Fate and efficiency of fertilizer nitrogen in spring wheat production under drip irrigation based on the 15N tracing method
-
摘要:目的
采用15N示踪法,研究滴灌肥料氮与土壤氮素的转化和去向以及在土壤中的残留分布,为新疆滴灌春小麦氮肥优化管理提供科学依据。
方法试验于2019年在石河子大学农学院试验站进行,供试春小麦材料为强筋型‘新春38’(XC38)和中筋型‘新春49’(XC49)。试验设7个施氮(N)水平: 300、285、270、255、240、225和 0 kg/hm2,分别记作N300、N285、N270、N255、N240、N225和 N0处理。每个试验小区内,安装未封底的PVC管(直径11 cm,高65 cm),管内施用与该处理等量的15N标记尿素。于小麦成熟期,测定PVC管内植株样品与土壤样品中的15N丰度,同时在小区内测定产量,计算氮素利用效率。
结果两品种春小麦吸收的氮素来自肥料的比例为 30.49%~36.06%,对土壤氮的依赖程度在60%以上。随着氮肥施用量的降低,对土壤氮的依赖程度逐渐增加。15N标记氮肥在土壤中的总残留率为24.05%~31.60%,主要集中在0—40 cm土层,土壤15N残留量与15N总回收率随施氮量的降低而逐渐降低,15N吸收利用率随施氮量的降低呈先升高后降低趋势。XC38强筋小麦各器官对肥料氮的吸收量为43.1~61.3 kg/hm2,占总吸氮量的30.94%~36.06%,高于中筋小麦XC49的42.3~54.5 kg/hm2和30.81%~34.39%。XC38小麦在N270处理下产量最高,为7384.0 kg/hm2; XC49小麦在N255处理下氮肥农学利用效率最高,为7236.1 kg/hm2。
结论在滴灌施肥条件下,作物当季肥料氮吸收量占比平均为19.79%,0—60 cm土层中的平均残留率为27.86%,平均总回收率为47.64%。提高施氮量可提高小麦对肥料氮的吸收及其比例,且增加土壤中氮素的残留率,有效补充土壤氮库。虽然强筋型小麦XC38对肥料氮素的吸收强于中筋型小麦XC49,但对肥料氮的基本去向没有显著影响。综合考虑产量和氮肥利用效益,春小麦XC38和XC49适宜的施氮量分别为N 270 kg/hm2和225 kg/hm2。
Abstract:ObjectivesThe contribution of fertilizer to wheat N absorption and the behavior of residual fertilizer N in the soil were studied using the 15N tracing method. We aim to provide a scientific basis for optimal N fertilizer management in Xinjiang wheat production under drip irrigation.
MethodsField experiment was conducted at the Experimental Station of College of Agriculture Shihezi University from April to July 2019, using spring wheat cultivars ‘Xinchun 38’ (XC38, high-gluten) and ‘Xinchun 49’ (XC49, medium-gluten) as test materials. The seven N-level treatments used were N 300, 285, 270, 255, 240, 225, and 0 kg/hm2, namely, N300, N285, N270, N255, N240, N225, and N0 treatments. A PVC tube (11 cm in diameter, 65 cm high) was installed in each plot, and the 15N labeled fertilizer was applied at the same N rate as the treatment plot. At maturity, the plant and 0–40 cm deep soil samples were collected from the PVC tube to determine 15N abundance and the N content; the dry biomass and wheat yield of he plot were also investigated simultaneously.
ResultsFertilizer applications accounted for 30.49%–36.06% of the N absorbed by the two wheat cultivars, with soil N contributing more than 60%. Higher N application rates result in a high contribution to wheat N. The 15N residual rate in soil was 24.05%–31.60%, and mainly concentrated in 0–40 cm soil layer. The 15N utilization rate increased at first and then decreased with a decline in the N application rate. In contrast, the 15N residue in the soil increased with increasing N application rates, while the 15N total recovery rate increased progressively. The amount of fertilizer N absorbed by wheat cultivar XC38 was 43.1–61.3 kg/hm2, accounting for 30.81%–34.39% of total N uptake. These values were higher than 42.3–54.5 kg/hm2 and 30.81%–32.50% recorded for XC49. The highest grain yield (7384.0 kg/hm2) of XC38 was obtained from N270 treatment, and XC49 had the highest yield (7236.1 kg/hm2) in N255 treatment.
ConclusionsUnder the drip fertigation system, 19.79% of N fertilizer was average absorbed by wheat, and 27.86% average remained in 0–60 cm soil, with a average total recovery rate of 47.64%. Increasing the N fertilizer application rate enhances the nitrogen absorption by wheat and the proportion from fertilizer, and the residual amount in the soil, which becomes the supplement of the soil N pool. The strong gluten cultivar XC38 absorbs more N fertilizer than medium gluten cultivar XC49, which does not affect fertilizer N basic behavior. The proper N application rate for high yield, N use efficiency, and soil residue is 270 kg/hm2 and 255 kg/hm2 for XC38 and XC49, respectively.
-
促进氮肥高效吸收利用是提高作物产量、降低农业污染的重要举措[1-3]。氮肥大量施用使得作物产量得以大幅度提高,从1997年到2016年,中国粮食总产量增加了24%,氮肥当季利用率虽有提高,但也仅为30%~35%,仍远低于发达国家50%~60%的利用水平[4-5]。小麦是新疆最重要的粮食作物,高肥高产是新疆小麦生产的种植理念,新疆农民习惯的氮素投入量平均为 300 kg/hm2,过量的氮肥施用导致当季利用效率较低,并且还引起了一系列环境问题[6-8]。滴灌技术能够显著提高作物水分与肥料利用效率[9],已是新疆麦区的主体栽培技术,因此,明确新疆滴灌春小麦对土壤与肥料氮素的吸收特性,肥料氮施入土壤后的转化与吸收过程,是实现氮素高效管理的关键科学问题。
氮肥施用后主要有植株吸收、土壤残留及环境损失3个去向[10]。植株回收率和土壤残留率一般随施肥量增加而显著降低,损失率则显著升高[11]。15N示踪技术是一种成熟且广泛应用在氮素土壤—作物系统转化、运移研究的重要方法,能够标记肥料氮在土壤—作物体系内的转化和去向,精确追踪和量化作物所吸收氮素的来源和比例[12]。左红娟等 [13]利用15N微区试验的结果表明,华北平原冬小麦积累的氮素来自肥料吸收的比例约为1/3。北方冬小麦/夏玉米轮作体系中施氮量从120 kg/hm2增加到 360 kg/hm2时,氮肥回收率下降了20%,土壤残留率下降了24%,氮肥损失率则提高了46%[14]。小麦播种前基施氮肥的损失率要显著高于拔节期追施氮肥[15]。
滴灌小麦种植的气候条件、耕作及施肥方式等明显不同于其他麦区[16],现阶段对干旱区滴灌小麦氮素的吸收、转运特性尚缺乏定量化的研究。为此,通过设置不同减氮处理的15N标记微区试验,以两种筋型春小麦为试验材料,比较两种春小麦间氮素吸收利用的差异,量化土壤中残留、小麦吸收和损失的氮素,通过小区试验探究各处理下氮素利用率的变化,探明两种新疆滴灌春小麦适宜施氮量范围,以及两种春小麦的增产提效潜力,旨在为新疆小麦生产科学施氮提供依据。
1. 材料及方法
1.1 试验区概况
试验于2019年3—7月在新疆石河子市石河子大学农学院试验站(85°59′ E,44°18′ N)进行。供试土壤类型为灌溉灰漠土,试验站土壤0—40 cm土层有机质含量为14.62 g/kg,全氮含量1.26 g/kg,碱解氮53.54 mg/kg,速效磷16.37 mg/kg,速效钾148.05 mg/kg,pH为7.3。当地属温带大陆性气候,2019年平均气温为8.5℃,最高气温出现在7月份,达37℃;最低气温−30℃出现在1月份;小麦生育期平均温度为7.4℃;年降雨量180.6 mm,年蒸发量1537.3 mm,相对湿度在65%左右,小麦生育期间气象参数如图1所示。
