Foliar compound oligosaccharide enhances leaf physiology and key enzyme activities of starch synthesis in winter wheat under mild dry-hot wind stress
-
摘要:[[目的]]
植物刺激素寡糖具有提高作物抗逆能力的功效。研究复合寡糖制剂(KROPICO)提高冬小麦抗干热风的能力,为冬小麦干热风灾害化学防控提供技术支撑。
[[方法]]在干热风灾害发生频繁的典型区域—河北省衡水市进行大田试验。试验设置3个寡糖喷施处理,即拔节期喷施1次(BT)、开花期喷施1次(HT)、拔节期和开花期各喷施1次(BTHT);另设拔节期和开花期分别各喷施1次清水(CK)和KH2PO4 (CKP),共5个处理。开花30天时测定了旗叶叶绿素相对含量(SPAD)、离体叶片失水速率(RWL)、叶面积指数(LAI)和淀粉合成关键酶活性,调查了产量和产量构成因素。
[[结果]]试验期间小麦经历了两次轻度干热风胁迫。与CK相比,BTHT处理的小麦旗叶SPAD和LAI值分别显著增加了12.36%和77.78%;BT与BTHT处理能分别显著降低第一次干热风后旗叶叶片失水速率(RWL) 15.08%和21.73%,但在第二次干热风后各处理间无明显差异;HT处理的ADP-葡萄糖焦磷酸化酶(AGPase)活性显著提高了16.91%;BTHT处理的束缚态淀粉合成酶(GBSS)和可溶性淀粉合成酶(SSS)活性分别显著提高了12.28%和12.89%。与CKP相比,BTHT和HT处理的LAI 显著增加了49.53%~50.47%,BTHT处理的GBSS和SSS活性分别显著增加了6.30%和9.39%,HT处理的AGPase活性提高了14.41%。与CK相比,除HT处理外,其它制剂处理的小麦产量显著增加了6.69%以上,BTHT处理的小麦千粒重比CK也显著增加了5.09%。两次干热风胁迫下,与其他3个制剂处理相比,BTHT处理显著提升了叶片生理特性、籽粒蔗糖—淀粉代谢途径关键酶活性和冬小麦产量。结合相关分析证实,GBSS和SSS活性与产量呈显著正相关(P<0.05),同时,SPAD、LAI和淀粉合成相关酶活性均与产量正相关,RWL则与产量负相关。
[[结论]]拔节期和开花期两次喷施复合寡糖处理(BTHT)可以提高冬小麦旗叶叶绿素和水分含量,提高淀粉合成酶活性,协同提高小麦灌浆后期旗叶生长状况和淀粉积累量,增加粒重,促使轻度干热风胁迫下冬小麦稳产甚至增产。
Abstract:[[Objectives]]Oligosaccharide, a phytohormone, has anti-stress functions. We studied its effect on resistance of winter wheat to dry-hot wind, to provide a chemical way for controlling dry-hot wind disaster.
[[Methods]]A field experiment was conducted in Hengshui, Hebei Province, where winter wheat suffered from dry-hot disaster frequently. Three compound oligosaccharide foliar treatments were set up, as spraying once at jointing stage (BT), once at anthesis stage (HT), and at both jointing and anthesis stage (BTHT), at the same time, tap water (CK) and KH2PO4 (CKP) were respectively sprayed at the two stages as controls. At 30 days after anthesis, the flag leaves were sampled for monitoring relative chlorophyll content (SPAD), water loss rate of excised-leaves (RWL), leaf area index (LAI), and the key enzyme activities of starch synthesis; and at harvesting stage, the yield and yield components were investigated.
[[Results]]The winter wheat went through two mild dry-hot wind stresses during the experiment. Compared with CK, BTHT increased the SPAD and LAI of winter wheat significantly by 12.36% and 77.78%; BT and BTHT treatments significantly reduced leaf RWL by 15.08% and 21.73% after the first dry hot wind compared to CK, but there were no significant differences between the treatments after the second dry-hot wind; HT treatment increased the ADP-glucose pyrophosphorylase (AGPase) activity by 16.91%, BTHT treatment increased grain starch binding synthase (GBSS) activity by 12.28%, and the soluble starch synthase (SSS) activity by 12.89%. Compared to CKP, LAI was significantly increased by 49.53% to 50.47% under BTHT and HT treatments; HT treatment significantly increased AGPase activity by 14.41%, and BTHT treatment significantly increased GBSS and SSS activities by 6.30% and 9.39%, respectively. Compared with CK, wheat yield was significantly increased by more than 6.69% in all formulation treatments except HT treatment, and wheat thousand grain weight was also significantly increased by 5.09% in BTHT treatment. Under two dry-hot wind stresses, BTHT treatment significantly enhanced leaf physiological characteristics, key enzyme activity in a wheat grain of winter wheat and winter wheat yield compared with the other three treatments. Correlation analysis revealed that GBSS and SSS were significantly and positively correlated with the yield (P<0.05), while the SPAD, LAI, and starch synthase enzyme activities correlated positively with the yield, and RWL correlated negatively with the yield.
[[Conclusions]]The BTHT treatment improves the chlorophyll content, water status and starch synthase activity of dry-hot winter wheat. Through the synergistic improvement of starch accumulation and the growth status of flag leaves at the late grain filling stage of wheat, BTHT contributes to the increase in grain weight and mitigation of disaster effect on winter wheat.
