Effects of fertilization patterns on flavonoids and glycoside metabolites in tea
-
摘要:[目的]
研究施肥模式对茶叶生化成分含量和黄酮类及糖苷类代谢物累积的影响,为实现茶叶优质高产提供科学依据。
[方法]田间试验设在四川茶树种植典型区域—雅安,试验连续进行了3年,设置不施肥 (CK)、常量化肥 (N 585 kg/hm2,TF)、有机肥替代25%化肥氮 (OF)、减施25%氮肥 (SF) 4个处理。分析了不同处理茶叶主要品质成分含量,并基于非靶向代谢组学检测结果分析了黄酮类及糖苷类代谢物累积差异。
[结果]与CK处理相比,TF、OF、SF处理茶氨酸、游离氨基酸含量分别提高了7.22%~13.40%、23.15%~25.50%,可溶性糖和茶多酚含量分别降低了8.17%~13.86%、6.08%~11.49%,表儿茶素、表没食子儿茶素、芸香苷等10种代谢物累积水平显著下降。与TF处理相比,SF处理茶氨酸、咖啡碱和水浸出物含量分别降低了5.45%、5.97%、8.91%,茶多酚、可溶性糖、游离氨基酸含量和酚氨比无显著差异;芍药素-3-O-葡萄糖苷、肉桂萜醇C1-19-葡萄糖苷、查耳酮樱花素等7种代谢物累积水平显著降低,川陈皮素、牡荆素-4'-O-α-L-吡喃鼠李糖苷、(S)-橙花醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]和Ranupenin3-rutinoside等4种代谢物累积水平显著增加。与TF处理相比,OF处理茶叶咖啡碱含量降低了5.73%;茶氨酸、游离氨基酸、可溶性糖、茶多酚、水浸出物含量差异不显著;10种黄酮苷、2种黄酮、6种萜苷、5种甾体皂甙和2种脂酰苷共25种代谢物累积水平显著增加,以川陈皮素、飞燕草素-3-(6-对香豆酰基半乳糖苷)增幅较大,分别为2280.20%、1355.11%。4个处理相比,OF处理下有15种黄酮类及糖苷类代谢物累积水平显著高于CK、TF和SF处理。
[结论]有机肥替代25%化肥氮降低了茶叶咖啡碱含量,提高了川陈皮素、飞燕草素、槲皮素、芹黄素、山奈酚、牡荆素等多种黄酮类代谢物和去氢大豆皂甙I、珠子参苷R2、孕甾烷甙等多种糖苷组分累积水平。减施25%氮肥降低了茶氨酸、咖啡碱、水浸出物含量和糖苷类代谢物 (如杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、肉桂萜醇C1-19-葡萄糖苷等)累积水平,对茶多酚、可溶性糖、游离氨基酸含量影响较小。有机肥替代部分化肥氮有利于茶叶黄酮类及糖苷类物质累积,单纯减少氮肥投入会降低茶叶品质。
Abstract:[Objectives]This study examines the effects of fertilization patterns on the biochemical components and the accumulation of flavonoids and glycoside metabolites in tea leaves.
[Methods]The 3-year field experiment was conducted in Ya’an which was a typical region of tea plant cultivation in Sichuan Provence, consisted of four treatments: no fertilization (CK), conventional chemical fertilizer input (N 585 kg/hm2-TF), 25% replacement of chemical fertilizer N with organic manure (OF), and reducing 25% of N supply (SF). The content changes in main quality components of tea leaves with different fertilization patterns were analyzed, as well as the accumulation variations of flavonoids and glycosidic metabolites based on the results of untargeted metabolomics.
[Results]Compared with CK treatment, the contents of the anine and free amino acids in tea leaves under TF, OF, and SF treatments were significantly increased by 7.22%–13.40%, 23.15%–25.50%, respectively, while soluble sugar and tea polyphenols contents decreased by 8.17%–13.86%, 6.08%–11.49%, respectively. Concurrently, accumulation levels of 10 metabolites including epigallocatechin, epicatechin, and rutin decreased notably. Compared with TF treatment, the contents of theanine, caffeine and water-soluble extracts in tea leaves under SF treatment significantly decreased by 5.45%, 5.97%, 8.91%, respectively, while the content of tea polyphenols exhibited no significant difference as well as soluble sugar and free amino acid content. In addition, accumulation levels of 7 metabolites (e.g. peonidin 3-O-glucoside, cinncassiol C1 19-glucoside and chalconosakuranetin) decreased markedly, while that of 4 metabolites [e.g. nobiletin, vitexin 4'-O-α-L-rhamnopyranoside, (S)-Nerolidol 3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside] increased significantly. The contents of caffeine in tea leaves with OF treatment was 5.73% lower than that in TF. However, accumulation levels of 25 metabolites including 10 kinds of flavonoid glycosides, 2 kinds of flavone, 6 kinds of terpene glycosides, 5 kinds of steroidal glycosides, and 2 kinds of fatty acyl glycosides compounds increased significantly, especially nobiletin and delphinidin 3-(6-p-coumaroylgalactoside) showed the higher increase at 2280.20% and 1355.11%, respectively. Among the four fertilization treatments, 15 kinds of flavonoids and glycosides metabolites demonstrated higher accumulation levels in tea leaves with OF treatment compared with CK, TF, and SF treatments.
[Conclusions]Replacing 25% of chemical fertilizer N with organic manure reduced the content of caffeine in tea leaves, and improved the accumulation levels of a variety of flavonoids metabolites (e.g. nobiletin, delphinidin, quercetin, apigenin, kaempferol, vitexin) and glycosylic components (e.g. dehydrosoyasaponin I, majonoside R2, balagyptin). Reducing 25% of N supply decreased the contents of theanine, caffeine and water-soluble extracts as well as the accumulation levels of glycosylic components (e.g. myricetin 3-O-robinobioside, peonidin 3-O-glucoside, cinncassiol C1 19-glucoside), and had less effect on tea polyphenols, soluble sugar, and free amino acid content. Partial substitution for chemical fertilizer N with organic manure is beneficial for the accumulation of flavonoids and glycosides in tea leaves. Onefold reduction of N input will reduce the quality of tea.
-
茶树是我国重要的经济作物之一,茶叶因其独特的风味口感和人体保健价值正成为仅次于水的世界第二大饮品[1]。茶鲜叶中的多酚类、氨基酸、咖啡碱、可溶性糖等天然产物是加工形成优质茶叶产品的物质基础[2-3],其含量高低及配比主要由茶树品种决定[4-5],同时受土壤、气候等茶园环境[6-10]和栽培措施影响[11-14]。施肥直接影响茶园土壤养分含量及肥力,进而影响茶树对养分的吸收利用和茶叶生化品质,对茶鲜叶综合品质差异的贡献度约为7.48%[15]。氮是茶树营养“三要素”之一,过量施氮或施氮不足均不利于茶树生长和茶叶品质,且过量施肥加重环境负荷,造成面源污染[16-18]。因此,茶园养分管理以氮肥投入为核心,大量研究围绕“茶园适宜供氮”展开。有研究提出茶园年施氮肥300~450 kg/hm2 [19],最有利于茶鲜叶品质维持在较高水平;刘美雅等[20]研究表明茶园年施氮285~474 kg/hm2,茶叶氨基酸、β-芳樟醇、橙花叔醇含量显著增加;刘扬等[15]提出福建省安溪县铁观音茶园高产优质的适宜施氮量为每年200~400 kg/hm2。Sun等[21]研究表明,分别以有机肥(牛粪)和尿素施入等量氮养分,茶叶中氨基酸、糖、脂肪酸的富集途径差异明显,牛粪处理使谷氨酰胺、奎宁酸和脯氨酸积累较多,而十八烷酸、十六烷酸和二十烷酸等有机酸含量显著减少,所制绿茶感官品质更优;Xie 等[22]建议用有机肥氮替代20%化肥氮;朱旭君等[23]研究认为有机肥替代化肥氮的比例在50%以上更有利于提高茶园产量和名优绿茶品质。Tang等[24]研究表明,铵态氮较硝态氮更易被茶树吸收利用。Li等[25]鉴定出AMT、NRT、AQP是调控茶树氮吸收的关键基因,氮累积则受GOGAT和GS等基因控制,CHS、CHI、DFR与儿茶素合成相关[26],不同供氮量和氮形态均会诱导相关基因差异表达。
黄酮类化合物是茶叶多酚物质的重要组分[27],约为茶多酚含量的13%,占茶叶 (干重) 的3%~4%,是茶叶“苦涩、收敛”风味和保健功能的重要物质来源[1]。茶叶中的黄酮类代谢物主要有黄烷醇、花色素、黄酮和黄酮醇等[28],除黄烷醇外,多以黄酮糖苷形式存在,如芸香苷、槲皮苷、山奈苷、花色苷等[29],是绿茶汤色“黄绿”的构成因子。除黄酮苷外,茶鲜叶中还存在其它糖苷类代谢物,如萜苷、皂甙、脂酰苷等,在内源糖苷酶作用下释放出单萜烯醇或芳香族醇等具有愉快花果香的游离态苷元,是茶叶香气的主要前体物质[30]。不同茶叶品类[31-33]、不同茶树品种[5]生化成分差异明显,因而品质各异。茶叶中黄酮类代谢物的积累模式和调控机制随不同氮素条件而存在显著差异,Huang等[34]茶树幼苗水培试验表明,缺氮促进多种黄酮类物质累积,随着氮供应量增加,黄酮类物质合成受到抑制。Dong等[35]茶树幼苗盆栽试验表明,茶叶中槲皮素-3-葡萄糖苷、山奈素-3-半乳糖苷等多种黄酮苷与蔗糖、果糖、葡萄糖含量呈显著正相关,适量供氮诱导黄酮和碳水化合物代谢相关基因上调表达,从而促进黄酮苷合成,氮过量或缺氮均表现为抑制作用。Liu等[36]研究指出,茶树嫩梢黄酮类物质的累积与茶树根系、成熟叶片中的碳氮代谢密切相关,增加氮供应促进茶树树体碳向成熟叶和根系分配,导致嫩叶中用于黄酮类物质合成的“碳骨架”减少。就氮形态而言,硝态氮促进茶多酚、儿茶素合成相关基因表达和累积量增加,铵态氮促进茶氨酸、谷氨酸、精氨酸累积量增加[37]。此外,茶树黄酮类物质还受植物激素调控,如孙平[38]研究发现,脱落酸(ABA) 处理后茶树中苯丙烷途径和类黄酮途径的基因(DHD、SDH1等)表达均显著上升。
然而,茶园栽培条件下,长期不同施氮方式对茶叶黄酮类及糖苷组分的影响鲜有研究。这些物质不仅是茶叶的重要品质成分,还能为深入了解茶树对环境变化的生理响应提供重要信息[39-40]。本研究在四川茶树种植的典型区域,通过连续3年田间试验比较了不施肥、常量化肥氮、有机肥替代和减施氮肥对茶叶生化品质的影响,并基于非靶向代谢组学检测结果,分析了不同施氮模式下茶叶黄酮类及糖苷类代谢物的累积差异,旨在丰富茶园养分高效管理及绿色生产的理论基础,为实现茶叶优质高产提供科学依据。
1. 材料与方法
1.1 试验地概况
试验地位于四川省农业科学院茶叶研究所国家土壤质量雅安观测实验站基地 (30°16′N、103°17′E,海拔766 m),属于亚热带季风性湿润气候,年平均气温15.8℃,无霜期297天,年降雨量1500 mm左右。茶园土壤类型为酸性黄壤土,0—20 cm土层土壤基础理化性质为:pH 4.42、有机质 17.5 g/kg、全氮0.97 g/kg、全磷0.38 g/kg、全钾 13.81 g/kg、硝态氮9.51 mg/kg、铵态氮 0.57 mg/kg、有效磷 12.7 mg/kg、速效钾 147 mg/kg;20—40 cm土层土壤基础理化性质为:pH 4.80、有机质 12.3 g/kg、全氮 0.79 g/kg、全磷 0.37 g/kg、全钾 12.15 g/kg、硝态氮 5.80 mg/kg、铵态氮 1.48 mg/kg、有效磷13.4 mg/kg、速效钾 92.0 mg/kg。
1.2 试验设计
试验设4个处理:1) 不施肥对照 (CK);2) 常量化肥氮 (TF);3) 与TF施氮总量一致,以有机肥氮替代25%化肥氮 (OF);4) 采用茶树专用配方肥,氮肥减量25%并增施钾肥 (SF)。常量化肥氮施用量为 N 585 kg/hm2,试验用氮磷钾复合肥的N–P2O5–K2O为 15%–15%–15%),尿素含N 46.3%。供试有机肥为商品有机肥 (N–P2O5–K2O 3.2%–0.8%–1.0%)和茶树专用配方肥 (N–P2O5–K2O 22%–9%–15%)。每年10月中旬开沟基施肥料,沟深20 cm,翌年春茶结束一次性撒施追施。每个处理设3次重复,共设12个试验小区,小区面积约400 m2,随机排列,不同小区间设2行隔离茶行。各处理病虫害防治、茶园采摘、修剪等其它管理措施一致。试验期为2016—2018年,各处理施肥量及年养分投入见表1。
表 1 不同施肥处理年养分投入(kg/hm2)Table 1. Annual nutrient inputs of fertilization treatments in field experiment处理
Treatment肥料用量 Fertilizer dosage 养分投入量 Nutrient dosage 基肥
Basal fertilizer追肥
Topdressing fertilizer无机氮
Inorganic N有机氮
Organic N总氮
Total NP2O5 K2O CK 0 0 0 0 0 0 0 TF 1125 (氮磷钾复合肥 Compound fertilizer) 900 (尿素 Urea) 585 0 585 169 169 OF 4575 (商品有机肥 Commercial organic fertilizer ) +
844 (氮磷钾复合肥 Compound fertilizer)675 (尿素 Urea) 439 146 585 163 172 SF 2000 (茶树专用配方肥 Specific formulated fertilizer for tea tree) 0 440 0 440 180 300 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N.1.3 样品采集
2019年春季,于茶树蓬面新梢30%通过一芽二叶物候期采摘一芽二叶鲜叶,随机称取各处理鲜叶500 g,采用蒸青固样、自然阴干[41-42],用于茶叶主要品质成分测定;另取100 g鲜叶立即放入液氮保存,用于LC-MS非靶向代谢检测。
1.4 测定项目与方法
1.4.1 光合生理指标测定