1.2 试验设计
试验采用裂区设计,品种为主区,供试品种为强筋型春小麦新春38号(XC38,蛋白质含量15.04%)和中筋型春小麦新春49号(XC49,蛋白质含量12.89%)。施氮量为副区,试验设7个施氮量水平:300、285、270、255、240、225、0 kg/hm2,记为N300、N285、N270、N255、N240、N225、N0。小区试验供试氮肥为普通尿素(N 46%)。小区设计均采用宽窄行“一管四”的方式种植,行间距为12.5+20+12.5+15 cm,滴灌带(管径16 mm,滴头间距30 cm,流量2.6 L/h)放置于20 cm的宽行(图2)。为了防止肥料外移,在各个小区间埋置100 cm深度的防渗膜。小区面积为12m2 (3 m×4 m),3次重复。
管栽试验在各处理小区内安装未封底的PVC管(直径11 cm,高65 cm),供试氮肥为15N标记尿素(上海化工研究院,丰度为10.12%)。首先将0—20、20—40和40—60 cm土层的土壤分别取出,再将PVC管竖直放入挖好的土坑中,取出土壤晾晒过筛后依次填入管中,每填入20 cm深的土要充分灌水使其自然沉实,待40 cm以下土壤完全沉实,再填入5 cm深的表土用水沉实,按照管的面积计算基肥用量并均匀施用,盖上15 cm厚的表土,并填埋好PVC管周围土壤以恢复原状。PVC管高出地面,以免灌溉时发生养分流失。管栽试验布置如图2所示,15N肥料施用量同小区试验。全生育期总灌溉量为6000 m3/hm2,共灌水9次,各个时期的灌溉量通过水表精确控制。4月6日播种,播量为345 kg/hm2,7月12日收获。
所有处理(含PVC管)底施P2O5 120 kg/hm2和20%的氮肥,余下80%氮肥随滴灌追施,各生育期氮肥的具体分配比例及用量见表1,其他田间管理措施与大田生产一致。
表 1 春小麦各生育期滴灌施氮量Table 1. N application rate at each growth period of spring wheat under drip irrigation处理
Treatment追施时期及追施量 Topdressing period and amount (kg/hm2) 总量
Total2叶期
2-leaf分蘖期
Tillering5叶龄
5-leaf6叶龄
6-leaf孕穗期
Booting抽穗期
Heading乳熟期
Milky maturityN300 240 24 24 24 24 48 36 12 N285 228 22.8 22.8 22.8 22.8 45.6 34.2 11.4 N270 216 21.6 21.6 21.6 21.6 43.2 32.4 10.8 N255 204 20.4 20.4 20.4 20.4 40.8 30.6 10.2 N240 192 19.2 19.2 19.2 19.2 38.4 28.8 9.6 N225 180 18 18 18 18 36 27 9 N0 0 0 0 0 0 0 0 0 1.3 测定项目与方法
1.3.1 植株氮素积累转运与土壤氮素指标测定
成熟期取PVC管中全部小麦,分叶、茎鞘、穗轴+颖壳和籽粒样品等器官,于105℃杀青30 min,80℃烘干24 h,粉碎过0.15 mm筛备用。
采集PVC管中0—20、20—40和40—60 cm土层土壤样品,装入铝盒烘干用于测定土壤含水量,然后过0.1 mm筛备用。采用全自动定氮仪测定植株及土壤全氮含量,用Isoprime 100型质谱仪(Chead-le,英国)测定植株及土壤中15N丰度。
参考左红娟等[13]与李欣欣等[17]的方法计算成熟期小麦地上部各器官氮素来源与15N在土壤中的残留和损失。
器官氮积累量来自肥料的比例(%)=(器官15N丰度–0.3663)/(肥料15N丰度–0.3663)×100,0.3663为自然15N丰度;
器官肥料氮积累量 (kg/hm2)=器官氮素积累量×肥料氮比例;
器官土壤氮积累量 (kg/hm2)=器官氮素积累量–器官肥料氮积累量;
器官氮积累量来自土壤的比例(%)=器官土壤氮积累量/器官氮素总积累量×100;
15N吸收利用率(%)=植株15N积累量/投入15N同位素量×100;
15N土壤残留量 (kg/hm2)=土层厚度×土壤容重×土壤全氮含量×土壤15N原子百分超×100;
15N土壤残留率(%)=15N土壤残留量/投入15N同位素量×100;
15N总回收率=15N吸收利用率+15N土壤残留率;
15N损失率(%) =(1–15N总回收率)×100。
1.3.2 产量测定及氮素利用效率计算
在成熟期,每个处理内选取1 m2的小麦植株,进行人工收割并脱粒,自然晒干后称取质量,计算籽粒产量,重复3次。并结合氮素积累量计算氮素利用效率、氮收获指数、氮肥农学利用效率、氮素生理利用率、氮素偏生产力[18]。公式如下:
氮素吸收利用率(NRE,%)=(施氮区氮素积累量–不施氮区氮素积累量)/施氮量×100;
氮素农学利用率 (NAE,kg/kg)=(施氮区籽粒产量−不施氮区籽粒产量)/施氮量;
氮素生理利用率 (NPE,kg/kg)=(施氮区产量–不施氮区产量)/(施氮区氮素积累量–不施氮区氮素积累量);
氮素偏生产力 (NPFP,kg/kg)=施氮区作物产量/施氮量;
氮素收获指数 (NHI,%)=籽粒氮素积累量/成熟期植株氮素积累量×100。
1.4 数据分析
分析数据均采用参试品种的平均值。数据使用SPSS.20软件进行统计分析,主要指标的显著性采用邓肯氏新复极差检验法(DMRT)在0.05水平下进行检验,采用Microsoft Excel 2019与Origin 2022整理作图。
2. 结果与分析
2.1 地上部各器官中15N标记肥料氮和土壤氮的吸收量与占比
品种对地上部各器官所吸收的肥料15N和土壤氮量以及占比影响不显著,而施氮量及品种和施氮量的交互作用对地上部器官所吸收的肥料15N和土壤氮量及比例影响显著。成熟期地上部器官对肥料15N和土壤氮的吸收量与地上部器官氮素积累量变化趋势一致,均表现为籽粒>茎鞘>穗轴+颖壳>叶。
随着施氮量的降低,两品种地上部各器官吸收的肥料15N和土壤氮量总体呈现出不断减小的趋势 (表2)。XC38地上部各器官中,叶对土壤氮的吸收先增后减,在N285处理下吸收量最大,而其他地上部各器官均在N300处理下对肥料15N和土壤氮的吸收量最大,但N300、N285和N270处理对地上部各器官吸收肥料15N和土壤氮的影响差异不显著。对于XC49,叶对土壤氮的吸收与XC38相似,在N270处理下吸收量最大,N300、N285和N270处理间差异不显著,但成熟期籽粒肥料15N的吸收积累量变化不同于XC38,XC49成熟期籽粒所吸收肥料15N的量在N285处理下最大,且N285与N300、N270和N255处理差异不显著,但N285、N270、N255处理均要高于N300处理,其原因可能是不同筋型小麦品种间的差异所造成的。
表 2 不同施氮量处理小麦地上部各器官肥料15N和土壤氮的吸收量 (kg/hm2)Table 2. Absorption of N in aboveground organs from 15N fertilizer and soil under different N application rates品种
Cultivar处理
Treatment茎鞘 Stem+shelf 叶 Leaf 穗轴+颖壳 Cob+glume 籽粒 Grain 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 7.6±0.1 a 15.2±0.4 a 5.9±0.0 a 12.8±0.3 a 7.0±0.2 a 14.3±0.5 a 40.8±1.3 a 66.7±1.7 b N285 7.4±0.1 a 14.5±0.1 a 5.7±0.1 a 13.5±0.2 a 6.7±0.1 a 13.8±0.2 a 39.9±1.0 a 65.8±0.5 b N270 7.1±0.1 a 14.6±0.2 a 5.5±0.1 a 12.2±0.2 a 6.4±0.1 a 14.2±0.1 a 37.8±1.1 ab 66.4±1.3 b N255 6.3±0.1 b 12.5±0.1 c 5.1±0.1 b 11.1±0.1 b 5.9±0.1 b 13.6±0.3 a 34.3±0.9 bc 65.6±0.7 b N240 6.4±0.1 b 12.9±0.1 b 4.8±0.1 b 9.8±0.1 c 5.4±0.1 b 12.8±0.1 b 31.0±0.7 c 64.8±0.5 c N225 5.9±0.0 b 11.9±0.1 c 4.3±0.1 c 9.4±0.2 c 4.8±0.1 c 11.7±0.2 b 28.1±0.6 d 63.2±1.0 c 均值
Mean value6.8 13.6 5.2 11.5 6.0 13.4 35.3 65.4 XC49 N300 7.0±0.1 a 15.0±0.1 a 5.7±0.1 a 13.5±0.3 a 6.4±0.2 a 14.6±0.5 a 35.4±1.2 b 70.1±1.0 a N285 6.6±0.1 b 14.9±0.1 a 5.5±0.1 a 13.1±0.1 a 5.8±0.1 b 14.1±0.2 a 37.9±0.7 ab 65.7±0.3 b N270 6.3±0.1 b 14.4±0.2 a 5.4±0.0 a 13.7±0.3 a 6.0±0.1 b 13.3±0.2 ab 36.5±0.5 b 64.5±0.8 c N255 5.8±0.1 b 13.9±0.2 b 5.0±0.1 b 13.3±0.2 a 5.4±0.1 b 12.2±0.1 b 36.9±1.0 b 61.9±1.0 d N240 5.6±0.1 c 13.6±0.1 b 4.8±0.1 b 10.0±0.1 b 5.1±0.1 b 11.6±0.1 b 28.5±0.8 d 65.1±0.1 b N225 4.8±0.1 c 12.5±0.3 c 4.2±0.1 c 10.8±0.1 b 4.3±0.1 c 10.3±0.1 c 29.0±0.9 d 61.4±0.4 d 均值
Mean value6.0 14.1 5.1 12.4 5.5 12.7 36.4 64.8 品种 Cultivar (C) ns ns ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * * * C×N * * * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.在不同来源氮素的吸收占比上,不同处理间地上部各器官对肥料15N与土壤氮的吸收占比较为接近,地上部各器官对肥料15N和土壤氮的吸收占比之比约为1∶2 (表3)。XC49各器官对土壤氮的吸收占比要略高于XC38。XC38穗轴+颖壳和籽粒随着减氮比例的增加,对肥料15N的吸收占比逐渐下降,对土壤氮的吸收占比不断增加,叶对土壤氮的吸收表现为先升高后降低,N285处理下吸收占比最高,为70.35%,XC38各器官对肥料15N的吸收占比要高于XC49。XC49的茎鞘对土壤氮的吸收占比随减氮比例的增加而不断增大,但叶、穗轴+颖壳,表现出先升后降的趋势,分别在N255、N285对土壤氮的吸收占比最大,分别为72.94%、70.62%。综上,强筋型小麦XC38地上部各器官对肥料15N的吸收能力要强于中筋型小麦XC49。