-
干热风是我国华北、西北和黄淮流域小麦种植区面临的主要气象灾害之一,具有区域性频发和重发的特点。干热风一般发生在五月中下旬的小麦扬花灌浆期,呈现高温低湿并伴有大风的灾害特点[1],易导致小麦叶片蒸腾加剧、叶片光合能力降低[2],根系活力减弱、灌浆时间缩短[3],植株提早衰老,引起生理干旱[4],致使植株正常生理活性破坏和早衰,引发不同程度的减产[5]。黄淮海冬小麦种植区干热风灾害尤为突出,严重时减产可达30%左右[6]。
籽粒淀粉含量是小麦产量和品质形成的重要指标之一[7],其合成过程受到ADP-葡萄糖焦磷酸化酶、可溶性淀粉合成酶和束缚态淀粉合成酶调控[8]。这3种酶在小麦灌浆期的活性与淀粉积累速率呈正相关[9-10]。前人研究也发现,上述3种淀粉合成过程中的关键酶易受环境因素影响,对高温尤为敏感[11-14]。高温会促使小麦籽粒总淀粉、直链淀粉和支链淀粉含量及其积累速率显著降低[11]。黄淮海麦区高温低湿型干热风灾害主要发生在小麦开花灌浆期,恰逢小麦淀粉积累的关键期[12],其对穗部籽粒发育[13]、籽粒形成和淀粉积累过程势必产生负面影响[14]。
在农业生产中,目前主要通过筛选抗逆品种、适时灌溉和合理施肥,以及适期选择调控制剂等来进行干热风防控。化学调控制剂因具有灵活度高、施用方法简单、见效快等优点,已逐渐成为广泛应用的技术措施之一。寡糖 (oligosaccharides)是近年来被国内外学者们广泛关注的一类生物刺激素制剂[15-16],是由2~10个相同或不同的单糖通过糖苷键连接而形成的直链或含分支链的糖类化合物,其在农业上的应用主要集中在土壤污染修复[17]、种子包衣[18]、作物抗逆[19]和动物饲料添加等方面[20]。已有研发发现,寡糖制剂在促进小麦生长[19]和防治真菌病害[21],以及诱导小麦抗逆性等方面仅有少量应用。针对干热风胁迫下外源寡糖类制剂对小麦功能叶持绿能力和水分生理特征、籽粒淀粉合成过程,以及产量构成等的综合影响研究还鲜有报道。
现阶段的农用寡糖制剂大多局限于特定成分,往往存在功能单一、广谱性差、效果不稳定等突出问题[22],也极大限制了产品的推广应用,研发应用多功能型复合寡糖制剂也是绿色可持续农业发展的迫切需求。本研究围绕天然复合寡糖类制剂,比较研究在干热风胁迫下,通过不同时期外源制剂对开花灌浆期冬小麦功能叶生理特性、籽粒淀粉合成关键酶活性、产量及产量构成等因素的影响,明确复合寡糖对干热风条件下冬小麦生长发育的缓解作用,以及各生理指标与产量因子之间的内在关系,以期为多功能型寡糖类制剂的创新研发和合理应用提供技术支撑。
1. 材料与方法
1.1 试验地概况
于2020—2021年小麦生长季,在河北省农林科学院旱作农业研究所衡水试验基地 (37°54′N、115°42′E,海拔20 m)布置大田试验。该区为海河平原典型麦区,全年平均降水量497 mm,年平均温度13.3℃,无霜期202天,年有效积温4604℃。试验区为冬小麦—夏玉米轮作种植模式,0—30 cm土层土壤有机质、全氮、速效氮、有效磷和速效钾含量分别为15.6 g/kg、1.15 g/kg、84.0 mg/kg、14.4 mg/kg和182 mg/kg。
采用悬挂在试验小区的温湿度记录仪 (LR-5001,苏州德锐控电子有限公司)进行温湿度实时记录,小麦生育期内每30 min测量一次。利用小型气象站[天坼气象站,东方智感 (浙江)科技股份有限公司]进行田间风速采集,生育期内每1 h测量一次。依据国家气象局2019年发布的气象行业标准[23],小麦生育期内,同时满足高温低湿型干热风灾害三要素条件的共有2 d,分别为开花后24天和26天 (图1),均为轻度干热风日,即发生了两次轻度干热风过程,根据干热风灾害等级标准,判断2021年为轻度干热风年型。
1.2 试验设计
供试冬小麦为‘济麦22’,属于耐高温品种。2020年10月15日播种,基本苗330万株/hm2。5月1日开花,5月31日进入蜡熟期,6月5日收获。试验地底施复合肥405 kg/hm2,折合纯氮225 kg/hm2、P2O5 90 kg/hm2和K2O 90 kg/hm2,生育期内春灌1水,其余管理按当地常规技术措施,试验期间无明显病虫害发生。
试验共设置5个处理:1)拔节期和开花期均喷清水对照 (CK);2)拔节期和开花期各喷KH2PO4 1次对照 (CKP);3)拔节期喷寡糖1次 (BT),开花期喷清水;4)拔节期喷清水,开花期喷施寡糖1次 (HT);5)在拔节期和开花期各喷施寡糖1次 (BTHT)。每个处理3次重复,每个小区面积9 m2 (6.0 m×1.5 m),小区周围设1.0 m的保护行,共15个小区,采用完全随机区组排列。供试寡糖由作者单位与日本昭和电工株式会社合作研发,主要有效成分为水 (80%~99%)、磷酸二氢钾 (0~12%)和复合寡糖 (0~10%)。每次喷施按推荐浓度稀释1000倍。喷施用清水为自来水,磷酸二氢钾为优级纯化学试剂。每次喷施溶液量约为300 kg/hm2。小麦拔节期始于4月8日,开花期始于5月1日。
1.3 测定项目与方法
1.3.1 旗叶叶绿素相对含量 (SPAD)
于小麦抽穗期在每个小区选取10株长势基本一致的植株挂牌标记,于小麦开花后10 (5月11日起)、15、20、25、30天,采用叶绿素活体测定仪SPAD-502 (柯尼卡美能达,日本)测定SPAD值。
1.3.2 离体旗叶失水速率 (water loss rate of excised-leaves,RWL)
于小麦开花后5天 (5月6日)开始,每隔5天取1次叶片样品,直至小麦成熟。各小区内随机选取5片带穗植株的旗叶,用自封袋密封保存带回后迅速擦拭叶片,测定叶片初始 (时间为t1)鲜重 (FW1)、网纱上自然失水2 h (时间为t2)后的叶重 (FW2),以及烘干后的叶干重 (DW)[24]:
RWL [mg/(g·min)] = (FW1 − FW2)/DW/(t2 − t1)
1.3.3 叶面积指数 (LAI)的测定
各小区内选取长势基本一致的行距进行标记,分别于冬小麦开花后5 (5月6日)、10、15、20、25和30天的上午9:00—12:00,采用SUNSCAN冠层分析仪 (Delta-T, 英国)在标示区域进行LAI测定,设置叶片消光系数为0.85。每个行距测量3次,取平均值作为该小区的LAI值。出现枯黄叶片时,将SUNSCAN探测器置于枯黄叶片上部进行测量,叶片全部枯黄时结束测定。
1.3.4 淀粉合成关键酶活性
分别采集开花后11 (5月12日)、16、21、26和30天的新鲜籽粒,参照Nakamur等a[25]的方法测定ADP-葡萄糖焦磷酸化酶 (ADP-glucose pyrophosphorylase,AGPase)、束缚态淀粉合成酶 (grain starch binding synthase,GBSS)和可溶性淀粉合成酶 (soluble starch synthase,SSS)活性。
1.3.5 小麦产量及产量构成因素
小麦成熟时各小区随机选取3个具有代表性的1 m双行 (边行除外)的植株调查穗数,计算折合成单位面积穗数;随机选取30穗计算穗粒数;然后收获籽粒,晒干后,随机取1000粒测千粒重,3次重复计算平均千粒重,并计算小麦理论产量,即理论产量 (kg/hm2)=穗数 (×104/hm2)×穗粒数 (粒)×千粒重 (g)×10−6×85%。同时,在试验小区选取远离边行20 cm的3 m2样方单独收割,脱粒晒干称重后折算为实际产量。
1.4 数据处理
采用Excel 2013和SPSS 21.0软件对数据进行统计分析,并利用单因素和Duncan法进行方差分析和多重比较 (α=0.05),利用Origin作图,图表中数据至少为3次测定的平均值。
2. 结果与分析
2.1 复合寡糖对冬小麦旗叶叶绿素相对含量 (SPAD)的影响