于天气晴朗、无风少云之日,采用Li-COR 6800型植物光合测量系统进行光合生理指标采集。选取茶树蓬面向光性良好的新梢成熟叶片 (第四片或第五片),每个处理测定20个叶片(重复)、每个叶片采集10组数据,测定时间为2019年4月26日上午9:30—11:00。
1.4.2 茶叶品质成分含量测定方法
1) 茶多酚含量测定参照GB/T 8313—2018,采用分光光度法;游离氨基酸含量测定参照GB/T 8314—2013,采用茚三酮比色法;咖啡碱含量测定参照GB/T 8312—2013,采用高效液相色谱法;水浸出物含量测定参照GB/T 8305—2013,采用差量法;可溶性糖总量测定采用蒽酮比色法;茶氨酸含量测定参照GB/T 23193—2017,采用高效液相色谱法。酚氨比为茶多酚含量与游离氨基酸含量之比。
2) 黄酮类及糖苷类代谢物测定,称取经液氮研磨的茶鲜叶样品50 mg,加入400 μL 提取液[V(甲醇):V(水)=4∶1]。采用高通量组织破碎仪低温破碎 (–20℃,50 HZ,6 min)。涡旋 (30 s) 混匀后,低温超声萃取30 min (5℃,40 KHz)。将样品静置 (–20℃,30 min) 后离心 (13000 g、4℃、15 min),取上清液并转移至LC-MS进样小瓶中上机分析。
采用超高效液相色谱串联飞行时间质谱系统 (AB SCIEX, UHPLC-Triple TOF) 进行非靶向代谢物检测[31]。色谱条件:色谱柱为BEH C18 柱 (100 mm × 2.1 mm i.d., 1.7 μm; Waters, Milford, USA);流动相A为去离子水 (含0.1%甲酸),流动相B为乙腈/异丙醇(1/1) (含0.1%甲酸);进样量10 μL,流速为0.40 mL/min,柱温40℃。流动相洗脱梯度:0~3 min,95% A、5% B;3~9 min,80%~5% A、20%~95% B;保持4 min;13~16 min,95% A、5% B。质谱条件:分别采用正、负离子扫描模式,离子喷雾电压(+5 kv、–4 kv)、喷雾气50 psi、辅助加热气50 psi、离子源加热温度500℃、质量范围50~1000 M/Z、碰撞电压20~60 eV。
分析系统的稳定性采用质控样品(QC)进行考察。质控样品由所有检测样品混合而成,在仪器分析过程中,每3个样品插入1个质控样本,通过该样本的重复性分析考察检测过程中仪器稳定性,同时筛查分析系统中变异较大的变量,保证结果的可靠性。
3) 黄酮类及糖苷类代谢物的鉴定,首先,将UPLC-Q-TOF/MS分析得到的原始数据导入代谢组学处理软件Progenesis QI (Waters Corporation,Milford, USA),进行基线过滤、峰识别、积分、保留时间校正、峰对齐,得到保留时间、质荷比和峰强度等质谱信息,并与代谢数据库(http://www.hmdb.ca/;https://metlin.scripps.edu)进行匹配,对检测到的代谢物定性。然后,通过保留至少一组样品中非零值80%以上的变量、原始矩阵极小值补缺、总峰归一化、删除质控样本相对标准偏差(RSD)≥30%的变量等数据预处理,去除搜库得分<50.0的代谢物。最后,依据HMDB数据库中物质分类及物质结构式筛选出黄酮类及糖苷类代谢物。
1.5 数据统计分析
采用 SPSS 19.0 进行方差分析和LSD法进行多重比较。
2. 结果与分析
2.1 不同施肥处理对茶树叶片光合作用的影响
如表2所示,胞间CO2浓度(Ci)、蒸腾速率(E)、叶片总导度 (GTW)、CO2总导度 (gtc) 均以高氮肥处理 (TF、OF) 最高,TF处理下茶树叶片净光合速率 (A) 和气孔导度 (GSW) 显著高于SF处理,与OF处理无显著差异。这表明高氮肥促进了茶树叶片与外界环境水分和气体交换,增强了茶树光合作用。
表 2 不同施肥处理茶树叶片光合生理参数Table 2. Photosynthesis parameters of tea leaves under different fertilization treatments处理 Treatment A [µmol/(m²·s)] Ci [µmol/mol] E [mmol/(m2·s)] GSW [mmol/(m2·s)] GTW [mmol/(m2·s)] gtc [mmol/(m2·s)] CK 9.34±1.47 ab 266.3±26.7 b 5.80±1.26 b 0.23±0.24 ab 0.15±0.04 b 95.16±25.24 b TF 10.72±2.27 a 299.4±22.1 a 8.62±0.97 a 0.27±0.04 a 0.25±0.04 a 158.63±23.07 a OF 9.59±1.46 ab 308.5±9.15 a 8.30±0.89 a 0.27±0.04 a 0.25±0.03 a 156.23±21.95 a SF 8.91±1.84 b 267.96±23.97 b 5.92±1.37 b 0.16±0.04 b 0.15±0.04 b 92.02±25.30 b 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理;A—净光合速率;Ci—胞间CO2浓度;E—蒸腾速率;GSW—气孔导度;GTW—叶片总导度;gtc—CO2总导度。同列数据后不同字母表示处理间在5%水平差异显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. A—Net photosynthesis rate; Ci—Intercellular carbon dioxide concentration; E—Transpiration rate; GSW— Stomatal conductance; GTW— Mesophyll conductance ; gtc— Total conductance of carbon dioxide. Values followed by different small letters in a column indicate significant difference among treatments at the 5% level.2.2 不同施肥处理茶叶主要品质成分含量变化
茶多酚、游离氨基酸、咖啡碱、水浸出物、可溶性糖、茶氨酸是茶叶的主要品质成分。如表3所示,高氮肥量处理(TF、OF)的茶氨酸含量显著高于减氮处理(SF),这三者又显著高于CK处理,TF、OF、SF处理茶氨酸含量较CK处理增加7.22%~13.40% (P<0.05)。咖啡碱含量以TF处理最高,显著高于OF、SF、CK处理,后3个处理之间咖啡碱含量无显著差异。施肥显著降低了茶叶可溶性糖含量而显著增加了游离氨基酸含量,与CK处理相比,TF、OF、SF处理可溶性糖含量降低了8.17%~13.86%,游离氨基酸含量增加了23.15%~25.50%。茶多酚含量以CK处理较高,高氮肥处理TF、OF较CK处理分别降低9.35%、11.49%,氮肥减施处理 (SF) 较CK处理降低6.08%,但差异不显著。水浸出物含量以高氮肥处理(TF、OF)较高,对照(CK)和减氮处理(SF)较低。酚氨比以CK处理较高,TF、OF和SF处理间无显著差异。
表 3 不同施肥处理茶叶主要品质成分含量 (%)Table 3. The contents of main quality components in tea leaves under different fertilization treatments处理
Treatment茶氨酸
Theanine茶多酚
Tea polyphenols咖啡碱
Caffeine可溶性糖
Soluble sugar游离氨基酸
Free amino acid水浸出物
Water-soluble extracts酚氨比
Polyphenols /
amino acidsCK 0.97±0.03 c 17.75±0.53 a 3.97±0.03 b 4.04±0.14 a 2.98±0.33 b 46.99±1.41 b 6.01±0.75 a TF 1.10±0.02 a 16.09±0.69 b 4.19±0.11 a 3.58±0.16 b 3.68±0.37 a 52.32±1.33 a 4.39±0.27 b OF 1.09±0.01 a 15.71±0.33 b 3.95±0.10 b 3.48±0.08 b 3.74±0.23 a 53.15±0.51 a 4.21±0.20 b SF 1.04±0.01 b 16.67±0.70 ab 3.94±0.05 b 3.71±0.20 b 3.67±0.27 a 47.66±1.39 b 4.55±0.15 b 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。同列数据后不同字母表示处理间差异在5%水平显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. Values followed by different small letters in a column indicate significant difference among treatments at the 5% level.与高氮肥处理 (TF、OF) 相比,氮肥减量25%并增施钾肥处理(SF)茶氨酸、咖啡碱含量和水浸出物含量分别降低4.59%~5.45%、5.97% (SF比TF处理)、8.91%~10.33%,而游离氨基酸、可溶性糖、茶多酚含量无显著变化。与TF处理相比,有机肥氮等量替代25%化肥氮处理 (OF) 咖啡碱含量降低5.73%,茶多酚、茶氨酸、游离氨基酸和水浸出物含量无显著变化。
2.3 不同施肥处理茶叶中鉴定到的黄酮类及糖苷类代谢物
从图1可以看出,本试验检测条件下,峰形良好,分布相对均匀,数据结果可靠。
如表4所示,不同处理茶叶样品共检测到黄酮类代谢物65种、糖苷类代谢物31种。黄酮类代谢物包括黄酮苷43种、异黄酮苷6种、黄酮4种、黄烷醇4种和其它黄酮类物质8种。糖苷类代谢物包括萜苷18种、脂酰苷7种、甾体皂甙5种、香豆素糖苷1种。LSD多重比较结果表明,66种代谢物累积水平在不同施肥处理间差异显著,30种无显著差异,说明施肥处理引起了茶叶黄酮类及糖苷类代谢物含量的改变。
表 4 不同施肥处理茶叶中鉴定到的黄酮类及糖苷类代谢物Table 4. All the flavonoids and glucosides metabolites identified in tea under different fertilization treatments编号Number 类别
Subclass代谢物 Metabolites P 值
P value1 黄酮苷
Flavonoid
glucosides槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside 0.5199 2 槲皮素-3-三葡萄糖甙 Quercetin-3-gentiotrioside 0.5028 3 槲皮素-3-(4-葡糖基鼠李糖苷) Quercetin-3-(4-glucosylrhamnoside) 0.5291 4 槲皮素-3-(6''-丙二酰基半乳糖苷) Quercetin-3-(6''-malonylgalactoside) 0.3126 5 3''-O-乙酰基阿福豆苷 3''-O-Acetylafzelin 0.2436 6 山奈酚-3-龙胆二糖-7-鼠李糖苷 Kaempferol-3-gentiobioside-7-rhamnoside 0.6303 7 芒花甙 Miscanthoside 0.3665 8 杞柳甙 Floribundoside 0.3403 9 3',5,6-三羟基-3,4',7,8-四甲氧基黄酮3-葡萄糖苷 3',5,6-Trihydroxy-3,4',7,8-tetramethoxyflavone 3-glucoside 0.3884 10 异牡荆素-2"-O-(6"-阿魏酰基) 葡萄糖苷 Isovitexin 2''-O-(6'''-feruloyl) glucoside 0.6195 11 芸香苷 Rutin 0.0118 12 槲皮素-3-(3-对香豆酰基葡萄糖苷) Quercetin-3-(3-p-coumaroylglucoside) 0.0343 13 槲皮素-2''-(6''-对香豆酰基葡糖基) 2''-(6''-p-Coumaroylglucosyl) quercitrin 0.0012 14 槲皮素-3-(3R-葡糖基芸香苷) Quercetin-3-(3R-glucosylrutinoside) 0.0361 15 黄芪甙 Astragalin 0.0154 16 山奈酚-3-[4''-(对香豆酰基葡糖基) 鼠李糖苷] Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside] 0.0026 17 山奈酚-3-[2''-(对香豆酰基葡糖基) 鼠李糖苷] Kaempferol-3-[2''-(p-coumaroylglucosyl) rhamnoside] 0.0946 18 山奈酚-3-(2",6"-二对香豆酰基葡萄糖苷) Kaempferol-3-[2",6"-di-(E)-p-coumarylglucoside] 0.0506 19 山奈酚-3-(2''-鼠李糖基芸香糖苷) Kaempferol-3-(2''-rhamnosylrutinoside) 0.0337 20 山奈酚-3-(6''-鼠李糖基槐糖苷) Kaempferol-3-(6''-rhamnosylsophoroside) 0.1318 21 杨梅酮-3-O-洋槐糖苷 Myricetin-3-O-robinobioside 0.0004 22 异鼠李素-3-β-昆布二糖苷 Isorhamnetin-3-β-laminaribioside 0.0001 23 异鼠李素-3-芸香糖-4'-鼠李糖苷 Isorhamnetin-3-rutinoside-4'-rhamnoside 0.0884 24 飞燕草素-3-(6-对香豆酰基半乳糖苷) Delphinidin-3-(6-p-coumaroylgalactoside) 0.0006 25 飞燕草素-3-槐糖基-5-葡萄糖苷 Delphinidin-3-sophoroside-5-glucoside 0.0063 26 花青素-3-二糖苷-5-葡萄糖苷 Cyanidin-3-diglucoside-5-glucoside 0.0389 27 芍药素-3-O-葡萄糖苷 Peonidin-3-O-glucoside 0.003 28 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide0.0005 29 芹黄素-7-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-4'-葡糖苷酸
Apigenin-7-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-4'-glucuronide0.0645 30 牡荆素-4'-O-α-L-吡喃鼠李糖苷 Vitexin-4'-O-α-L-rhamnopyranoside 0.0001 31 异牡荆素 Isovitexin 0.0053 32 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]0.0751 33 查耳酮樱花素 Chalconosakuranetin 0.0009 34 锦葵色素-3-葡萄糖苷 Malvidin-3-glucoside 0.0337 35 木犀草素-7-O-[β-D-葡萄糖基-(1->2)-β-D-葡糖苷酸]
Luteolin-7-O-[β-D-glucuronosyl-(1->2)-β-D-glucuronide]0.0814 续表 4 Table 4 continued 编号Number 类别
Subclass代谢物 Metabolites P 值
P value36 6-羟基木犀草素-6-木糖苷 6-Hydroxyluteolin-6-xyloside 0.0891 37 洋李甙-4'',6''-双没食子酸 Prunin-4'',6''-digallic acid 0.0122 38 紫苏素 Perillanin 0.0298 39 桃皮素-3'-葡萄糖苷 Persicogenin-3'-glucoside 0.0418 40 3,5,7-三羟基-4'-甲氧基-8-异戊烯类黄酮-3-[鼠李糖基-(1->6)-半乳糖苷]-7-半乳糖苷
3,5,7-Trihydroxy-4'-methoxy-8-prenylflavone-3-[rhamnosyl-(1->6)-galactoside]-7-galactoside0.0681 41 落新妇苷 Astilbin 0.1425 42 Ranupenin-3-rutinoside 0.1137 43 曲克芦丁 Troxerutin 0.0964 44 异黄酮Isoflavonoids 5,7-二羟基-2',6-二甲氧基异黄酮-7-鼠李糖苷 5,7-Dihydroxy-2',6-dimethoxyisoflavone-7-rhamnoside 0.0011 45 [5,7-二羟基-3-(3-羟基-4-甲氧基苯基)-4-环氧-3,4-二氢-1-苯并吡喃醇] 丙酸
[5,7-Dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1-benzopyran-3-yl]methyl acetic acid0.1961 46 西葫芦素-7-(6-丙二酰葡萄糖苷) Cicerin-7-(6-malonylglucoside) 0.1644 47 6''-丙二酰染料木甙 6''-Malonylgenistin 0.289 48 6''-O-丙二酰大豆苷 6''-O-Malonyldaidzin 0.4983 49 7-羟基-2',5,6-三甲氧基-4',5'-亚甲基二氧异黄酮-7-(2-对香豆基葡萄糖苷)
