Effects of boron application rate on double-low rapeseed yield and quality
-
摘要:目的
研究施用硼肥提高油菜籽产量、改善油菜籽品质的效果,确定适宜硼肥用量,同时探究油菜产量、品质指标、脂肪酸组分和籽粒硼含量间的相关关系,为直播冬油菜优质高产栽培研究和生产提供理论依据。
方法2020—2021年在安徽池州、重庆万州和江西南昌布置了3个硼肥用量田间试验,供试油菜均为双低品种。设置4个硼砂(含B 10%)用量处理,分别为0 (B0)、4.5 (B4.5)、9.0 (B9.0) 和13.5 kg/hm2 (B13.5)。测定了油菜产量、籽粒硼含量、主要品质指标及脂肪酸组分,并分析了各因素之间的相关关系。
结果3个试验点产量均在B13.5处理达到最大,硼肥用量超过4.5或9.0 kg/hm2,产量基本不再显著增加。与B0处理相比,施用硼肥在池州、万州和南昌试验点最高可分别增加油菜籽产量296、818和715 kg/hm2,增产率分别达到20.7%、42.6%和38.3%。施硼显著增加了各试验点油菜的单株角果数和每角粒数,其中单株角果数的增幅最高,与B0相比,B4.5、B9.0和B13.5处理分别平均增加20.0%、20.4%和35.0%,每角粒数分别平均增加7.3%、13.1%和11.1%。南昌试验点B13.5处理的收获密度较B0增加了30.5%,万州试验点B9.0处理的千粒重较B0增加了7.4%。与B0相比,施硼显著提高了油菜籽的含油量、油酸和亚麻酸含量,最高增幅分别为10.3%、15.8%和22.7%;降低了亚油酸、棕榈酸和硬脂酸含量,最高降幅分别为19.4%、36.1%和14.1%;蛋白质含量仅南昌试验点显著提高了19.1%,但产油量和蛋白质产量在3个试验点均显著提高,最高增幅分别为53.4%和53.2%。施硼处理芥酸和硫甙均有增加的风险,与B0相比,B4.5处理的芥酸含量增加了19.1%,硫甙含量降低了3.0%,B13.5处理的芥酸和硫甙含量分别增加了57.3%和35.8%。虽然芥酸和硫甙增加显著,依然低于国家规定的双低油菜食用菜籽油和饲用饼粕的限量。施硼显著增加了油菜籽硼含量,且籽粒硼含量随着施硼量的增加而增加,在万州、池州和南昌试验点均是B13.5处理硼含量最高,分别较B0增加了56.9%、26.3%和33.8%。籽粒硼含量与含油量、蛋白质含量、油酸和亚麻酸呈显著正相关关系,与亚油酸和棕榈酸呈显著负相关关系。籽粒硼含量对产量和含油量有较大的直接正作用,籽粒硼含量和含水率是通过增加产量、含油量来间接提高产油量(或蛋白质产量)。
结论施硼可以提高双低油菜单株生产力,提高油菜产量,提高籽粒含硼量。较高的硼含量不仅有利于提高含油量,还可以增加油酸和亚麻酸含量,改善油分品质,兼顾提升蛋白质产量,增产提质效果较好。结合考虑籽粒芥酸和硫苷含量,推荐硼肥用量4.5~9.0 kg/hm2。
Abstract:ObjectivesThe main winter oilseed rape production areas in China are generally deficient in boron (B), which seriously affects rapeseed yield and quality. This study analyzed the effects of different borax application rates on the yield and quality of rapeseed.
MethodsField experiments were conducted in Chizhou of Anhui, Wanzhou of Chongqing, and Nanchang of Jiangxi from 2020 to 2021. The soil in the three experimental sites was B-deficient, and the tested rapeseed cultivars were low in erucic acid and sulfur glycosides. Four borax (B 10%) application rates were set up, including 0, 4.5, 9.0, and 13.5 kg/hm2, and denoted as B0, B4.5, B9.0, and B13.5. The yield, seed boron concentration, main quality indexes, and fatty acid fractions of rapeseed were determined, and the correlations among the factors were analyzed.
