000-grain weight. The partial productivity, agronomic efficiency, physiological utilization rate of nitrogen fertilizer, and nitrogen absorption efficiency of N210 were averagely 37.01%, 29.84%, 10.10%, and 28.89% higher than those of N300. The N accumulation after anthesis in N300 was higher than in N210, but the N translocation was similar between N300 and N210. The enzyme activity of N metabolism and photosynthetic N-use efficiency of the three N treatments were not different until 10 days after anthesis, and the non-structural carbohydrate content was not significantly different among the treatments until 30 days after anthesis. N210 and N300 elicited similar enzyme activity of N metabolism, photosynthetic N-use efficiency, and non-structural carbohydrate content after anthesis, but they were both significantly higher than those of N150.
ConclusionsUnder the water and nitrogen integration of shallow buried drip irrigation of Xiliaohe plain, the N application rate of 210–300 kg/hm2 could improve the nitrogen absorption and translocation of plant, maize nitrogen use efficiency, enzyme activities related to nitrogen metabolism, yield, and maintain nitrogen photosynthetic production capacity after anthesis. While the aforementioned indices were similar for N rates of 210 kg/hm2 and 300 kg/hm2, the 210 kg/hm2 N rate could be recommended as the economically and environmentally cost effective rate based on its better fertilizer efficiency.
-
Keywords:
- shallow buried drip irrigation /
- nitrogen application rate /
- maize /
- yield /
- nitrogen metabolism
-
西辽河平原是我国为数不多的井灌玉米区,玉米年产量占内蒙古自治区玉米总产量的近1/3。目前,西辽河平原玉米氮肥施用量保持在纯氮 300 kg/hm2左右,过量施氮导致氮肥利用率明显偏低。此外,在干暖化气候变化的大背景下,西辽河平原玉米生产灌溉用水主要依靠地下水资源,地下水支出量巨大,导致区域地下水位下降明显。因此,发展节水农业,提高氮肥利用效率是西辽河平原灌区玉米生产发展的必然选择。
目前,滴灌水肥一体化技术因兼具节水、减肥、增效及环境友好等特点而被广泛应用于旱地农业生产[1-2]。膜下滴灌是覆膜种植和滴灌节水技术的有机结合,现已在玉米[3]、小麦[4]和棉花[5]等大田作物种植中被广泛应用。研究表明,膜下滴灌水肥一体化下施氮量和灌水量及其交互作用对玉米产量的影响均表现为正效应,且以施氮量为主效应[6]。增加施氮次数能显著增加玉米产量,干物质质量和氮素吸收量随施氮量提高呈增加趋势,尤以生育后期更为明显[7]。浅埋滴灌是在膜下滴灌技术基础上进行去膜覆土的新型节水灌溉技术,兼具环保、节水、减肥、增效的优势[8-9]。课题组前期调研亦发现,由于西辽河平原光热充足,膜下滴灌玉米不同程度存在生育后期早衰现象,在偏砂型土壤上表现的更为明显[10]。由于地表无膜覆盖,浅埋滴灌相对膜下滴灌可延缓生育后期玉米根冠衰老,提高氮素吸收利用效率[9,11];同时,浅埋滴灌土壤水、热变化规律与膜下滴灌亦有较大差异,这亦会影响玉米氮素利用效率、氮代谢运转和氮素光合生产能力,进而影响籽粒产量的形成[12]。
基于浅埋滴灌形成的水肥一体化高产栽培模式对玉米节水节肥增产提效具有显著效果,前人对此做了大量的研究工作,但以往的研究主要针对浅埋滴灌下施肥措施对产量形成[13]、干物质积累转运[14]和水氮利用效率[15]的影响进行了阐述,而对浅埋滴灌下不同施氮量对玉米产量和花后氮代谢的影响尚缺乏深入的研究。本研究在西辽河平原灌区开展大田试验,研究浅埋滴灌下不同施氮量对玉米产量、氮素利用效率和花后氮代谢酶活性、光合氮素利用效率及非结构性碳水化合物含量的影响,以期探明浅埋滴灌下玉米产量和花后氮代谢对不同施氮量的响应特征,为西辽河平原玉米丰产和氮素资源高效管理提供理论依据。
1. 材料与方法
1.1 试验地概况
试验于2018—2020年在内蒙古自治区通辽市科尔沁区农业高新科技示范园区 (43°36′N,122°22′E) 进行,试验地点海拔180 m,年平均气温6.8℃,≥10℃的活动积温3200℃,无霜期154天,试验年份生育期内降水量及温度见表1和表2。试验地土壤为灰色草甸土,pH为8.25,试验实施前耕层 (0—20 cm)土壤基础养分如下:有机质含量18.5 g/kg,碱解氮含量52.3 mg/kg,有效磷含量11.4 mg/kg,速效钾含量111 mg/kg。
表 1 试验地点玉米生长季降水量(mm)Table 1. Precipitation during maize growing season of the experimental site年份 Year 4月 April 5月 May 6月 June 7月 July 8月 August 9月 September 10月 October 合计 Total 2018 12.4 34.0 66.4 96.9 147.7 14.6 12.9 384.9 2019 2.5 90.1 88.7 56.6 130.2 9.2 18.3 395.6 2020 7.0 111.2 94.3 157.1 90.3 85.6 4.3 549.8 表 2 试验地点玉米生长季平均气温(℃)Table 2. Average temperature during maize growing season at the experimental site年份 Year 4月 April 5月 May 6月 June 7月 July 8月 August 9月 September 10月 October 平均 Mean 2018 10.6 18.2 23.8 26.4 23.5 17.3 9.1 18.4 2019 11.0 19.0 21.8 25.6 22.4 19.4 9.6 18.4 2020 10.2 17.3 23.1 25.8 23.4 17.1 9.3 18.0 1.2 试验设计
试验设施氮0、150、210、300 kg/hm2 4个处理,分别记为N0、N150、N210 和N300,3次重复,共12个小区,小区面积72 m2 (10 m×7.2 m)。浅埋滴灌采用内镶片式滴灌管,滴头相距20 cm,滴头流量为2.7 L/h,滴灌管浅埋于小垄中间距地表3~5 cm 处,各处理单独配置18 L压差式施肥罐和水表控制施肥量和滴灌量。整个玉米生长期进行7次灌溉,总灌溉定额为2400 m3/hm2,具体时期及灌溉量为:播种期550 m3/hm2、拔节期425 m3/hm2、大喇叭口期385 m3/hm2、抽雄期385 m3/hm2、吐丝期275 m3/hm2、灌浆期190 m3/hm2、乳熟期190 m3/hm2。N0处理底施过磷酸钙 (P2O5 18%) 498 kg/hm2、硫酸钾 (K2O 50%) 90 kg/hm2;N150、N210和N300处理底施磷酸二铵 (N 18%、P2O5 46%) 195 kg/hm2、硫酸钾 (K2O 50%) 90 kg/hm2,结合滴灌在拔节期、大喇叭口期、吐丝期按3∶6∶1比例追施尿素,具体施肥方案见表3。供试玉米品种为农华101,宽窄行种植(40 cm+80 cm),播种–施肥–铺带–覆膜一体机单粒精量播种,出苗后不间苗,补苗、定苗,小区留苗648株,折合为大田种植密度9.0万株/hm2。2018年4月28日播种,10月2日收获测产;2019年5月1日播种,10月4日收获测产;2020年5月2日播种,10月4日收获测产。
表 3 不同处理施肥 (kg/hm2) 方案Table 3. The N application schemes of different treatment处理
Treatment施氮量 N application rate 合计
Total N input播种期
Seeding stage拔节期
Jointing stage大喇叭口期
Great trumpet stage吐丝期
Silking stageN0 0 0 0 0 0 N150 35.1 34.47 68.94 11.49 150 N210 35.1 52.47 104.94 17.49 210 N300 35.1 79.47 158.94 26.49 300 注:播种期为底施磷酸二铵,在拔节期、大喇叭口期和吐丝期滴灌施尿素。
Note: At seeding stage, diammonium phosphate is basal applied, and urea is applied with drip irrigation at jointing, big trumpet and silking stages.1.3 测定项目与方法
1.3.1 产量及其构成因素
2018—2020年成熟期,各处理小区选择24 m2,调查总株数、空秆数,实收测定产量。随机取30个果穗,脱粒测定含水量,调查穗行数和行粒数,随机取1000粒籽粒,测定千粒重,平行测定3次,重复间差异小于0.5 g,同时折算成标准含水量 (14%) 的产量。
1.3.2 氮素积累转运
2018—2020年于开花期和完熟期,各处理小区选取长势一致、有代表性的连续5株玉米,按茎鞘、叶片、穗轴、苞叶和籽粒分开,在烘箱内105℃杀青30 min,80℃烘至恒重,测定干物质重,粉碎后,参照邹琦[16]的方法测定各器官氮含量,计算花后氮素积累量和转运量。具体计算公式如下:
氮素积累量 (kg/hm2) =完熟期干物质积累量×完熟期植株氮含量 (%);
氮素转运量 (kg/hm2) =开花期植株氮素积累量−完熟植株氮素积累量。
1.3.3 氮素利用效率
根据2018—2020年各处理产量和成熟期植株器官氮含量,参照Hou等[17]的方法计算2018年各处理的氮肥偏生产力、氮肥农学效率、氮肥生理利用率、氮素吸收效率,计算2019、2020年各处理的氮素累积效率。具体计算公式如下:
氮肥偏生产力 (PFPNi,kg/kg)=n∑i=1Yi/n∑i=1Fi (1)
氮肥农学效率 (AENi,kg/kg)=n∑i=1(Yi−YCKi)/n∑i=1Fi (2)
氮肥生理利用率 (PENi,kg/kg)=n∑i=1(Yi−YCKi)/n∑i=1(Di−DCKi) (3)
氮素吸收效率 RENi,kg/kg=n∑i=1Di/n∑i=1Fi (4)
式中,i表示第i年 (i=1、2、3),CK代表对照,Y、F和D分别代表产量、施氮量和地上部氮素吸收量。
1.3.4 氮代谢相关酶活性
2020年于开花后至成熟期,每10天取样1次 (0及10、20、30、40、50和60分别代表开花期及花后10、20、30、40、50天和完熟期,下同),各处理选取长势一致、可代表小区平均长势的连续3株玉米,剪取穗位叶叶片,擦干净表面并去除叶脉,之后用液氮速冻处理,带回实验室放入−80°C低温冰箱保存。采用相应酶联免疫吸附测定实验 (ELISA) 试剂盒测定硝酸还原酶、谷氨酸合成酶、谷氨酰胺合成酶和谷氨酸脱氢酶活性。
1.3.5 光合氮素利用效率
取样时间同1.3.4,各处理选取长势一致、可代表小区平均长势的连续3株玉米,利用Li-6400便携式光合仪测定穗位叶净光合速率 (Pn);测定植株单叶叶面积,计算单株叶面积;分别剪取穗位叶、穗位上第1片叶、穗位上第2片叶、穗位上第3片叶、穗位下第1片叶、穗位下第2片叶和穗位下第3片叶,在105℃下杀青30 min,80℃烘干至恒重,测定单叶干质量,计算比叶质量 (LMA)。将烘干叶片样品混合粉碎、过筛后,测定叶片中氮含量 (Nleaf),计算单位干质量叶片含氮量 (Nmass)、单位面积叶片含氮量 (Narea) 和光合氮素利用效率 (PNUE)。具体计算公式如下:
完全展开叶叶面积 (cm2) =长×宽×0.75;
不完全展开叶叶面积 (cm2) =长×宽×0.50;
比叶质量 (LMA,g/m2) =叶干质量/叶面积;
单位干质量叶片含氮量 (Nmass,g/kg) =叶片氮含量/叶干质量;
单位面积叶片含氮量 (Narea,mg/cm2) = Nmass×LMA;
光合氮素利用效率 [PNUE,CO2 μmol/(g·s)] =Pn/Narea。
1.3.6 非结构性碳水化合物含量
取样时间和方法同1.3.4,淀粉含量参照门福义等[18]的方法测定,蔗糖含量参照Qi等[19]的方法测定,可溶性糖含量参照李合生[20]的方法测定。
1.4 数据处理与分析
使用Microsoft Excel 2016进行数据整理和制表,使用Origin 2019作图,采用SPSS 19.0软件进行统计分析。
2. 结果与分析
2.1 不同施氮量对玉米产量和产量构成因素的影响
由表4可知, 2018、2019、2020年产量N300与N210处理相当,但均显著高于N150处理,3年N300处理较N150处理分别增产26.27%、17.49%和12.96%,N210处理较N150处理分别增产20.70%、13.07%和9.44%。单位面积有效穗数不同处理间差异均不显著。穗粒数2018年N300、N210和N150处理差异不显著;2019、2020年N300与N210处理差异不显著但均显著高于N150处理,2019年N300、N210处理分别较N150处理是增加16.86%、11.02%,2020年分别增加18.92%、13.81%,3年平均N300、N210处理较N150处理分别提高15.70%、10.85%。千粒重3年N300处理均与N210处理相当,但显著高于N150处理,N300、N210处理较N150处理分别提高9.78%、5.82%,而N210处理只在2020年显著高于N150处理。可见,穗粒数和千粒重是产量差异的主要影响因素,N210与N300处理产量、穗粒数和千粒重的差异均不显著。
表 4 不同施氮量对玉米产量和产量构成因素的影响Table 4. Effects of different N application rates on maize yield and yield components年份
Year处理
Treatment有效穗数 (×104/hm2)
Effective ears穗粒数
Grains per ear千粒重 (g)
1000-grain weight产量 (kg/hm2)
Yield2018 N0 8.53 a 330.4 b 283.9 c 8080 c N150 8.62 a 383.4 ab 322.6 b 10290 bc N210 8.82 a 413.0 a 348.8 ab 12420 ab N300 8.77 a 426.8 a 354.2 a 12994 a 2019 N0 8.49 a 276.8 c 253.4 c 6020 c N150 8.64 a 383.5 b 331.6 b 11170 b N210 8.62 a 425.7 a 344.1 ab 12630 ab N300 8.69 a 448.1 a 364.3 a 13124 a 2020 N0 8.43 a 189.1 c 206.4 c 3390 c N150 8.60 a 378.6 b 330.3 b 11760 b N210 8.64 a 430.8 a 348.7 a 12870 a N300 8.62 a 450.2 a 362.3 a 13284 a 注:同列数据后不同小写字母表示同一年处理间在0.05水平差异显著。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level in the same year.2.2 不同施氮量对玉米氮素利用效率的影响
由表5可知,氮肥偏生产力2018—2020年N210处理均显著高于N300处理,3年N210处理分别较N300提高36.55%、37.01%和37.48%,平均提高37.01%;氮肥农学效率2018年不同处理间的差异不显著;2019—2020,N210处理均显著高于N300处理,2年N210处理分别较N300处理提高30.15%、33.18%,3年平均提高29.84%;氮肥生理利用率2018—2020年均为N210处理与N300处理的差异不显著,且二者显著低于N150处理,3年N210处理分别较N300处理提高6.65%、13.10%和10.54%,平均提高10.10%;氮素吸收效率2018—2020年N210处理均显著高于N300处理,3年N210处理分别较N300处理提高31.25%、27.00%和28.43%,平均提高28.89%。可见,年际间N210处理氮肥偏生产力、氮肥农学效率、氮肥生理利用率和氮素吸收效率均高于N300处理,N210处理氮素利用效率优于N300处理。
表 5 不同施氮量对玉米氮素利用效率的影响Table 5. Effects of di different N application rates on nitrogen utilization efficiency of maize年份
Year处理
TreatmentPFPN
(kg/kg)AEN
(kg/kg)PEN
(kg/kg)REN
(kg/kg)2018 N150 68.60 a 14.73 a 65.49 a 1.24 a N210 59.14 a 20.67 a 38.34 b 1.26 a N300 43.31 b 16.38 a 35.95 b 0.96 b 2019 N150 71.53 a 24.53 a 73.62 a 1.18 a N210 59.64 b 26.07 a 39.29 b 1.27 a N300 43.53 c 20.03 b 34.74 b 1.00 b 2020 N150 73.82 a 34.96 a 89.58 a 1.12 b N210 60.19 b 32.43 a 41.52 b 1.31 a N300 43.78 c 24.35 b 37.56 b 1.02 c 年份 Year ns ** ** ns 施氮量 N rate ** ** ** ** 年份×施氮量 Year×N rate ns ** ** ns 注:PFPN—氮肥偏生产力;AEN—氮肥农学效率;PEN—氮肥生理利用率;REN—氮素吸收效率。同列数据后不同小写字母表示同一年处理间在0.05水平差异显著;*—P<0.05;**—P<0.01;ns—差异不显著。
Note: PFPN—Partial factor productivity of nitrogen fertilizer; AEN—N agronomy efficiency; PEN—N physiological efficiency; REN—N recovery efficiency. Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level in the same year; *—P<0.05; **—P<0.01; ns—No significant difference.2.3 不同施氮量对玉米花后氮素积累转运的影响
由图1可知,随着施氮量的增加,不同处理玉米花后氮素积累量和转运量均逐渐增加。氮素积累量2018年N300与N210处理差异不显著,且二者显著高于N150处理,N300、N210处理分别较N150处理提高55.18%、42.73%;2019、2020年3个N处理间差异均达显著水平,2年N300、N210处理分别较N150处理提高85.41%、59.28% (2019年)和105.34%、89.49% (2020年)。氮素转运量N300与N210处理差异不显著,且二者均显著高于N150处理,3年N300、N210处理分别较N150处理提高62.92%、47.31% (2018年),29.67%、33.65% (2019年)和57.57%、50.49% (2020年)。可见,年际间N210与N300处理氮素积累量的差异较大,但二者转运量的差异均不显著。
图 1 不同施氮量对玉米花后氮素转运和积累的影响注:柱上不同小写字母表示同一年处理间在0.05水平差异显著Figure 1. Effects of different N application rates on nitrogen translocation and accumulation of maize after anthesisNote: Different lowercase letters above the bars indicate significant difference among treatments at 0.05 level in the same year2.4 不同施氮量对玉米花后氮代谢酶活性的影响