7-Hydroxy-2',5,6-trimethoxy-4',5'-methylenedioxyisoflavone-7-(2-p-coumaroylglucoside)0.7003 50 黄烷醇 Flavanol 表儿茶素 Epicatechin 0.0186 51 表没食子儿茶素没食子酸酯 Epigallocatechin gallate 0.0610 52 表没食子儿茶素-(4β->8)-儿茶素 Epigallocatechin-(4β->8)-catechin 0.0203 53 阿萨姆霉素 C Assamicain C 0.2318 54 黄酮 Flavones 杨梅酮 Myricetin 0.096 55 川陈皮素 Nobiletin 0.0001 56 山奈酚 Kaempferol 0.7327 57 槲皮素 Quercetin 0.3093 58 其它黄酮类
Other flavonoids二氢黄酮 Dihydromorelloflavone 0.0022 59 原花青素 C1 Procyanidin C1 0.1755 60 3'-没食子酰原飞燕草素 B2 3'-Galloylprodelphinidin B2 0.0690 61 5-羟基降山油柑碱 Bis (5-hydroxynoracronycine) 0.3770 62 表儿茶素-3-对香豆酸 Epigallocatechin-3-p-coumaroate 0.1988 63 表阿夫儿茶精-(4β->8)-表儿茶素-3,3'-双没食子酸 Epiafzelechin-(4β->8)-epicatechin-3,3'-digallate 0.8156 64 原花青素 B2 Procyanidin B2 0.3749 65 松茸苷 I Matsutakeside I 0.5367 66 萜苷
Terpene
glycosides大豆皂醇 B-3-O-β-D-葡萄糖醛酸苷 Soyasapogenol B-3-O-β-D-glucuronide 0.3016 67 28-葡萄糖基齐墩果酸-3-阿拉伯糖苷 28-Glucosyloleanolic acid-3-arabinoside 0.3150 68 大豆皂苷 Ⅰ Soyasaponin Ⅰ 0.7893 69 豌豆皂苷 Ⅱ Pisumsaponin Ⅱ 0.1925 70 10-乙酸基橄榄苦苷 10-Acetoxyoleuropein 0.1856 71 p-薄荷烷-2,8,9-三醇-2-葡萄糖苷 p-Menthane-2,8,9-triol-2-glucoside 0.7188 续表 4 Table 4 continued 编号
Number类别
Subclass代谢物 Metabolites P 值
P value72 紫苏甙 A Perilloside A 0.0016 73 反式香苇醇葡萄糖苷 (-)-trans-Carveol glucoside 0.0028 74 去氢大豆皂甙 Ⅰ Dehydrosoyasaponin Ⅰ 0.0863 75 珠子参苷 R2 Majonoside R2 0.0533 76 肉桂萜醇 A-19- 葡萄糖苷 Cinncassiol A-19-glucoside 0.0062 77 楤木皂苷 Ⅴ Araliasaponin Ⅴ 0.0141 78 牛痘苷 Vaccinoside 0.0020 79 京尼平苷酸 Geniposidic acid 0.0048 80 枸杞甙 Ⅶ Lyciumoside Ⅶ 0.0952 81 大豆皂苷Ⅱ Soyasaponin Ⅱ 0.0197 82 肉桂萜醇C1-19-葡萄糖苷 Cinncassiol C1-19-glucoside 0.0027 83 香叶酯芹糖基葡萄糖苷 Geranyl apiosyl-glucoside 0.1315 84 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]0.0001 85 5-大柱香波龙烷-3,9-二醇-9-[芹糖基-(1->6)-葡萄糖苷]
5-Megastigmene-3,9-diol-9-[apiosyl-(1->6)-glucoside]0.0040 86 3,4,5-三羟基-6-(2-甲基-3-苯丙氧基) 环氧乙烷-2-羧酸
3,4,5-trihydroxy-6-(2-methyl-3-phenylpropoxy) oxane-2-carboxylic acid0.0913 87 棕榈酰葡糖苷酸 Palmitoyl glucuronide 0.0647 88 1-辛烯-3-桑色素酊 1-Octen-3-yl primeveroside 0.0036 89 3b,6a-二羟基-α-紫罗兰醇-9-[芹糖基-(1->6)-葡萄糖苷]
3b,6a-Dihydroxy-α-ionol-9-[apiosyl-(1->6)-glucoside]0.7358 90 布卢门醇C-O-[鼠李糖基-(1->6)-葡萄糖苷] Blumenol C-O-[rhamnosyl-(1->6)-glucoside] 0.2408 91 甾体皂甙
Steroidal glycosides25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-3-glucoside0.0072 92 胆酸葡糖苷酸 Cholic acid glucuronide 0.0006 93 孕甾烷甙 Balagyptin 0.0058 94 葫芦素E-2-O-葡萄糖苷 Elaterinide 0.0011 95 苦瓜皂苷 g Goyaglycoside g 0.0287 96 香豆素糖苷
Coumarin glycosides9-羟基-4-甲氧补骨脂素9-葡萄糖苷 9-Hydroxy-4-methoxypsoralen 9-glucoside 0.0012 注:P 值由LSD法多重比较计算得出。
Note: P values were calculated by least significant difference.2.4 减氮增钾对黄酮类及糖苷类代谢物累积水平的影响
表5所示,与TF处理相比,SF处理显著降低了4种黄酮苷 (杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、查耳酮樱花素、落新妇苷),1种黄烷醇 (表没食子儿茶素没食子酸酯),1种萜苷 (肉桂萜醇C1-19-葡萄糖苷),1种脂酰苷 (1-辛烯-3-桑色素酊),共7种代谢物累积水平,降幅3.08%~87.21%。其中,肉桂萜醇C1-19-葡萄糖苷降幅较大,为87.21%。SF显著增加了1种黄酮 (川陈皮素),2种黄酮苷 (牡荆素-4'-O-α-L-吡喃鼠李糖苷、Ranupenin 3-rutinoside)和1种脂酰苷的累积水平,其中川陈皮素增幅最大,为414.02%。
表 5 减氮增钾茶叶中累积水平显著变化的代谢物Table 5. Metabolites with significant accumulative changes in tea leaves under reducing N and increasing K input类别 Subclass 代谢物 Metabolites 相对丰度 Relevant abundance 变化幅度 (%)
Change proportionSF TF 黄酮苷
Flavonoid glycoside杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside623±49.0 B 905±33.7 A –31.13 芍药素-3-O-葡萄糖苷
Peonidin-3-O-glucoside38.9±6.3 B 107±23.6 A –63.75 查耳酮樱花素 Chalconosakuranetin 336±57.9 b 555±68.1 a –39.56 落新妇苷 Astilbin 259±36.4 B 318±15.6 A –18.74 黄烷醇 Flavanol 表没食子儿茶素没食子酸酯
Epigallocatechin gallate27300±2230 b 28200±3830 a –3.08 萜苷
Terpene glycosides肉桂萜醇C1-19-葡萄糖苷
Cinncassiol C1 19-glucoside23.1±15.1 B 181±61.9 A –87.21 脂酰苷
Fatty acyl glycosides1-辛烯-3-桑色素酊
1-Octen-3-yl primeveroside1040±31.7 B 1380±144.0 A –24.58 黄酮 Flavone 川陈皮素 Nobiletin 203±3.48 A 39.4±2.04 B 414.02 黄酮苷
Flavonoid glycoside牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside2640±1340 A 2380±345 B 10.84 Ranupenin 3-rutinoside 111±15.0 a 77.0±21.3 b 44.71 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-
β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-
β-D-glucopyranoside]166±8.60 A 98.2±4.99 B 68.75 注:TF—常规化肥处理;SF—减施25%化肥氮处理;同行数据后不同大写字母表示1%水平差异显著,不同小写字母表示不同处理间在5%水平差异显著。
Note: TF—Conventional chemical fertilzier input; SF—Reducing 25% of chemical fertilizer N. Values followed by different capital and small letters in a row indicate difference significance between treatments at the 1% and 5% levels, respectively.2.5 有机肥替代对黄酮类及糖苷类代谢物的影响
表6显示,与TF处理相比,OF处理显著增加了飞燕草素-3-(6-对香豆酰基半乳糖苷)、牡荆素-4'-O-α-L-吡喃鼠李糖苷、桃皮素-3'-葡萄糖苷等10种黄酮苷,2种黄酮(杨梅酮、川陈皮素),去氢大豆皂苷Ⅰ、珠子参苷R2、京尼平苷酸等6种萜苷,苦瓜皂苷g、葫芦素E-2-O-葡萄糖苷、孕甾烷甙等5种甾体皂甙和(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷 ]等2种脂酰苷,共25种黄酮类及糖苷类代谢物累积水平。其中,川陈皮素、飞燕草素-3-(6-对香豆酰基半乳糖苷)增幅分别达2280.20%、1355.11%,其它23种代谢物累积量水平增加10.85%~60.83%。OF处理显著降低了5种黄酮苷[杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、飞燕草素-3-槐糖苷-5-葡萄糖苷、槲皮素-3-(3R-葡糖基芸香苷)、查耳酮樱花素],2种黄酮多聚体(二氢黄酮、3'-没食子酰原飞燕草素B2),1种异黄酮苷(5,7-二羟基-2',6-二甲氧基异黄酮-7-鼠李糖苷),1种萜苷(肉桂萜醇 C1-19-葡萄糖苷),2种脂酰苷(1-辛烯-3-桑色素酊、5-大柱香波龙烷-3,9-二醇-9-[芹糖基-(1->6)-葡萄糖苷] ),共11种代谢物累积量水平,降幅为10.35%~68.89%。
表 6 有机肥替代25%化肥氮茶叶中累积水平显著变化的代谢物Table 6. The metabolites with accumulation level significantly varied in tea leaves under replacing 25% of chemical fertilizer N with organic fertilizer类别
Subclass代谢物
Metabolites相对丰度
Relevant abundance变化幅度 (%)
Change proportionOF TF 黄酮苷
Flavonoids
glycoside槲皮素-2''-(6''-对香豆酰基葡糖基)
2''-(6''-p-Coumaroylglucosyl) quercitrin87800±3420 A 69300±2830 B 26.74 山奈酚-3-[4''-(对香豆酰基葡糖基)鼠李糖苷]
Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside]71400±3940 A 57700±526 B 23.78 牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside29100±596 A 23800±345 B 22.48 异牡荆素 Isovitexin 180000±13200 A 137000±7720 B 31.23 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide4180±162 A 2970±463 B 40.97 山奈酚-3-(2",6"-二对香豆酰基葡萄糖苷)
Kaempferol-3-[2",6"-di-(E)-p-coumarylglucoside]2770±194 a 2350±183 b 17.80 桃皮素-3'-葡萄糖苷 Persicogenin-3'-glucoside 1320± 100 A 985±195 B 34.10 飞燕草素-3-(6-对香豆酰基半乳糖苷)
Delphinidin-3-(6-p-coumaroylgalactoside)405±54.8 A 27.9±10.7 B 1355.11 Ranupenin-3-rutinoside 112±16.7 a 77.0±21.3 b 45.88 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-
β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]312±39.4 a 250±21.8 b 24.88 黄酮
Flavones川陈皮素 Nobiletin 938±49.7 A 39.4±2.04 B 2280.20 杨梅酮 Myricetin 1450±5 a 1020±116 b 41.58 萜苷
Terpene
glycosides大豆皂苷Ⅱ Soyasaponin Ⅱ 13400±1050 a 11300±581 b 18.64 京尼平苷酸 Geniposidic acid 12300±824 A 10400±794 B 18.11 去氢大豆皂甙Ⅰ Dehydrosoyasaponin Ⅰ 8850±440 a 7640±340 b 15.82 珠子参苷R2 Majonoside R2 8740±315 a 7890±376 b 10.85 肉桂萜醇A-19-葡萄糖苷
Cinncassiol A-19-glucoside669±23.3 A 511±50.2 B 30.76 枸杞甙Ⅶ Lyciumoside Ⅶ 583±61.3 a 458±73.7 b 27.29 甾体皂甙
Steroidal
glycosides孕甾烷甙 Balagyptin 29000±1370 A 23000±626 B 26.42 苦瓜皂苷g Goyaglycoside g 21300±1340 a 18200±622 b 17.02 25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-3-glucoside3750±230 A 3080±220 B 21.64 胆酸葡糖苷酸 Cholic acid glucuronide 3330±294 A 2070±318 B 60.83 葫芦素E-2-O-葡萄糖苷 Elaterinide 415±18.7 A 280±24.1 B 48.37 脂酰苷
Fatty acyl
glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]150±22.6 0A 98.2±4.99 B 52.94 3,4,5-三羟基-6-(2-甲基-3-苯丙氧基) 环氧乙烷-2-羧酸
3,4,5-trihydroxy-6-(2-methyl-3-phenylpropoxy) oxane-2-carboxylic acid1080±54.5 a 882±80.7 b 22.17 黄酮苷
Flavonoids
glycoside槲皮素-3-(3R-葡糖基芸香苷)
Quercetin-3-(3R-glucosylrutinoside)3970±203 b 4430±120 a –10.35 杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside756±95.9 b 905±33.7 a –16.51 续表 6 Table 6 continued 类别
Subclass代谢物
Metabolites相对丰度
Relevant abundance变化幅度 (%)
Change proportionOF TF 飞燕草素-3-槐糖基-5-葡萄糖苷
Delphinidin-3-sophoroside-5-glucoside462±39.9 B 619±10.6 A –25.38 查耳酮樱花素 Chalconosakuranetin 357±33.6 B 555±68.1 A –35.70 芍药素-3-O-葡萄糖苷 Peonidin-3-O-glucoside 61.0±24.0 B 107±23.6 A –43.17 异黄酮苷
Isoflavonoid glycoside5,7-二羟基-2',6-二甲氧基异黄酮-7-鼠李糖苷
5,7-Dihydroxy-2',6-dimethoxyisoflavone-7-rhamnoside26.8±3.08 B 76.0±23.7 A –64.76 黄酮多聚体
Polyflavonoids3'-没食子酰原飞燕草素 B2 3'-Galloylprodelphinidin B2 127000±10800 b 175000±15100 a –27.33 二氢黄酮 Dihydromorelloflavone 914±48.3 B 1090±33.9 A –16.02 萜苷
