Effects of straw addition on soil microbes-root morphology governing phosphorus-acquisition of Solanum lycopersicum
-
摘要:目的
研究了添加秸秆后土壤微生物(包括解磷微生物)丰度、磷有效性的动态变化,以及作物根系的生长发育特征对作物磷吸收的影响。
方法以番茄 (Solanum lycopersicum)为供试作物进行田间试验,设置添加秸秆和不添加秸秆对照两个处理,在番茄移栽后第15、30及45 天,测定了番茄地上部生物量、磷含量和根系形态,同时测定了土壤微生物数量(细菌、真菌、解磷微生物)、微生物生物量磷和速效磷含量,分析了微生物‒根系–作物磷吸收的关系。
结果添加秸秆提高了成熟期番茄的地上部生物量,显著提高了叶片和地上部的磷吸收量,地上部(叶+茎+果实)总磷吸收量较不加秸秆番茄增加21.8%。与无秸秆对照处理相比,添加秸秆处理提高了土壤细菌以及具phoD,phoC和pqqC功能基因的解磷微生物丰度,增加了微生物量磷。添加秸秆处理降低了移栽后15 天番茄根系生物量和组织密度,增加了根系比根长,降低了移栽后15到30 天的番茄根系生长。番茄移栽后第30 天到45 天,土壤细菌、真菌丰度下降,微生物量磷降低,丰富的解磷微生物以及微生物量磷降低介导的磷活化,驱动番茄根系生长加快,比根长增加,根系直径降低。根系生长与土壤有效磷(Olsen-P)相关性显著。
结论添加秸秆初期微生物增生导致番茄根系生长缓慢,后期微生物量磷的降低和解磷微生物对磷的活化促进细根的快速伸长。秸秆还田激发微生物量磷活化协同根系高效磷吸收特征,促进成熟期番茄地上部磷吸收的增加。
Abstract:ObjectivesThe interactions between microbial phosphorus (P) mobilization and root traits govern crop yield. Investigating the impacts of straw addition on dynamics of microbial abundance and microbial P mobilization as well as root traits is important to reveal the mechanism of high crop P-use efficiency underlying root-microbe interaction.
MethodsTomato (Solanum lycopersicum) field experiment was conducted under addition (+straw) and no addition of straw (–straw) conditions. At 15, 30, and 45 days of transplanting, the shoot biomass, P content and root morphological traits of tomato were analyzed. The abundance of soil bacteria and fungi with phosphate-solubilizing abilities and the microbial biomass P and Olsen-P content were determined at the same time.
ResultsThe shoot P content of tomato under +straw was lower than those under –straw at 45 days of transplanting, and the P content in the aboveground part of tomato (leaves, stems, and fruits) were 21.8% higher at maturing stage. Straw addition increased abundance of bacteria and phosphate-solubilizing microbes encoding phoD, phoC and pqqC genes, and raised microbial P content in soil. At 15 days of transplanting, tomato under +straw had smaller root/shoot ratio, lower root tissue density, larger specific root length, and root traits were significantly correlated with soil Olsen-P. +Straw decreased tomato root elongation during 15–30 days of transplanting. During 30–45 days after transplanting, the abundant phosphorus-solubilizing microorganisms and the release of microbial P promoted soil P bioavailability and increased growth of thin roots with large specific length.
ConclusionsThe proliferation of microbes caused slow growth of tomato roots initially after straw addition, whereas P mobilization mediated by the decline in microbial biomass P and phosphate-solubilizing functional microorganisms promoted rapid elongation of fine roots at the late stage. Straw return stimulated microbial P mobilization coupling with efficient root P-acquisition strategies increased crop P uptake in tomato at maturity.
-
微生物‒根系互作决定作物生产力[1]。微生物群落和微生物介导的磷活化影响根系形态/根际特征,对作物磷吸收有显著的调控作用[2]。微生物的大量生长引起微生物与根系对养分资源的强烈竞争,诱导作物降低根系生长速率维持地上部生长[3-4]。微生物生物量磷周转和具phoD、phoC和pqqC功能基因的解磷微生物能够促进难溶性有机磷和无机磷的活化,提高磷的生物有效性[5-6]。植物调整根系生长以有效地获取土壤有效磷[7]。例如,低磷土壤环境中作物会提高根系尤其是细根的伸长速率,增加根系比根长,降低根系组织密度,提高磷吸收效率[8-9]。相反,当土壤有效磷资源充足时,植物会通过降低光合产物向根系的分配,减少根系构建成本,促进地上部生长[10]。