表 3 不同施氮量处理小麦各器官肥料15N和土壤氮的吸收占比(%,微管试验)Table 3. The absorption rate (%) of 15N fertilizer and soil N by various organs under different Napplication rates (tube experiment)品种
Cultivar处理
Treatment茎鞘 Stem+shelf 叶 Leaf 穗轴+颖壳 Cob+glume 籽粒 Grain 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 33.40±0.44 a 66.60±1.75 b 31.38±0.00 ab 68.62±1.7 b 32.94±0.94 a 67.06±2.35 c 38.10±1.21 a 61.90±1.58 c N285 33.84±0.46 a 66.16±0.46 c 29.65±0.52 bc 70.35±0.10 a 32.55±0.49 a 67.45±0.98 c 37.70±0.95 a 62.30±0.47 c N270 32.50±0.46 a 67.50±0.92 b 30.87±0.57 b 69.13±1.13 b 31.01±0.49 a 68.99±0.49 b 36.18±1.06 b 63.82±1.25 c N255 33.56±0.53 a 66.44±0.53 c 31.38±0.62 ab 68.62±0.62 b 30.09±0.51 b 69.91±1.54 a 34.36±0.90 b 65.64±0.70 b N240 33.25±0.52 a 66.75±0.52 b 32.65±0.69 a 67.35±0.69 b 29.64±0.55 b 70.36±0.55 a 32.32±0.73 c 67.68±0.52 a N225 33.13±0.03 a 66.87±0.56 b 31.31±0.73 ab 68.69±1.46 b 29.29±0.61 b 70.71±1.21 a 30.74±0.84 d 69.26±1.40 a 均值
Mean value33.28 66.72 31.21 68.79 30.92 69.08 34.90 65.10 XC49 N300 31.67±0.46 b 68.33±0.46 b 29.74±0.52 b 70.26±1.56 a 30.71±0.95 a 69.29±2.38 b 33.59±1.14 c 66.41±0.95 b N285 30.72±0.47 b 69.28±0.47 b 29.72±0.54 b 70.28±0.54 a 29.38±0.50 b 70.62±1.01 a 36.61±0.68 a 63.39±0.29 c N270 30.59±0.51 b 69.41±1.02 b 28.24±0.02 c 71.76±1.57 a 31.32±0.52 a 68.68±1.04 b 36.18±0.50 b 63.82±0.79 c N255 29.62±0.51 b 70.38±1.02 a 27.06±0.55 c 72.94±1.09 a 30.57±0.57 b 69.43±0.57 b 37.31±1.01 a 62.69±1.01 c N240 28.97±0.52 c 71.03±0.52 a 32.74±0.68 a 67.26±0.68 b 30.34±0.60 b 69.66±0.60 a 30.43±0.86 d 69.57±0.11 a N225 27.72±0.58 c 72.28±1.73 a 28.10±0.67 c 71.90±0.67 a 29.68±0.69 b 70.32±0.69 a 32.07±0.10 c 67.93±0.44 a 均值
Mean value29.88 70.12 29.27 70.73 30.33 69.67 34.37 65.64 品种 Cultivar (C) ns ns ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * * * C×N * * * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.2.2 植株对15N标记肥料氮和土壤氮的吸收量及占比
由表4可知,施氮量及其与品种的交互作用对成熟期麦株吸收的肥料15N、土壤氮量及吸收比例影响显著(P<0.05),而品种本身无显著影响。
表 4 不同氮量处理小麦植株中肥料15N和土壤氮的吸收量和占比Table 4. The amount of N uptake and ratio in wheat plants from 15N fertilizer and soil as affected by N application rate品种
Cultivar处理
Treatment吸收量 Amount (kg/hm2) 占比 Ratio (%) 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 61.3±2.4 a 108.7±3.1 b 36.06±1.41 a 63.94±1.82 c N285 59.7±1.0 a 107.6±0.7 b 35.68±0.60 a 64.32±0.42 c N270 56.8±1.3 ab 107.7±2.4 b 34.53±0.79 a 65.47±1.46 c N255 51.6±0.9 b 102.8±2.1 c 33.42±0.58 b 66.58±1.36 b N240 47.6±2.0 c 100.3±1.7 c 32.18±1.35 b 67.82±1.15 a N225 43.1±1.0 cd 96.2±0.8 d 30.94±0.72 c 69.06±0.57 a 均值
Mean value53.4 103.9 33.80 66.20 XC49 N300 54.5±1.1 b 113.2±2.1 a 32.50±0.66 b 67.50±1.25 b N285 55.8±2.0 ab 107.8±1.4 b 34.11±1.22 b 65.89±0.86 b N270 54.2±1.1 b 105.9±0.9 b 33.85±0.69 b 66.15±0.56 b N255 53.1±1.3 b 101.3±1.3 c 34.39±0.84 a 65.61±0.84 c N240 44.0±2.0 c 100.3±1.7 c 30.49±1.38 c 69.51±1.18 a N225 42.3±0.6 d 95.0±3.1 d 30.81±0.44 c 69.19±2.26 a 均值
Mean value50.7 103.9 32.69 67.31 品种 Cultivar (C) ns ns ns ns 施氮量 N rate (N) * * * * C×N * * * * 注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—‘spring 38’ (high-gluten); XC49—‘spring 49’ (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.两品种小麦吸收的氮素来自肥料的比例为30.49%~36.06%,各处理均表现为土壤大于肥料,但肥料15N和土壤氮的吸收量均随着施氮量的降低而减少。品种XC38的肥料氮吸收量和肥料氮吸收占比在N300、N285和N270处理之间差异不显著,但均高于其他处理,肥料15N的吸收量为56.8~61.3 kg/hm2,占比为34.53%~36.06%,而N225、N240和N255处理的肥料氮吸收量为43.1~51.6 kg/hm2,占比为30.94%~33.42%。XC38吸收的土壤氮素占比N300、N285和N270处理均显著低于N240和N255,N255处理又显著低于N225处理。品种XC49肥料15N吸收量在N255、N270、N285与N300处理间差异不显著,均显著高于其他2个处理,而土壤氮吸收量在N300处理下最大,且显著高于其他处理。XC49对15N肥料的吸收占比为30.49%~34.39%,对土壤氮的吸收占比为65.61%~ 69.51%。相同氮处理下品种XC38对肥料15N的吸收量与占比均大于XC49,说明XC38植株对肥料氮的吸收强于XC49。
2.3 肥料氮的去向
不同施氮水平对15N吸收利用率、15N土壤残留量、15N土壤残留率、15N总回收率和15N损失率影响显著(表5)。在相同减氮处理下,两品种小麦肥料15N的残留量均表现为随土层深度的增加而减少,0—20、20—40、40—60 cm土层残留量占总残留量的比例分别为44.8%~45.0% 、32.2%~33.1%和23.0%~22.0%。肥料氮的残留主要集中在0—40 cm土层中,达到总残留量的77.0%~78.1% (图3)。0—20 cm土层中两品种15N残留量均表现为N300>N285>N270>N255>N240>N225,两品种的N300处理均显著高于其他氮处理,但N270与N285处理无显著差异,高氮处理(N300、N285、N270)的15N残留量显著高于低氮处理(N255、N240、N225)。在20—40 cm土层中不同处理下15N残留量变化与0—20 cm土层略有不同,两品种在N300与N285处理下,15N残留量要显著高于其他氮处理,N270与N255处理差异不显著,XC38出现了减氮比例更大残留反而高的现象, N225处理下的残留量显著高于N240处理,XC49不同氮处理下残留量表现为N300、N285>N270、N255>N240、N225;40—60 cm土层中,XC38在N300与N270处理下的残留量显著高于N255、N240和N225处理,N285显著低于N300处理,但与N270处理差异并不显著,XC49在N300、N285与N270处理下15N残留量显著高于N255、N240与N225处理。
图 3 不同施氮量处理下肥料15N在不同土层中的残留量 (kg/hm2)注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。柱旁不同小写字母表示同一土层不同处理间在0.05水平差异显著Figure 3. 15N fertilizer residue in soil layers under different N application ratesNote: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Different lowercase letters beside the bars indicate significant difference among treatments at the 0.05 level for the same soil layer表 5 不同施氮处理下15N标记肥料氮的去向Table 5. The fate of 15N-labeled urea N as affected by N application rate品种