表1显示,开花后20天内,各喷施处理的小麦旗叶SPAD值没有显著差异;开花后25天,BT处理的SPAD值与CK差异未达显著水平,其余喷施处理旗叶SPAD值的增加量均达到显著水平,增加幅度为12.45%~15.22%;开花后30天,除HT处理外,其余处理的旗叶SPAD值也较CK显著提高9.16%~12.36%,其中BTHT处理显著增加了12.36%。试验期间,开花后24天和26天分别出现了两次轻度干热风,比较干热风发生前 (开花后20天)、后 (花后30天)的SPAD值下降幅度可以发现,CK处理急剧降低了70.88%;CKP和BTHT处理则分别降低68.57%和68.00%,低于CK,说明即使发生胁迫影响,开花期和拔节期组合喷施复合寡糖和磷酸二氢钾能在一定程度上缓解轻度干热风对小麦旗叶叶绿素的胁迫。
表 1 各处理冬小麦花后旗叶SPAD值Table 1. SPAD values of flag leaves of winter wheat at different days after anthesis处理
Treatment花后天数 Days after anthesis 10 15 20 25 30 CK 54.24±1.28 a 54.81±1.06 a 51.26±0.58 a 36.42±0.78 b 14.93±0.29 b CKP 54.50±0.69 a 55.54±0.37 a 52.09±0.36 a 40.96±1.05 a 16.37±1.04 a BT 55.42±0.43 a 55.60±0.78 a 52.35±1.20 a 38.83±3.26 ab 16.65±0.84 a HT 55.06±0.51 a 56.16±0.65 a 52.66±0.86 a 41.97±1.42 a 15.98±0.09 ab BTHT 54.33±1.99 a 55.05±0.44 a 52.42±1.95 a 41.20±1.21 a 16.77±0.74 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,同列数值后不同字母表示处理间在0.05水平差异显著。
Note:CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.2.2 复合寡糖对离体旗叶失水速率 (RWL)的影响
开花后10天和20天,BT处理的RWL较CK和CKP分别显著降低6.52%和9.25% (花后10天)、27.26%和21.15% (花后20天) (表2)。开花后15天,只有BTHT处理的RWL较CK显著降低10.58%;开花后10、15和20天,HT、BTHT处理与CKP处理对RWL的影响差异均不显著。第一次轻度干热风发生后的开花后25天,BT与BTHT处理的RWL较CK分别显著降低15.08%和21.73%,说明此时BT与BTHT处理叶片受到的生理干旱伤害较小,仍具有较好的保水力。开花后30天,各处理间差异均不显著,此时小麦进入蜡熟期,环境气温整体偏高,小麦叶片处于快速脱水状态,加之经历两次干热风影响,进一步加重了小麦的生理干旱,即使喷施制剂也未能显现减缓作用。
表 2 不同处理下冬小麦旗叶离体叶片失水速率动态变化[mg/(g•min)]Table 2. Dynamics of water loss rate of excised flag leaves of winter wheat under different treatments处理
Treatment花后天数 Days after anthesis 5 10 15 20 25 30 CK 3.85±0.68 a 5.09±0.02 a 4.89±0.03 ab 4.36±0.32 a 4.67±0.30 a 4.74±0.22 a CKP 4.10±1.01 a 5.24±0.20 a 4.56±0.34 bc 4.02±0.20 ab 4.16±0.17 ab 4.34±0.41 a BT 3.31±1.12 a 4.75±0.21 b 5.07±0.03 a 3.17±0.26 c 3.96±0.09 b 4.41±0.42 a HT 4.62±0.22 a 5.31±0.18 a 4.55±0.33 bc 3.73±0.27 b 4.19±0.09 ab 4.20±0.09 a BTHT 3.72±0.52 a 5.08±0.10 a 4.37±0.17 c 4.14±0.02 ab 3.65±0.66 b 4.20±0.32 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,数值后不同字母表示处理间在0.05水平差异显著。
Note: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.2.3 复合寡糖对小麦叶面积指数的影响
表3显示,与CK相比,HT和BTHT处理的小麦LAI显著增加14.56%~78.40%和16.62%~77.78% (开花后10天除外);与CKP相比,仅在开花后5、20和30天,HT和BTHT处理的小麦LAI显著增加了12.53%~49.74%和16.31%~49.22%,试验期间显著增加了49.53%~50.47%。仅在开花后5天,BT处理的LAI较CK和CKP显著增加17.56%和24.22%;在开花后10、15和25天,所有寡糖处理LAI与CKP差异均不显著。本研究中,开花后24和26天分别出现了两次轻度干热风,通过分析干热风发生后小麦LAI 值的下降幅度发现,开花后30天,CK处理的LAI 值较开花后20天急剧降低80.51%,HT和BTHT处理则分别降低69.64%和70.73%。这表明喷施复合寡糖有利于小麦叶片LAI值维持较高的水平,而且受干热风胁迫的影响也相对较小,其中BTHT处理的效果最好,且该处理叶片LAI与旗叶SPAD降幅具有一致性 (表2),说明BTHT处理有助于小麦光合能力的稳定。
表 3 不同处理下冬小麦叶面积指数的动态变化Table 3. Dynamics of winter wheat LAI under different treatments处理
Treatment花后天数 Days after anthesis 5 10 15 20 25 30 CK 8.29±0.27 c 8.29±0.27 a 7.16±0.45 b 4.62±0.03 b 0.90±0.23 c 0.90±0.20 b CKP 7.84±0.51 c 7.84±0.51 a 7.56±1.30 ab 4.70±0.41 b 1.07±0.25 abc 1.07±0.12 b BT 9.74±0.42 b 8.60±1.25 a 7.83±0.38 ab 4.36±0.10 b 1.03±0.34 bc 1.03±0.09 b HT 10.97±0.92 a 8.89±1.47 a 8.76±0.39 a 5.29±0.19 a 1.61±0.27 ab 1.61±0.14 a BTHT 9.67±0.76 b 8.76±1.83 a 8.93±0.59 a 5.47±0.20 a 1.60±0.35 a 1.60±0.20 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,数值后不同字母表示处理间在0.05水平差异显著。
Note: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.2.4 复合寡糖对淀粉合成关键酶活性的影响
2.4.1 ADP-葡萄糖焦磷酸化酶 (AGPase)活性