由图2可知,硝酸还原酶活性开花期至花后10天N210与N150处理差异不显著,且二者显著低于N300处理;花后20天至成熟期N300与N210处理差异不显著,且N300处理显著高于N150处理,其中除花后50天外N210与N150处理的差异亦未达显著水平,开花期至成熟期N300、N210处理分别平均较N150处理增高22.92%、10.09%。谷氨酸脱氢酶活性开花期至花后50天N300与N210处理差异不显著,且N300处理显著高于N150处理,其中花后20天至花后30天N210处理亦显著高于N150处理;成熟期各处理差异不显著,开花期至成熟期N300、N210处理平均分别较N150处理增高11.18%、6.64%。谷氨酰胺合成酶活性花后至成熟期的差异性变化与谷氨酸脱氢酶相似,开花期至成熟期N300、N210处理平均分别较N150处理增高7.10%、3.90%。谷氨酸合成酶活性开花期N210与N150处理差异不显著,且二者显著低于N300处理;花后10天至成熟期N300与N210处理差异均不显著,且N300处理显著高于N150处理,除花后10天和花后40天外N210处理亦均显著高于N150处理,开花期至成熟期N300、N210处理平均分别较N150处理增高10.38%、6.35%。可见,与N150处理相比,N300与N210处理均能保持花后氮代谢的正常运转,且二者花后氮代谢酶活性的差异不显著。
2.5 不同施氮量对玉米花后光合氮素利用效率的影响
光合氮素利用效率表示单位面积叶片氮素的光合生产能力。由表6可知,单位面积叶片含氮量开花期至花后30天不同施氮处理差异均不显著;花后40天至成熟期N300与N210处理差异不显著,且二者显著高于N150处理,N300、N210处理平均分别较N150处理增加10.32%、5.69%。净光合速率开花期不同处理间差异显著;花后10天至成熟期N300与N210处理差异均不显著,且N300处理显著高于N150处理,除花后20天和成熟期外N210处理亦显著高于N150处理,N300、N210处理平均分别较N150处理增加25.94%、14.33%。光合氮素利用效率开花期至成熟期N300与N210处理差异不显著,且N300处理均显著高于N150处理,其中除花后40天至花后50天N210与N150处理差异不显著外,N210处理亦均显著高于N150处理,N300、N210处理平均较N150处理增高21.34%、15.14%。可见,与N150处理相比,N300与N210处理均能保持花后氮素正常的光合生产能力,且二者花后光合氮素利用效率的差异不显著。
表 6 不同施氮量对玉米花后光合氮素利用效率的影响 (2020年)Table 6. Photosynthetic nitrogen utilization efficiency of maize after anthesis as affected by N application rate in 2020指标
Index处理
Treatment花后天数 Days after anthesis 0 10 20 30 40 50 60 Narea
(mg/cm2)N0 0.94 b 0.90 b 0.85 b 0.80 b 0.74 c 0.70 c 0.63 c N150 1.17 a 1.12 a 1.09 a 1.08 a 0.98 b 0.91 b 0.92 b N210 1.10 a 1.09 a 1.02 a 1.00 a 1.03 a 1.00 a 0.99 a N300 1.14 a 1.14 a 1.07 a 1.08 a 1.00 a 0.98 a 1.12 a Pn
[μmol/(m2·s)]N0 14.02 d 13.66 c 12.4 c 11.29 c 10.36 c 9.55 c 8.04 c N150 18.16 c 17.82 b 17.04 b 16.20 b 14.68 b 13.37 b 12.84 b N210 20.89 b 20.42 a 18.98 ab 18.33 a 17.54 a 15.74 a 14.12 ab N300 22.19 a 22.08 a 20.55 a 20.37 a 18.63 a 17.24 a 16.93 a PNUE
[CO2 μmol/(g·s)]N0 14.91 c 15.18 c 14.59 c 14.11 b 14.00 c 13.64 c 12.76 c N150 15.52 b 15.91 b 15.63 b 15.00 b 14.98 bc 14.69 bc 13.96 b N210 18.99 a 18.73 a 18.61 a 18.33 a 17.03 ab 15.74 ab 14.26 a N300 19.46 a 19.37 a 19.21 a 18.86 a 18.63 a 17.59 a 15.12 a 注:同列数据后不同小写字母表示同一指标处理间在0.05水平差异显著。Nare—单位面积叶片含氮量;PNUE—光合氮素利用效率。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level for the same index. Nare—Nitrogen content per unit leaf area; PNUE—Photosynthetic N-use efficiency.2.6 不同施氮量对玉米花后非结构性碳水化合物含量的影响
由表7可知,蔗糖含量开花期至花后20天N300处理显著高于N210、N150处理,其中开花期N210处理亦显著高于N150处理,花后10天至花后20天N210与N150处理差异均不显著;花后30天至成熟期N300与N210处理差异不显著,且N300处理显著高于N150处理,N300、N210处理分别平均较N150处理增加15.73%、6.00%。可溶性糖含量开花期至花后20天N300处理均显著高于N210、N150处理,其中开花期N210与N150处理差异不显著,花后10天至20天N210处理亦均显著高于N150处理;花后30天至成熟期N300与N210处理差异均不显著,且N300处理显著高于N150处理,其中除花后50天外N210处理亦均显著高于N150处理,N300、N210处理平均分别较N150处理增加41.92%、26.05%。淀粉含量开花期至成熟期N300与N210处理均差异不显著,且N300处理显著高于N150处理,其中除开花期和花后30天N210处理显著高于N150处理外,其它时期二者差异均不显著,N300、N210处理平均较N150处理增加26.89%、13.78%。可见,与N150处理相比,N300与N210处理花后穗位叶非结构性碳水化合物含量均较高,且花后30天开始二者差异均不显著。
表 7 不同施氮量下玉米非结构性碳水化合物含量随生育期的变化 (2020年)Table 7. Dynamics of non-structural carbohydrate content of maize with growing days after anthesis as affected by N rate in 2020指标
Index处理
Treatment花后天数 Days after anthesis 0 10 20 30 40 50 60 蔗糖
Sucrose
(mg/g)N0 5.68 d 5.41 c 5.24 c 4.77 c 4.13 c 3.82 c 3.49 c N150 6.11 c 6.06 b 5.82 b 5.51 b 5.28 b 5.09 b 4.78 b N210 6.47 b 6.38 b 6.16 b 5.87 ab 5.65 ab 5.23 ab 5.15 ab N300 6.62 a 6.99 a 6.84 a 6.47 a 6.23 a 5.73 a 5.48 a 可溶性糖
Soluble sugar
(mg/g)N0 6.09 c 5.76 d 5.31 d 4.91 c 4.09 c 3.67 c 3.38 b N150 6.96 b 6.76 c 6.39 c 6.04 b 5.53 b 4.87 bc 4.67 b N210 7.85 b 7.69 b 7.51 b 7.31 a 6.91 a 6.28 ab 6.11 a N300 8.49 a 8.71 a 8.51 a 8.25 a 7.89 a 7.25 a 6.57 a 淀粉
Starch
(mg/g)N0 52.1 c 48.8 c 43.3 c 36.3 d 29.0 c 21.1 c 18.1 c N150 60.0 b 57.9 b 52.0 b 46.0 c 35.9 bc 27.0 b 25.2 b N210 67.6 a 64.2 ab 58.4 ab 52.5 ab 43.4 ab 31.1 ab 28.7 ab N300 69.8 a 68.1 a 64.1 a 60.0 a 53.3 a 38.3 a 32.1 a 注:同列数据后不同小写字母表示同一指标处理间在0.05水平差异显著。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level for the same index.3. 讨论
3.1 浅埋滴灌下不同施氮量对玉米产量和氮素积累转运的影响
土壤水分是土壤养分释放的基础,施肥能提高作物的水分利用效率,适宜的水肥供应对作物的生长和增产具有显著的正耦合效应[21],前人对玉米[22]、棉花[23]、小麦[24]的滴灌水肥耦合研究结果表明,适宜的水肥条件下作物产量最高,当水肥供应超过一定阈值时,产量则呈下降趋势。本研究结果表明,浅埋滴灌下玉米产量随着施氮量的增加均呈上升趋势,当施氮量高于210 kg/hm2时,产量未呈下降趋势但增产效果不显著,同时产量与施氮量的回归模拟(y=–0.0003x3+0.072x2+31.26x+5830.00,P<0.01,R2=0.891)表明,在施氮量0~300 kg/hm2范围内,以N 283 kg/hm2的玉米产量最高,2018—2020年N300处理分别较N210处理增产4.62%、3.91%和3.22%,这与前人的研究结果有所不同。干物质积累和转运是决定玉米籽粒产量高低的主要因素[25],花后干物质积累转运量是籽粒产量形成的主要物质来源[26]。滴灌条件下增加施氮量可提高花后氮素积累量与氮素转运效率,促进植株营养器官的氮素向籽粒转移,进而实现增产[27]。从前人研究结果可以看出,滴灌条件下适宜的施氮水平是维持玉米花后较强的氮素同化作用和提高产量的关键因素。本研究结果表明,2018—2020年N300处理花后氮素积累量均显著高于N150处理,且2019—2020年N300处理花后氮素积累量亦均显著高于N210处理,但不同年份N300处理氮素转运量与N210处理的差异均未达到显著水平;N210处理2018—2020年氮肥偏生产力、2019—2020年氮肥农学效率和2018—2020年氮素吸收效率均显著高于N300处理。从本研究结果可以看出,N300与N210处理均能满足该地区玉米生育后期对氮素的吸收利用,且N210处理花后氮素的吸收与利用效率均高于N300处理。因此,本研究中当施氮量达到300 kg/hm2时,浅埋滴灌玉米产量进一步增加但其增产效果不显著。与N300处理相比,N210处理在减氮30%的条件下可保证玉米丰产性,同时减少因氮肥过量施用导致的地下水污染和N2O排放,兼顾了玉米生产的经济效益和生态效益,实现了玉米绿色丰产增效。