Terpene glycosides肉桂萜醇C1-19-葡萄糖苷 Cinncassiol C1-19-glucoside 56.2±23.5 B 181±61.9 A –68.89 脂酰苷
Fatty acyl
glycosides1-辛烯-3-桑色素酊 1-Octen-3-yl primeveroside 950±104 B 1380±144 A –31.02 5-大柱香波龙烷-3,9-二醇-9-[芹糖基-(1->6)-葡萄糖苷]
5-Megastigmene-3,9-diol 9-[apiosyl-(1->6)-glucoside]843±21.6 B 1140±106 A –26.12 注:TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理。同行数据后不同大写字母表示1%水平差异显著,不同小写字母表示处理间在5%水平差异显著。
Note: TF—Conventional chemical fertilzier input; OF—Replacing 25% of chemical fertilizer N with organic N. Values followed by different capital and small letters in a row indicate difference significance between treatments at the 1% and 5% level, respectively.2.6 不同施肥处理茶叶黄酮类及糖苷类优势代谢物鉴定
表7显示,根据同一代谢物在不同施肥处理茶叶中相对丰度多重比较结果,将某处理下相对丰度显著高于其它任一施肥处理的代谢物定义为该施肥处理的优势代谢物,则CK处理有10种,其中黄酮苷4种、黄烷醇2种、萜苷2种、脂酰苷1种、香豆素糖苷1种;OF处理有15种,其中黄酮1种、黄酮苷7种、萜苷3种、甾体皂甙4种;TF和SF处理未鉴定出黄酮类或糖苷类优势代谢物。OF处理下,川陈皮素和飞燕草素-3-(6-对香豆酰基半乳糖苷)相对丰度值较其他3种施肥模式的变化倍数分别达24.89、14.52。表明,不施肥处理和有机肥替代处理均促进了黄酮类及糖苷类物质累积。
表 7 不同施肥处理茶叶黄酮类和糖苷类优势代谢物Table 7. Preponderant metabolites of flavonoids or glycosides in tea leaves under different fertilization treaments类别
Subclass代谢物
Metabolites相对丰度 Abundance 变化倍数
Fold of changeCK TF OF SF 黄酮苷
Flavonoid glycoside芸香苷 Rutin 54000±3050 a 48500±2730 b 45800±1210 b 45000±3080 b 1.20 槲皮素-3-(3-对香豆酰基葡萄糖苷)
Quercetin-3-(3-p-coumaroylglucoside)67800±17800 a 41900±4770 b 48000±7800 b 40000±2920 b 1.70 杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside1040±81.1 a 905±33.7 b 756±95.9 c 623±49.0 d 1.67 异鼠李素-3-β-昆布二糖苷 Isorhamnetin-3-β-laminaribioside 4430±287.0 a 3470±93.6 bc 3760±17.7 b 3390±62.1 c 1.31 飞燕草素-3-(6-对香豆酰基半乳糖苷)
Delphinidin-3-(6-p-coumaroylgalactoside)230.0±131 b 27.9±10.7 c 405.0±54.8 a 35.7±22.8 c 14.52 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide2220±365 c 2970±463 b 4180±162 a 3010±194 b 1.89 牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside21700±783 d 23800±345 c 29100±596 a 26400±1340 b 1.34 异牡荆素 Isovitexin 140000±11800 b 137000±7720 b 180000±13200 a 147000±10900 b 1.31 槲皮素-2''-(6''-对香豆酰基葡糖基)
2''-(6''-p-Coumaroylglucosyl) quercitrin68400±5980 b 69300±2830 b 87800±3420 a 75200±2910 b 1.28 山奈酚-3-[4''-(对香豆酰基葡糖基)鼠李糖苷]
Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside]57700±5110 b 57700±526 b 71400±3940 a 61000±1140 b 1.24 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)
[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]237±44.80 b 250±21.80 b 312±39.40 a 248±9.26 b 1.32 黄酮 Flavone 川陈皮素 Nobiletin 37.7±2.46 c 39.4±2.04 c 938±49.70 a 203±3.48 b 24.89 黄烷醇 Flavanol 表没食子儿茶素-(4β->8)-儿茶素
Epigallocatechin-(4β->8)-catechin73800±16600 a 46200±4040 b 54000±7820 b 45100±2930 b 1.63 表儿茶素 Epicatechin 19000±1790 a 16600±238 b 15900±435 b 16200±800 b 1.20 续表 7 Table 7 continued 类别
Subclass代谢物
Metabolites相对丰度 Abundance 变化倍数
Fold of changeCK TF OF SF 萜苷
Terpene glycosides紫苏甙 A Perilloside A 15000±2540 a 6230±544 b 9380±1880 b 7000±1860 b 2.41 反式香苇醇葡萄糖苷 (-)-trans-Carveol glucoside 718±115 a 287±32.4 b 471±122 b 320±104 b 2.50 去氢大豆皂甙 I Dehydrosoyasaponin I 7620±860 b 7640±340 b 8850±440 a 7710±559 b 1.16 珠子参苷 R2 Majonoside R2 7850±245 b 7890±376 b 8740±315 a 7530±717 b 1.16 肉桂萜醇 A-19-葡萄糖苷 Cinncassiol A-19-glucoside 458±77.2 b 511±50.2 b 669±23.3 a 540±41.4 b 1.50 甾体皂甙
Steroidal glycosides25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-11-one 3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-11-one-3-glucoside3140±63 b 3080±220 b 3750±230 a 3090±204 b 1.22 胆酸葡糖苷酸 Cholic acid glucuronide 2200±169.0 c 2070±318.0 c 3330±294.0 a 2810±57.7 b 1.61 孕甾烷甙 Balagyptin 25400±2300 b 23000±626 b 29000±1370 a 24900±905 b 1.26 葫芦素E-2-O-葡萄糖苷 Elaterinide 311±35.6 b 280±24.1 b 415±18.7 a 251±42.6 b 1.65 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]198±9.15 a 98.2±4.99 c 150±22.60 b 166±8.60 b 2.01 香豆素糖苷
Coumarin glycoside9-羟基-4-甲氧补骨脂素9-葡萄糖苷
9-Hydroxy-4-methoxypsoralen 9-glucoside2070±184 .0a 1450±161.0 b 1380±90.6 b 1590±95.7 b 1.50 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。变化倍数为同一代谢物在不同施肥处理间最大相对丰度值与最小相对丰度值之比。同行数据后不同小写字母表示处理间在5%水平差异显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. Change fold was the ratio of maximum to minimum abundance of a same metabolite among the four treatments. Values followed by different small letters in a row indicate difference significance among different treatments at the 5% level.3. 讨论
茶叶品质成分的形成与茶树碳、氮代谢密切相关[36]。氮是茶树营养“三要素”之一,在很大程度上决定着茶树碳、氮代谢的平衡关系[43],氮养分充足有利于增强茶树氮代谢[44],提高氨基酸、咖啡碱含量;缺氮茶树氮代谢减弱,氨基酸类物质合成受阻,“碳骨架”更多被用于黄酮类及糖类物质合成[45]。本研究结果表明,不同施肥处理显著影响茶叶主要品质成分含量,在检测到的96种黄酮类及糖苷类代谢物中,多达66种代谢物的累积量在不同处理间差异显著。
与CK相比,施肥处理(TF、OF、SF)使茶叶中茶氨酸和游离氨基酸含量显著增加,茶多酚含量及酚氨比显著降低,从而有利于提升茶汤“鲜爽”度[9,46],这与Chen等[44]研究结果一致。同时,高量氮肥处理(TF)显著增加了咖啡碱和水浸出物含量,表明适量氮肥可提升茶叶生化品质。另一方面,长期施氮会降低茶叶苯甲醇、苯乙醇、橙花叔醇等香气物质含量,不利于茶叶香气品质提升[44],本研究中,TF、OF、SF处理下茶叶中 (S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷] 累积水平均显著低于CK处理。茶园不施肥会增加茶多酚[20,47]、可溶性糖含量[36],本研究进一步表明,这可能是简单儿茶素 (表儿茶素、表没食子儿茶素)、芸香苷、槲皮苷、杨梅苷、紫苏甙A等主要黄酮类及糖苷类物质累积量增加所致 (表7)。然而,不施肥处理(CK)茶树净光合速率未见显著下降,可能与茶树体内的氮养分转移机制[48]和低氮强烈诱导植物碳同化基因表达有关[49],有待进一步研究。
在施氮585 kg/hm2水平上氮肥减量25%并大幅度提高钾肥用量,茶树净光合速率、茶叶茶氨酸、咖啡碱、水浸出物含量显著低于常量化肥氮处理(表2、表3);同时,表没食子儿茶素没食子酸酯(EGCG)累积水平降低3.08% (表5)。茶氨酸和咖啡碱含量降低暗示了一定程度的氮养分缺乏。Dong等[35]研究认为,缺氮会导致碳同化能力减弱和碳水化合物合成量降低,进而影响糖苷物质累积。本研究中,SF处理下,杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、落新妇苷和查耳酮樱花素等4种黄酮苷和1-辛烯-3-桑色素酊、肉桂萜醇C1-19-葡萄糖苷累积水平显著降低可能与茶树净光合速率降低有关。因此,从提高茶树碳同化能力和茶叶生化品质角度,年施氮585 kg/hm2较440 kg/hm2更适合四川茶区,这一数值接近该地区茶园氮养分年平均用量573 kg/hm2,高于我国茶园氮肥推荐用量450 kg/hm2 [50]。这是由四川茶区茶园以名优绿茶原料为目标,密集采摘、蓬面多轮修剪、氮养分需求量大的生产特点所决定。
有机肥替代化肥是我国当前大力推广的施肥模式。本研究显示,施氮585 kg/hm2,有机氮替代25%化肥氮处理(OF)与等氮量化肥处理(TF)相比,除咖啡碱外,茶氨酸、游离氨基酸、水浸出物、可溶性糖、茶多酚含量和酚氨比未见显著变化(表3),但有36种黄酮类及糖苷类代谢物累积差异明显 (表6)。OF处理下,12种黄酮类和13种糖苷类代谢物累积水平显著增加,8种黄酮类和3种糖苷类代谢物累积水平显著降低。飞燕草素-3-(6-对香豆酰基半乳糖苷)、槲皮素-2''-(6''-对香豆酰基葡糖基)、山奈酚-3-[4''-(对香豆酰基葡糖基)鼠李糖苷]、山奈酚-3-(2",6"-二对香豆酰基葡萄糖苷)等黄酮苷累积水平显著增加表明OF处理促进了茶树对香豆酸的合成,预示着茶树苯丙烷类代谢[51]途径活跃。总体来看,OF处理促进了茶树黄酮类及糖苷类代谢物累积,有15种物质累积水平显著高于其它处理(表7)。其中,部分物质具有良好的人体保健功能,如川陈皮素[52]、芹黄素[53]、牡荆素[54]、飞燕草素[55]、槲皮素[56]等;部分糖苷物质有助于增强茶树抗逆性[57-58],如飞燕草素及其苷能够增强植物对多种生物和非生物因素胁迫的抗性[59];同时,糖苷是形成茶叶香气的主要前体物质,其含量增加利于提高茶叶香气品质。因此,有机肥部分替代化肥是茶园化肥减施增效的有效途径。本研究结果显示,尽管OF处理促进了黄酮类及糖苷类代谢物累积,但茶多酚和可溶性糖含量并未相应增加。因此,有机肥施用下,茶树体内代谢物合成转化关系尚需进一步研究。
氮养分供应影响黄酮类物质累积已在茶树和其它多种植物上得到证实[34-35],减氮或低氮诱导黄酮类物质合成相关基因上调表达,从而促进黄酮类物质生物合成。本研究中,OF、SF处理较TF处理等量减少速效氮投入,受影响的黄酮类代谢物数量分别为20种(OF较TF)、8种(SF较TF),表明SF处理对黄酮类物质的影响明显小于OF处理,这可能与增施钾肥提高了茶树对土壤氮的利用能力有关。同时,前人研究表明,减少氮养分促进可溶性糖和茶多酚累积,抑制氨基酸合成[36,45],而本研究中,与常规化肥处理相比,氮肥减量25% (SF)未引起三者含量及酚氨比的显著变化,进一步证实了增施钾肥对茶树吸收利用土壤氮的促进作用。从有差异的黄酮类及糖苷类物质数量看,OF处理较TF处理有36种,SF处理较TF处理有11种,说明OF处理较SF处理对茶树次级代谢产物的影响更强烈,这与有机肥养分种类丰富和改善土壤理化性状能力强有关[21,60]。另外,本研究发现,与TF处理相比,杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、牡荆素-4'-O-α-L-吡喃鼠李糖苷等9种物质累积水平在OF、SF处理表现出相似增减趋势,推测茶叶中糖苷物质对氮养分的响应与黄酮类物质相似。
4. 结论
茶园施肥显著影响着茶叶品质成分含量及其组成。与常规化肥处理相比,以有机肥替代25%化肥氮降低了茶叶咖啡碱含量,提高了川陈皮素、飞燕草素、槲皮素、芹黄素、山奈酚、牡荆素等多种黄酮类代谢物和去氢大豆皂甙Ⅰ、珠子参苷R2、孕甾烷甙等多种糖苷组分累积水平。减施25%氮肥降低了茶氨酸、咖啡碱、水浸出物含量和糖苷类代谢物 (如杨梅酮-3-O-洋槐糖苷、芍药素-3-O-葡萄糖苷、肉桂萜醇C1-19-葡萄糖苷等)累积水平,对茶多酚、可溶性糖、游离氨基酸含量和酚氨比影响较小。
-
表 1 不同施肥处理年养分投入(kg/hm2)
Table 1 Annual nutrient inputs of fertilization treatments in field experiment
处理
Treatment肥料用量 Fertilizer dosage 养分投入量 Nutrient dosage 基肥
Basal fertilizer追肥
Topdressing fertilizer无机氮
Inorganic N有机氮
Organic N总氮
Total NP2O5 K2O CK 0 0 0 0 0 0 0 TF 1125 (氮磷钾复合肥 Compound fertilizer) 900 (尿素 Urea) 585 0 585 169 169 OF 4575 (商品有机肥 Commercial organic fertilizer ) +
844 (氮磷钾复合肥 Compound fertilizer)675 (尿素 Urea) 439 146 585 163 172 SF 2000 (茶树专用配方肥 Specific formulated fertilizer for tea tree) 0 440 0 440 180 300 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N.表 2 不同施肥处理茶树叶片光合生理参数
Table 2 Photosynthesis parameters of tea leaves under different fertilization treatments