添加秸秆等有机物通过提高土壤有机碳的供应,刺激细菌和真菌(包括解磷微生物)增生[11]。细菌和真菌增殖促进了微生物对土壤正磷酸盐的固定,虽然扩大了微生物磷库,但会导致土壤中植物可利用有效磷含量的降低[12]。然而,含有phoD、phoC和pqqC基因的解磷微生物的生长可增加对土壤难溶性有机和无机磷的活化,提高土壤有效磷的含量[1, 5-6]。随着有机碳的耗竭,微生物从生长模式转变为休眠模式[12]。被杀死的微生物细胞向土壤中释放磷,促进土壤磷生物有效性的提高,诱导作物调整根系磷获取策略来捕获和获取有效磷资源[13-14]。微生物驱动的土壤磷活化对根系形态特征具有不同的调控作用,表明添加有机物质对根系‒微生物互作的动态调控作用。
蔬菜产业是我国种植业的重要组成部分。蔬菜生产中磷肥过量施用现象普遍,由于蔬菜作物根系分布浅,吸收效率低,导致磷在土壤中大量累积并被固定,变成植物不可直接利用的无效态磷[15]。速效磷含量的逐年增加导致大量的磷进入地下水体,造成潜在的环境污染风险。因此,磷肥的过量施用及其在土壤中的大量累积是蔬菜种植体系关乎蔬菜安全与环境安全的重要问题。促进土壤累积态磷的活化和再利用是提高蔬菜种植体系磷肥利用效率,降低化肥施用的有效措施。
磷的大量累积导致菜地土壤碳磷化学计量比失调,补充碳可以刺激微生物增生,激活微生物介导的养分周转,促进菜地土壤生态环境的改善[5, 16-17]。因此,以微生物磷周转为突破口,分析碳调控对微生物磷周转及其诱导的根系磷吸收策略的影响,全面揭示微生物协同根系调节作物磷吸收的机制,有利于探索提高磷肥利用效率的根际调控途径,解决高投入蔬菜种植体系土壤磷过量累积的问题[15]。本研究以番茄为研究对象,利用田间试验,研究秸秆还田对根系‒微生物互作及番茄磷吸收的影响,探索强化微生物‒根系互作,改善作物磷营养的根际管理措施,为实现集约化蔬菜种植体系磷肥的减施提供理论依据。
1. 材料与方法
1.1 试验设计
试验地位于上海市奉贤区庄行镇上海市农业科学院庄行试验站(N 30°53′, E 121°23′),土壤类型为潜育土,基础土壤理化性质:容重1.41 g/cm3、有机碳16.7 g/kg、全氮1.2 g/kg、全磷0.7 g/kg、无机氮37 mg/kg、有效磷9.0 mg/kg、速效钾94 mg/kg、pH为6.8。田间试验始于2017年,包括施用水稻秸秆(+Straw)和不施用秸秆(–Straw)两个处理,每个处理4个重复,每个小区面积为6 m × 3.25 m,随机区组排列。
每个处理施用的化肥均为尿素905 kg/hm2、过磷酸钙160 kg/hm2、硫酸钾400 kg/hm2,有机肥主要原料为收获茭白后的残菜,含有机碳400 g/kg、氮22 g/kg、磷12 g/kg、钾35 g/kg,施用量为6 t/hm2。秸秆处理的水稻秸秆施用量为10 t/hm2。水稻收获后收集秸秆、风干后截成2 cm长,储存备用,秸秆中养分含量:有机碳275 g/kg、氮 4.9 g/kg、磷0.7 g/kg、钾9.8 g/kg、硅45 g/kg。番茄苗移栽前3 天将有机肥、氮肥、磷肥、钾肥以及秸秆混施,旋耕机旋耕,使肥料均匀分布于土壤中,起垄,覆膜,浇水。供试作物为番茄,品种为‘申粉16’,由上海市农业科学院园艺所提供,试验开始前20 天进行番茄育苗。苗龄待到“四叶一心”进行移栽,植株行株距分别为75 cm和40 cm。试验进行期间每天浇水,保持田间持水量70%,以保持作物的正常生长。
1.2 样品采集与项目测定
于番茄移栽后第15天(缓苗期)、30天(幼苗生长期)和45天(生长旺盛期),采集植株、土壤样品,每个小区采2株,分为地上部和根部,分析番茄地上部生物量和磷含量,根系样品测定形态特征包括根系生物量、根冠比、根长密度、根系直径、比根长和根系组织密度。分析土壤样品中细菌、真菌和含有解磷微生物功能基因phoD、phoC和pqqC的微生物数量,以及微生物量磷(MBP)和土壤速效磷含量。
每次收获时,选取1株番茄,以植物茎基部为中心,取长×宽×高为25 cm×25 cm×40 cm的土壤,过2 mm筛,收集所有植物根系,烘干,测定根系干重。另选一株番茄,距离植株茎基部10 cm处用根钻(直径10 cm,高10 cm)取土,将根系从土壤中取出,用清水冲洗干净后,根系扫描仪 (Epson Expression 1600 pro, Model EU-35, Tokyo, Japan) 扫描,WinRhizo (Regent Instruments Inc., Sainte-Foy, Quebec, QC, Canada) 软件处理扫描图像,计算总根长、根系直径和根体积,根据根钻体积,计算根长密度。扫描完成后将根系65℃下烘干至恒重,测根系干重,计算比根长和根系组织密度。
收获的两植株地上部放入烘箱105℃杀青30 min,然后65℃下烘干至质量恒定,测量地上部总干重。结合根系干重,计算根冠比。烘干后的植株用粉碎机粉碎,过2 mm筛,浓硫酸‒双氧水法消煮,钼黄显色法测定消煮液磷浓度,计算地上部磷吸收量[植株地上部磷吸收量(mg/plant)=植株地上部干重(g/plant) ×植株地上部磷含量(%) × 1000][18]。
用土钻在小区10个点采集表层土壤(0—10 cm)样品,过2 mm 筛充分混匀,分装3份,1份自然风干,采用Olsen 法测定土壤有效磷(Olsen-P)含量[19]。1份于−4℃下保存,于两周内测定微生物量磷含量。1份于−20℃下保存,用于测定土壤细菌、真菌和解磷微生物功能基因丰度。
土壤微生物量磷 (MBP) 采用氯仿熏蒸—NaHCO3 浸提法测定[20]。土壤总DNA的提取使用DNA试剂盒 (Fast DNA SPIN Kit for soil),所提取土壤DNA的质量和浓度使用超微量分光光度计 (Nano Drop one,Thermo Fisher,USA) 测定,土壤细菌16S区扩增引物为338F (ACTCCTACGGGAGGCAGCAG)/518R (ATTACCGCGGCTGCTGG) [21],土壤真菌ITS扩增引物为ITS1(TCCGTAGGTGAACCTGCGG)/5.8s (CGCTGCGTTCTTCATCG) [22];phoD序列引物为ALPS-F730 (CAGTGGGACGACCACGAGGT)/ALPS-R1101(GAGGCCGATCGGCATGTCG) [23];phoC序列引物为phoC-A-F1 (CGGCTCCTATCCGTCCGG)/phoC-A-R1 (CAACATCGCTTTGCCAGTG) [24];pqqC基因序列引物为pqqCf1 (CATGGCATCGAGCATGCTCC)/pqqCr1 (CAGGGCTGGGTCGCCAACC) [25]。基因丰度采用Light Cycler 480实时PCR系统 (Roche Diagnostics,Mannheim,Germany) 测定。实时荧光定量PCR (qPCR)反应体系总量10 μL,包含1 μL DNA溶液、0.4 μL正向引物、0.4 μL反向引物、5 μL SYBR Premix Ex Taq (Takara Bio,Inc.)和3.2 μL灭菌水。反应条件如下:95℃ 30 s,60℃ 5 s,72℃ 34 s,40个循环。