3.2 浅埋滴灌下不同施氮量对玉米花后氮代谢酶活性的影响
土壤氮素供应水平是影响作物氮代谢的关键因素之一,氮素进入植物体内都会经过谷氨酸或谷氨酰胺的转氮作用形成不同的氨基酸,进而合成蛋白质,蛋白质含量直接影响植物体内各种酶的合成,从而影响植物体氮代谢[28]。前人关于施氮量对玉米[29]、水稻[30]、小黑麦[31]叶片氮代谢酶活性的影响已有许多研究,不同生育期花生叶片硝酸还原酶、谷氨酰胺合成酶活性均随施氮量的增加而提高,但施氮量过高会导致氮代谢酶活性的下降[32]。本研究结果表明,浅埋滴灌下不同施氮量显著提高花后玉米叶片氮代谢相关酶活性,随着生育进程的推进,花后10天开始至成熟期N300和N210处理谷氨酰胺合成酶、谷氨酸合成酶和谷氨酸脱氢酶活性的差异均不显著,这可能与N300处理营养器官氮素转运受抑制和N210处理花后氮素吸收与转运效率高有关。前人研究表明,施氮可显著提高膜下滴灌玉米花后叶片硝酸还原酶和谷氨酰胺合成酶活性,其中硝酸还原酶、谷氨酰胺合成酶活性分别在花后20天、花后30天与其它处理差异最显著,施氮量300 kg/hm2可保证叶片氮代谢酶机制的畅通和高效运转,可有效提高氮肥利用效率[33]。这与本研究结果有所不同,可能是由于膜下滴灌玉米花后生育进程加快,根冠衰老加剧,氮素吸收效率下降,进而影响氮素的积累与转运,从而需要较多的氮素维持其花后叶片氮代谢酶活性,保证叶片氮代谢正常运转。
3.3 浅埋滴灌下不同施氮量对玉米花后氮素光合生产能力的影响
氮素是作物光合作用以及有机物生成与积累的限制因素,合理增施氮肥可提高作物叶片氮含量,有利于提高叶绿素含量及与光合有关的酶活性,进而提高光合速率[34]。研究表明,叶片净光合速率一般随叶片氮含量增加而增加,二者在叶片氮含量较低时呈线性关系,而叶片氮含量较高且变化范围较广时,二者则呈指数增长到最大值的曲线关系[35]。滴灌水肥一体化下,增施氮肥可提高温室番茄叶片光合速率、气孔导度和水分利用率,而过量增氮将抑制其光合作用[36];充分滴灌条件下,增施氮肥能延长小麦旗叶光合功能持续期,提高最大光合速率和表观光量子效率[37];氮肥后移可延长花后玉米叶片光合有效时间,提高氮素吸收能力,增加叶片氮素含量[38]。光合氮素利用效率是叶片净光合速率与叶氮含量的比值,可充分反映植物氮分配及其对光合作用的影响[39],叶片氮素参与光合作用的比例和光合酶活性大小均影响光合氮素利用效率[40],光合氮素利用效率越高表明产生单位干物质所需的氮素越少,氮素利用率越高[41]。本研究表明,玉米花后单位面积叶片含氮量、净光合速率和光合氮素利用效率均随施氮量的增加而增加,花后N300、N210处理光合氮素利用效率分别较N150处理提高了21.34%、15.14%,但开花期至成熟期N210与N300处理光合氮素利用效率的差异均不显著。可见,浅埋滴灌下N300与N210处理均能满足该地区玉米生育后期光合物质生产对氮素的需要,且N210处理花后氮素光合生产能力优于N300处理。
4. 结论
西辽河平原浅埋滴灌水氮一体化下,施氮量在210~300 kg/hm2范围内,玉米花后氮代谢酶活性、氮素光合生产能力较强,非结构性碳水化合物含量均较高,利于氮素积累转运,进而促进产量的提高,且氮肥用量间的差异不显著。然而,低施氮量下玉米氮素利用效率明显提高。因此,西辽河平原井灌区应用浅埋滴灌技术种植玉米,施氮量210 kg/hm2更为合理,既可保持现有产量不降低,还可增加植株氮素吸收转运,提高氮素利用效率。
-
图 1 不同施氮量对玉米花后氮素转运和积累的影响
注:柱上不同小写字母表示同一年处理间在0.05水平差异显著
Figure 1. Effects of different N application rates on nitrogen translocation and accumulation of maize after anthesis
Note: Different lowercase letters above the bars indicate significant difference among treatments at 0.05 level in the same year
表 1 试验地点玉米生长季降水量(mm)
Table 1 Precipitation during maize growing season of the experimental site
年份 Year 4月 April 5月 May 6月 June 7月 July 8月 August 9月 September 10月 October 合计 Total 2018 12.4 34.0 66.4 96.9 147.7 14.6 12.9 384.9 2019 2.5 90.1 88.7 56.6 130.2 9.2 18.3 395.6 2020 7.0 111.2 94.3 157.1 90.3 85.6 4.3 549.8 表 2 试验地点玉米生长季平均气温(℃)
Table 2 Average temperature during maize growing season at the experimental site
年份 Year 4月 April 5月 May 6月 June 7月 July 8月 August 9月 September 10月 October 平均 Mean 2018 10.6 18.2 23.8 26.4 23.5 17.3 9.1 18.4 2019 11.0 19.0 21.8 25.6 22.4 19.4 9.6 18.4 2020 10.2 17.3 23.1 25.8 23.4 17.1 9.3 18.0 表 3 不同处理施肥 (kg/hm2) 方案
Table 3 The N application schemes of different treatment
处理
Treatment施氮量 N application rate 合计
Total N input播种期
Seeding stage拔节期
Jointing stage大喇叭口期
Great trumpet stage吐丝期
Silking stageN0 0 0 0 0 0 N150 35.1 34.47 68.94 11.49 150 N210 35.1 52.47 104.94 17.49 210 N300 35.1 79.47 158.94 26.49 300 注:播种期为底施磷酸二铵,在拔节期、大喇叭口期和吐丝期滴灌施尿素。
Note: At seeding stage, diammonium phosphate is basal applied, and urea is applied with drip irrigation at jointing, big trumpet and silking stages.表 4 不同施氮量对玉米产量和产量构成因素的影响
Table 4 Effects of different N application rates on maize yield and yield components
年份
Year处理
Treatment有效穗数 (×104/hm2)
Effective ears穗粒数
Grains per ear千粒重 (g)
1000-grain weight产量 (kg/hm2)
Yield2018 N0 8.53 a 330.4 b 283.9 c 8080 c N150 8.62 a 383.4 ab 322.6 b 10290 bc N210 8.82 a 413.0 a 348.8 ab 12420 ab N300 8.77 a 426.8 a 354.2 a 12994 a 2019 N0 8.49 a 276.8 c 253.4 c 6020 c N150 8.64 a 383.5 b 331.6 b 11170 b N210 8.62 a 425.7 a 344.1 ab 12630 ab N300 8.69 a 448.1 a 364.3 a 13124 a 2020 N0 8.43 a 189.1 c 206.4 c 3390 c N150 8.60 a 378.6 b 330.3 b 11760 b N210 8.64 a 430.8 a 348.7 a 12870 a N300 8.62 a 450.2 a 362.3 a 13284 a 注:同列数据后不同小写字母表示同一年处理间在0.05水平差异显著。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level in the same year.表 5 不同施氮量对玉米氮素利用效率的影响
Table 5 Effects of di different N application rates on nitrogen utilization efficiency of maize
年份
Year处理
TreatmentPFPN
(kg/kg)AEN
(kg/kg)PEN
(kg/kg)REN
(kg/kg)2018 N150 68.60 a 14.73 a 65.49 a 1.24 a N210 59.14 a 20.67 a 38.34 b 1.26 a N300 43.31 b 16.38 a 35.95 b 0.96 b 2019 N150 71.53 a 24.53 a 73.62 a 1.18 a N210 59.64 b 26.07 a 39.29 b 1.27 a N300 43.53 c 20.03 b 34.74 b 1.00 b 2020 N150 73.82 a 34.96 a 89.58 a 1.12 b N210 60.19 b 32.43 a 41.52 b 1.31 a N300 43.78 c 24.35 b 37.56 b 1.02 c 年份 Year ns ** ** ns 施氮量 N rate ** ** ** ** 年份×施氮量 Year×N rate ns ** ** ns 注:PFPN—氮肥偏生产力;AEN—氮肥农学效率;PEN—氮肥生理利用率;REN—氮素吸收效率。同列数据后不同小写字母表示同一年处理间在0.05水平差异显著;*—P<0.05;**—P<0.01;ns—差异不显著。
Note: PFPN—Partial factor productivity of nitrogen fertilizer; AEN—N agronomy efficiency; PEN—N physiological efficiency; REN—N recovery efficiency. Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level in the same year; *—P<0.05; **—P<0.01; ns—No significant difference.表 6 不同施氮量对玉米花后光合氮素利用效率的影响 (2020年)
Table 6 Photosynthetic nitrogen utilization efficiency of maize after anthesis as affected by N application rate in 2020