处理 Treatment A [µmol/(m²·s)] Ci [µmol/mol] E [mmol/(m2·s)] GSW [mmol/(m2·s)] GTW [mmol/(m2·s)] gtc [mmol/(m2·s)] CK 9.34±1.47 ab 266.3±26.7 b 5.80±1.26 b 0.23±0.24 ab 0.15±0.04 b 95.16±25.24 b TF 10.72±2.27 a 299.4±22.1 a 8.62±0.97 a 0.27±0.04 a 0.25±0.04 a 158.63±23.07 a OF 9.59±1.46 ab 308.5±9.15 a 8.30±0.89 a 0.27±0.04 a 0.25±0.03 a 156.23±21.95 a SF 8.91±1.84 b 267.96±23.97 b 5.92±1.37 b 0.16±0.04 b 0.15±0.04 b 92.02±25.30 b 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理;A—净光合速率;Ci—胞间CO2浓度;E—蒸腾速率;GSW—气孔导度;GTW—叶片总导度;gtc—CO2总导度。同列数据后不同字母表示处理间在5%水平差异显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. A—Net photosynthesis rate; Ci—Intercellular carbon dioxide concentration; E—Transpiration rate; GSW— Stomatal conductance; GTW— Mesophyll conductance ; gtc— Total conductance of carbon dioxide. Values followed by different small letters in a column indicate significant difference among treatments at the 5% level.表 3 不同施肥处理茶叶主要品质成分含量 (%)
Table 3 The contents of main quality components in tea leaves under different fertilization treatments
处理
Treatment茶氨酸
Theanine茶多酚
Tea polyphenols咖啡碱
Caffeine可溶性糖
Soluble sugar游离氨基酸
Free amino acid水浸出物
Water-soluble extracts酚氨比
Polyphenols /
amino acidsCK 0.97±0.03 c 17.75±0.53 a 3.97±0.03 b 4.04±0.14 a 2.98±0.33 b 46.99±1.41 b 6.01±0.75 a TF 1.10±0.02 a 16.09±0.69 b 4.19±0.11 a 3.58±0.16 b 3.68±0.37 a 52.32±1.33 a 4.39±0.27 b OF 1.09±0.01 a 15.71±0.33 b 3.95±0.10 b 3.48±0.08 b 3.74±0.23 a 53.15±0.51 a 4.21±0.20 b SF 1.04±0.01 b 16.67±0.70 ab 3.94±0.05 b 3.71±0.20 b 3.67±0.27 a 47.66±1.39 b 4.55±0.15 b 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。同列数据后不同字母表示处理间差异在5%水平显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. Values followed by different small letters in a column indicate significant difference among treatments at the 5% level.表 4 不同施肥处理茶叶中鉴定到的黄酮类及糖苷类代谢物
Table 4 All the flavonoids and glucosides metabolites identified in tea under different fertilization treatments
编号Number 类别
Subclass代谢物 Metabolites P 值
P value1 黄酮苷
Flavonoid
glucosides槲皮素-3-O-葡萄糖苷 Quercetin-3-O-glucoside 0.5199 2 槲皮素-3-三葡萄糖甙 Quercetin-3-gentiotrioside 0.5028 3 槲皮素-3-(4-葡糖基鼠李糖苷) Quercetin-3-(4-glucosylrhamnoside) 0.5291 4 槲皮素-3-(6''-丙二酰基半乳糖苷) Quercetin-3-(6''-malonylgalactoside) 0.3126 5 3''-O-乙酰基阿福豆苷 3''-O-Acetylafzelin 0.2436 6 山奈酚-3-龙胆二糖-7-鼠李糖苷 Kaempferol-3-gentiobioside-7-rhamnoside 0.6303 7 芒花甙 Miscanthoside 0.3665 8 杞柳甙 Floribundoside 0.3403 9 3',5,6-三羟基-3,4',7,8-四甲氧基黄酮3-葡萄糖苷 3',5,6-Trihydroxy-3,4',7,8-tetramethoxyflavone 3-glucoside 0.3884 10 异牡荆素-2"-O-(6"-阿魏酰基) 葡萄糖苷 Isovitexin 2''-O-(6'''-feruloyl) glucoside 0.6195 11 芸香苷 Rutin 0.0118 12 槲皮素-3-(3-对香豆酰基葡萄糖苷) Quercetin-3-(3-p-coumaroylglucoside) 0.0343 13 槲皮素-2''-(6''-对香豆酰基葡糖基) 2''-(6''-p-Coumaroylglucosyl) quercitrin 0.0012 14 槲皮素-3-(3R-葡糖基芸香苷) Quercetin-3-(3R-glucosylrutinoside) 0.0361 15 黄芪甙 Astragalin 0.0154 16 山奈酚-3-[4''-(对香豆酰基葡糖基) 鼠李糖苷] Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside] 0.0026 17 山奈酚-3-[2''-(对香豆酰基葡糖基) 鼠李糖苷] Kaempferol-3-[2''-(p-coumaroylglucosyl) rhamnoside] 0.0946 18 山奈酚-3-(2",6"-二对香豆酰基葡萄糖苷) Kaempferol-3-[2",6"-di-(E)-p-coumarylglucoside] 0.0506 19 山奈酚-3-(2''-鼠李糖基芸香糖苷) Kaempferol-3-(2''-rhamnosylrutinoside) 0.0337 20 山奈酚-3-(6''-鼠李糖基槐糖苷) Kaempferol-3-(6''-rhamnosylsophoroside) 0.1318 21 杨梅酮-3-O-洋槐糖苷 Myricetin-3-O-robinobioside 0.0004 22 异鼠李素-3-β-昆布二糖苷 Isorhamnetin-3-β-laminaribioside 0.0001 23 异鼠李素-3-芸香糖-4'-鼠李糖苷 Isorhamnetin-3-rutinoside-4'-rhamnoside 0.0884 24 飞燕草素-3-(6-对香豆酰基半乳糖苷) Delphinidin-3-(6-p-coumaroylgalactoside) 0.0006 25 飞燕草素-3-槐糖基-5-葡萄糖苷 Delphinidin-3-sophoroside-5-glucoside 0.0063 26 花青素-3-二糖苷-5-葡萄糖苷 Cyanidin-3-diglucoside-5-glucoside 0.0389 27 芍药素-3-O-葡萄糖苷 Peonidin-3-O-glucoside 0.003 28 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide0.0005 29 芹黄素-7-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-4'-葡糖苷酸
Apigenin-7-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-4'-glucuronide0.0645 30 牡荆素-4'-O-α-L-吡喃鼠李糖苷 Vitexin-4'-O-α-L-rhamnopyranoside 0.0001 31 异牡荆素 Isovitexin 0.0053 32 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]0.0751 33 查耳酮樱花素 Chalconosakuranetin 0.0009 34 锦葵色素-3-葡萄糖苷 Malvidin-3-glucoside 0.0337 35 木犀草素-7-O-[β-D-葡萄糖基-(1->2)-β-D-葡糖苷酸]
Luteolin-7-O-[β-D-glucuronosyl-(1->2)-β-D-glucuronide]0.0814 续表 4 Table 4 continued 编号Number 类别
Subclass代谢物 Metabolites P 值
P value36 6-羟基木犀草素-6-木糖苷 6-Hydroxyluteolin-6-xyloside 0.0891 37 洋李甙-4'',6''-双没食子酸 Prunin-4'',6''-digallic acid 0.0122 38 紫苏素 Perillanin 0.0298 39 桃皮素-3'-葡萄糖苷 Persicogenin-3'-glucoside 0.0418 40 3,5,7-三羟基-4'-甲氧基-8-异戊烯类黄酮-3-[鼠李糖基-(1->6)-半乳糖苷]-7-半乳糖苷
3,5,7-Trihydroxy-4'-methoxy-8-prenylflavone-3-[rhamnosyl-(1->6)-galactoside]-7-galactoside0.0681 41 落新妇苷 Astilbin 0.1425 42 Ranupenin-3-rutinoside 0.1137 43 曲克芦丁 Troxerutin 0.0964 44 异黄酮Isoflavonoids 5,7-二羟基-2',6-二甲氧基异黄酮-7-鼠李糖苷 5,7-Dihydroxy-2',6-dimethoxyisoflavone-7-rhamnoside 0.0011 45 [5,7-二羟基-3-(3-羟基-4-甲氧基苯基)-4-环氧-3,4-二氢-1-苯并吡喃醇] 丙酸
[5,7-Dihydroxy-3-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-1-benzopyran-3-yl]methyl acetic acid0.1961 46 西葫芦素-7-(6-丙二酰葡萄糖苷) Cicerin-7-(6-malonylglucoside) 0.1644 47 6''-丙二酰染料木甙 6''-Malonylgenistin 0.289 48 6''-O-丙二酰大豆苷 6''-O-Malonyldaidzin 0.4983 49 7-羟基-2',5,6-三甲氧基-4',5'-亚甲基二氧异黄酮-7-(2-对香豆基葡萄糖苷)
7-Hydroxy-2',5,6-trimethoxy-4',5'-methylenedioxyisoflavone-7-(2-p-coumaroylglucoside)0.7003 50 黄烷醇 Flavanol 表儿茶素 Epicatechin 0.0186 51 表没食子儿茶素没食子酸酯 Epigallocatechin gallate 0.0610 52 表没食子儿茶素-(4β->8)-儿茶素 Epigallocatechin-(4β->8)-catechin 0.0203 53 阿萨姆霉素 C Assamicain C 0.2318 54 黄酮 Flavones 杨梅酮 Myricetin 0.096 55 川陈皮素 Nobiletin 0.0001 56 山奈酚 Kaempferol 0.7327 57 槲皮素 Quercetin 0.3093 58 其它黄酮类
Other flavonoids二氢黄酮 Dihydromorelloflavone 0.0022 59 原花青素 C1 Procyanidin C1 0.1755 60 3'-没食子酰原飞燕草素 B2 3'-Galloylprodelphinidin B2 0.0690 61 5-羟基降山油柑碱 Bis (5-hydroxynoracronycine) 0.3770 62 表儿茶素-3-对香豆酸 Epigallocatechin-3-p-coumaroate 0.1988 63 表阿夫儿茶精-(4β->8)-表儿茶素-3,3'-双没食子酸 Epiafzelechin-(4β->8)-epicatechin-3,3'-digallate 0.8156 64 原花青素 B2 Procyanidin B2 0.3749 65 松茸苷 I Matsutakeside I 0.5367 66 萜苷
Terpene
glycosides大豆皂醇 B-3-O-β-D-葡萄糖醛酸苷 Soyasapogenol B-3-O-β-D-glucuronide 0.3016 67 28-葡萄糖基齐墩果酸-3-阿拉伯糖苷 28-Glucosyloleanolic acid-3-arabinoside 0.3150 68 大豆皂苷 Ⅰ Soyasaponin Ⅰ 0.7893 69 豌豆皂苷 Ⅱ Pisumsaponin Ⅱ 0.1925 70 10-乙酸基橄榄苦苷 10-Acetoxyoleuropein 0.1856 71 p-薄荷烷-2,8,9-三醇-2-葡萄糖苷 p-Menthane-2,8,9-triol-2-glucoside 0.7188 续表 4 Table 4 continued 编号
Number类别
Subclass代谢物 Metabolites P 值
P value72 紫苏甙 A Perilloside A 0.0016 73 反式香苇醇葡萄糖苷 (-)-trans-Carveol glucoside 0.0028 74 去氢大豆皂甙 Ⅰ Dehydrosoyasaponin Ⅰ 0.0863 75 珠子参苷 R2 Majonoside R2 0.0533 76 肉桂萜醇 A-19- 葡萄糖苷 Cinncassiol A-19-glucoside 0.0062 77 楤木皂苷 Ⅴ Araliasaponin Ⅴ 0.0141 78 牛痘苷 Vaccinoside 0.0020 79 京尼平苷酸 Geniposidic acid 0.0048 80 枸杞甙 Ⅶ Lyciumoside Ⅶ 0.0952 81 大豆皂苷Ⅱ Soyasaponin Ⅱ 0.0197 82 肉桂萜醇C1-19-葡萄糖苷 Cinncassiol C1-19-glucoside 0.0027 83 香叶酯芹糖基葡萄糖苷 Geranyl apiosyl-glucoside 0.1315 84 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]0.0001 85 5-大柱香波龙烷-3,9-二醇-9-[芹糖基-(1->6)-葡萄糖苷]
5-Megastigmene-3,9-diol-9-[apiosyl-(1->6)-glucoside]0.0040 86 3,4,5-三羟基-6-(2-甲基-3-苯丙氧基) 环氧乙烷-2-羧酸
3,4,5-trihydroxy-6-(2-methyl-3-phenylpropoxy) oxane-2-carboxylic acid0.0913 87 棕榈酰葡糖苷酸 Palmitoyl glucuronide 0.0647 88 1-辛烯-3-桑色素酊 1-Octen-3-yl primeveroside 0.0036 89 3b,6a-二羟基-α-紫罗兰醇-9-[芹糖基-(1->6)-葡萄糖苷]
3b,6a-Dihydroxy-α-ionol-9-[apiosyl-(1->6)-glucoside]0.7358 90 布卢门醇C-O-[鼠李糖基-(1->6)-葡萄糖苷] Blumenol C-O-[rhamnosyl-(1->6)-glucoside] 0.2408 91 甾体皂甙
Steroidal glycosides25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-3-glucoside0.0072 92 胆酸葡糖苷酸 Cholic acid glucuronide 0.0006 93 孕甾烷甙 Balagyptin 0.0058 94 葫芦素E-2-O-葡萄糖苷 Elaterinide 0.0011 95 苦瓜皂苷 g Goyaglycoside g 0.0287 96 香豆素糖苷
Coumarin glycosides9-羟基-4-甲氧补骨脂素9-葡萄糖苷 9-Hydroxy-4-methoxypsoralen 9-glucoside 0.0012 注:P 值由LSD法多重比较计算得出。
Note: P values were calculated by least significant difference.表 5 减氮增钾茶叶中累积水平显著变化的代谢物
Table 5 Metabolites with significant accumulative changes in tea leaves under reducing N and increasing K input
类别 Subclass 代谢物 Metabolites 相对丰度 Relevant abundance 变化幅度 (%)
Change proportionSF TF 黄酮苷
Flavonoid glycoside杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside623±49.0 B 905±33.7 A –31.13 芍药素-3-O-葡萄糖苷
Peonidin-3-O-glucoside38.9±6.3 B 107±23.6 A –63.75 查耳酮樱花素 Chalconosakuranetin 336±57.9 b 555±68.1 a –39.56 落新妇苷 Astilbin 259±36.4 B 318±15.6 A –18.74 黄烷醇 Flavanol 表没食子儿茶素没食子酸酯