Cultivar处理
Treatment产量 (kg/hm2)
Yield吸收利用率 (%)
Use efficiency土壤残留量 (kg/hm2)
Soil residue土壤残留率 (%)
Soil residue rate总回收率 (%)
Total recovery损失率 (%)
Loss rateXC38 N300 7028.5±121.7 b 20.43±0.31 a 92.1±3.3 a 30.69±1.10 a 51.12±0.79 a 48.88±1.77 b N285 6951.9±117.2 b 20.95±1.01 a 82.9±2.7 b 29.10±0.95 a 50.05±1.35 a 49.96±1.65 b N270 7384.0±109.2 a 21.04±0.72 a 75.1±6.0 bc 27.80±2.22 b 48.84±0.98 a 51.17±2.01 b N255 7191.5±90.5 ab 20.24±0.17 a 65.5±1.8 c 25.67±0.71 c 45.91±1.10 b 54.09±0.30 a N240 6828.2±207.4 bc 19.83±0.61 b 57.7±1.3 d 24.05±0.54 c 43.88±2.33 b 56.12±1.20 a N225 6714.7±100.1 c 19.16±0.11 b 59.7±2.5 cd 26.54±1.11 b 45.70±0.51 b 54.31±0.99 a N0 5333.6±110.8 d 均值
Mean value6766.1 20.28 72.2 27.31 47.58 52.42 XC49 N300 6901.2±112.0 b 18.17±0.30 c 94.8±2.9 a 31.60±0.97 a 49.77±2.01 a 50.23±1.51 b N285 7067.1±107.3 ab 19.58±1.07 b 85.8±3.1 b 30.10±1.14 a 49.68±2.51 a 50.32±0.93 b N270 7125.3±117.7 a 20.07±0.83 b 79.2±1.8 b 29.34±0.67 a 49.41±0.91 a 50.59±2.05 b N255 7236.1±201.1 a 20.82±1.00 a 69.9±2.0 c 27.41±0.78 b 48.23±1.30 a 51.76±1.77 b N240 6911.6±213.5 b 18.33±0.04 c 62.8±2.8 c 26.15±1.17 c 44.48±1.02 b 55.52±0.15 a N225 6681.7±161.6 c 18.80±0.57 c 58.1±1.9 d 25.80±0.84 c 44.60±1.71 b 55.40±1.12 a N0 5183.5±431.6 d 均值
Mean value6729.5 19.30 75.1 28.40 47.70 52.30 品种 Cultivar (C) ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * C×N * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.两品种小麦产量与15N利用率均随减氮比例增加呈先增大后减小的趋势(表5)。强筋型小麦XC38在N270 (减氮10%) 处理下有最大产量 (7384.0 kg/hm2),中筋型小麦XC49在N255 (减氮15%) 处理下氮肥农学利用效率最高,且获得最大产量 (7236.1 kg/hm2)。两种春小麦对氮肥的当季平均吸收量占比为19.79%,在0—60 cm土层中15N标记肥料氮的平均残留率27.86%,平均总回收率为47.64%。N300、N285、N270和N255处理间XC38的 15N吸收利用率差异不显著,15N土壤残留量、15N土壤残留率和15N总回收率随施氮量的降低而减小,均在N300处理下达到最大值, 15N土壤残留量为92.1 kg/hm2、15N土壤残留率为30.69%和15N总回收率为51.12%,15N损失率随施氮量的降低呈先增大后减小,在N300处理下最小,为48.88%,减氮处理有效减少了土壤15N残留量,降低了土壤15N残留率。XC49的 15N吸收利用率在N255处理下最大,较其他处理显著提高了0.75~2.65个百分点,土壤15N残留量、土壤15N残留率和15N总回收率也都随着减氮比例的增加而减小,土壤15N残留率和15N总回收率在N300处理下最大,分别为31.60%和49.77%,15N损失率随施氮量的减少呈先增加后降低的趋势。
2.4 减氮对不同氮素利用指标的影响
由表6可知,两个品种的氮素吸收利用率和农学利用率均随施氮量的降低表现出先升高后降低的趋势,氮素生理利用率、氮素偏生产力和氮素收获指数随施氮量的降低逐渐增加。XC38在N270处理氮肥吸收利用率最高,为37.05%,较其他处理显著提高1.41~4.34个百分点;氮肥农学利用率N270与N255处理较高,二者差异不显著,但N270较N300、N285和N240处理分别显著提高了34.34%、33.63%和21.83%。XC49氮素吸收利用率以N270、N285、N255处理较高,3个处理差异不显著。农学利用率以N270、N255和N240处理较高,3个处理间差异不显著。总体来看,XC38与XC49分别在N270和N255处理下有最高的产量与氮肥吸收利用率和农学利用率。
表 6 不同施氮量处理下春小麦氮素利用指标Table 6. Wheat N utilization indexes as affected by N application rate品种
Cultivar处理
Treatment氮素吸收利用率
NRE
(%)氮素农学利用率
NAE
(kg/kg)氮素生理利用率
NPE
(%)氮素偏生产力
NPFP
(kg/kg)氮素收获指数
NHI
(%)XC38 N300 34.77±1.01 c 5.65±0.13 c 15.26±1.35 c 23.43±0.38 d 63.07±0.89 c N285 35.64±0.83 b 5.68±0.11 c 18.01±1.09 c 24.39±0.62 c 63.16±1.24 c N270 37.05±1.52 a 7.59±0.33 a 19.32±0.83 b 27.35±1.00 b 63.03±0.87 c N255 34.55±0.71 c 7.01±0.20 a 21.29±1.16 b 27.14±0.56 b 64.92±0.99 b N240 34.15±2.10 c 6.23±0.07 b 24.29±0.93 a 28.45±0.62 a 64.88±2.19 b N225 32.71±1.03 d 6.14±0.02 c 26.37±2.11 a 29.84±0.65 a 65.53±1.02 b N0 68.84±0.09 a 均值
Mean value34.81 6.38 20.76 26.77 64.78 XC49 N300 35.77±1.51 b 5.73±0.15 c 17.25±0.13 c 23.00±0.21 d 62.93±2.04 c N285 36.20±0.66 a 6.61±0.07 b 18.32±0.92 c 24.80±0.46 c 63.34±0.40 c N270 36.96±1.09 a 7.19±0.54 a 18.15±0.33 c 26.39±0.45 b 63.07±0.37 c N255 36.86±0.95 a 7.75±0.31 a 18.77±0.03 b 27.31±0.11 b 64.00±0.59 b N240 34.97±1.03 c 7.20±0.72 a 20.09±1.01 b 28.80±0.72 a 64.88±1.22 b N225 34.25±0.07 c 6.66±0.20 b 25.90±0.44 a 29.70±1.00 a 65.81±0.74 b N0 68.52±0.25 a 均值
Mean value35.84 6.86 19.75 26.67 64.65 品种 Cultivar (C) ns ns ns ns ns 施氮量 N rate (N) * * * * * C×N * * * * * 注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: NRE—N recovery efficiency; NAE—N agronomic efficiency; NPE—N physiological efficiency; NPEP—N partial fertilizer productivity; NHI—N harvest index. XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.3. 讨论
3.1 减氮下滴灌春小麦对肥料氮和土壤氮的吸收
氮肥是调节植株性状、影响作物产量形成的重要栽培措施,在小麦生长过程中,氮素吸收、同化以及转运,对籽粒的产量和品质有直接影响[19-21]。本研究中滴灌小麦成熟期吸氮总量超过60%来自土壤氮,土壤氮和肥料氮的吸收比约为2∶1,且随着施氮量的降低,春小麦氮素积累对土壤氮的依赖不断增加。左红娟等[13]应用15N示踪技术对华北平原冬小麦肥料氮去向的研究显示,冬小麦吸收的氮素来自肥料的比例为 26.6%~33.6%,对土壤氮的依赖程度在66%以上。孙昭安等[22]对国内肥料15N示踪结果进行整合分析发现,小麦氮素吸收来自土壤氮的比例高达2/3,而来自肥料氮的比例仅为 1/3。有研究显示在控制灌溉下,减氮10%施肥能够提高表层土壤NH4+-N积累量,有利于对土壤养分吸收利用,施肥减氮超过20%时,会因为过量减氮而无法满足作物所需氮素,作物大量消耗土壤氮素[23]。本试验中,两品种小麦成熟期地上部器官对15N肥料和土壤氮的吸收,均表现为籽粒>茎鞘>穗轴+颖壳>叶,氮素优先分配于籽粒,且肥料氮分配比例要高于土壤氮,研究结论同梁伟琴等[24]的研究。但孟维伟等[25]的结论显示,成熟期肥料氮的吸收表现为籽粒>茎鞘>叶>穗轴+颖壳,其研究也表明过多的灌溉量,会不利于氮素向生殖器官的转移。本试验于干旱区进行,且采用控制灌溉的模式进行,更能够促进氮素向籽粒方向的转移。在本研究中强筋型小麦XC38氮素积累对氮肥的依赖程度高于中筋型小麦XC49,其籽粒氮素积累对减氮施肥更加敏感。在新疆滴灌条件下不同筋型小麦氮肥利用,及其对土壤氮与肥料氮的生理转运机制与传统种植模式有何不同,有待进一步探索。
3.2 肥料氮在滴灌春小麦麦田土壤中的残留、分布及去向