指标
Index处理
Treatment花后天数 Days after anthesis 0 10 20 30 40 50 60 Narea
(mg/cm2)N0 0.94 b 0.90 b 0.85 b 0.80 b 0.74 c 0.70 c 0.63 c N150 1.17 a 1.12 a 1.09 a 1.08 a 0.98 b 0.91 b 0.92 b N210 1.10 a 1.09 a 1.02 a 1.00 a 1.03 a 1.00 a 0.99 a N300 1.14 a 1.14 a 1.07 a 1.08 a 1.00 a 0.98 a 1.12 a Pn
[μmol/(m2·s)]N0 14.02 d 13.66 c 12.4 c 11.29 c 10.36 c 9.55 c 8.04 c N150 18.16 c 17.82 b 17.04 b 16.20 b 14.68 b 13.37 b 12.84 b N210 20.89 b 20.42 a 18.98 ab 18.33 a 17.54 a 15.74 a 14.12 ab N300 22.19 a 22.08 a 20.55 a 20.37 a 18.63 a 17.24 a 16.93 a PNUE
[CO2 μmol/(g·s)]N0 14.91 c 15.18 c 14.59 c 14.11 b 14.00 c 13.64 c 12.76 c N150 15.52 b 15.91 b 15.63 b 15.00 b 14.98 bc 14.69 bc 13.96 b N210 18.99 a 18.73 a 18.61 a 18.33 a 17.03 ab 15.74 ab 14.26 a N300 19.46 a 19.37 a 19.21 a 18.86 a 18.63 a 17.59 a 15.12 a 注:同列数据后不同小写字母表示同一指标处理间在0.05水平差异显著。Nare—单位面积叶片含氮量;PNUE—光合氮素利用效率。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level for the same index. Nare—Nitrogen content per unit leaf area; PNUE—Photosynthetic N-use efficiency.表 7 不同施氮量下玉米非结构性碳水化合物含量随生育期的变化 (2020年)
Table 7 Dynamics of non-structural carbohydrate content of maize with growing days after anthesis as affected by N rate in 2020
指标
Index处理
Treatment花后天数 Days after anthesis 0 10 20 30 40 50 60 蔗糖
Sucrose
(mg/g)N0 5.68 d 5.41 c 5.24 c 4.77 c 4.13 c 3.82 c 3.49 c N150 6.11 c 6.06 b 5.82 b 5.51 b 5.28 b 5.09 b 4.78 b N210 6.47 b 6.38 b 6.16 b 5.87 ab 5.65 ab 5.23 ab 5.15 ab N300 6.62 a 6.99 a 6.84 a 6.47 a 6.23 a 5.73 a 5.48 a 可溶性糖
Soluble sugar
(mg/g)N0 6.09 c 5.76 d 5.31 d 4.91 c 4.09 c 3.67 c 3.38 b N150 6.96 b 6.76 c 6.39 c 6.04 b 5.53 b 4.87 bc 4.67 b N210 7.85 b 7.69 b 7.51 b 7.31 a 6.91 a 6.28 ab 6.11 a N300 8.49 a 8.71 a 8.51 a 8.25 a 7.89 a 7.25 a 6.57 a 淀粉
Starch
(mg/g)N0 52.1 c 48.8 c 43.3 c 36.3 d 29.0 c 21.1 c 18.1 c N150 60.0 b 57.9 b 52.0 b 46.0 c 35.9 bc 27.0 b 25.2 b N210 67.6 a 64.2 ab 58.4 ab 52.5 ab 43.4 ab 31.1 ab 28.7 ab N300 69.8 a 68.1 a 64.1 a 60.0 a 53.3 a 38.3 a 32.1 a 注:同列数据后不同小写字母表示同一指标处理间在0.05水平差异显著。
Note: Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level for the same index. -
[1] Fan J L, Wu L F, Zhang F C, et al. Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout[J]. Irrigation and Drainage, 2017, 66(4): 520–529. DOI: 10.1002/ird.2136
[2] 严富来, 张富仓, 范兴科, 等. 水氮互作对宁夏沙土春玉米产量与氮素吸收利用的影响[J]. 农业机械学报, 2020, 51(7): 283–293. Yan F L, Zhang F C, Fan X K, et al. Effects of water and nitrogen fertilizer supply on yield and nitrogen absorption and utilization efficiency of spring maize in sandy soil area in Ningxia[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 283–293. DOI: 10.6041/j.issn.1000-1298.2020.07.032 Yan F L, Zhang F C, Fan X K, et al. Effects of water and nitrogen fertilizer supply on yield and nitrogen absorption and utilization efficiency of spring maize in sandy soil area in Ningxia[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 283–293. DOI: 10.6041/j.issn.1000-1298.2020.07.032
[3] 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应[J]. 植物营养与肥料学报, 2021, 27(1): 54–65. Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54–65. DOI: 10.11674/zwyf.20233 Hou Y P, Kong L L, Yin C X, et al. Interaction between nitrogen fertilizer and plant density on nutrient absorption, translocation and yield of spring maize under drip irrigation in Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(1): 54–65. DOI: 10.11674/zwyf.20233
[4] 刘伟, 田德龙, 侯晨丽, 等. 膜下滴灌对春小麦水热条件及产量品质的影响[J]. 灌溉排水学报, 2020, 39(11): 29–37. Liu W, Tian D L, Hou C L, et al. The dynamics of soil moisture and temperature under film-mulched drip irrigation and its impact on yield and quality of spring wheat[J]. Journal of Irrigation and Drainage, 2020, 39(11): 29–37. DOI: 10.13522/j.cnki.ggps.20190280 Liu W, Tian D L, Hou C L, et al. The dynamics of soil moisture and temperature under film-mulched drip irrigation and its impact on yield and quality of spring wheat[J]. Journal of Irrigation and Drainage, 2020, 39(11): 29–37. DOI: 10.13522/j.cnki.ggps.20190280
[5] 忠智博, 翟国亮, 邓忠, 等. 水氮施量对膜下滴灌棉花生长及水氮分布的影响[J]. 灌溉排水学报, 2020, 39(1): 67–76. Zhong Z B, Zhai G L, Deng Z, et al. The impact of N application and drip irrigation amount on cotton growth and water and N distributions in soil mulched with film[J]. Journal of Irrigation and Drainage, 2020, 39(1): 67–76. DOI: 10.13522/j.cnki.ggps.2019154 Zhong Z B, Zhai G L, Deng Z, et al. The impact of N application and drip irrigation amount on cotton growth and water and N distributions in soil mulched with film[J]. Journal of Irrigation and Drainage, 2020, 39(1): 67–76. DOI: 10.13522/j.cnki.ggps.2019154
[6] 郭丙玉, 高慧, 唐诚, 等. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响[J]. 应用生态学报, 2015, 26(12): 3679–3686. Guo B Y, Gao H, Tang C, et al. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3679–3686. DOI: 10.13287/j.1001-9332.20150929.011 Guo B Y, Gao H, Tang C, et al. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3679–3686. DOI: 10.13287/j.1001-9332.20150929.011