Epigallocatechin gallate27300±2230 b 28200±3830 a –3.08 萜苷
Terpene glycosides肉桂萜醇C1-19-葡萄糖苷
Cinncassiol C1 19-glucoside23.1±15.1 B 181±61.9 A –87.21 脂酰苷
Fatty acyl glycosides1-辛烯-3-桑色素酊
1-Octen-3-yl primeveroside1040±31.7 B 1380±144.0 A –24.58 黄酮 Flavone 川陈皮素 Nobiletin 203±3.48 A 39.4±2.04 B 414.02 黄酮苷
Flavonoid glycoside牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside2640±1340 A 2380±345 B 10.84 Ranupenin 3-rutinoside 111±15.0 a 77.0±21.3 b 44.71 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-
β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-
β-D-glucopyranoside]166±8.60 A 98.2±4.99 B 68.75 注:TF—常规化肥处理;SF—减施25%化肥氮处理;同行数据后不同大写字母表示1%水平差异显著,不同小写字母表示不同处理间在5%水平差异显著。
Note: TF—Conventional chemical fertilzier input; SF—Reducing 25% of chemical fertilizer N. Values followed by different capital and small letters in a row indicate difference significance between treatments at the 1% and 5% levels, respectively.表 6 有机肥替代25%化肥氮茶叶中累积水平显著变化的代谢物
Table 6 The metabolites with accumulation level significantly varied in tea leaves under replacing 25% of chemical fertilizer N with organic fertilizer
类别
Subclass代谢物
Metabolites相对丰度
Relevant abundance变化幅度 (%)
Change proportionOF TF 黄酮苷
Flavonoids
glycoside槲皮素-2''-(6''-对香豆酰基葡糖基)
2''-(6''-p-Coumaroylglucosyl) quercitrin87800±3420 A 69300±2830 B 26.74 山奈酚-3-[4''-(对香豆酰基葡糖基)鼠李糖苷]
Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside]71400±3940 A 57700±526 B 23.78 牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside29100±596 A 23800±345 B 22.48 异牡荆素 Isovitexin 180000±13200 A 137000±7720 B 31.23 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide4180±162 A 2970±463 B 40.97 山奈酚-3-(2",6"-二对香豆酰基葡萄糖苷)
Kaempferol-3-[2",6"-di-(E)-p-coumarylglucoside]2770±194 a 2350±183 b 17.80 桃皮素-3'-葡萄糖苷 Persicogenin-3'-glucoside 1320± 100 A 985±195 B 34.10 飞燕草素-3-(6-对香豆酰基半乳糖苷)
Delphinidin-3-(6-p-coumaroylgalactoside)405±54.8 A 27.9±10.7 B 1355.11 Ranupenin-3-rutinoside 112±16.7 a 77.0±21.3 b 45.88 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-
β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]312±39.4 a 250±21.8 b 24.88 黄酮
Flavones川陈皮素 Nobiletin 938±49.7 A 39.4±2.04 B 2280.20 杨梅酮 Myricetin 1450±5 a 1020±116 b 41.58 萜苷
Terpene
glycosides大豆皂苷Ⅱ Soyasaponin Ⅱ 13400±1050 a 11300±581 b 18.64 京尼平苷酸 Geniposidic acid 12300±824 A 10400±794 B 18.11 去氢大豆皂甙Ⅰ Dehydrosoyasaponin Ⅰ 8850±440 a 7640±340 b 15.82 珠子参苷R2 Majonoside R2 8740±315 a 7890±376 b 10.85 肉桂萜醇A-19-葡萄糖苷
Cinncassiol A-19-glucoside669±23.3 A 511±50.2 B 30.76 枸杞甙Ⅶ Lyciumoside Ⅶ 583±61.3 a 458±73.7 b 27.29 甾体皂甙
Steroidal
glycosides孕甾烷甙 Balagyptin 29000±1370 A 23000±626 B 26.42 苦瓜皂苷g Goyaglycoside g 21300±1340 a 18200±622 b 17.02 25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-3-glucoside3750±230 A 3080±220 B 21.64 胆酸葡糖苷酸 Cholic acid glucuronide 3330±294 A 2070±318 B 60.83 葫芦素E-2-O-葡萄糖苷 Elaterinide 415±18.7 A 280±24.1 B 48.37 脂酰苷
Fatty acyl
glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]150±22.6 0A 98.2±4.99 B 52.94 3,4,5-三羟基-6-(2-甲基-3-苯丙氧基) 环氧乙烷-2-羧酸
3,4,5-trihydroxy-6-(2-methyl-3-phenylpropoxy) oxane-2-carboxylic acid1080±54.5 a 882±80.7 b 22.17 黄酮苷
Flavonoids
glycoside槲皮素-3-(3R-葡糖基芸香苷)
Quercetin-3-(3R-glucosylrutinoside)3970±203 b 4430±120 a –10.35 杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside756±95.9 b 905±33.7 a –16.51 续表 6 Table 6 continued 类别
Subclass代谢物
Metabolites相对丰度
Relevant abundance变化幅度 (%)
Change proportionOF TF 飞燕草素-3-槐糖基-5-葡萄糖苷
Delphinidin-3-sophoroside-5-glucoside462±39.9 B 619±10.6 A –25.38 查耳酮樱花素 Chalconosakuranetin 357±33.6 B 555±68.1 A –35.70 芍药素-3-O-葡萄糖苷 Peonidin-3-O-glucoside 61.0±24.0 B 107±23.6 A –43.17 异黄酮苷
Isoflavonoid glycoside5,7-二羟基-2',6-二甲氧基异黄酮-7-鼠李糖苷
5,7-Dihydroxy-2',6-dimethoxyisoflavone-7-rhamnoside26.8±3.08 B 76.0±23.7 A –64.76 黄酮多聚体
Polyflavonoids3'-没食子酰原飞燕草素 B2 3'-Galloylprodelphinidin B2 127000±10800 b 175000±15100 a –27.33 二氢黄酮 Dihydromorelloflavone 914±48.3 B 1090±33.9 A –16.02 萜苷
Terpene glycosides肉桂萜醇C1-19-葡萄糖苷 Cinncassiol C1-19-glucoside 56.2±23.5 B 181±61.9 A –68.89 脂酰苷
Fatty acyl
glycosides1-辛烯-3-桑色素酊 1-Octen-3-yl primeveroside 950±104 B 1380±144 A –31.02 5-大柱香波龙烷-3,9-二醇-9-[芹糖基-(1->6)-葡萄糖苷]
5-Megastigmene-3,9-diol 9-[apiosyl-(1->6)-glucoside]843±21.6 B 1140±106 A –26.12 注:TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理。同行数据后不同大写字母表示1%水平差异显著,不同小写字母表示处理间在5%水平差异显著。
Note: TF—Conventional chemical fertilzier input; OF—Replacing 25% of chemical fertilizer N with organic N. Values followed by different capital and small letters in a row indicate difference significance between treatments at the 1% and 5% level, respectively.表 7 不同施肥处理茶叶黄酮类和糖苷类优势代谢物
Table 7 Preponderant metabolites of flavonoids or glycosides in tea leaves under different fertilization treaments
类别
Subclass代谢物
Metabolites相对丰度 Abundance 变化倍数
Fold of changeCK TF OF SF 黄酮苷
Flavonoid glycoside芸香苷 Rutin 54000±3050 a 48500±2730 b 45800±1210 b 45000±3080 b 1.20 槲皮素-3-(3-对香豆酰基葡萄糖苷)
Quercetin-3-(3-p-coumaroylglucoside)67800±17800 a 41900±4770 b 48000±7800 b 40000±2920 b 1.70 杨梅酮-3-O-洋槐糖苷
Myricetin-3-O-robinobioside1040±81.1 a 905±33.7 b 756±95.9 c 623±49.0 d 1.67 异鼠李素-3-β-昆布二糖苷 Isorhamnetin-3-β-laminaribioside 4430±287.0 a 3470±93.6 bc 3760±17.7 b 3390±62.1 c 1.31 飞燕草素-3-(6-对香豆酰基半乳糖苷)
Delphinidin-3-(6-p-coumaroylgalactoside)230.0±131 b 27.9±10.7 c 405.0±54.8 a 35.7±22.8 c 14.52 芹黄素-4'-[阿魏酰-(->2)-葡糖醛酸基-(1->2)-葡糖苷酸]-7-葡糖苷酸
Apigenin-4'-[feruloyl-(->2)-glucuronyl-(1->2)-glucuronide]-7-glucuronide2220±365 c 2970±463 b 4180±162 a 3010±194 b 1.89 牡荆素-4'-O-α-L-吡喃鼠李糖苷
Vitexin-4'-O-α-L-rhamnopyranoside21700±783 d 23800±345 c 29100±596 a 26400±1340 b 1.34 异牡荆素 Isovitexin 140000±11800 b 137000±7720 b 180000±13200 a 147000±10900 b 1.31 槲皮素-2''-(6''-对香豆酰基葡糖基)
2''-(6''-p-Coumaroylglucosyl) quercitrin68400±5980 b 69300±2830 b 87800±3420 a 75200±2910 b 1.28 山奈酚-3-[4''-(对香豆酰基葡糖基)鼠李糖苷]
Kaempferol-3-[4''-(p-coumaroylglucosyl) rhamnoside]57700±5110 b 57700±526 b 71400±3940 a 61000±1140 b 1.24 3,3',4'-三羟基黄酮-3-O-[a-L-鼠李糖基-(1->2)[a-L-鼠李糖基-(1->6)]-β-D-吡喃葡萄糖苷]
3,3',4'-Trihydroxyflavone-3-O-[a-L-rhamnopyranosyl-(1->2)
[a-L-rhamnopyranosyl-(1->6)]-β-D-glucopyranoside]237±44.80 b 250±21.80 b 312±39.40 a 248±9.26 b 1.32 黄酮 Flavone 川陈皮素 Nobiletin 37.7±2.46 c 39.4±2.04 c 938±49.70 a 203±3.48 b 24.89 黄烷醇 Flavanol 表没食子儿茶素-(4β->8)-儿茶素
Epigallocatechin-(4β->8)-catechin73800±16600 a 46200±4040 b 54000±7820 b 45100±2930 b 1.63 表儿茶素 Epicatechin 19000±1790 a 16600±238 b 15900±435 b 16200±800 b 1.20 续表 7 Table 7 continued 类别
Subclass代谢物
Metabolites相对丰度 Abundance 变化倍数
Fold of changeCK TF OF SF 萜苷
Terpene glycosides紫苏甙 A Perilloside A 15000±2540 a 6230±544 b 9380±1880 b 7000±1860 b 2.41 反式香苇醇葡萄糖苷 (-)-trans-Carveol glucoside 718±115 a 287±32.4 b 471±122 b 320±104 b 2.50 去氢大豆皂甙 I Dehydrosoyasaponin I 7620±860 b 7640±340 b 8850±440 a 7710±559 b 1.16 珠子参苷 R2 Majonoside R2 7850±245 b 7890±376 b 8740±315 a 7530±717 b 1.16 肉桂萜醇 A-19-葡萄糖苷 Cinncassiol A-19-glucoside 458±77.2 b 511±50.2 b 669±23.3 a 540±41.4 b 1.50 甾体皂甙
Steroidal glycosides25-乙酰氧基-3,16,20,22-四羟基-5-葫芦素-11-one 3-葡萄糖苷
25-Acetoxy-3,16,20,22-tetrahydroxy-5-cucurbiten-11-one-3-glucoside3140±63 b 3080±220 b 3750±230 a 3090±204 b 1.22 胆酸葡糖苷酸 Cholic acid glucuronide 2200±169.0 c 2070±318.0 c 3330±294.0 a 2810±57.7 b 1.61 孕甾烷甙 Balagyptin 25400±2300 b 23000±626 b 29000±1370 a 24900±905 b 1.26 葫芦素E-2-O-葡萄糖苷 Elaterinide 311±35.6 b 280±24.1 b 415±18.7 a 251±42.6 b 1.65 脂酰苷
Fatty acyl glycosides(S)-橙花叔醇-3-O-[a-L-鼠李糖吡喃醇-(1->2)-β-D-吡喃葡萄糖苷]
(S)-Nerolidol-3-O-[a-L-rhamnopyranosyl-(1->2)-β-D-glucopyranoside]198±9.15 a 98.2±4.99 c 150±22.60 b 166±8.60 b 2.01 香豆素糖苷
Coumarin glycoside9-羟基-4-甲氧补骨脂素9-葡萄糖苷
9-Hydroxy-4-methoxypsoralen 9-glucoside2070±184 .0a 1450±161.0 b 1380±90.6 b 1590±95.7 b 1.50 注:CK—不施肥处理;TF—常规化肥处理;OF—有机肥氮替代25%化肥氮处理;SF—减施25%化肥氮处理。变化倍数为同一代谢物在不同施肥处理间最大相对丰度值与最小相对丰度值之比。同行数据后不同小写字母表示处理间在5%水平差异显著。