植物对氮素的吸收,主要是吸收矿质氮,水肥管理对土壤矿质氮含量有重要影响[26]。合理的灌溉方式,有利于土壤条件的改善,更有助于脲酶活性提高,促进尿素分解,提高土壤矿质氮累积量[27]。本试验中0—20 cm (肥料氮残留占总残留比例44.8%~45.0%) 土层残留量随减氮比例的增加而减少,但在20—40 cm (肥料氮残留占总残留比例32.2%~33.1%)、40—60 cm (肥料氮残留占总残留比例23.0%~22.0%) 土层中部分处理并未表现出随着减氮比例增加残留不断降低的趋势,这可能与土壤前茬残留有关,原有土壤中残留的NO3−-N随水淋洗逐渐到达土壤下层[28],而随着土层深度的增加土壤的性质也开始改变,造成下层土壤氮素残留变化的规律与上层的变化不同。在Tian等[29]对水稻NH3挥发的研究中,减氮的处理可以有效降低NH3挥发损失。也有研究显示控施氮肥,能够有效维持表土中矿质氮供应,同时提高植物氮素利用率[30]。本试验中15N标记氮肥在土壤中的残留率为24.05%~31.6%,主要集中在0—40 cm (残留量占总残留量的77.0%~78.1%)土层中,但0—40 cm土层肥料氮的残留比例高于前人研究结果,其可能的原因是新疆滴灌麦田“少量多次”的水肥供给方式,促进氮肥转化过程,提高植物对肥料氮的吸收,减少了矿质氮随水淋失所致。
3.3 减氮对滴灌春小麦氮素利用率的影响
提高氮肥利用率是降低农业生产投入和提高植麦效益的有效途径[31],而合理减氮也是提高作物氮素利用的重要措施[32-33]。本研究显示,减氮对氮素吸收利用率、氮肥农学利用率、氮素偏生产力、氮素收获指数和氮素生理利用率均存在显著影响,氮素吸收利用率、氮肥农学利用率以及产量随减氮比例的增加呈先增后降变化趋势。在玉米种植中减施氮肥14.3%~28.6%,随着施氮量的减少,玉米氮肥利用率、氮肥农学利用率会出现升高[33]。牛轶男等[34]的研究表明,过多减氮会导致籽粒产量、氮素生理效率、氮肥农学利用效率不同程度的降低。本试验结果也显示一定程度的减氮(10%左右)并不会降低作物产量与氮素利用效率,反而有一定的正向作用。原因可能是新疆地区农户的习惯氮肥投入量(300 kg/hm2)是过量的,过多的氮肥投入不利于小麦产量的提高,同时在干旱或半干旱区蒸发量极高,吕广德等[35]的研究表明在干旱或灌水受限制的条件下,为稳产需适当的减少氮肥施用量。氮素偏生产力、氮素收获指数和氮素生理利用率在本试验设置的减氮梯度中,随施氮量的降低呈增加趋势,其中氮素生理利用效率与前人研究结果略有不同,可能是植株对土壤氮吸收的增加,氮素吸收与利用能力也得到了提高,在一定程度上弥补了氮肥减少带来的损失[36],且在牛轶男等[34]的研究中减氮达到30%时,氮素生理利用效率开始下降,而本试验中最大减氮比例仅为25%,减氮比例较小也是原因之一。强筋型小麦XC38在N270 (减氮10%)处理下氮素利用效率与氮肥农学利用率最高,有最大产量(7384.0 kg/hm2),同时肥料氮的利用效率最大。中筋型小麦XC49在N255 (减氮15%)N270 (减氮10%)处理下氮肥利用效率差异不明显,但在N255处理下氮肥农学利用效率最高,且获得最大产量(7236.1 kg/hm2),肥料氮的吸收利用效率也最大。本试验中减氮处理(N270、N255)能够有效提高滴灌春小麦的氮素利用效率,主要原因可能是滴灌分次施肥相对于传统灌溉施肥或“一炮轰”的模式,单次施肥量易控制,且新疆干旱少雨的气候条件与滴灌的应用也减少了氮素在土壤中的淋失,更有利于氮素向籽粒的转移,而较多或过量的施氮肥,会导致营养器官中氮素的大量积累降低转运速率,使成熟期小麦氮素利用效率降低[37-38]。新疆滴灌条件下不同筋型小麦氮肥利用的差异,不仅受小麦品种的影响,还与土壤氮素积累、氮肥施入后转化为不同种矿质氮的比例以及土壤微生物活性的改变有关,这方面仍需要进一步的研究与探索。
4. 结论
滴灌氮肥中,肥料氮的作物当季吸收比例平均为19.79%,0—60 cm土层中的平均残留率27.86%,平均总回收率为47.64%。提高施氮量可提高小麦对肥料氮的吸收量及其比例,且增加土壤中氮素的残留量,有效补充土壤氮库。虽然强筋型小麦XC38对肥料氮素的吸收强于中筋型小麦XC49,但对肥料氮的基本去向没有显著影响。综合考虑产量和氮肥利用效益,小麦XC38和XC49的适宜施氮量分别为N 270 kg/hm2和255 kg/hm2。
-
图 3 不同施氮量处理下肥料15N在不同土层中的残留量 (kg/hm2)
注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。柱旁不同小写字母表示同一土层不同处理间在0.05水平差异显著
Figure 3. 15N fertilizer residue in soil layers under different N application rates
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Different lowercase letters beside the bars indicate significant difference among treatments at the 0.05 level for the same soil layer
表 1 春小麦各生育期滴灌施氮量
Table 1 N application rate at each growth period of spring wheat under drip irrigation
处理
Treatment追施时期及追施量 Topdressing period and amount (kg/hm2) 总量
Total2叶期
2-leaf分蘖期
Tillering5叶龄
5-leaf6叶龄
6-leaf孕穗期
Booting抽穗期
Heading乳熟期
Milky maturityN300 240 24 24 24 24 48 36 12 N285 228 22.8 22.8 22.8 22.8 45.6 34.2 11.4 N270 216 21.6 21.6 21.6 21.6 43.2 32.4 10.8 N255 204 20.4 20.4 20.4 20.4 40.8 30.6 10.2 N240 192 19.2 19.2 19.2 19.2 38.4 28.8 9.6 N225 180 18 18 18 18 36 27 9 N0 0 0 0 0 0 0 0 0 表 2 不同施氮量处理小麦地上部各器官肥料15N和土壤氮的吸收量 (kg/hm2)
Table 2 Absorption of N in aboveground organs from 15N fertilizer and soil under different N application rates
品种
Cultivar处理
Treatment茎鞘 Stem+shelf 叶 Leaf 穗轴+颖壳 Cob+glume 籽粒 Grain 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 7.6±0.1 a 15.2±0.4 a 5.9±0.0 a 12.8±0.3 a 7.0±0.2 a 14.3±0.5 a 40.8±1.3 a 66.7±1.7 b N285 7.4±0.1 a 14.5±0.1 a 5.7±0.1 a 13.5±0.2 a 6.7±0.1 a 13.8±0.2 a 39.9±1.0 a 65.8±0.5 b N270 7.1±0.1 a 14.6±0.2 a 5.5±0.1 a 12.2±0.2 a 6.4±0.1 a 14.2±0.1 a 37.8±1.1 ab 66.4±1.3 b N255 6.3±0.1 b 12.5±0.1 c 5.1±0.1 b 11.1±0.1 b 5.9±0.1 b 13.6±0.3 a 34.3±0.9 bc 65.6±0.7 b N240 6.4±0.1 b 12.9±0.1 b 4.8±0.1 b 9.8±0.1 c 5.4±0.1 b 12.8±0.1 b 31.0±0.7 c 64.8±0.5 c N225 5.9±0.0 b 11.9±0.1 c 4.3±0.1 c 9.4±0.2 c 4.8±0.1 c 11.7±0.2 b 28.1±0.6 d 63.2±1.0 c 均值
Mean value6.8 13.6 5.2 11.5 6.0 13.4 35.3 65.4 XC49 N300 7.0±0.1 a 15.0±0.1 a 5.7±0.1 a 13.5±0.3 a 6.4±0.2 a 14.6±0.5 a 35.4±1.2 b 70.1±1.0 a N285 6.6±0.1 b 14.9±0.1 a 5.5±0.1 a 13.1±0.1 a 5.8±0.1 b 14.1±0.2 a 37.9±0.7 ab 65.7±0.3 b N270 6.3±0.1 b 14.4±0.2 a 5.4±0.0 a 13.7±0.3 a 6.0±0.1 b 13.3±0.2 ab 36.5±0.5 b 64.5±0.8 c N255 5.8±0.1 b 13.9±0.2 b 5.0±0.1 b 13.3±0.2 a 5.4±0.1 b 12.2±0.1 b 36.9±1.0 b 61.9±1.0 d N240 5.6±0.1 c 13.6±0.1 b 4.8±0.1 b 10.0±0.1 b 5.1±0.1 b 11.6±0.1 b 28.5±0.8 d 65.1±0.1 b N225 4.8±0.1 c 12.5±0.3 c 4.2±0.1 c 10.8±0.1 b 4.3±0.1 c 10.3±0.1 c 29.0±0.9 d 61.4±0.4 d 均值
Mean value6.0 14.1 5.1 12.4 5.5 12.7 36.4 64.8 品种 Cultivar (C) ns ns ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * * * C×N * * * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.表 3 不同施氮量处理小麦各器官肥料15N和土壤氮的吸收占比(%,微管试验)
Table 3 The absorption rate (%) of 15N fertilizer and soil N by various organs under different Napplication rates (tube experiment)
品种
Cultivar处理