移栽后第72天番茄进入成熟期,分批采集小区全部地上部鲜果,测定鲜重产量,每批次采集的果实按单果重选取20个,测定鲜重,烘干测定干重,计算含水量和果实干重。番茄生长120天时,最后一批收集果实,并按植株样品采集的方法收获番茄植株地上部茎和叶,测定干物重以及磷吸收量。
1.3 数据分析
利用SPSS 25.0 (IBM SPSS Inc., Chicago, IL, USA) 软件,单因素方差分析,Turkey-b检验法比较移栽后第15、30、45天处理间番茄根系特征、土壤微生物属性和土壤速效磷之间的差异(P≤0.05),以及番茄成熟期(生长120天)茎、叶、果实干物重和磷吸收之间的差异。采用Student t-test 检验法检验秸秆对番茄地上部生长和根系特征、土壤微生物属性和土壤速效磷影响的显著性(P≤0.05)。主成分分析结合斯皮尔曼相关分析,分析添加秸秆后土壤微生物量磷(MBP)、微生物丰度(包括土壤细菌、真菌、含phoD,phoC和pqqC功能基因的解磷微生物)以及土壤有效磷(Olsen-P)含量对番茄根系形态特征(根系生物量、根冠比、根长密度、平均直径、根系组织密度和比根长)的影响。
2. 结果与分析
2.1 添加秸秆对成熟期番茄地上部干物重和磷吸收量的影响
与不添加秸秆处理相比,添加秸秆处理对成熟期番茄地上部干物重在茎、叶、果实间的积累没有明显影响(表1),但显著增加了叶片中以及地上部(叶+茎+果实)磷的吸收量 (P<0.05),其中地上部总磷吸收量较不加秸秆番茄增加21.8%。不添加秸秆处理的番茄茎、叶中磷的吸收量没有显著差异,二者均显著高于果实,而添加秸秆处理的番茄磷吸收量叶>茎>果实 (P<0.05)。
表 1 添加秸秆对成熟期番茄地上部叶、茎和果实干物及磷吸收量的影响 (kg/hm2)Table 1. Effects of straw application on dry weight and P uptake of tomatoleaf, stem, and fruit at maturing stage 指标 Index 部位 Part 无秸秆 –Straw 加秸秆 +Straw 干重
Dry weight叶 Leaf 1621±238 a 1922±293 A 茎 Stem 1342±228 a 1754±137 A 果 Fruit 768±48 b 755±33 B 总 Total 3731±318 4428±459 磷吸收量
P uptake叶 Leaf 7.2±0.4 a 10.4±1.1 A* 茎 Stem 7.1±0.8 a 8.6±0.8 B 果 Fruit 3.9±0.2 b 3.4±0.3 C 总 Total 18.3±0.9 22.3±0. 9* 注:*表示加秸秆和不加秸秆处理间差异显著水平达到0.05。同列数据后不同字母表示相同处理下同一指标在叶、茎与果实各部位之间差异显著 (P<0.05)。
Note: * indicates significant difference between with and without straw treatments at 0.05 level.Values followed by different letters in a column indicate significant difference among leaf, stem, and fruit for the same index under the same treatment (P<0.05).2.2 添加秸秆对不同时期番茄生物量和磷吸收量的影响
与不添加秸秆处理相比,加秸秆处理对移栽后第15、30和45天番茄的生物量没有显著影响,对移栽后15 和30天番茄地上部磷吸收量也没有显著影响,然而显著降低了移栽后45天番茄磷的吸收量,降低了38% (图1)。
图 1 施用秸秆对不同生长期番茄地上部生物量和磷吸收量的影响注:*表示相同天数加秸秆和无秸秆处理间差异显著 (P<0.05);ns表示相同天数加秸秆和不加秸秆处理间差异不显著 (P<0.05)。方柱上不同大、小写字母分别表示加秸秆和不加秸秆处理不同天数间差异显著 (P<0.05)Figure 1. Effects of straw application on shoot biomass and P uptake of tomato at different growth stagesNote: * indicates significant difference between with and without straw treatments on the same day (P<0.05); ns indicates no significant difference between with and without straw treatments on the same day (P<0.05). Different capital and lowercase letters above the bars indicate significant difference among different days under +straw and –straw treatments, respectively (P<0.05)2.3 添加秸秆对不同生长期番茄根系形态特征的影响
与不添加秸秆处理相比,加秸秆处理降低了移栽后第15和第45天番茄根系生物量,移栽后第30和第45天根冠比和根系直径,以及移栽后第15、30和45天根系组织密度,提高了移栽后第15、30和45 天根系比根长 (图2)。不添加秸秆处理的番茄从移栽后第15到30天根长密度和根系平均直径显著增加,加秸秆处理番茄根长密度和比根长则从从移栽后第30到45天显著增加,根系直径显著降低。移栽后第15天,秸秆处理番茄根长密度高于无秸秆处理,而移栽后第30 天低于无秸秆处理,在移栽后第45天与无秸秆处理无显著差异。
图 2 施用秸秆对不同生长期番茄根系生物量和形态指标的影响注:*、**、***表示相同天数加秸秆和不加秸秆处理间在0.05 、0.01、0.001水平差异显著;ns表示相同天数加秸秆和不加秸秆处理间差异不显著 (P<0.05);柱上不同大写、小写字母分别表示加秸秆和不加秸秆处理不同天数间差异显著 (P<0.05)Figure 2. Effects of straw application on root biomass and morphological traits of tomato at different growth stagesNote: *, ** and *** indicate the significant difference between +straw and –straw treatments on the same day at 0.05, 0.01 and 0.001 levels, respectively. ns indicates no significant difference between with and without straw treatments on the same day (P<0.05). Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)2.4 施用秸秆对番茄不同生长期土壤微生物量磷和微生物相对丰度的影响