Note: CK—No fertilizer; TF—Conventional chemical fertilizer input; OF—Replacing 25% of chemical fertilizer N with organic N; SF—Reducing 25% of chemical fertilizer N. Change fold was the ratio of maximum to minimum abundance of a same metabolite among the four treatments. Values followed by different small letters in a row indicate difference significance among different treatments at the 5% level. -
[1] Daglia M, Antiochia R, Sobolev A P, et al. Untargeted and targeted methodologies in the study of tea (Camellia sinensis L. )[J]. Food Research International, 2014, 63(9): 275–289.
[2] Das P R, Kim Y, Hong S J, et al. Profiling of volatile and non-phenolic metabolites-amino acids, organic acids, and sugars of green tea extracts obtained by different extraction techniques[J]. Food Chemistry, 2019, 296: 69–77. DOI: 10.1016/j.foodchem.2019.05.194
[3] Chen G H, Yang C Y, Lee S J et al. Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude[J]. Journal of Food Drug Analysis, 2014, 22(3): 303–309. DOI: 10.1016/j.jfda.2013.12.001
[4] Liu J W, Zhang Q F, Liu M Y, et al. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season[J]. Journal of Agricultural and Food Chemistry, 2016, 64: 3302–3309. DOI: 10.1021/acs.jafc.6b00404
[5] Cheng S H, Fu X M, Liao Y Y, et al. Differential accumulation of specialized metabolite L-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves[J]. Food Chemistry, 2019, 276: 93–100. DOI: 10.1016/j.foodchem.2018.10.010
[6] Santosh K C, Long L Z, Liu M Y, et al. Light intensity modulates the effect of phosphate limitation on carbohydrates, amino acids, and catechins in tea plants (Camellia sinensis L. )[J]. Frontiers in Plant Science, 2021, 12: 743781. DOI: 10.3389/fpls.2021.743781
[7] Han W Y, Selena A, Wei C L, et al. Editorial: Responses of tea plants to climate change: From molecules to ecosystems[J]. Frontiers Plant Science, 2020, 11: 594317. DOI: 10.3389/fpls.2020.594317
[8] Zhu J Y, Xu Q S, Zhao S Q, et al. Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis)[J]. Plant Science, 2020, 290: 110306. DOI: 10.1016/j.plantsci.2019.110306
[9] Dai W D, Qi D D, Yang T, et al. Nontargeted analysis using ultraperformance liquid chromatography−quadrupole time-of-flight mass spectrometry uncovers the effects of harvest season on the metabolites and taste quality of tea (Camellia sinensis L. )[J]. Journal of Agricultural and Food Chemistry, 2015, 63: 9869–9878.
[10] 唐颢, 方华春, 唐劲驰, 等. 凤凰单丛茶品质地域性差异的生化基础[J]. 食品科学, 2015, 36(20): 168–173. Tang H, Fang H C, Tang J C, et al. Biochemical basis of regional differences in quality of Fenghuangdancong Oolong tea[J]. Food Science, 2015, 36(20): 168–173. DOI: 10.7506/spkx1002-6630-201520032 Tang H, Fang H C, Tang J C, et al. Biochemical basis of regional differences in quality of Fenghuangdancong Oolong tea [J]. Food Science, 2015, 36(20): 168-173. DOI: 10.7506/spkx1002-6630-201520032
[11] Shao C Y, Jiao H Z, Che J H, et al. Carbon and nitrogen metabolism are jointly regulated during shading in roots and leaves of Camellia Sinensis[J]. Frontiers in Plant Science, 2022, 13: 894840. DOI: 10.3389/fpls.2022.894840
[12] Liu M Y, Tang D D, Shi Y Z, et al. Foliar N application on tea plant at its dormancy stage increases the N concentration of mature leaves and improves the quality and yield of spring tea[J]. Frontiers in Plant Science, 2021, 12: 753086. DOI: 10.3389/fpls.2021.753086
[13] 郭龙, 李陈, 刘佩诗, 等. 牛粪有机肥替代化肥对茶叶产量、品质及茶园土壤肥力的影响[J]. 水土保持学报, 2021, 35(6): 264–269. Guo L, Li C, Liu P S, et al. Effect of replacing chemical fertilizer with cow manure organic fertilizer on tea yield, quality, and soil fertility in tea garden[J]. Journal of Soil and Water Conservation, 2021, 35(6): 264–269. Guo L, Li C, Liu P S, et al. Effect of replacing chemical fertilizer with cow manure organic fertilizer on tea yield, quality, and soil fertility in tea garden [J]. Journal of Soil and Water Conservation, 2021, 35(6): 264-269.
[14] 罗凡, 龚雪蛟, 张厅, 等. 氮磷钾对春茶光合生理及氨基酸组分的影响[J]. 植物营养与肥料学报, 2015, 21(1): 147–155. Luo F, Gong X J, Zhang T, et al. Effects of nitrogen, phosphorus and potassium on photo-biological characteristics and amino acid components of tea plants in spring[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 147–155. DOI: 10.11674/zwyf.2015.0116 Luo F, Gong X J, Zhang T, et al. Effects of nitrogen, phosphorus and potassium on photo-biological characteristics and amino acid components of tea plants in spring [J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 147-155. DOI: 10.11674/zwyf.2015.0116
[15] 刘扬, 孙丽莉, 廖红. 养分管理对安溪茶园土壤肥力及茶叶品质的影响[J]. 土壤学报, 2020, 57(4): 917–927. Liu Y, Sun L L, Liao H. Effects of nutrient management on soil fertility and tea quality in Anxi tea plantation[J]. Acta Pedologica Sinica, 2020, 57(4): 917–927. Liu Y, Sun L L, Liao H. Effects of nutrient management on soil fertility and tea quality in anxi tea plantation [J]. Acta Pedologica Sinica, 2020, 57(4): 917-927.
[16] 黎静宜, 李勇, 黄智刚, 等. 甘蔗集约化种植区施肥显著增加入河硝态氮污染: 基于氮氧同位素的流域示踪[J]. 植物营养与肥料学报, 2022, 28(1): 104–113. Li J Y, Li Y, Huang Z G, et al. Fertilization in intensive sugarcane planting areas significantly increased riverine nitrate pollution: Evidenced by nitrogen and oxygen isotopes in a watershed[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 104–113. DOI: 10.11674/zwyf.2021513 Li J Y, Li Y, Huang Z G, et al. Fertilization in intensive sugarcane planting areas significantly increased riverine nitrate pollution: Evidenced by nitrogen and oxygen isotopes in a watershed [J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 104-113. DOI: 10.11674/zwyf.2021513
[17] Wu Y Z, Li Y, Fu X Q, et al. Effect of controlled-release fertilizer on N2O emissions and tea yield from a tea field in subtropical central China[J]. Environmental Science and Pollution Research, 2018, 25: 25580–25590. DOI: 10.1007/s11356-018-2646-2
[18] Yang X D, Ni K, Shi Y Z, et al. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J]. Agriculture, Ecosystems and Environment, 2018, 252: 74–82. DOI: 10.1016/j.agee.2017.10.004
[19] 马立锋. 茶树氮素吸收利用与氮肥施用技术研究[D]. 北京: 中国农业科学院博士学位论文, 2015. Ma L F. Research on tea plant to nitrogen uptake-utilization and fertilization technique in tea garden[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2015
[20] 刘美雅, 汤丹丹, 矫子昕, 等. 适宜氮肥施用量显著提升夏季绿茶品质[J]. 植物营养与肥料学报, 2021, 27(8): 1407–1419. Liu M Y, Tang D D, Jiao Z X, et al. Suitable nitrogen fertilization rate effectively improve the quality of summer green tea[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1407–1419. DOI: 10.11674/zwyf.2021012 Liu M Y, Tang D D, Jiao Z X, et al. Suitable nitrogen fertilization rate effectively improve the quality of summer green tea [J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(8): 1407-1419. DOI: 10.11674/zwyf.2021012
[21] Sun L T, Fan K, Wang L L, et al. Correlation among metabolic changes in tea plant Camellia sinensis (L.) shoots, green tea quality and the application of cow manure to tea plantation soils[J]. Molecules, 2021, 26(20): 6180–6192. DOI: 10.3390/molecules26206180
[22] Xie S W, Feng H X, Yang F, et al. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China[J]. Environmental Science and Pollution Research., 2019, 26: 2464–2476. DOI: 10.1007/s11356-018-3732-1
[23] 朱旭君, 王玉花, 张瑜, 等. 施肥结构对茶园土壤氮素营养及茶叶产量品质的影响[J]. 茶叶科学, 2015, 35(3): 248–254. Zhu X J, Wang Y H, Zhang Y, et al. Effects of different fertilizer application systems on nitrogen nutrition in tea garden soil and yield-quality of tea plant[J]. Journal of Tea Science, 2015, 35(3): 248–254. DOI: 10.3969/j.issn.1000-369X.2015.03.008 Zhu X J, Wang Y H, Zhang Y, et al. Effects of different fertilizer application systems on nitrogen nutrition in tea garden soil and yield-quality of tea plant [J]. Journal of Tea Science, 2015, 35(3): 248-254. DOI: 10.3969/j.issn.1000-369X.2015.03.008
[24] Tang D D, Liu M Y, Zhang Q F, et al. Preferential assimilation of NH4+ over NO3– in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis[J]. Plant Science, 2019, 291: 110369.