Treatment茎鞘 Stem+shelf 叶 Leaf 穗轴+颖壳 Cob+glume 籽粒 Grain 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 33.40±0.44 a 66.60±1.75 b 31.38±0.00 ab 68.62±1.7 b 32.94±0.94 a 67.06±2.35 c 38.10±1.21 a 61.90±1.58 c N285 33.84±0.46 a 66.16±0.46 c 29.65±0.52 bc 70.35±0.10 a 32.55±0.49 a 67.45±0.98 c 37.70±0.95 a 62.30±0.47 c N270 32.50±0.46 a 67.50±0.92 b 30.87±0.57 b 69.13±1.13 b 31.01±0.49 a 68.99±0.49 b 36.18±1.06 b 63.82±1.25 c N255 33.56±0.53 a 66.44±0.53 c 31.38±0.62 ab 68.62±0.62 b 30.09±0.51 b 69.91±1.54 a 34.36±0.90 b 65.64±0.70 b N240 33.25±0.52 a 66.75±0.52 b 32.65±0.69 a 67.35±0.69 b 29.64±0.55 b 70.36±0.55 a 32.32±0.73 c 67.68±0.52 a N225 33.13±0.03 a 66.87±0.56 b 31.31±0.73 ab 68.69±1.46 b 29.29±0.61 b 70.71±1.21 a 30.74±0.84 d 69.26±1.40 a 均值
Mean value33.28 66.72 31.21 68.79 30.92 69.08 34.90 65.10 XC49 N300 31.67±0.46 b 68.33±0.46 b 29.74±0.52 b 70.26±1.56 a 30.71±0.95 a 69.29±2.38 b 33.59±1.14 c 66.41±0.95 b N285 30.72±0.47 b 69.28±0.47 b 29.72±0.54 b 70.28±0.54 a 29.38±0.50 b 70.62±1.01 a 36.61±0.68 a 63.39±0.29 c N270 30.59±0.51 b 69.41±1.02 b 28.24±0.02 c 71.76±1.57 a 31.32±0.52 a 68.68±1.04 b 36.18±0.50 b 63.82±0.79 c N255 29.62±0.51 b 70.38±1.02 a 27.06±0.55 c 72.94±1.09 a 30.57±0.57 b 69.43±0.57 b 37.31±1.01 a 62.69±1.01 c N240 28.97±0.52 c 71.03±0.52 a 32.74±0.68 a 67.26±0.68 b 30.34±0.60 b 69.66±0.60 a 30.43±0.86 d 69.57±0.11 a N225 27.72±0.58 c 72.28±1.73 a 28.10±0.67 c 71.90±0.67 a 29.68±0.69 b 70.32±0.69 a 32.07±0.10 c 67.93±0.44 a 均值
Mean value29.88 70.12 29.27 70.73 30.33 69.67 34.37 65.64 品种 Cultivar (C) ns ns ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * * * C×N * * * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.表 4 不同氮量处理小麦植株中肥料15N和土壤氮的吸收量和占比
Table 4 The amount of N uptake and ratio in wheat plants from 15N fertilizer and soil as affected by N application rate
品种
Cultivar处理
Treatment吸收量 Amount (kg/hm2) 占比 Ratio (%) 肥料 Urea 土壤 Soil 肥料 Urea 土壤 Soil XC38 N300 61.3±2.4 a 108.7±3.1 b 36.06±1.41 a 63.94±1.82 c N285 59.7±1.0 a 107.6±0.7 b 35.68±0.60 a 64.32±0.42 c N270 56.8±1.3 ab 107.7±2.4 b 34.53±0.79 a 65.47±1.46 c N255 51.6±0.9 b 102.8±2.1 c 33.42±0.58 b 66.58±1.36 b N240 47.6±2.0 c 100.3±1.7 c 32.18±1.35 b 67.82±1.15 a N225 43.1±1.0 cd 96.2±0.8 d 30.94±0.72 c 69.06±0.57 a 均值
Mean value53.4 103.9 33.80 66.20 XC49 N300 54.5±1.1 b 113.2±2.1 a 32.50±0.66 b 67.50±1.25 b N285 55.8±2.0 ab 107.8±1.4 b 34.11±1.22 b 65.89±0.86 b N270 54.2±1.1 b 105.9±0.9 b 33.85±0.69 b 66.15±0.56 b N255 53.1±1.3 b 101.3±1.3 c 34.39±0.84 a 65.61±0.84 c N240 44.0±2.0 c 100.3±1.7 c 30.49±1.38 c 69.51±1.18 a N225 42.3±0.6 d 95.0±3.1 d 30.81±0.44 c 69.19±2.26 a 均值
Mean value50.7 103.9 32.69 67.31 品种 Cultivar (C) ns ns ns ns 施氮量 N rate (N) * * * * C×N * * * * 注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—‘spring 38’ (high-gluten); XC49—‘spring 49’ (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.表 5 不同施氮处理下15N标记肥料氮的去向
Table 5 The fate of 15N-labeled urea N as affected by N application rate
品种
Cultivar处理
Treatment产量 (kg/hm2)
Yield吸收利用率 (%)
Use efficiency土壤残留量 (kg/hm2)
Soil residue土壤残留率 (%)
Soil residue rate总回收率 (%)
Total recovery损失率 (%)
Loss rateXC38 N300 7028.5±121.7 b 20.43±0.31 a 92.1±3.3 a 30.69±1.10 a 51.12±0.79 a 48.88±1.77 b N285 6951.9±117.2 b 20.95±1.01 a 82.9±2.7 b 29.10±0.95 a 50.05±1.35 a 49.96±1.65 b N270 7384.0±109.2 a 21.04±0.72 a 75.1±6.0 bc 27.80±2.22 b 48.84±0.98 a 51.17±2.01 b N255 7191.5±90.5 ab 20.24±0.17 a 65.5±1.8 c 25.67±0.71 c 45.91±1.10 b 54.09±0.30 a N240 6828.2±207.4 bc 19.83±0.61 b 57.7±1.3 d 24.05±0.54 c 43.88±2.33 b 56.12±1.20 a N225 6714.7±100.1 c 19.16±0.11 b 59.7±2.5 cd 26.54±1.11 b 45.70±0.51 b 54.31±0.99 a N0 5333.6±110.8 d 均值
Mean value6766.1 20.28 72.2 27.31 47.58 52.42 XC49 N300 6901.2±112.0 b 18.17±0.30 c 94.8±2.9 a 31.60±0.97 a 49.77±2.01 a 50.23±1.51 b N285 7067.1±107.3 ab 19.58±1.07 b 85.8±3.1 b 30.10±1.14 a 49.68±2.51 a 50.32±0.93 b N270 7125.3±117.7 a 20.07±0.83 b 79.2±1.8 b 29.34±0.67 a 49.41±0.91 a 50.59±2.05 b N255 7236.1±201.1 a 20.82±1.00 a 69.9±2.0 c 27.41±0.78 b 48.23±1.30 a 51.76±1.77 b N240 6911.6±213.5 b 18.33±0.04 c 62.8±2.8 c 26.15±1.17 c 44.48±1.02 b 55.52±0.15 a N225 6681.7±161.6 c 18.80±0.57 c 58.1±1.9 d 25.80±0.84 c 44.60±1.71 b 55.40±1.12 a N0 5183.5±431.6 d 均值
Mean value6729.5 19.30 75.1 28.40 47.70 52.30 品种 Cultivar (C) ns ns ns ns ns ns 施氮量 N rate (N) * * * * * * C×N * * * * * * 注: XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05.表 6 不同施氮量处理下春小麦氮素利用指标
Table 6 Wheat N utilization indexes as affected by N application rate
品种
Cultivar处理
Treatment氮素吸收利用率
NRE
(%)氮素农学利用率
NAE
(kg/kg)氮素生理利用率
NPE
(%)氮素偏生产力
NPFP
(kg/kg)氮素收获指数
NHI
(%)XC38 N300 34.77±1.01 c 5.65±0.13 c 15.26±1.35 c 23.43±0.38 d 63.07±0.89 c N285 35.64±0.83 b 5.68±0.11 c 18.01±1.09 c 24.39±0.62 c 63.16±1.24 c N270 37.05±1.52 a 7.59±0.33 a 19.32±0.83 b 27.35±1.00 b 63.03±0.87 c N255 34.55±0.71 c 7.01±0.20 a 21.29±1.16 b 27.14±0.56 b 64.92±0.99 b N240 34.15±2.10 c 6.23±0.07 b 24.29±0.93 a 28.45±0.62 a 64.88±2.19 b N225 32.71±1.03 d 6.14±0.02 c 26.37±2.11 a 29.84±0.65 a 65.53±1.02 b N0 68.84±0.09 a 均值