加秸秆处理的土壤速效磷含量始终与无秸秆对照无显著差异,但微生物量磷MBP在番茄移栽第30 天和第45天显著高于无秸秆处理的土壤。无秸秆处理土壤微生物量磷和速效磷含量从番茄移栽后的第15 到第45天呈逐渐下降的趋势,而施用秸秆土壤微生物量磷和速效磷含量移栽后第15和第30天没有显著差异,从移栽后第30到第45天显著下降 (图3)。
图 3 施用秸秆对土壤微生物量磷和速效磷的影响注:***表示相同天数加秸秆和无秸秆处理间在0.001水平差异显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)Figure 3. Effects of straw application on soil microbial biomass P (MBP) and Olsen-P contentNote: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars denote the significant difference among days under +straw and –straw treatments, respectively (P<0.05)番茄移栽后第15、30和45天,加秸秆处理的土壤细菌相对丰度均显著高于无秸秆处理,而真菌相对丰度低于无秸秆处理的土壤 (图4)。未添加秸秆处理的土壤细菌丰度从移栽后第15到第30天增加,从移栽后第30到第45天降低;添加秸秆土壤从移栽后第15到第30天保持不变,从移栽后第30到第45天下降 (图4)。
图 4 施用秸秆对土壤细菌(16S)和真菌(ITS)基因丰度的影响注:***表示相同天数加秸秆和无秸秆处理间在0.001水平显著显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)Figure 4. Effects of straw application on soil gene abundance of 16S and ITS encoding bacterial and fungal microbesNote: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)番茄移栽后第15、30和45天添加秸秆土壤phoD、phoC和pqqC基因拷贝数显著高于不加秸秆的土壤,其相对增加量分别为28.4%~46.1%,21.1%~47.1%和28.9%~50.2%。无论是否添加秸秆,土壤phoD、phoC和pqqC基因拷贝数从移栽后第15天到第30天显著增加,从移栽后第30天到45天下降 (图5)。
图 5 施用秸秆对土壤解磷微生物phoD, phoC和pqqC基因丰度的影响注:***表示相同天数加秸秆和无秸秆处理间在0.001水平显著显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)Figure 5. Effects of straw application on gene abundance of phosphate-solubilizing functional microbes encoding phoD, phoC, and pqqC genesNote: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)2.5 添加秸秆土壤微生物特征与根系形态特征的相关性
主成分分析PC1轴和PC2轴分别解释了45.4% 和37.3%的根系形态变化特征 (图6)。土壤微生物特征的变化以及Olsen-P含量对番茄根系生物量、根冠比、根长密度以及根系平均直径、根系组织密度和比根长有显著影响 (图6,表2)。根系组织密度与真菌丰度呈正相关,与细菌丰度呈负相关,根长密度与微生物量磷呈显著负相关。移栽后第15天番茄根系生物量与土壤真菌丰度呈显著负相关关系。较高丰度的土壤phoC基因和真菌以及Olsen-P含量与移栽后第30 天和第45 天根系比根长的增加呈显著负相关关系。
图 6 土壤微生物属性和Olsen-P对番茄根系特征影响的冗余分析注:RB—根系生物量;RSR—根冠比;RLD—根长密度;RD—根系平均直径;SRL—比根长;RTD—根组织密度;MBP—微生物量磷;16S—细菌基因丰度;ITS—真菌基因丰度;phoD—phoD基因丰度;phoC—phoC基因丰度;pqqC—pqqC基因丰度。D15、D30和D45分别表示移栽后15、30和45天Figure 6. Redundancy analysis of the effects of soil microbial traits and Olsen-P content on root traits of tomatoNote: RB—Root biomass; RSR—Root/shoot ratio; RLD—Root length density; RD—Average root diameter; SRL—Specific root length; RTD—Root tissue density; MBP—Microbial biomass P; 16S—Abundance of bacteria; ITS—Abundance of fungi; phoD—Abundance of phoD; phoC—Abundance of phoC; pqqC—Abundance of pqqC. D15, D30, D45 indicate 15, 30, 45 days after transplanting, respectively表 2 土壤微生物属性和Olsen-P与番茄根系特征的相关性Table 2. Correlations between soil microbial traits as well as Olsen-P content with root traits of tomato指标 Index 根系生物量 RB 根冠比 RSR 根长密度 RLD 根系直径 RD 根系组织密度 RTD 比根长 SRL 16S –0.398 –0.172 –0.199 –0.122 –0.602** 0.358 ITS –0.479* 0.848** –0.531** –0.032 0.408* –0.432* phoD –0.171 –0.411* 0.153 0.335 0.14 –0.263 phoC –0.285 –0.305 0.175 0.514* 0.355 –0.435* pqqC –0.104 –0.530** 0.393 0.425* 0.215 –0.194 MBP –0.731** 0.431* –0.646** –0.114 0.101 –0.268 Olsen-P –0.806** 0.623** –0.741** 0.073 0.086 –0.449* 注:16S—细菌基因丰度;ITS—真菌基因丰度。*—P<0.05;**—P<0.01。