[7] Sui J, Wang J D, Gong S H, et al. Assessment of maize yield-increasing potential and optimum N level under mulched drip irrigation in the Northeast of China[J]. Field Crops Research, 2018, 215: 132–139. DOI: 10.1016/j.fcr.2017.10.009
[8] 张明伟, 杨恒山, 范秀艳, 等. 浅埋滴灌下水氮减量对春玉米干物质积累及水氮利用效率的影响[J]. 玉米科学, 2021, 29(2): 149–156. Zhang M W, Yang H S, Fan X Y, et al. Effect of reduction of nitrogen and irrigation on dry matter accumulation and utilization efficiency of water and nitrogen of spring maize in shallow drip irrigation[J]. Journal of Maize Sciences, 2021, 29(2): 149–156. DOI: 10.13597/j.cnki.maize.science.20210222 Zhang M W, Yang H S, Fan X Y, et al. Effect of reduction of nitrogen and irrigation on dry matter accumulation and utilization efficiency of water and nitrogen of spring maize in shallow drip irrigation[J]. Journal of Maize Sciences, 2021, 29(2): 149–156. DOI: 10.13597/j.cnki.maize.science.20210222
[9] 杨恒山, 薛新伟, 张瑞富, 等. 灌溉方式对西辽河平原玉米产量及水分利用效率的影响[J]. 农业工程学报, 2019, 35(21): 69–77. Yang H S, Xue X W, Zhang R F, et al. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 69–77. DOI: 10.11975/j.issn.1002-6819.2019.21.009 Yang H S, Xue X W, Zhang R F, et al. Effects of irrigation methods on yield and water use efficiency of maize in the West Liaohe plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(21): 69–77. DOI: 10.11975/j.issn.1002-6819.2019.21.009
[10] Ibrahim M M, Elbaroudy A A, Taha A M. Irrigation and fertigation scheduling under drip irrigation for maize crop in sandy soil[J]. International Agrophysics, 2016, 30(1): 47–55. DOI: 10.1515/intag-2015-0071
[11] 贾琼, 史海滨, 李瑞平, 等. 西辽河平原覆膜和浅埋对滴灌玉米生长的影响[J]. 水土保持学报, 2021, 35(3): 296–303, 311. Jia Q, Shi H B, Li R P, et al. Effects of mulched and soil covered drip irrigation on growth of maize in West Liaohe plain[J]. Journal of Soil and Water Conservation, 2021, 35(3): 296–303, 311. DOI: 10.13870/j.cnki.stbcxb.2021.03.041 Jia Q, Shi H B, Li R P, et al. Effects of mulched and soil covered drip irrigation on growth of maize in West Liaohe plain[J]. Journal of Soil and Water Conservation, 2021, 35(3): 296–303, 311. DOI: 10.13870/j.cnki.stbcxb.2021.03.041
[12] 杨恒山, 张雨珊, 葛选良, 等. 浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响[J]. 作物学报, 2022, 48(10): 2614–2624. Yang H S, Zhang Y S, Ge X L, et al. Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation[J]. Acta Agronomica Sinica, 2022, 48(10): 2614–2624. Yang H S, Zhang Y S, Ge X L, et al. Effects of different amount of drip irrigation on carbon metabolism and photosynthetic nitrogen utilization efficiency of maize after anthesis under shallow buried drip irrigation[J]. Acta Agronomica Sinica, 2022, 48(10): 2614–2624.
[13] 刘泳圻, 谷健, 孙仕军, 等. 辽西半干旱区浅埋滴灌水、氮、磷、锌耦合对春玉米产量的影响[J]. 植物营养与肥料学报, 2021, 27(5): 898–908. Liu Y Q, Gu J, Sun S J, et al. Yield effects of coupling of nitrogen, phosphorus and zinc on spring maize under shallow buried drip irrigation in semi-arid area of western Liaoning Province[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 898–908. DOI: 10.11674/zwyf.20473 Liu Y Q, Gu J, Sun S J, et al. Yield effects of coupling of nitrogen, phosphorus and zinc on spring maize under shallow buried drip irrigation in semi-arid area of western Liaoning Province[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(5): 898–908. DOI: 10.11674/zwyf.20473
[14] 张富仓, 严富来, 范兴科, 等. 滴灌施肥水平对宁夏春玉米产量和水肥利用效率的影响[J]. 农业工程学报, 2018, 34(22): 111–120. Zhang F C, Yan F L, Fan X K, et al. Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 111–120. DOI: 10.11975/j.issn.1002-6819.2018.22.014 Zhang F C, Yan F L, Fan X K, et al. Effects of irrigation and fertilization levels on grain yield and water-fertilizer use efficiency of drip-fertigation spring maize in Ningxia[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 111–120. DOI: 10.11975/j.issn.1002-6819.2018.22.014
[15] 李媛媛, 杨恒山, 张瑞富, 等. 浅埋滴灌条件下不同灌水量对春玉米干物质积累与转运的影响[J]. 浙江农业学报, 2017, 29(8): 1234–1242. Li Y Y, Yang H S, Zhang R F, et al. Effects of different irrigation amount on dry matter accumulation and transportation of spring maize under shallow subsurface drip irrigation[J]. Acta Agriculturae Zhejiangensis, 2017, 29(8): 1234–1242. DOI: 10.3969/j.issn.1004-1524.2017.08.03 Li Y Y, Yang H S, Zhang R F, et al. Effects of different irrigation amount on dry matter accumulation and transportation of spring maize under shallow subsurface drip irrigation[J]. Acta Agriculturae Zhejiangensis, 2017, 29(8): 1234–1242. DOI: 10.3969/j.issn.1004-1524.2017.08.03
[16] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000. 115–122. Zou Q. Experimental guidance on plant physiology[M]. Beijing: China Agricultural Press, 2000. 115–122.