开花后11天,冬小麦进入灌浆期,HT和BTHT处理的AGPase活性较CK分别显著增加6.45%和11.14% (图2A)。开花后16天,仅BTHT处理的AGPase活性较CK和CKP处理显著增加;开花后21天,则是BT处理较CK显著提高6.06%。开花后26天,即使经历了两次干热风影响,复合寡糖处理BT、HT和BTHT的AGPase活性较CK和CKP均显著提高。开花后30天,HT处理的AGPase活性较CK和CKP分别增加了16.91%和14.41%。同时也较其它寡糖处理显著增加了8.66%以上。可见,拔节期和开花期两次组合喷施对比任一单独喷施处理更有助于提高小麦灌浆期籽粒AGPase活性,增强蔗糖转化为淀粉的能力,持续不断充盈籽粒库容,以减缓干热风对小麦籽粒的伤害。在冬小麦灌浆后期,HT处理对AGPase活性增加效果甚至比BTHT处理更佳。
图 2 不同处理下冬小麦籽粒关键酶活性的动态变化注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖;AGPase—腺苷二磷酸葡萄糖焦磷酸化酶;GBSS—束缚态淀粉合成酶;SSS—可溶性淀粉合成酶。柱上不同小写字母表示处理间在0.05水平差异显著Figure 2. Dynamics of key enzyme activities in winter wheat grains under different treatmentsNote: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. AGPase—ADP-glucose pyrophosphorylase; GBSS—Grain starch binding synthase; SSS—Soluble starch synthase. Different lowercase letters above the bars indicate significant differences among treatments at the 0.05 level2.4.2 束缚态淀粉合成酶 (GBSS)活性
开花后11天,BTHT组合处理的GBSS活性较CK和CKP显著增加7.05%和18.99%;开花后16天,所有寡糖处理的GBSS活性较CK均显著增加 (图2B)。开花后21天,小麦处于籽粒干物质快速填充阶段,所有处理的GBSS活性差异均不显著。开花后26天,经历两次干热风影响,与CK和CKP处理相比,BTHT处理的GBSS活性分别显著提高9.20%和3.41%;即使在开花后30天,BTHT处理的GBSS活性仍保持最高,较CK和CKP处理分别显著增加12.28%和6.30%;同时HT处理的GBSS活性也较CK显著增加。与开花后21天相比,开花后30天时CK处理的GBSS活性急剧降低8.97%,但CKP和BTHT处理仅分别降低4.91%和3.16%,说明叶面喷施制剂有助于干热风胁迫下小麦直链淀粉合成酶活性的稳定和增加。拔节期和开花期同时喷施寡糖对于增加小麦籽粒GBSS活性具有协同作用,在籽粒快速灌浆后期增加尤为明显,这进一步说明复合寡糖有助于提高受干热风影响的冬小麦蔗糖转化为直链淀粉的潜能。
2.4.3 可溶性淀粉合成酶 (SSS)活性
与CK相比,开花后11至30天内任一取样时刻,组合处理BTHT的SSS活性均显著增加了6.05%~15.59%,且在开花后11天和开花后30天,其活性较CKP处理也分别显著提高了5.92%和9.39% (图2C)。开花后16天至21天,各喷施处理组与CK差异均不显著 (BTHT处理除外)。开花后30天,寡糖处理BT和HT的作用也逐渐凸显,其SSS活性较CK和CKP增加1.97%~12.89%。说明适期喷施复合寡糖能促使干热风条件下冬小麦籽粒SSS活性维持较高的水平,而且在灌浆后期效果更明显;其中BTHT处理效果最好。
2.5 复合寡糖对冬小麦产量及产量构成因素的影响
由表4可知,与CK相比,各制剂处理虽未引起小麦穗数和穗粒数的显著增加,但BTHT处理促使千粒重显著增加5.09%。通过收获3 m2样方测得的实际产量发现,除HT处理外,其余制剂处理均不同程度地促使小麦显著增产6.69%以上。结合理论产量和实际产量,BTHT组合的增产作用最大,其次为BT处理。进一步说明适期喷施寡糖不仅能缓解干热风胁迫对小麦产量的不利影响,且在轻度干热风胁迫下,还有明显的增产潜力。拔节期和开花期组合喷施对产量增加的影响具有协同作用。
表 4 不同处理对冬小麦产量及产量构成因素的影响Table 4. Effects of different treatments on yield and yield components of winter wheat处理
Treatment穗数
Spike number
(×104/hm2)穗粒数
Grain number per spike千粒重
1000-grain weight
(g)理论产量
Theoretical yield
(t/hm2)实际产量
Grain yield
(t/hm2)较CK增产
Yield increased
(%)CK 572.22 a 33.32 a 35.65 b 5774.24 c 5843.62 b CKP 575.00 a 33.59 a 35.71 b 5865.67 bc 6234.57 a 6.69 BT 561.11 a 35.74 a 36.86 ab 6281.20 ab 6351.55 a 8.69 HT 574.07 a 34.74 a 36.53 ab 6188.83 abc 5802.47 b BTHT 572.22 a 35.05 a 37.46 a 6386.18 a 6341.85 a 8.53 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。同列数值后不同字母表示处理间在0.05水平差异显著。
Note:CK—Tap water; CKP—KH2PO4; BT—oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.2.6 相关性分析
利用Spearman相关性分析发现,SPAD、LAI和AGPase活性均与产量呈正相关关系 (表5),RWL与产量呈负相关关系。同时,GBSS和SSS与产量显著正相关 (P<0.05)。其中,LAI与SPAD、GBSS和AGPase,SPAD与AGPase显著正相关 (P<0.05),RWL与SSS显著负相关 (P<0.05)。由此说明复合寡糖通过显著提升淀粉合成相关酶活性,促进淀粉合成,进而直接影响产量形成。同时LAI的稳定对SPAD、GBSS和AGPase活性均有明显影响,说明寡糖有利于稳定或延长小麦叶片的光合生理功能,影响小麦淀粉合成酶活性,进而间接影响产量。
表 5 各处理冬小麦产量形成重要参数的相关性分析Table 5. Correlation analysis of yield formation factors in different regulation treatments under dry hot wind指标 Code SPAD RWL LAI AGPase GBSS SSS Y SPAD 1 RWL –0.100 1 LAI 0.900* –0.300 1 AGPase 0.900* –0.300 0.800 1 GBSS 0.800 –0.500 0.900* 0.900* 1 SSS 0.300 –0.900* 0.400 0.600 0.700 1 Y 0.500 –0.800 0.700 0.700 0.900* 0.900* 1 注:SPAD—叶绿素相对含量;RWL—离体旗叶失水速率;LAI—叶面积指数;AGPase—腺苷二磷酸葡萄糖焦磷酸化酶;GBSS—束缚态淀粉合成酶;SSS—可溶性淀粉合成酶;Y—产量。*—在0.05水平显著相关。