Note: 16S—Abundance of bacteria; ITS—Abundance of fungi. RB—Root biomass; RSR—Root/shoot ratio; RLD—Root length density; RD—Average root diameter; RTD—Root tissue density; SRL—Specific root length. *—P<0.05; **—P< 0.01.3. 讨论
添加秸秆促进了土壤细菌的生长,包括含有phoD、phoC和pqqC功能基因的解磷微生物(图4,图5)。微生物生长增加了对土壤中正磷酸盐的固定,促进了微生物磷库的扩大(图3)[11-12]。因此,添加秸秆后土壤微生物包括解磷微生物在番茄移栽后第15天到30 天快速增长,促进土壤微生物量磷库在番茄移栽后第30 天显著高于未添加秸秆的土壤(图3,图4,图5),这些研究结果表明,秸秆对微生物生长的刺激作用以及对微生物磷库的扩增作用主要发生在番茄移栽后的前30 天。微生物增生对正磷酸盐(植物有效磷)的固定可能降低了土壤中速效磷的含量[12,26],然而含有phoD、phoC和pqqC功能基因的解磷微生物的增加,可以提高微生物对秸秆和有机肥中的有机磷以及土壤难溶性无机磷的溶解作用,促进土壤速效磷含量的提高[2,5-6],从而使得土壤Olsen-P含量在添加秸秆土壤和未添加秸秆土壤间无显著差异(图3,图5)。
番茄移栽后第15 天,细菌增生对根系产生了较强的养分竞争[27],多年秸秆还田使作物根系生长环境改善,如土壤空隙的增加促进作物根系的生长[28-29],施肥后较高的土壤速效磷含量(图3)保障了作物磷需求(图1)。番茄增加根系长度,提高比根长,通过细根伸长加快对土体有效养分的捕获,另一方面作物降低根系生物量和根组织密度(图2),通过减少根系构建成本,提高养分吸收效率,以维持地上部的生长[9]。高效的根系磷吸收策略(较小的根系直径、较大的根系比根长、较低的根系组织密度)以及相似的地上部磷吸收量,表明添加秸秆初期番茄根系生长受土壤磷有效性影响较低(图6,表2)。
添加秸秆后土壤微生物增生主要发生在番茄移栽后第15 天到30 天(图4),微生物生长加剧了与根系对资源的竞争,导致根系生长缓慢[3-4],造成移栽后第30 天番茄根系显著低于不加秸秆的番茄(图2)。作物根系伸长速率缓慢表明作物通过减少用于根系伸长的光合产物分配,增加在防御性状上的光合产物分配以耐受微生物增殖[30]。此外,根系生长缓慢表明作物通过降低根系周转速率以减少通过脱落细胞而产生的磷损失,增加养分在植物组织内的保存,提高资源利用效率[31-32]。因此,添加秸秆后土壤微生物增生,产生强烈的养分竞争,番茄通过降低根系伸长速率可以有效地逃避微生物竞争。与未添加秸秆处理相比,加秸秆处理番茄移栽30 天后根系较短,根系吸收磷的能力较弱(图2)。施肥提供了充足的有效磷资源(图3),土壤有效磷库可以满足移栽后前30 天番茄植物生长需求,因此添加秸秆对番茄磷吸收没有显著影响(图1)。尽管加秸秆处理番茄营养生长前期受土壤磷的影响较低,但添加秸秆后微生物的增长抑制了移栽后15到30天番茄根系的伸长。
番茄移栽30 天后,随着有机碳的耗竭,微生物死亡,细菌和真菌包括解磷微生物丰度下降,微生物量磷降低(图3,图5)。微生物丰度降低表明微生物与根系之间的竞争强度减弱,被杀死的微生物开始释放磷,土壤中根系可利用的有效磷含量增加[12,27]。当秸秆控制的微生物竞争逐渐变弱同时土壤磷有效性逐渐增强时,土壤有效磷成为决定根系特征的主导因素(表2),作物调整根系生长,降低根系觅食养分资源的构建成本以提高磷吸收,保障地上部生长[8,33-34]。例如,移栽后30 天到45 天,丰富的有效磷诱导作物降低根系光合产物的分配,产生拥有比根长大的细根,降低根系组织密度,以最少的代谢成本、较快的生长速度探索更大的土体寻找有效磷源(图2,表2)。总之,微生物磷的降低和解磷微生物对磷的活化促进移栽30天到45 天番茄细根的快速伸长。
尽管15 天到30 天微生物量磷的降低以及高效磷吸收策略的构建有利于作物磷的吸收,然而移栽后第45 天,番茄地上部磷吸收量显著低于未加秸秆的番茄(图1),但是在收获期,添加秸秆番茄地上部总的磷吸收量高于不加秸秆处理的番茄(表1)。该结果表明,添加秸秆诱导的微生物磷活化及其驱动的细根的伸长显著促进了移栽后45 天到成熟期番茄磷吸收(图1,图2,图3,图5,图6,表1)。尽管如此,大量的磷资源储存在叶片未转运至果实,使得添加秸秆对番茄果实磷营养的改善作用不显著(表1),这可能是由于秸秆驱动的微生物磷活化发生在秸秆还田后33 天(番茄移栽后30 天),作物磷吸收的增加发生在移栽45天后,滞后于番茄磷吸收的关键生育期。微生物磷活化协同细根的快速增生,为提高成熟期番茄磷的吸收打下了基础。
添加秸秆改变了土壤微生物–根系形态,对番茄磷吸收具有显著的调控作用。田间条件下添加秸秆后的前45 天,根系‒微生物作用降低了番茄地上部磷吸收。添加秸秆45天后微生物磷周转及其有效的根系磷吸收策略,促进了移栽后45天到成熟期作物磷吸收,说明秸秆还田在蔬菜生产体系具有提高磷肥利用效率的潜力。然而微生物磷活化对成熟期番茄叶片磷含量的促进作用,并未使番茄果实磷营养得到显著改善(图1),表明加强磷资源从叶片到果实的有效转运是发挥秸秆还田磷促进效应的重要保障。因此,设施番茄种植体系,优化秸秆还田管理措施,减少微生物竞争,促进番茄果实磷资源的有效利用,是提高磷吸收效率,促进化肥减施的有效保障,可能成为维持设施农田生产力可持续的解决方案。
4. 结论
施用秸秆增加了土壤细菌数量,提高了微生物量磷库和解磷微生物的丰度。施用秸秆后微生物的增生导致番茄营养生长期根系伸长缓慢,而土壤磷有效性对根系生长影响较小。之后,解磷微生物活性显著提高,增强了对微生物量磷的活化,增加了磷的有效性,刺激根系快速增长,根系变细,比根长增加,促进了番茄对磷的吸收和在叶片的分布,为提高果实产量打下了基础。
-
图 1 施用秸秆对不同生长期番茄地上部生物量和磷吸收量的影响
注:*表示相同天数加秸秆和无秸秆处理间差异显著 (P<0.05);ns表示相同天数加秸秆和不加秸秆处理间差异不显著 (P<0.05)。方柱上不同大、小写字母分别表示加秸秆和不加秸秆处理不同天数间差异显著 (P<0.05)
Figure 1. Effects of straw application on shoot biomass and P uptake of tomato at different growth stages