[25] Li W, Xiang F, Zhong M C, et al. Transcriptome and metabolite analysis identifies nitrogen utilization genes in tea plant (Camellia sinensis)[J]. Scientific Reports, 2017, 7(1): 1693–1704. DOI: 10.1038/s41598-017-01949-0
[26] Fan K, Fan D M, Ding Z T. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2015, 97: 350–360. DOI: 10.1016/j.plaphy.2015.10.026
[27] Jiang H Y, Engelhardt U H, Thräne C, et al. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC[J]. Food Chemistry, 2015, 183: 30–35. DOI: 10.1016/j.foodchem.2015.03.024
[28] Hodgson J, Croft K. Tea flavonoids and cardiovascular health[J]. Molecular Aspects of Medicine:An Interdisciplinary Review Journal, 2010, 31(6): 495–502. DOI: 10.1016/j.mam.2010.09.004
[29] Zheng X Q, Nie Y, Gao Y, et al. Screening the cultivar and processing factors based on the flavonoid profiles of dry teas using principal component analysis[J]. Journal of Food Composition and Analysis, 2018, 67: 29–37. DOI: 10.1016/j.jfca.2017.12.016
[30] 张正竹, 宛晓春, 陶冠军. 茶鲜叶中糖苷类香气前体的液质联用分析[J]. 茶叶科学, 2005, 25(4): 275–281. Zhang Z Z, Wan X C, Tao G J. Analysis of glycosidic aroma precursors in fresh tea leaves (Camellia sinensis var. sinensis cv. Zhuye) by the combination of liquid chromatography with mass spectrometry[J]. Journal of Tea Science, 2005, 25(4): 275–281. DOI: 10.3969/j.issn.1000-369X.2005.04.007 Zhang Z Z, Wang X C, Tao G J. Analysis of glycosidic aroma precursors in fresh tea leaves (Camellia sinensis var. sinensis cv. Zhuye) by the combination of liquid chromatography with mass spectrometry [J]. Journal of Tea Science, 2005, 25(4): 275-281. DOI: 10.3969/j.issn.1000-369X.2005.04.007
[31] Yue W J, Sun W J, Shyama P R R, et al. Non-targeted metabolomics reveals distinct chemical compositions among different grades of Bai Mudan white tea[J]. Food Chemistry, 2019, 277(30): 289–297.
[32] 李鑫磊, 俞晓敏, 林军, 等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学, 2020, 41(12): 197–203. Li X L, Yu X M, Lin J, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach[J]. Food Science, 2020, 41(12): 197–203. DOI: 10.7506/spkx1002-6630-20190128-358 Li X L, Yu X M, Lin J, et al. Comparative metabolite characteristics of white tea with green tea, oolong tea and black tea based on non-targeted metabolomics approach [J]. Food Science, 2020, 41(12): 197-203. DOI: 10.7506/spkx1002-6630-20190128-358
[33] Wu C Y, Xu H R, Heritier J, et al. Determination of catechins and flavonol glycosides in Chinese tea varieties[J]. Food Chemistry, 2012, 132(1): 144–149. DOI: 10.1016/j.foodchem.2011.10.045
[34] Huang H, Yao Q Y, Xia E H, et al. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor[J]. Journal of Agricultural and Food Chemistry, 2018, 66(37): 9828–9838. DOI: 10.1021/acs.jafc.8b01995
[35] Dong F, Hu J H, Shi Y Z, et al. Effects of nitrogen supply on flavonol glycoside biosynthesis and accumulation in tea leaves[J]. Plant Physiology and Biochemistry, 2019, 138: 48–57. DOI: 10.1016/j.plaphy.2019.02.017
[36] Liu J W, Liu M Y, Fang H H, et al. Accumulation of amino acids and flavonoids in young tea shoots is highly correlated with carbon and nitrogen metabolism in roots and mature leaves[J]. Frontiers in Plant Science, 2021, 12: 756433. DOI: 10.3389/fpls.2021.756433
[37] Wang Y, Wang Y M, Lu Y T, et al. ICKluence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.)[J]. Plant Physiology and Biochemistry, 2021, 167: 561–566. DOI: 10.1016/j.plaphy.2021.08.034
[38] 孙平. 茶叶儿茶素合成相关miRNA及靶基因的验证和表达分析[D]. 福建福州: 福建农林大学博士学位论文, 2017. Sun P. Studies on identification and expression of miRNAs and target genes involved in the biosynthesis of catechins in Camellia sinensis[D]. Fuzhou, Fujian: PhD Dissertation of Fujian Agriculture and Forestry University, 2017.
[39] Okazaki K, Shinano T, Oka N, et al. Metabolite profiling of Raphanus sativus L. to evaluate the effects of manure amendment[J]. Soil Science and Plant Nutrition, 2010, 56: 591–600. DOI: 10.1111/j.1747-0765.2010.00490.x
[40] Muhammad K, Saeed R, Muhammad B, et al. Role of flavonoids in plant interactions with the environment and against human pathogens: A review[J]. Journal of Integrative Agriculture, 2019, 18(1): 211–230. DOI: 10.1016/S2095-3119(19)62555-4
[41] 王子腾, 耿元波, 梁涛, 等. 减施化肥和配施有机肥对茶园土壤养分及茶叶产量和品质的影响[J]. 生态环境学报, 2018, 27(12): 2243–2251. Wang Z T, Geng Y B, Liang T, et al. Effects of reducing chemical fertilizer and organic fertilizer combination on tea garden soil and tea yield and quality[J]. Ecology and Environment Sciences, 2018, 27(12): 2243–2251. Wang Z T, Geng Y B, Liang T, et al. Effects of reducing chemical fertilizer and organic fertilizer combination on tea garden soil and tea yield and quality [J]. Ecology and Environment Sciences, 2018, 27(12): 2243-2251.
[42] 毛平生, 阮建云, 李延升, 等. 茶园不同施肥方式对茶树养分和鲜叶品质相关成分的影响[J]. 热带农业科学, 2014, 34(3): 4–11. Mao P S, Ruan J Y, Li Y S, et al. Effect of different fertilization methods on tea quality of tea garden[J]. Chinese Journal of Tropical Agriculture, 2014, 34(3): 4–11. DOI: 10.3969/j.issn.1009-2196.2014.03.002 Mao P S, Ruan J Y, Li Y S, et al. Effect of different fertilization methods on tea quality of tea garden [J]. Chinese Journal of Tropical Agriculture, 2014, 34(3): 4-11. DOI: 10.3969/j.issn.1009-2196.2014.03.002
[43] Zhang Q F, Tang D D, Liu M Y, et al. Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism[J]. Scientia Horticulturae, 2018, 231: 272–281. DOI: 10.1016/j.scienta.2017.11.026
[44] Chen Y Z, Wang F, Wu Z D, et al. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China[J]. Metabolites, 2021, 11: 146–166. DOI: 10.3390/metabo11030146
[45] Ruan J Y, Haerdter R, Gerendás J, et al. Impact of nitrogen supply on carbon/nitrogen allocation: A case study on amino acids and catechins in green tea [Camellia sinensis (L.)O. Kuntze] plants[J]. Plant Biology, 2010, 12(5): 724–734. DOI: 10.1111/j.1438-8677.2009.00288.x
[46] 吴瑞梅, 艾施荣, 吴彦红, 等. 基于近红外光谱的绿茶滋味品质估测模型[J]. 核农学报, 2013, 27(10): 1495–1500. Wu R M, Ai S R, Wu Y H, et al. Estimation model of green tea taste quality based on near inflrared spectroscopy[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(10): 1495–1500. DOI: 10.11869/hnxb.2013.10.1495 Wu R M, Ai S R, Wu Y H, et al. Estimation model of green tea taste quality based on near iCKrared spectroscopy [J]. Journal of Nuclear Agricultural Sciences, 2013, 27(10): 1495-1500. DOI: 10.11869/hnxb.2013.10.1495
[47] 杨亦扬, 马立锋, 黎星辉, 等. 氮素水平对茶树新梢叶片代谢谱及其昼夜变化的影响[J]. 茶叶科学, 2013, 33(6): 491–499. Yang Y Y, Ma L F, Li X H, et al. Metabonomic analysis on the effects of different nitrogen application rates and light/dark change on metabolism in tea leaves[J]. Journal of Tea Science, 2013, 33(6): 491–499. DOI: 10.3969/j.issn.1000-369X.2013.06.001 Yang Y Y, Ma L F, Li X H, et al. Metabonomic analysis on the effects of different nitrogen application rates and light/dark change on metabolism in tea leaves [J]. Journal of Tea Science, 2013, 33(6): 491-499. DOI: 10.3969/j.issn.1000-369X.2013.06.001
[48] Fan K, Zhang Q F, Tang D D, et al. Dynamics of nitrogen translocation from mature leaves to new shoots and related gene expression during spring shoots development in tea plants (Camellia sinensis L. )[J]. Journal of Plant Nutrition and Soil Science, 2020, 182(2): 180–191.
[49] Schlüter U, Mascher M, Colmsee C, et al. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis[J]. Plant Physiology, 2012, 160: 1384–1406. DOI: 10.1104/pp.112.204420
[50] 倪康, 廖万有, 伊晓云, 等. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3): 421–432. Ni K, Liao W Y, Yi X Y, et al. Fertilization status and reduction potential in tea gardens of China[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 421–432. DOI: 10.11674/zwyf.18078 Ni K, Liao W Y, Yi X Y, et al. Fertilization status and reduction potential in tea gardens of China [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 421-432. DOI: 10.11674/zwyf.18078
[51] Wang X Q, Zeng LT, Liao Y Y, et al. An alternative pathway for the formation of aromatic aroma compounds derived from L-phenylalanine via phenylpyruvic acid in tea [Camellia sinensis (L.) O. Kuntze] leaves[J]. Food Chemistry, 2019, 270: 17–24. DOI: 10.1016/j.foodchem.2018.07.056
[52] Wahyu W, Zheng H J, Zheng T, et al. Improved bioaccessibility of polymethoxyflavones loaded into high internal phase emulsions stabilized by biopolymeric complexes: A dynamic digestion study via TNO's gastrointestinal model[J]. Current Research in Food Science, 2020, 2: 11–19. DOI: 10.1016/j.crfs.2019.11.007
[53] Song X Q, Zhang Y, He H H, et al. Prediction of apigenin targets in lung cancer using network pharmacology and molecular docking[J]. Medicinal Plant, 2021, 12(6): 28–32.
[54] 盛亚男, 王长远. 牡荆素预防和治疗疾病作用机制研究进展[J]. 中国现代应用药学, 2021, 38(17): 2156–2161. Sheng Y N, Wang C Y. Research progress on the mechanism of vitexin in preventing and treating diseases[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(17): 2156–2161. He Y N, Wang C Y. Research progress on the mechanism of vitexin in preventing and treating diseases [J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(17): 2156-2161.
[55] Putta S, Yarla N, Kumar E, et al. Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications[J]. Current Medicinal Chemistry, 2018, 25(39): 5347–5371.
[56] Shahzad M, Millhouse E, Culshaw S, et al. Selected dietary (poly) phenols inhibit periodontal pathogen growth and biofilm formation[J]. Food and Function, 2015, 6: 719–729. DOI: 10.1039/C4FO01087F
[57] Zhang Z, Li Y, Qi L, et al. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae massea[J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 3936–3940. DOI: 10.1021/jf060017m
[58] 王瑾, 戚丽, 张正竹. 真菌侵染引发的茶树内源糖苷酶基因差异表达[J]. 植物学报, 2011, 46(5): 552–559. Wang J, Qi L, Zhang Z Z. Differential gene expression of endogenous glycosidases induced by pathogenic fungi infection in leaves of Camellia sinensis[J]. Bulletin of Botany, 2011, 46(5): 552–559. DOI: 10.3724/SP.J.1259.2011.00552 Wang J, Qi L, Zhang Z Z. Differential Gene Expression of endogenous glycosidases induced by pathogenic fungi iCKection in leaves of Camellia sinensis [J]. Bulletin of Botany, 2011, 46(5): 552-559. DOI: 10.3724/SP.J.1259.2011.00552
[59] Silva S, Costa E, Calhau C, et al. Anthocyanin extraction from plant tissues: A review[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(14): 3072–3083. DOI: 10.1080/10408398.2015.1087963
[60] Li F, Dong C X, Yang T Y, et al. The tea plant CsLHT1 and CsLHT6 transporters take up amino acids, as a nitrogen source, from the soil of organic tea plantations[J]. Horticulture Research, 2021, 8: 178–189. DOI: 10.1038/s41438-021-00615-x
-
期刊类型引用(6)
1. 陈志云,李杰,冯雨,任太钰,蔡一鸣,李俊玲,易宏岩,蒋双丰. 茶多酚生物活性及作用机制研究进展. 食品工业科技. 2024(13): 333-341 . 百度学术
2. 刘威,孔亚帅,马可,尹鹏,郭晓彦,郭桂义. 不同施肥处理茶园土壤微生物群落结构及功能预测分析. 中国土壤与肥料. 2024(08): 92-101 . 百度学术
3. 李毅晶. 不同有机肥对乌龙茶肉桂产量和品质的影响. 福建茶叶. 2023(05): 29-31 . 百度学术
4. 向康福. 饼肥替代化肥对茶叶产量、品质和土壤肥力的影响. 基层农技推广. 2023(07): 42-45 . 百度学术
5. 方妙竹,覃建军,覃瑶,邓武成,李春萍,胡维军,屈飞,韩永亮. 有机肥不同用量对莓茶品质的影响. 湖南农业科学. 2023(07): 62-67+72 . 百度学术
6. 周雪,莫雪,刘亚兵,牟琴. 不同施肥方式对茶园影响现状及展望. 贵茶. 2023(04): 10-23 . 百度学术
其他类型引用(1)