Note: SPAD—Relative chlorophyll content; RWL—Rate of water loss of excised leaves; LAI—Leaf area index; AGPase—ADP-glc pyrophosphorylase; GBSS—Grain starch binding synthase; SSS—Soluble starch synthase; Y—Yield. *—Significant correlation at the 0.05 level.3. 讨论
3.1 复合寡糖对冬小麦旗叶叶片生理特性的影响
前人研究发现,小麦在灌浆期发生的干热风灾害会引起植物细胞失水和叶片叶绿素降解,造成叶片蒸腾加剧、光合作用无法正常进行等一系列生理失调现象[26],最终影响干物质储运和小麦产量[13]。小麦功能叶的叶绿素含量和离体失水速率等指标对水分亏缺反应敏感[27],常常被作为小麦抗旱性鉴定的生理指标[28]。本研究中,开花后20天之前,试验地没有明显的干热风发生,各处理之间SPAD值差异均不显著;开花后24天和26天发生两次轻度干热风,从开花后25天开始,BTHT处理和常规化学防控措施CKP处理组的旗叶SPAD值显著高于CK,且维持在相对较高的水平。与CK相比,从开花后10天开始,各制剂处理的RWL均有不同程度的降低趋势,但各处理间的显著性差异并未随着小麦生育进程呈规律性的变化。开花后25天取样时恰逢遭遇第一次干热风影响,BTHT和BT处理的RWL值较CK显著减小,但与CKP差异不显著,开花后30天,可能受两次干热风灾害影响小麦早衰,各处理RWL值均无显著差异;但BTHT处理和HT处理的LAI值显著高于CK和CKP处理。可见,适期叶面喷施复合寡糖,能在一定程度上提高叶片SPAD值,尤其对灌浆后期叶片LAI值和保水能力有明显促进作用,这样就有助于维持叶片持绿功能,促进光合作用,进而减缓干热风对叶片的危害,提高小麦抵御干热风的能力。有研究也发现,在小麦生育后期喷施叶面肥可以延缓叶片衰老[6]、提高叶片SPAD值和延长灌浆时间,提高植株抗干热风能力[12]。本试验中,拔节期和开花期组合喷施复合寡糖对小麦叶片光合和水分生理特性的影响效果最优。
3.2 复合寡糖对冬小麦籽粒蔗糖—淀粉代谢途径关键酶活性的影响
籽粒灌浆速率和淀粉积累速率与淀粉合成关键酶呈正相关,开花后4~15天是籽粒淀粉合成相关酶最活跃的时期[7-8,11]。本研究中,开花后10天左右小麦进入灌浆期,籽粒淀粉合成关键酶AGPase、SSS和GBSS活性也随着生育进程呈小幅上升趋势。对比不同处理,经历两次干热风后,HT处理提高AGPase活性的效果最明显,即使在开花后30天,其AGPase酶活性仍处于较高水平。SSS和GBSS活性基本在开花后21天达到峰值,BTHT处理对GBSS和SSS活性提高的效果最明显。大量研究表明,当外界胁迫发生时,小麦淀粉合成过程中的关键酶活性会下降,造成小麦籽粒中淀粉含量下降[29],最终影响小麦的产量和品质[30]。本研究中,受开花后24天和26天两次轻度干热风影响,小麦籽粒GBSS和SSS活性在此后下降幅度尤为明显,这可能与高温阻碍蔗糖向淀粉转化,抑制籽粒淀粉关键合成酶活性有关[10-11]。与对照CK相比,复合寡糖对小麦快速灌浆后期籽粒蔗糖—淀粉代谢途径关键酶AGPase、SSS和GBSS活性增加和稳定的作用更明显。寡糖对干热风胁迫下冬小麦籽粒淀粉合成关键酶活性的影响,与籽粒干物质积累转运以及籽粒灌浆进程等密切相关,后续需要加强上述方面的深入研究。
3.3 复合寡糖对冬小麦产量和产量构成因素的调控作用
大量研究表明,干热风会影响小麦籽粒灌浆,造成小麦减产,但在小麦关键生长期,喷施外源制剂可以缓解干热风对小麦产量带来的不利影响[5-8]。本研究中,与对照相比,拔节期和开花期两次喷施复合寡糖的BTHT处理有助于小麦千粒重显著增加,同时对轻度干热风胁迫下小麦产量也有明显促增作用,这可能归功于冬小麦生长后期,即使遭遇轻度干热风胁迫,制剂处理也能促使旗叶SPAD和叶片LAI维持较高的水平,使叶片具有较高的保水能力。结合相关性分析,GBSS和SSS活性与产量显著正相关,说明寡糖通过调控淀粉合成关键酶活性影响产量形成;同时也通过维持或延长叶片光合生理功能,进一步改善淀粉合成酶活性。王慧等[31]利用营养复配制剂也能达到缓解小麦干热风的不利作用。我们前期研究也证实,喷施磷糖类制剂可以促进开花期至成熟期小麦叶片和穗部干物质的转运,进而延长小麦灌浆期[13]。
4. 结论
喷施复合寡糖制剂可以明显提升小麦灌浆后期旗叶的叶绿素含量和叶面积指数,改善小麦灌浆前期叶片保水能力,进而提高旗叶光合性能,增强植株的抗干热风能力。喷施复合寡糖还能维持较高的淀粉合成关键酶活性,进而提升光合产物转化为淀粉的能力,最终增加产量。
从喷施方法看,在拔节期和开花期各喷施1次寡糖的效果最好,但其产量与只在拔节期喷施1次的处理无显著差异。
-
图 2 不同处理下冬小麦籽粒关键酶活性的动态变化
注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖;AGPase—腺苷二磷酸葡萄糖焦磷酸化酶;GBSS—束缚态淀粉合成酶;SSS—可溶性淀粉合成酶。柱上不同小写字母表示处理间在0.05水平差异显著
Figure 2. Dynamics of key enzyme activities in winter wheat grains under different treatments
Note: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. AGPase—ADP-glucose pyrophosphorylase; GBSS—Grain starch binding synthase; SSS—Soluble starch synthase. Different lowercase letters above the bars indicate significant differences among treatments at the 0.05 level
表 1 各处理冬小麦花后旗叶SPAD值
Table 1 SPAD values of flag leaves of winter wheat at different days after anthesis
处理
Treatment花后天数 Days after anthesis 10 15 20 25 30 CK 54.24±1.28 a 54.81±1.06 a 51.26±0.58 a 36.42±0.78 b 14.93±0.29 b CKP 54.50±0.69 a 55.54±0.37 a 52.09±0.36 a 40.96±1.05 a 16.37±1.04 a BT 55.42±0.43 a 55.60±0.78 a 52.35±1.20 a 38.83±3.26 ab 16.65±0.84 a HT 55.06±0.51 a 56.16±0.65 a 52.66±0.86 a 41.97±1.42 a 15.98±0.09 ab BTHT 54.33±1.99 a 55.05±0.44 a 52.42±1.95 a 41.20±1.21 a 16.77±0.74 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,同列数值后不同字母表示处理间在0.05水平差异显著。
Note:CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.表 2 不同处理下冬小麦旗叶离体叶片失水速率动态变化[mg/(g•min)]