Mean value34.81 6.38 20.76 26.77 64.78 XC49 N300 35.77±1.51 b 5.73±0.15 c 17.25±0.13 c 23.00±0.21 d 62.93±2.04 c N285 36.20±0.66 a 6.61±0.07 b 18.32±0.92 c 24.80±0.46 c 63.34±0.40 c N270 36.96±1.09 a 7.19±0.54 a 18.15±0.33 c 26.39±0.45 b 63.07±0.37 c N255 36.86±0.95 a 7.75±0.31 a 18.77±0.03 b 27.31±0.11 b 64.00±0.59 b N240 34.97±1.03 c 7.20±0.72 a 20.09±1.01 b 28.80±0.72 a 64.88±1.22 b N225 34.25±0.07 c 6.66±0.20 b 25.90±0.44 a 29.70±1.00 a 65.81±0.74 b N0 68.52±0.25 a 均值
Mean value35.84 6.86 19.75 26.67 64.65 品种 Cultivar (C) ns ns ns ns ns 施氮量 N rate (N) * * * * * C×N * * * * * 注:XC38—强筋型‘新春38’;XC49—中筋型‘新春49’。同列数据后不同小写字母表示处理间在0.05水平差异显著;ns—无统计学差异;*—P<0.05。
Note: NRE—N recovery efficiency; NAE—N agronomic efficiency; NPE—N physiological efficiency; NPEP—N partial fertilizer productivity; NHI—N harvest index. XC38—Xinchun 38 (high-gluten); XC49—Xinchun 49 (medium-gluten). Values followed by different lowercase letters in a column indicate significant difference among treatments at 0.05 level; ns—not statistically different; *—P<0.05. -
[1] Tian Z W, Liu X X, Gu S L, et al. Postponed and reduced basal nitrogen application improves nitrogen use efficiency and plant growth of winter wheat[J]. Journal of Integrative Agriculture, 2018, 17(12): 2648–2661. DOI: 10.1016/S2095-3119(18)62086-6
[2] Swoish M, Steinke K. Plant growth regulator and nitrogen applications for improving wheat production in Michigan[J]. Crop, Forage & Turfgrass Management, 2017, 3(1): 1–7.
[3] 张姗, 石祖梁, 杨四军, 等. 施氮和秸秆还田对晚播小麦养分平衡和产量的影响[J]. 应用生态学报, 2015, 26(9): 2714–2720. Zhang S, Shi Z L, Yang S J, et al. Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation[J]. Chinese Journal of Applied Ecology, 2015, 26(9): 2714–2720.
[4] 张卫峰, 易俊杰, 张福锁, 等. 中国肥料发展研究报告[M]. 北京: 中国农业大学出版社, 2016. Zhang W F, Yi J J, Zhang F S, et al. China fertilizer development research report[M]. Beijing: China Agricultural University Press, 2016.
[5] 崔磊, 李东坡, 武志杰, 等. 不同硝化抑制剂对红壤氮素硝化作用及玉米产量氮素利用率的影响[J]. 应用生态学报, 2021, 32(11): 3953–3960. Cui L, Li D P, Wu Z J, et al. Effects of different nitrification inhibitors on nitrification, maize yield, and nitrogen use efficiency in red soil[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3953–3960.
[6] Heffer P. Assessment of fertilizer use by crop at the global level [M]. Paris, France: International Fertilizer Industry Association, 2013.
[7] Hawkesford M J. Reducing the reliance on nitrogen fertilizer for wheat production[J]. Journal of Cereal Science, 2014, 59(5): 276–283.
[8] 袁晶晶, 同延安, 卢绍辉, 等. 生物炭与氮肥配施对土壤肥力及红枣产量、品质的影响[J]. 植物营养与肥料学报, 2017, 23(2): 468–475. DOI: 10.11674/zwyf.16285 Yuan J J, Tong Y A, Lu S H, et al. Effects of biochar and nitrogen fertilizer application on soil fertility and jujube yield and quality[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 468–475. DOI: 10.11674/zwyf.16285
[9] 蒋桂英, 冶军, 马富裕. 滴灌小麦水肥资源高效利用与地力提升[M]. 北京: 中国农业出版社, 2016. Jiang G Y, Ye J, Ma F Y. Efficient utilization of drip irrigation wheat water and fertilizer resources and improvement of soil fertility[M]. Beijing: China Agricultural Press, 2016.
[10] Zhang S Q, Yuan L, Li W, et al. Effects of urea enhanced with different weathered coal-derived humic acid components on maize yield and fate of fertilizer nitrogen[J]. Journal of Integrative Agriculture, 2019, 18(3): 656–666. DOI: 10.1016/S2095-3119(18)61950-1
[11] Shi Z L, Jing Q, Cai J, et al. The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits[J]. European Journal of Agronomy, 2012, 40: 86–93. DOI: 10.1016/j.eja.2012.01.006
[12] 李鹏飞, 李小坤, 侯文峰, 等. 应用15N示踪技术研究控释尿素在稻田中的去向及利用率[J]. 中国农业科学, 2018, 51(20): 3961–3971. Li P F, Li X K, Hou W F, et al. Studying the fate and recovery efficiency of controlled release urea in paddy soil using 15N tracer technique[J]. Scientia Agricultura Sinica, 2018, 51(20): 3961–3971.
[13] 左红娟, 白由路, 卢艳丽, 等. 基于高丰度15N华北平原冬小麦肥料氮的去向研究[J]. 中国农业科学, 2012, 45(15): 3093–3099. Zuo H J, Bai Y L, Lu Y L, et al. Fate of fertilizer nitrogen applied to winter wheat in north China plain based on high abundance of 15N[J]. Scientia Agricultura Sinica, 2012, 45(15): 3093–3099.
[14] 巨晓棠, 潘家荣, 刘学军, 张福锁. 北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J]. 植物营养与肥料学报, 2003, 9(3): 264–270. DOI: 10.11674/zwyf.2003.0302 Ju X T, Pan J R, Liu X J, Zhang F S. Study on the fate of nitrogen fertilizer in winter wheat/summer maize rotation system in Beijing suburban[J]. Journal of Plant Nutrition and Fertilizers, 2003, 9(3): 264–270. DOI: 10.11674/zwyf.2003.0302
[15] 山楠, 杜连凤, 毕晓庆, 等. 用15N肥料标记法研究潮土中玉米氮肥的利用率与去向[J]. 植物营养与肥料学报, 2016, 22(4): 930–936. Shan N, Du L F, Bi X Q, et al. Nitrogen use efficiency and behavior studied with15N labeled fertilizer in maize in fluvo-aquic soils[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(4): 930–936.
[16] Lü Z Y, Diao M, Li W H, et al. Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system[J], Agricultural Water Management, 2019, 212: 252–261.