[17] Hou Y, Xu X, Kong L, et al. The combination of straw return and appropriate K fertilizer amounts enhances both soil health and rice yield in Northeast China[J]. Agronomy Journal, 2021, 113(6): 5424–5435. DOI: 10.1002/agj2.20805
[18] 门福义, 刘梦芸. 马铃薯栽培生理[M]. 北京: 中国农业出版社, 1995. 318–320. Men F Y, Liu M Y. Potato cultivation physiology[M]. Beijing: China Agricultural Press, 1995. 318–320.
[19] Qi H Y, Li T L, Zhang J, et al. Effects on sucrose metabolism, dry matter distribution and fruit quality of tomato under water deficit[J]. Agricultural Sciences in China, 2003, 2(11): 1253–1258.
[20] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. 195–197. Li H S. Principle and technology of plant physiological and biochemical experiment[M]. Beijing: Higher Education Press, 2000. 195–197.
[21] 侯云鹏, 孔丽丽, 李前, 等. 滴灌施氮对春玉米氮素吸收、土壤无机氮含量及氮素平衡的影响[J]. 水土保持学报, 2018, 32(1): 238–245. Hou Y P, Kong L L, Li Q, et al. Effects of drip irrigation with nitrogen on nitrogen uptake, soil inorganic nitrogen content and nitrogen balance of spring maize[J]. Journal of Soil and Water Conservation, 2018, 32(1): 238–245. DOI: 10.13870/j.cnki.stbcxb.2018.01.037 Hou Y P, Kong L L, Li Q, et al. Effects of drip irrigation with nitrogen on nitrogen uptake, soil inorganic nitrogen content and nitrogen balance of spring maize[J]. Journal of Soil and Water Conservation, 2018, 32(1): 238–245. DOI: 10.13870/j.cnki.stbcxb.2018.01.037
[22] 冯浩原, 尹光华, 马宁宁, 等. 不同降水年型地下滴灌追氮对玉米产量的影响[J]. 排灌机械工程学报, 2021, 39(12): 1250–1256. Feng H Y, Yin G H, Ma N N, et al. Effect of subsurface drip irrigation and nitrogen supplement on maize yield in different precipitation years[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(12): 1250–1256. Feng H Y, Yin G H, Ma N N, et al. Effect of subsurface drip irrigation and nitrogen supplement on maize yield in different precipitation years[J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(12): 1250–1256.
[23] Wang H D, Wu L F, Cheng M H, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in Northern Xinjiang, China[J]. Field Crops Research, 2018, 219: 169–179. DOI: 10.1016/j.fcr.2018.02.002
[24] Wang Y Z, Zhang X Y, Liu X W, et al. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat[J]. Field Crops Research, 2013, 144(1): 236–244.
[25] 张仁和, 王博新, 杨永红, 等. 陕西灌区高产春玉米物质生产与氮素积累特性[J]. 中国农业科学, 2017, 50(12): 2238–2246. Zhang R H, Wang B X, Yang Y H, et al. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi[J]. Scientia Agricultura Sinica, 2017, 50(12): 2238–2246. DOI: 10.3864/j.issn.0578-1752.2017.12.005 Zhang R H, Wang B X, Yang Y Y, et al. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi[J]. Scientia Agriculture Sinica, 2017, 50(12): 2238–2246. DOI: 10.3864/j.issn.0578-1752.2017.12.005
[26] 黄智鸿, 王思远, 包岩, 等. 超高产玉米品种干物质积累与分配特点的研究[J]. 玉米科学, 2007, 15(3): 95–98. Huang Z H, Wang S Y, Bao Y, et al. Studies on dry matter accumulation and distributive characteristic in super high-yield maize[J]. Journal of Maize Sciences, 2007, 15(3): 95–98. DOI: 10.3969/j.issn.1005-0906.2007.03.023 Huang Z H, Wang S Y, Bao Y, et al. Studies on dry matter accumulation and distributive characteristic in super high-yield maize[J]. Journal of Maize Science, 2007, 15(3): 95–98. DOI: 10.3969/j.issn.1005-0906.2007.03.023
[27] 杜君, 杨占平, 魏义长, 等. 北方夏玉米滴灌施肥一体化技术应用效果[J]. 核农学报, 2020, 34(3): 621–628. Du J, Yang Z P, Wei Y C, et al. Application effects of integrated drip irrigation and fertilization technology for summer maize in northern China[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 621–628. DOI: 10.11869/j.issn.100-8551.2020.03.0621 Du J, Yang Z P, Wei Y A, et al. Application effects of integrated drip irrigation and fertilization technology for summer maize in northern China[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 621–628. DOI: 10.11869/j.issn.100-8551.2020.03.0621
[28] 武姣娜, 魏晓东, 李霞, 等. 植物氮素利用效率的研究进展[J]. 植物生理学报, 2018, 54(9): 1401–1408. Wu J N, Wei X D, Li X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401–1408. DOI: 10.13592/j.cnki.ppj.2018.0071 Wu J N, Wei X D, Li X, et al. Research progress in nitrogen use efficiency in plants[J]. Plant Physiology Journal, 2018, 54(9): 1401–1408. DOI: 10.13592/j.cnki.ppj.2018.0071
[29] 朱昆仑, 靳立斌, 董树亭, 等. 综合农艺管理对夏玉米叶片衰老特性的影响[J]. 中国农业科学, 2014, 47(15): 2949–2959. Zhu K L, Jin L B, Dong S T, et al. Effects of integrated agronomic practices on leaf senescence physiological characteristics of summer maize[J]. Scientia Agricultura Sinica, 2014, 47(15): 2949–2959. DOI: 10.3864/j.issn.0578-1752.2014.15.005 Zhu K L, Jin L B, Dong S T, et al. Effects of integrated agronomic practices on leaf senescence physiological characteristics of summer maize[J]. Scientia Agricultura Sinica, 2014, 47(15): 2949–2959. DOI: 10.3864/j.issn.0578-1752.2014.15.005
[30] 赵全志, 陈静蕊, 刘辉, 等. 水稻氮素同化关键酶活性与叶色变化的关系[J]. 中国农业科学, 2008, 41(9): 2607–2616. Zhao Q Z, Chen J R, Liu H, et al. Relationship between activities of nitrogen assimilation enzymes and leaf color of rice[J]. Scientia Agricultura Sinica, 2008, 41(9): 2607–2616. DOI: 10.3864/j.issn.0578-1752.2008.09.006 Zhao Q Z, Chen J R, Liu H, et al. Relationship between activities of nitrogen assimilation enzymes and leaf color of rice[J]. Scientia Agricultura Sinica, 2008, 41(9): 2607–2616. DOI: 10.3864/j.issn.0578-1752.2008.09.006
[31] 李晶, 吉彪, 商文楠, 等. 密度和氮素水平对小黑麦氮代谢相关酶活性和子粒营养品质的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1063–1068. Li J, Ji B, Shang W N, et al. Effects of density and nitrogen on relevant enzyme activity of nitrogen metabolism and nutritional quality of grain in triticale[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(5): 1063–1068. DOI: 10.11674/zwyf.2010.0504 Li J, Ji B, Shang W N, et al. Effects of density and nitrogen on relevant enzyme activity of nitrogen metabolism and nutritional quality of grain in triticale[J]. Journal of Plant Nutrition and Fertilizers, 2010, 16(5): 1063–1068. DOI: 10.11674/zwyf.2010.0504