Table 2 Dynamics of water loss rate of excised flag leaves of winter wheat under different treatments
处理
Treatment花后天数 Days after anthesis 5 10 15 20 25 30 CK 3.85±0.68 a 5.09±0.02 a 4.89±0.03 ab 4.36±0.32 a 4.67±0.30 a 4.74±0.22 a CKP 4.10±1.01 a 5.24±0.20 a 4.56±0.34 bc 4.02±0.20 ab 4.16±0.17 ab 4.34±0.41 a BT 3.31±1.12 a 4.75±0.21 b 5.07±0.03 a 3.17±0.26 c 3.96±0.09 b 4.41±0.42 a HT 4.62±0.22 a 5.31±0.18 a 4.55±0.33 bc 3.73±0.27 b 4.19±0.09 ab 4.20±0.09 a BTHT 3.72±0.52 a 5.08±0.10 a 4.37±0.17 c 4.14±0.02 ab 3.65±0.66 b 4.20±0.32 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,数值后不同字母表示处理间在0.05水平差异显著。
Note: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.表 3 不同处理下冬小麦叶面积指数的动态变化
Table 3 Dynamics of winter wheat LAI under different treatments
处理
Treatment花后天数 Days after anthesis 5 10 15 20 25 30 CK 8.29±0.27 c 8.29±0.27 a 7.16±0.45 b 4.62±0.03 b 0.90±0.23 c 0.90±0.20 b CKP 7.84±0.51 c 7.84±0.51 a 7.56±1.30 ab 4.70±0.41 b 1.07±0.25 abc 1.07±0.12 b BT 9.74±0.42 b 8.60±1.25 a 7.83±0.38 ab 4.36±0.10 b 1.03±0.34 bc 1.03±0.09 b HT 10.97±0.92 a 8.89±1.47 a 8.76±0.39 a 5.29±0.19 a 1.61±0.27 ab 1.61±0.14 a BTHT 9.67±0.76 b 8.76±1.83 a 8.93±0.59 a 5.47±0.20 a 1.60±0.35 a 1.60±0.20 a 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。所有数据均为平均值±标准差,数值后不同字母表示处理间在0.05水平差异显著。
Note: CK—Tap water; CKP—KH2PO4; BT—Oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values are mean±SD; values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.表 4 不同处理对冬小麦产量及产量构成因素的影响
Table 4 Effects of different treatments on yield and yield components of winter wheat
处理
Treatment穗数
Spike number
(×104/hm2)穗粒数
Grain number per spike千粒重
1000-grain weight
(g)理论产量
Theoretical yield
(t/hm2)实际产量
Grain yield
(t/hm2)较CK增产
Yield increased
(%)CK 572.22 a 33.32 a 35.65 b 5774.24 c 5843.62 b CKP 575.00 a 33.59 a 35.71 b 5865.67 bc 6234.57 a 6.69 BT 561.11 a 35.74 a 36.86 ab 6281.20 ab 6351.55 a 8.69 HT 574.07 a 34.74 a 36.53 ab 6188.83 abc 5802.47 b BTHT 572.22 a 35.05 a 37.46 a 6386.18 a 6341.85 a 8.53 注:CK—喷施清水对照;CKP—喷施KH2PO4;BT—拔节期喷施寡糖;HT—开花期喷施寡糖;BTHT—拔节期和开花期喷施寡糖。同列数值后不同字母表示处理间在0.05水平差异显著。
Note:CK—Tap water; CKP—KH2PO4; BT—oligosaccharide at jointing stage; HT—Oligosaccharide at anthesis; BTHT—Oligosaccharide at both jointing and anthesis stage. Values followed by different letters within the same column indicate significant difference among treatments at the 0.05 level.表 5 各处理冬小麦产量形成重要参数的相关性分析
Table 5 Correlation analysis of yield formation factors in different regulation treatments under dry hot wind
指标 Code SPAD RWL LAI AGPase GBSS SSS Y SPAD 1 RWL –0.100 1 LAI 0.900* –0.300 1 AGPase 0.900* –0.300 0.800 1 GBSS 0.800 –0.500 0.900* 0.900* 1 SSS 0.300 –0.900* 0.400 0.600 0.700 1 Y 0.500 –0.800 0.700 0.700 0.900* 0.900* 1 注:SPAD—叶绿素相对含量;RWL—离体旗叶失水速率;LAI—叶面积指数;AGPase—腺苷二磷酸葡萄糖焦磷酸化酶;GBSS—束缚态淀粉合成酶;SSS—可溶性淀粉合成酶;Y—产量。*—在0.05水平显著相关。
Note: SPAD—Relative chlorophyll content; RWL—Rate of water loss of excised leaves; LAI—Leaf area index; AGPase—ADP-glc pyrophosphorylase; GBSS—Grain starch binding synthase; SSS—Soluble starch synthase; Y—Yield. *—Significant correlation at the 0.05 level. -
[1] 北方小麦干热风科研协作组. 小麦干热风[M]. 北京: 气象出版社, 1988. Research Group of Dry-Hot Wind of Wheat in the North of China. Dry-hot wind of wheat[M]. Beijing: Meteorological Press, 1988.