[17] 李欣欣, 石祖梁, 王久臣, 等. 稻茬冬小麦氮肥吸收、残留和损失特性[J]. 应用生态学报, 2020, 31(11): 3691–3699. Li X X, Shi Z L, Wang J C, et al. Characteristics of uptake, residual and loss of nitrogen fertilizer in winter wheat after rice stubble[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3691–3699.
[18] 张法全, 王小燕, 于振文, 等. 公顷产10000 kg小麦氮素和干物质积累与分配特性[J]. 作物学报, 2009, 35(6): 1086–1096. DOI: 10.3724/SP.J.1006.2009.01086 Zhang F Q, Wang X Y, Yu Z W, et al. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agronomica Sinica, 2009, 35(6): 1086–1096. DOI: 10.3724/SP.J.1006.2009.01086
[19] 段文学, 于振文, 张永丽, 等. 施氮量对旱地小麦氮素吸收转运和土壤硝态氮含量的影响[J]. 中国农业科学, 2012, 45(15): 3040–3048. Duan W X, Yu Z W, Zhang Y L, et al. Effects of nitrogen fertilizer application rate on nitrogen absorption, translocation, and nitrate nitrogen content in soil of dryland wheat[J]. Scientia Agricultura Sinica, 2012, 45(15): 3040–3048.
[20] 王德梅, 赵广才, 常旭虹, 等. 土壤相对含水量对冬小麦氮素积累、蛋白质组成和加工品质的影响[J]. 麦类作物学报, 2014, 34(9): 1245–1252. Wang D M, Zhao G C, Chang X H, et al. Effect of soil water content on nitrogen accumulation, protein composition and processing quality of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(9): 1245–1252.
[21] 马冬云, 郭天财, 查菲娜, 等. 种植密度对两种穗型冬小麦旗叶氮代谢酶活性及籽粒蛋白质含量的影响[J]. 作物学报, 2007, 33(3): 514–517. DOI: 10.3321/j.issn:0496-3490.2007.03.026 Ma D Y, Guo T C, Zha F N, et al. Effects of planting density on activities of nitrogen metabolism enzymes in flag leaves and grain protein content in winter wheat with two spike types[J]. Acta Agronomica Sinica, 2007, 33(3): 514–517. DOI: 10.3321/j.issn:0496-3490.2007.03.026
[22] 孙昭安, 陈清, 朱彪, 等. 化肥氮对冬小麦氮素吸收的贡献和土壤氮库的补偿[J]. 植物营养与肥料学报, 2020, 26(3): 413–430. Sun Z A, Chen Q, Zhu B, et al. Contributions of fertilizer N to winter wheat N uptake and compensation of soil N pool in farmland[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 413–430.
[23] 张忠学, 宋健, 齐智娟, 等. 控制灌溉氮肥减施对土壤氮素分布及氮素利用率的影响[J]. 东北农业大学学报, 2022, 53(3): 42–49,60. DOI: 10.3969/j.issn.1005-9369.2022.03.005 Zhang Z X, Song J, Qi Z J, et al. Effects of reducing nitrogen fertilizer application on soil nitrogen distribution and nitrogen use efficiency under water- saving irrigation[J]. Journal of Northeast Agricultural University, 2022, 53(3): 42–49,60. DOI: 10.3969/j.issn.1005-9369.2022.03.005
[24] 梁伟琴, 贾莉, 郭黎明, 等. 水氮耦合对春小麦干物质累积与植株氮素转运的影响[J/OL]. 作物杂志: 1–9. https://kns.cnki.net/kcms/detail/11.1808.S.20220616.0813.002.html, 2023-03-06. Liang W Q, Jia L, Guo L M, et al. Effects of different levels of irrigation and nitrogen application on dry matter accumulation and nitrogen transport of spring wheat[J/OL]. Crops: 1–9. https://kns.cnki.net/kcms/detail/11.1808.S.20220616.0813.002.html, 2023-03-06.
[25] 孟维伟, 王东, 于振文, 石玉. 15N示踪法研究不同灌水处理对小麦氮素吸收分配及利用效率的影响[J]. 植物营养与肥料学报, 2011, 17(4): 831–837. Meng W W, Wang D, Yu Z W, Shi Y. Effect of irrigation on nitrogen uptake and distribution of wheat using the 15N tracer technique[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 831–837.
[26] 张燕, 王百群, 何瑞清. 不同施肥下冬小麦生长过程中土壤矿质氮变化及其与冬小麦叶片SPAD值的关系[J]. 水土保持研究, 2016, 23(6): 78–82. DOI: 10.13869/j.cnki.rswc.20160823.003 Zhang Y, Wang B Q, He R Q. Changes of soil mineral nitrogen and its relationship with soil and plant analyzer development (SPAD) values of winter wheat leaves during winter wheat growth under different fertilization[J]. Research of Soil and Water Conservation, 2016, 23(6): 78–82. DOI: 10.13869/j.cnki.rswc.20160823.003
[27] 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J]. 农业工程学报, 2013, 29(21): 91–98. Xiao X, Zhu W, Xiao L, et al. Suitable water and nitrogen treatment improves soil microbial biomass carbon and nitrogen and enzyme activities of paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(21): 91–98.
[28] Ju X T, Xing G X, Chen X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of National Academy of Sciences of the United States of America, 2009, 106: 3041–3046. DOI: 10.1073/pnas.0813417106
[29] Tian C, Zhou X, Ding Z L, et al. Controlled-release N fertilizer to mitigate ammonia volatilization from double-cropping rice[J]. Nutrient Cycling in Agroecosystems, 2021, 199(7): 129–137.
[30] Qu Z M, Qi X C, Shi R G, et al. Reduced N fertilizer application with optimal blend of controlled-release urea and urea improves tomato yield and quality in greenhouse production system[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 1741–1750.
[31] Zhang X X, Zhou J, Huang N S, et al. Transcriptomic and co-expression network profiling of shoot apical meristem reveal contrasting response to nitrogen rate between indica and japonica rice subspecies[J]. International Journal of Molecular Sciences, 2019, 20(23): 5922. DOI: 10.3390/ijms20235922
[32] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响[J]. 植物营养与肥料学报, 2017, 23(2): 342–350. DOI: 10.11674/zwyf.16280 Jiang P, Xiong H, Zhang L, et al. Effects of N rate and planting density on nutrient uptake and utilization of hybrid rice under different ecological conditions[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 342–350. DOI: 10.11674/zwyf.16280
[33] 陈传永、赵久然、王元东, 等. 氮肥减施对京科968与郑单958氮效率及产量的影响[J]. 玉米科学, 2018, 26(3): 121–127. Chen C Y, Zhao J R, Wang Y D, et al. Effects of nitrogen reduction on nitrogen efficiency and yield of Jingke968 and Zhendan958[J]. Journal of Maize Sciences, 2018, 26(3): 121–127.
[34] 牛轶男, 申丹丹, 丁永刚, 等. 减氮模式对稻茬中筋小麦籽粒产量、品质和氮肥效率的影响[J]. 麦类作物学报, 2021, 41(12): 1524–1533. DOI: 10.7606/j.issn.1009-1041.2021.12.10 Niu Y N, Shen D D, Ding Y G, et al. Effect of nitrogen reduction models on grain yield, quality and nitrogen efficiency of medium-gluten wheat following rice[J]. Journal of Triticeae Crops, 2021, 41(12): 1524–1533. DOI: 10.7606/j.issn.1009-1041.2021.12.10
[35] 吕广德, 亓晓蕾, 张继波, 等. 中、高产型小麦干物质和氮素累积转运对水氮的响应[J]. 植物营养与肥料学报, 2021, 27(9): 1534–1547. DOI: 10.11674/zwyf.2021043 Lü G D, Qi X L, Zhang J B, et al. Response of nitrogen and dry matter accumulation in middle and high yield wheat cultivars to water and nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1534–1547. DOI: 10.11674/zwyf.2021043
[36] 张娟, 武同华, 代兴龙, 等. 种植密度和施氮水平对小麦吸收利用土壤氮素的影响[J]. 应用生态学报, 2015, 26(6): 1727–1734. Zhang J, Wu T H, Dai X L, et al. Effects of plant density and nitrogen level on nitrogen uptake and utilization of winter wheat[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1727–1734.
[37] Tyagi V, Singh R K, Nagargade M. Effect of precision nitrogen management on yield and nitrogen use efficiency in different cultivars of wheat[J]. Indian Journal of Agricultural Sciences, 2020, 90(9): 1663–1669. DOI: 10.56093/ijas.v90i9.106588
[38] 曲文凯, 徐学欣, 郝天佳, 等. 施氮量对滴灌冬小麦–夏玉米周年产量及氮素利用效率的影响[J]. 植物营养与肥料学报, 2022, 28(7): 1271–1282. DOI: 10.11674/zwyf.2021582 Qu W K, Xu X X, Hao T J, et al. Effects of nitrogen application rate on annual yield and N-use efficiency of winter wheat-summer maize rotation under drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1271–1282. DOI: 10.11674/zwyf.2021582