Note: * indicates significant difference between with and without straw treatments on the same day (P<0.05); ns indicates no significant difference between with and without straw treatments on the same day (P<0.05). Different capital and lowercase letters above the bars indicate significant difference among different days under +straw and –straw treatments, respectively (P<0.05)
图 2 施用秸秆对不同生长期番茄根系生物量和形态指标的影响
注:*、**、***表示相同天数加秸秆和不加秸秆处理间在0.05 、0.01、0.001水平差异显著;ns表示相同天数加秸秆和不加秸秆处理间差异不显著 (P<0.05);柱上不同大写、小写字母分别表示加秸秆和不加秸秆处理不同天数间差异显著 (P<0.05)
Figure 2. Effects of straw application on root biomass and morphological traits of tomato at different growth stages
Note: *, ** and *** indicate the significant difference between +straw and –straw treatments on the same day at 0.05, 0.01 and 0.001 levels, respectively. ns indicates no significant difference between with and without straw treatments on the same day (P<0.05). Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)
图 3 施用秸秆对土壤微生物量磷和速效磷的影响
注:***表示相同天数加秸秆和无秸秆处理间在0.001水平差异显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)
Figure 3. Effects of straw application on soil microbial biomass P (MBP) and Olsen-P content
Note: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars denote the significant difference among days under +straw and –straw treatments, respectively (P<0.05)
图 4 施用秸秆对土壤细菌(16S)和真菌(ITS)基因丰度的影响
注:***表示相同天数加秸秆和无秸秆处理间在0.001水平显著显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)
Figure 4. Effects of straw application on soil gene abundance of 16S and ITS encoding bacterial and fungal microbes
Note: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)
图 5 施用秸秆对土壤解磷微生物phoD, phoC和pqqC基因丰度的影响
注:***表示相同天数加秸秆和无秸秆处理间在0.001水平显著显著。柱上不同大写、小写字母分别表示加秸秆处理和无秸秆处理不同天数间差异显著 (P<0.05)
Figure 5. Effects of straw application on gene abundance of phosphate-solubilizing functional microbes encoding phoD, phoC, and pqqC genes
Note: *** indicates significant difference between +straw and –straw treatments on the same day at 0.001 level. Different capital and lowercase letters above the bars indicate significant difference among days under +straw and –straw treatments, respectively (P<0.05)
图 6 土壤微生物属性和Olsen-P对番茄根系特征影响的冗余分析
注:RB—根系生物量;RSR—根冠比;RLD—根长密度;RD—根系平均直径;SRL—比根长;RTD—根组织密度;MBP—微生物量磷;16S—细菌基因丰度;ITS—真菌基因丰度;phoD—phoD基因丰度;phoC—phoC基因丰度;pqqC—pqqC基因丰度。D15、D30和D45分别表示移栽后15、30和45天
Figure 6. Redundancy analysis of the effects of soil microbial traits and Olsen-P content on root traits of tomato
Note: RB—Root biomass; RSR—Root/shoot ratio; RLD—Root length density; RD—Average root diameter; SRL—Specific root length; RTD—Root tissue density; MBP—Microbial biomass P; 16S—Abundance of bacteria; ITS—Abundance of fungi; phoD—Abundance of phoD; phoC—Abundance of phoC; pqqC—Abundance of pqqC. D15, D30, D45 indicate 15, 30, 45 days after transplanting, respectively
表 1 添加秸秆对成熟期番茄地上部叶、茎和果实干物及磷吸收量的影响 (kg/hm2)
Table 1 Effects of straw application on dry weight and P uptake of tomato
leaf, stem, and fruit at maturing stage 指标 Index 部位 Part 无秸秆 –Straw 加秸秆 +Straw 干重
Dry weight叶 Leaf 1621±238 a 1922±293 A 茎 Stem 1342±228 a 1754±137 A 果 Fruit 768±48 b 755±33 B 总 Total 3731±318 4428±459 磷吸收量