[2] 李洁, 张杜鹃, 李世平. 晋南冬麦区干热风发生特点及其对产量影响分析[J]. 中国农学通报, 2018, 34(6): 14–18. Li J, Zhang D J, Li S P. Dry-hot wind: Occurrence characteristics and its impact on yield in winter wheat area of southern Shanxi[J]. Chinese Agricultural Science Bulletin, 2018, 34(6): 14–18. DOI: 10.11924/j.issn.1000-6850.casb17030026 Li J, Zhang D J, Li S P. Dry-hot Wind: Occurrence characteristics and its impact on yield in winter wheat area of southern Shanxi [J]. Chinese Agricultural Science Bulletin, 2018, 34(6): 14-18. DOI: 10.11924/j.issn.1000-6850.casb17030026
[3] 赵俊芳, 赵艳霞, 郭建平, 等. 过去50年黄淮海地区冬小麦干热风发生的时空演变规律[J]. 中国农业科学, 2012, 45(14): 2815–2825. Zhao J F, Zhao Y X, Guo J P, et al. Spatial-temporal changes of dry-hot wind for winter wheat in Huanghuaihai Plain during the past 50 years[J]. Scientia Agricultura Sinica, 2012, 45(14): 2815–2825. DOI: 10.3864/j.issn.0578-1752.2012.14.004 Zhao J F, Zhao Y X, Guo J P, et al. Spatial-temporal changes of dry-hot wind for winter wheat in Huanghuaihai Plain during the past 50 years [J]. Scientia Agricultura Sinica, 2012, 45(14): 2815-2825. DOI: 10.3864/j.issn.0578-1752.2012.14.004
[4] 赵俊芳, 赵艳霞, 郭建平, 等. 基于干热风危害指数的黄淮海地区冬小麦干热风灾损评估[J]. 生态学报, 2015, 35(16): 5287–5293. Zhao J F, Zhao Y X, Guo J P, et al. Assessment of the yield loss of winter wheat caused by dry-hot wind in Huanghuaihai plain based on the hazard index of dry-hot wind[J]. Acta Ecologica Sinica, 2015, 35(16): 5287–5293. Zhao J F, Zhao Y X, Guo J P, et al. Assessment of the yield loss of winter wheat caused by dry-hot wind in Huanghuaihai plain based on the hazard index of dry-hot wind [J]. Acta Ecologica Sinica, 2015, 35(16): 5287-5293.
[5] 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展[J]. 应用气象学报, 2019, 30(2): 129–141. Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China[J]. Journal of Applied Meteorological Science, 2019, 30(2): 129–141. DOI: 10.11898/1001-7313.20190201 Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China [J]. Journal of Applied Meteorological Science, 2019, 30(2): 129-141. DOI: 10.11898/1001-7313.20190201
[6] 刘文欢, 李胜楠, 侯阁阁, 等. 不同营养复配剂叶面喷施对冬小麦干热风抗性及产量的影响[J]. 植物营养与肥料学报, 2019, 25(9): 1600–1606. Liu W H, Li S N, Hou G G, et al. Effects of foliar-spraying of different nutritional mixtures on stress tolerance to dry-hot wind and yield in winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1600–1606. DOI: 10.11674/zwyf.18365 Liu W H, Li S N, Hou G G, et al. Effects of foliar-spraying of different nutritional mixtures on stress tolerance to dry-hot wind and yield in winter wheat [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1600-1606. DOI: 10.11674/zwyf.18365
[7] 胡阳阳, 卢红芳, 刘卫星, 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44(4): 591–600. Hu Y Y, Lu H F, Liu W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4): 591–600. DOI: 10.3724/SP.J.1006.2018.00591 Hu Y Y, Lu H F, Liu W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat [J]. Acta Agronomica Sinica, 2018, 44(4): 591-600. DOI: 10.3724/SP.J.1006.2018.00591
[8] 刘素君, 冯健超, 江薛丽, 等. 小麦籽粒抗性淀粉积累特性及淀粉合成相关酶基因表达分析[J]. 植物生理学报, 2021, 57(1): 112–120. Liu S J, Feng J C, Jiang X L, et al. Resistant starch accumulation characteristics and expression analysis of genes encoding starch synthesis-related enzymes in wheat grain[J]. Plant Physiology Journal, 2021, 57(1): 112–120. DOI: 10.13592/j.cnki.ppj.2020.0351 Liu S J, Feng J C, Jiang X L, et al. Resistant starch accumulation characteristics and expression analysis of genes encoding starch synthesis-related enzymes in wheat grain [J]. Plant Physiology Journal, 2021, 57(1): 112-120. DOI: 10.13592/j.cnki.ppj.2020.0351
[9] Lu H, Hu Y, Wang C, et al. Effects of high temperature and drought stress on the expression of gene encoding enzymes and the activity of key enzymes involved in starch biosynthesis in wheat grains[J]. Frontiers in Plant Science, 2019, 10: 1414. DOI: 10.3389/fpls.2019.01414
[10] Keeling P L, Banisadr R, Barone L, et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain[J]. Functional Plant Biology, 1994, 21(6): 807–827. DOI: 10.1071/PP9940807
[11] Hawker J S, Jenner C F. High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm[J]. Functional Plant Biology, 1993, 20(2): 197–209. DOI: 10.1071/PP9930197
[12] 徐亚楠, 吴玥, 纪冰祎, 等. 磷糖类制剂对冬小麦抗干热风特性和产量的影响[J]. 麦类作物学报, 2022, 42(2): 236–245. Xu Y N, Wu Y, Ji B Y, et al. Effects of different chemical regulators on stress tolerance to dry-hot wind and yield in winter wheat[J]. Journal of Triticeae Crops, 2022, 42(2): 236–245. DOI: 10.7606/j.issn.1009-1041.2022.02.13 Xu Y N, Wu Y, Ji B Y, et al. Effects of different chemical regulators on stress tolerance to dry-hot wind and yield in winter wheat [J]. Journal of Triticeae Crops: 2022, 42(2): 236-245. DOI: 10.7606/j.issn.1009-1041.2022.02.13
[13] 吴玥, 刘红杰, 胡新, 等. 化学调控剂对冬小麦干物质贮运和籽粒灌浆特性的影响[J]. 麦类作物学报, 2020, 40(1): 102–109. Wu Y, Liu H J, Hu X, et al. Effect of different chemical regulators on dry matter accumulation and translocation, grain filling characteristics of winter wheat[J]. Journal of Triticeae Crops, 2020, 40(1): 102–109. DOI: 10.7606/j.issn.1009-1041.2020.01.12 Wu Y, Liu H J, Hu X, et al. Effect of different chemical regulators on dry matter accumulation and translocation, grain filling characteristics of winter wheat [J]. Journal of Triticeae Crops, 2020, 40(1): 102-109. DOI: 10.7606/j.issn.1009-1041.2020.01.12
[14] Jing F U, Xu Y, Lu C, et al. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice[J]. Rice Science, 2013, 20(2): 120–128. DOI: 10.1016/S1672-6308(13)60116-X
[15] Yin H, Li Y, Zhang H Y, et al. Chitosan oligosaccharides–triggered innate immunity contributes to oilseed rape resistance against Sclerotinia sclerotiorum[J]. International Journal of Plant Sciences, 2013, 174(4): 722–732. DOI: 10.1086/669721
[16] Jia X, Meng Q, Zeng H, et al. Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway[J]. Scientific Reports, 2016, 6(1): 26144. DOI: 10.1038/s41598-016-0001-8
[17] Jia X, Qin H, Bose S K, et al. Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction[J]. Plant Physiology and Biochemistry, 2020, 149: 301–312. DOI: 10.1016/j.plaphy.2020.01.037
[18] Rahman M H, Shovan L R, Hjeljord L G, et al. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides[J]. PLoS ONE, 2014, 9(4): e93192. DOI: 10.1371/journal.pone.0093192
[19] Guarnizo N, Oliveros D, Murillo-Arango W, Bermúdez-Cardona M B. Oligosaccharides: Defense inducers, their recognition in plants, commercial uses and perspectives[J]. Molecules, 2020, 25(24): 5972. DOI: 10.3390/molecules25245972
[20] Yang N, Ashton J, Kasapis S. The influence of chitosan on the structural properties of whey protein and wheat starch composite systems[J]. Food Chemistry, 2015, 179: 60–67. DOI: 10.1016/j.foodchem.2015.01.121
[21] Kheiri A, Jorf S A M, Malihipour A, et al. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse[J]. International Journal of Biological Macromolecules, 2016, 93: 1261–1272. DOI: 10.1016/j.ijbiomac.2016.09.072
[22] Das S N, Madhuprakash J, Sarma P, et al. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants[J]. Critical Reviews in Biotechnology, 2015, 35(1): 29–43. DOI: 10.3109/07388551.2013.798255
[23] 全国农业气象标准化技术委员会. QX/T 82—2019小麦干热风灾害等级[S]. 北京: 气象出版社, 2019. National Agrometeorological Standardization Technical Committee. QX/T 82–2019 Disaster grade of dry-hot wind for wheat [S]. Beijing: Meteorological Press, 2019.