[32] 张智猛, 万书波, 戴良香, 等. 施氮水平对不同花生品种氮代谢及相关酶活性的影响[J]. 中国农业科学, 2011, 44(2): 280–290. Zhang Z M, Wan S B, Dai L X, et al. Effects of nitrogen application rates on nitrogen metabolism and related enzyme activities of two different peanut cultivars[J]. Scientia Agricultura Sinica, 2011, 44(2): 280–290. DOI: 10.3864/j.issn.0578-1752.2011.02.007 Zhang Z M, Wan S B, Dai L X, et al. Effects of nitrogen application rates on nitrogen metabolism and related enzyme activities of two different peanut cultivars[J]. Scientia Agricultura Sinica, 2011, 44(2): 280–290. DOI: 10.3864/j.issn.0578-1752.2011.02.007
[33] 谷岩, 胡文河, 徐百军, 等. 氮素营养水平对膜下滴灌玉米穗位叶光合及氮代谢酶活性的影响[J]. 生态学报, 2013, 33(23): 7399–7407. Gu Y, Hu W H, Xu B J, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399–7407. DOI: 10.5846/stxb201208231193 Gu Y, Hu W H, Xu B J, et al. Effects of nitrogen on photosynthetic characteristics and enzyme activity of nitrogen metabolism in maize under-mulch-drip irrigation[J]. Acta Ecologica Sinica, 2013, 33(23): 7399–7407. DOI: 10.5846/stxb201208231193
[34] 吕丽华, 陶洪斌, 王璞, 等. 施氮量对夏玉米碳、氮代谢和氮利用效率的影响[J]. 植物营养与肥料学报, 2008, 14(4): 630–637. Lü L H, Tao H B, Wang P, et al. The effect of nitrogen application rate on carbon and nitrogen metabolism and nitrogen use efficiency of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 630–637. DOI: 10.11674/zwyf.2008.0403 Lü L H, Tao H B, Wang P, et al. The effect of nitrogen application rate on carbon and nitrogen metabolism and nitrogen use efficiency of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(4): 630–637. DOI: 10.11674/zwyf.2008.0403
[35] Bindraban P S. Impact of canopy nitrogen profile in wheat on growth[J]. Field Crops Research, 1999, 63(1): 63–77. DOI: 10.1016/S0378-4290(99)00030-1
[36] 袁宇霞, 张富仓, 张燕, 等. 滴灌施肥灌水下限和施肥量对温室番茄生长、产量和生理特性的影响[J]. 干旱地区农业研究, 2013, 31(1): 76–83. Yuan Y X, Zhang F C, Zhang Y, et al. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Areas, 2013, 31(1): 76–83. DOI: 10.3969/j.issn.1000-7601.2013.01.015 Yuan Y X, Zhang F C, Zhang Y, et al. Effects of irrigation threshold and fertilization on growth, yield and physiological properties of fertigated tomato in greenhouse[J]. Agricultural Research in the Arid Area, 2013, 31(1): 76–83. DOI: 10.3969/j.issn.1000-7601.2013.01.015
[37] 张彦群, 王建东, 龚时宏, 等. 滴灌条件下冬小麦施氮增产的光合生理响应[J]. 农业工程学报, 2015, 31(6): 170–177. Zhang Y Q, Wang J D, Gong S H, et al. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 170–177. Zhang Y Q, Wang J D, Gong S H, et al. Photosynthetic response of yield enhancement by nitrogen fertilization in winter wheat fields with drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 170–177.
[38] 魏廷邦, 柴强, 王伟民, 等. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应[J]. 中国农业科学, 2019, 52(3): 428–444. Wei T B, Chai Q, Wang W M, et al. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in Oasis irrigated area[J]. Scientia Agricultura Sinica, 2019, 52(3): 428–444. Wei T B, Chai Q, Wang W M, et al. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in Oasis irrigated area[J]. Scientia Agricultura Sinica, 2019, 52(3): 428–444.
[39] 刘涛, 鲁剑巍, 任涛, 等. 不同氮水平下冬油菜光合氮利用效率与光合器官氮分配的关系[J]. 植物营养与肥料学报, 2016, 22(2): 518–524. Liu T, Lu J W, Ren T, et al. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 518–524. DOI: 10.11674/zwyf.14434 Liu T, Lu J W, Ren T, et al. Relationship between photosynthetic nitrogen use efficiency and nitrogen allocation in photosynthetic apparatus of winter oilseed rape under different nitrogen levels[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 518–524. DOI: 10.11674/zwyf.14434
[40] Hikosaka K. Interspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance[J]. Journal of Plant Research, 2004, 117: 481–494. DOI: 10.1007/s10265-004-0174-2
[41] 剧成欣, 周著彪, 赵步洪, 等. 不同氮敏感性粳稻品种的氮代谢与光合特性比较[J]. 作物学报, 2018, 44(3): 405–413. Ju C X, Zhou Z B, Zhao B H, et al. Comparison in nitrogen metabolism and photosynthetic characteristics between Japonica rice varieties differing in nitrogen sensitivity[J]. Acta Agronomica Sinica, 2018, 44(3): 405–413. DOI: 10.3724/SP.J.1006.2018.00405 Ju C X, Zhou Z B, Zhao B H, et al. Comparison in nitrogen metabolism and photosynthetic characteristics between Japonica rice varieties differing in nitrogen sensitivity[J]. Acta Agronomica Sinica, 2018, 44(3): 405–413. DOI: 10.3724/SP.J.1006.2018.00405
-
期刊类型引用(13)
1. 兰慧青,孟天天,张向前,王伟妮,张君,陈立宇,路战远,孙霞. 施氮水平对土壤有机氮组分及氮素利用效率的影响. 华北农学报. 2025(01): 166-176 . 百度学术
2. 吴志宇,张玉芹,杨恒山,金玉,鲁敏媛. 连续秸秆还田下氮肥减施对春玉米光合特性及产量的影响. 内蒙古民族大学学报(自然科学版). 2024(03): 14-18+96 . 百度学术
3. 赵世翔,李奕含,李斐. 基于层次-灰色关联法的河套灌区玉米田氮素面源污染防治技术综合评价. 中国土壤与肥料. 2024(04): 26-34 . 百度学术
4. 谢忠,叶含春,王振华,李海强,刘健,陈睿,许宇双. 浅埋滴灌水氮配施对冬小麦生长发育、产量及水分利用效率的影响. 新疆农业科学. 2024(05): 1057-1066 . 百度学术
5. 郝琪,梁红伟,王永强,王富贵,陈天陆,王振,白岚方,王志刚. 基于临界氮浓度稀释曲线的内蒙古土默川平原滴灌玉米氮营养诊断. 北方农业学报. 2024(03): 1-18 . 百度学术
6. 郝展宏,叶松林,蔡东玉,张丽娟,米国华. 冬小麦-夏玉米周年“四密一稀”浅埋滴灌水肥药一体化绿色生产技术. 中国农学通报. 2024(29): 59-64 . 百度学术
7. 曹文茁,于振文,张永丽,张振,石玉,王永军. 不同施氮量下黑土地春玉米籽粒淀粉积累动态及产量形成差异. 中国农业科学. 2024(22): 4431-4443 . 百度学术
8. 李元薇,杨恒山,葛选良,张宏宇,刘晶,李维敏. 浅埋滴灌水肥一体化下氮肥减施对玉米花后光合特性和碳代谢的影响. 玉米科学. 2024(08): 80-87+95 . 百度学术
9. 孔丽丽,尹彩侠,侯云鹏,张磊,赵胤凯,刘志全,徐新朋. 东北半干旱区浅埋滴灌下玉米高产高效的尿素硝酸铵溶液投入阈值. 中国生态农业学报(中英文). 2024(12): 2081-2093 . 百度学术
10. 张玉芹,杨恒山,张瑞富,李从锋,提俊阳,葛选良,杨镜宏. 浅埋滴灌下水氮运筹对春玉米根系衰减特性及产量的影响. 作物学报. 2023(11): 3074-3089 . 百度学术
11. 兰慧青,张向前,程玉臣,师晶晶,陈宣伊,步恒通,白东星,路战远,刘雅杰,陈丽荣. 不同施氮水平对耐密宜机收玉米干物质积累与分配的影响. 中国农学通报. 2023(25): 1-10 . 百度学术
12. 罗雪梅,陈明媛,王宁宁,郭睿,刘建国. 有机肥替代部分化学氮肥对连作棉田土壤氮分布及氮肥吸收利用的影响. 中国农学通报. 2023(33): 76-84 . 百度学术
13. 潘洋,付秋萍,海英,祁通,洪明,马英杰,潘俊杰. 新疆滴灌机采棉生长及产量的最佳水氮组合. 新疆农业科学. 2023(11): 2674-2686 . 百度学术
其他类型引用(17)