P uptake叶 Leaf 7.2±0.4 a 10.4±1.1 A* 茎 Stem 7.1±0.8 a 8.6±0.8 B 果 Fruit 3.9±0.2 b 3.4±0.3 C 总 Total 18.3±0.9 22.3±0. 9* 注:*表示加秸秆和不加秸秆处理间差异显著水平达到0.05。同列数据后不同字母表示相同处理下同一指标在叶、茎与果实各部位之间差异显著 (P<0.05)。
Note: * indicates significant difference between with and without straw treatments at 0.05 level.Values followed by different letters in a column indicate significant difference among leaf, stem, and fruit for the same index under the same treatment (P<0.05).表 2 土壤微生物属性和Olsen-P与番茄根系特征的相关性
Table 2 Correlations between soil microbial traits as well as Olsen-P content with root traits of tomato
指标 Index 根系生物量 RB 根冠比 RSR 根长密度 RLD 根系直径 RD 根系组织密度 RTD 比根长 SRL 16S –0.398 –0.172 –0.199 –0.122 –0.602** 0.358 ITS –0.479* 0.848** –0.531** –0.032 0.408* –0.432* phoD –0.171 –0.411* 0.153 0.335 0.14 –0.263 phoC –0.285 –0.305 0.175 0.514* 0.355 –0.435* pqqC –0.104 –0.530** 0.393 0.425* 0.215 –0.194 MBP –0.731** 0.431* –0.646** –0.114 0.101 –0.268 Olsen-P –0.806** 0.623** –0.741** 0.073 0.086 –0.449* 注:16S—细菌基因丰度;ITS—真菌基因丰度。*—P<0.05;**—P<0.01。
Note: 16S—Abundance of bacteria; ITS—Abundance of fungi. RB—Root biomass; RSR—Root/shoot ratio; RLD—Root length density; RD—Average root diameter; RTD—Root tissue density; SRL—Specific root length. *—P<0.05; **—P< 0.01. -
[1] Raymond N S, Gómez-Muñoz B, Bom F J T, et al. Phosphate-solubilising microorganisms for improved crop productivity: A critical assessment[J]. New Phytologist, 2021, 229: 1268–1277. DOI: 10.1111/nph.16924
[2] Huang Y, Dai Z, Lin J, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays[J]. Soil Biology and Biochemistry, 2021, 163: 108465. DOI: 10.1016/j.soilbio.2021.108465
[3] Cortois S, Schröder-Georgi T, Weigelt A, et al. Plant-soil feedbacks: Role of plant functional group and plant traits[J]. Journal of Ecology, 2016, 104(6): 1608–1617. DOI: 10.1111/1365-2745.12643
[4] Marschner P, Crowley D, Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods[J]. Soil Biology and Biochemistry, 2011, 43(5): 883–894. DOI: 10.1016/j.soilbio.2011.01.005
[5] Luo G, Sun B, Li L, et al. Understanding how long-term organic amendments increase soil phosphatase activities: Insight into phoD and phoC harboring functional microbial populations[J]. Soil Biology and Biochemistry, 2019, 139: 107632. DOI: 10.1016/j.soilbio.2019.107632
[6] Bi Q F, Li K J, Zheng B X, et al. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J]. Science of the Total Environment, 2020, 703: 134977. DOI: 10.1016/j.scitotenv.2019.134977
[7] Lambers H. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits[J]. Annals of Botany, 2006, 98(4): 693–713. DOI: 10.1093/aob/mcl114
[8] Lynch J P. Root phenotypes for improved nutrient capture: An underexploited opportunity for global agriculture[J]. New Phytologist, 2019, 223: 548–586. DOI: 10.1111/nph.15738
[9] Wen Z, White P J, Shen J, et al. Linking root exudation to belowground economic traits for resource acquisition[J]. New Phytologist, 2021, 233: 1620–1635.
[10] Wen Z, Li H, Shen J, et al. Maize responds to low shoot P concentration by altering root morphology rather than increasing root exudation[J]. Plant and Soil, 2017, 416: 337–389.