[24] Geravandi M, Farshadfar E, Kahrizi D. Evaluation of some physiological traits as indicators of drought tolerance in bread wheat genotypes[J]. Russian Journal of Plant Physiology, 2011, 58(1): 69–75. DOI: 10.1134/S1021443711010067
[25] Nakamura Y, Yuki K, Park S Y, et al. Carbohydrate metabolism in the developing endosperm of rice grains[J]. Plant and Cell Physiology, 1989, 30(6): 833–839. DOI: 10.1093/oxfordjournals.pcp.a077813
[26] 朱荣, 康建宏, 慕宇, 等. 喷施叶面肥对花后干旱春小麦光合特性的影响[J]. 西南农业学报, 2017, 30(7): 1593–1599. Zhu R, Kang J H, Mu Y, et al. Effects of spraying foliar fertilizer on photosynthetic capabilities of spring wheat under post-anthesis drought[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1593–1599. DOI: 10.16213/j.cnki.scjas.2017.7.022 Zhu R K, Jian H M, Mu Y, et al. Effects of spraying foliar fertilizer on photosynthetic capabilities of spring wheat under post-anthesis drought [J]. Southwest China Journal of Agricultural Sciences, 2017, 30(7): 1593-1599. DOI: 10.16213/j.cnki.scjas.2017.7.022
[27] 王优信, 延荣, 蔺明月, 等. 冀中北小麦品种抗旱性筛选研究[J]. 植物遗传资源学报, 2021, 22(1): 74–82. Wang Y X, Yan R, Lin M Y, et al. Screening for drought-resistant wheat varieties in northern central area of Hebei Province[J]. Journal of Plant Genetic Resources, 2021, 22(1): 74–82. DOI: 10.13430/j.cnki.jpgr.20200324001 Wang Y X, Yan R, Lin M Y, et al. Screening for drought-resistant wheat varieties in northern central area of Hebei province [J]. Journal of Plant Genetic Resources, 2021, 22(01): 74-82. DOI: 10.13430/j.cnki.jpgr.20200324001
[28] 辛明明, 彭惠茹, 倪中福, 等. 小麦耐热性的生理遗传研究进展[J]. 中国农业科学, 2017, 50(5): 783–791. Xin M M, Peng H R, Ni Z F, et al. Progresses in research of physiological and genetic mechanisms of wheat heat tolerance[J]. Scientia Agricultura Sinica, 2017, 50(5): 783–791. DOI: 10.3864/j.issn.0578-1752.2017.05.001 Xin M M, Peng H R, Ni Z F, et al. Progresses in research of physiological and genetic mechanisms of wheat heat tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791. DOI: 10.3864/j.issn.0578-1752.2017.05.001
[29] Zhang W, Zhao Y, Li L, et al. The effects of short-term exposure to low temperatures during the booting stage on starch synthesis and yields in wheat grain[J]. Frontiers in Plant Science, 2021: 1320.
[30] Jenner C F. Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate responses[J]. Functional Plant Biology, 1991, 18(2): 165–177. DOI: 10.1071/PP9910165
[31] 王慧, 张明伟, 雷晓伟, 等. 植物生长调节剂拌种对扬麦13茎秆生长及籽粒产量的影响[J]. 麦类作物学报, 2016, 36(2): 206. Wang H, Zhang M W, Lei X W, et al. Effect of plant growth regulators on stem growth and grain yield of Yangmai13[J]. Journal of Triticeae Corps, 2016, 36(2): 206. DOI: 10.7606/j.issn.1009-1041.2016.02.11 Wang H, Zhang M W, Lei X W, et al. Effect of plant growth regulators on stem growth and grain yield of Yangmai13 [J]. Journal of Triticeae Corps, 2016, 36(2): 206. DOI: 10.7606/j.issn.1009-1041.2016.02.11
-
期刊类型引用(6)
1. 薛远赛,王锡久,邹士国,张守福,刘光亚,韩伟,孙显. 复合寡糖对山东典型作物产量的影响. 中国农学通报. 2025(08): 50-56 . 百度学术
2. 杨倚钢,韩燕,高丽娟,宋吉青,斋藤信,白文波. 不同外源寡糖对设施黄瓜生理特性及产量和品质影响差异. 中国农业气象. 2024(04): 390-403 . 百度学术
3. 王秋水,韩燕,吴赞,刘悦,邓婕,左嘉,袁立艳,高丽娟,白文波. 复合寡糖施用对促进黄瓜生长与改善细菌群落结构的影响. 中国土壤与肥料. 2024(02): 72-79 . 百度学术
4. 王秋水,邓婕,刘悦,左嘉,袁立艳,高丽娟,白文波. 复合寡糖对设施黄瓜盛花期根际土壤代谢产物的影响. 中国农业气象. 2024(05): 484-492 . 百度学术
5. 周甜,吴少华,康建宏,吴宏亮,杨生龙,王星强,李昱,黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响. 中国水稻科学. 2024(03): 303-315 . 百度学术
6. 徐亚楠,韩燕,吴玥,宋吉青,柳斌辉,韩伟,白文波. 叶面喷施磷糖类制剂对冬小麦抗干热风影响的作用. 中国农业气象. 2023(11): 995-1008 . 百度学术
其他类型引用(3)