[11] Jing Z, Chen R, Wei S, et al. Response and feedback of C mineralization to P availability driven by soil microorganisms[J]. Soil Biology and Biochemistry, 2017, 105: 111–120. DOI: 10.1016/j.soilbio.2016.11.014
[12] Chen J, Seven J, Zilla T, et al. Microbial C∶N∶P stoichiometry and turnover depend on nutrient availability in soil: A 14C, 15N and 33P triple labelling study[J]. Soil Biology and Biochemistry, 2019, 131: 206–216. DOI: 10.1016/j.soilbio.2019.01.017
[13] Ma X, Zarebanadkouki M, Kuzyakov Y, et al. Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius[J]. Soil Biology and Biochemistry, 2018, 118: 69–78. DOI: 10.1016/j.soilbio.2017.12.009
[14] Zhang Q, Song Y, Wu Z, et al. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice–wheat rotation[J]. Journal of Cleaner Production, 2020, 242: 118435. DOI: 10.1016/j.jclepro.2019.118435
[15] Yan Z J, Liu P P, Li Y H, et al. Phosphorus in China's intensive vegetable production systems: Over fertilization, soil enrichment, and environmental implications[J]. Journal of Environmental Quality, 2013, 42(4): 982–989. DOI: 10.2134/jeq2012.0463
[16] Čapek P, Manzoni S, Kaštovská E, et al. A plant-microbe interaction framework explaining nutrient effects on primary production[J]. Nature Ecology and Evolution, 2018, 2: 1588–1596. DOI: 10.1038/s41559-018-0662-8
[17] Soong J L, Fuchslueger L, Maranon-Jimenez S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26: 1953–1961. DOI: 10.1111/gcb.14962
[18] Johnson C M, Ulrich A. Analytical methods for use in plant analysis[J]. Los Angeles, CA: University of California, 1959. doi: 10.1007/s005720050160.
[19] Olsen S R, Cole R V, Watanabe F S, et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[M]. Washington D C: US Government Printing Office, United States Department of Agriculture Circular, 939, 1954.
[20] Brookes P C, Powlson D S, Jenkinson D S. Measurement of microbial biomass phosphorus in soil[J]. Soil Biology and Biochemistry, 1982, 14: 319–329. DOI: 10.1016/0038-0717(82)90001-3
[21] Guo J J, Liu W B, Zhu C, et al. Bacterial rather than fungal community composition is associated with microbial activities and nutrient–use efficiencies in a paddy soil with short–term organic amendments[J]. Plant and Soil, 2018, 424(1/2): 335–349.
[22] Kong Y, Zhu C, Ruan Y, et al. Are the microbial communities involved in glucose assimilation in paddy soils treated with different fertilization regimes for three years similar[J]. Journal of Soil and Sediments, 2018, 18(7): 2476–2490. DOI: 10.1007/s11368-018-1961-z
[23] Sakurai M, Wasaki J, Tomizawa Y, et al. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter[J]. Soil Science and Plant Nutrition, 2008, 54(1): 62–71. DOI: 10.1111/j.1747-0765.2007.00210.x
[24] Gaiero J R, Bent E, Fraser T D, et al. Validating novel oligonucleotide primers targeting three classes of bacterial non-specific acid phosphatase genes in grassland soils[J]. Plant and Soil, 2018, 427: 39–51. DOI: 10.1007/s11104-017-3338-2
[25] Zheng B X, Hao X L, Ding K, et al. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil[J]. Scientific Reports, 2017, 7: 42284. DOI: 10.1038/srep42284
[26] Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989–996. DOI: 10.1104/pp.111.175448
[27] Hodge A, Robinson D, Fitter A. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends in Plant Science, 2000, 5(7): 304–308. DOI: 10.1016/S1360-1385(00)01656-3
[28] Kong L G. Maize residues, soil quality, and wheat growth in China. A review[J]. Agronomy for Sustainable Development, 2014, 34(2): 405–416. DOI: 10.1007/s13593-013-0182-5
[29] Zhang P, Wei T, Jia Z K, et al. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China[J]. Geoderma, 2014, 230: 41–49.
[30] Chapin F S, Autumn K, Pugnaire F. Evolution of suites of traits in response to environmental stress[J]. American Naturalist, 1993, 142: S78–S92. DOI: 10.1086/285524
[31] McCormack M L, Adams T S, Smithwick E, et al. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 2012, 195: 823–831. DOI: 10.1111/j.1469-8137.2012.04198.x
[32] McCormack M L, Dickie I A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes[J]. New Phytologist, 2015, 207: 505–518. DOI: 10.1111/nph.13363
[33] Wen Z, Li H, Shen Q, et al. Trade-offs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species[J]. New Phytologist, 2019, 223: 882–895. DOI: 10.1111/nph.15833
[34] Spitzer C M, Lindahl B, Wardle D A, et al. Root trait-microbial relationships across tundra plant species[J]. New Phytologist, 2021, 229: 1508–1520. DOI: 10.1111/nph.16982
-
期刊类型引用(6)
1. 邓汪览,冯固,陈王尊. 有机水溶肥通过有机碳用量调控玉米生长状况的研究. 生态产业科学与磷氟工程. 2025(02): 105-112+122 . 百度学术
2. 阮彦楠,吕本春,尹梅,王志远,杨伟,梁志妹,杨志新,付利波. 玉米秸秆配施钝化剂对娃娃菜生长及镉富集的影响. 云南农业大学学报(自然科学). 2025(02): 163-174 . 百度学术
3. 杨冬艳,王丹,桑婷,冯海萍,赵云霞. 番茄秸秆堆肥添加量对番茄幼苗生长及根系形态的影响. 江西农业大学学报. 2024(01): 60-67 . 百度学术
4. 李琳琳,石宁,王菲. 不同有机物料改善富磷菜田土壤微生物结构功能和蔬菜磷素吸收利用研究. 植物营养与肥料学报. 2024(01): 114-127 . 本站查看
5. 李志兵,籍婷婷,姚彬,杨效家,黄成东. 含聚磷酸铵肥料对作物产量效应影响的整合分析. 肥料与健康. 2024(02): 6-13 . 百度学术
6. 石震方,伏小刚,高富成,徐垒,李建设,叶林. 基于响应曲面法的露地甘蓝移栽效率优化研究. 南方农机. 2024(24): 1-6 . 百度学术
其他类型引用(5)