ResultsCompared with B0, B13.5 recorded the highest yields in Chizhou, Wanzhou, and Nanchang, with 296, 818, and 715 kg/hm2 increase, corresponding to 20.7%, 42.6% and 38.3%, respectively. However, the yields among the three B treatments were not (P>0.05) different. The yield increase was attributed to the increased pod number per plant and the seed number per pod. Compared with B0, B4.5, B9.0, and B13.5 (P<0.05) increased the pod number by 20.0%, 20.4%, and 35.0%; increased seed number per pod by 7.3%, 13.1%, and 11.1%, respectively. B13.5 treatment was recorded 30.5% higher harvest density in Nanchang, and B9.0 treatment was recorded 7.4% higher 1000-seed-weight in Wanzhou. All the B treatments (P<0.05) increased the oil, oleic, and linolenic acid contents in rapeseed, with a maximum increase of 10.3%, 15.8%, and 22.7%, respectively. Similarly, a maximum reduction of 19.4%, 36.1% and 14.1% in linoleic, palmitic, and stearic acid contents were recorded. The rapeseed protein content was increased by 19.1% in Nanchang, but the oil and protein yield (P<0.05) increased significantly, reaching a maximum of 53.4% and 53.2%, respectively. B application showed the risk of increasing erucic acid and sulfur glycosides. Compared to B0, B4.5 increased erucic acid and sulfur glycosides by 19.1% and −3.0% on average, while the increase by B13.5 were 57.3% and 35.8%. Nevertheless, the contents were within the designated thresholds by the national standards for edible rapeseed oil and forage cake meal for double-low rapeseed (13.5 kg/hm2). Boron application increased rapeseed B content, with the highest increase of 56.9%, 26.3%, and 33.8% in Wanzhou, Chizhou, and Nanchang, respectively. Rapeseed B content was (P<0.05) positively correlated with oil, protein, oleic, and linolenic acid and negatively correlated with linoleic and palmitic contents. Rapeseed B content indirectly increases the oil or protein yield by increasing yield and oil content.
ConclusionsBoron application effectively enhances the yield of double-low oilseed rape by increasing the plant’s productivity. Further, it improves the quality and quantity of oilseed derived from the plant, which enhances protein yield. Considering the linoleic and palmitic acid risk, the recommended boron application rate is 4.5−9.0 kg/hm2.
-
Keywords:
- rapeseed /
- yield /
- boron application rate /
- seed boron content /
- quality /
- fatty acid fraction
-
硼是高等植物生长发育必需的营养元素[1-2],而油菜作为我国重要的油料作物[3],对硼需求量较大,对缺硼十分敏感[4]。由于较轻的土壤质地和雨热同期的气候条件等原因导致我国油菜主产区土壤硼含量普遍偏低[5-6],十分依赖硼肥的施用。油菜缺硼导致花粉管萎缩而出现的“蕾而不花”或“花而不实”现象严重,影响油菜产量[7-8],已成为限制油菜产量提高的重要因子。1989年油菜施硼技术规范提出以来[9],硼的关注度逐渐增加,关于施硼提高油菜产量的报道快速增加。这些研究大多侧重于油菜缺硼的症状,确定最佳的硼肥用量及方法、阐述缺硼的原因或寻找高效硼肥品种。
人们在追求高产量的同时,也逐渐关注到硼在改善油菜籽品质方面有重要作用[10-11]。越来越多的研究表明,油菜籽的品质不仅受到品种遗传特性的影响,还与环境因素和农艺管理措施等密切相关[12-13],合理的栽培措施在提高产油量的同时可以改善油菜籽的品质。一般认为,优质的脂肪酸组成具有以下特征:油酸含量高,芥酸含量低(不高于3%),饱和脂肪酸含量低[11, 14-16]。由于硼和细胞壁结构、细胞膜稳定性及蔗糖合成等众多生理生化功能密切相关[2],适宜的硼肥用量成为获得高品质作物产品的重要因素。近几十年来,与施硼对油菜生长和产量的研究相比,施硼对油菜籽品质影响的研究相对较少。在2000年左右,随着双低油菜种植面积快速扩大,人们也开始追求高蛋白质产量和低硫甙(不高于35 μmol/L)的优质饲用饼粕产量[15],施硼对双高和双低油菜油的品质影响对比逐渐成为关注重点。已有研究证明,施硼在提高油菜籽含油量方面发挥重要作用[10],但尚未见到硼肥对硫甙含量和脂肪酸组分的影响的报道。双低油菜对硼敏感,施硼对芥酸和硫甙含量的影响尚需试验进行验证,施硼改善油菜籽品质的功能是否具有普适性也需进一步研究。因此,本研究在安徽、重庆和江西布置硼肥用量田间试验,探究施硼对油菜籽产量、硼含量和品质的影响及其相关关系,以期为直播冬油菜优质高产栽培研究和生产提供理论依据。
1. 材料与方法
1.1 试验点概况
于2020—2021年,分别在安徽省池州市(117°18′56″E,30°36′23″N,海拔12 m)、重庆市万州区(108°14′38″E,30°40′10″N,海拔398 m)和江西省南昌市(116°7′52″E,28°24′52″N,海拔30 m)共布置3个直播冬油菜田间试验。其基础土壤(0—20 cm)理化性质见表1。从表1可以看出,3个试验点土壤有效硼含量均处于缺乏或严重缺乏水平[9]。
表 1 供试土壤基础理化性质(0—20 cm)Table 1. Basic physiochemical properties of the test soil (0–20 cm)试验点
Experimental sitepH 有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N有效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K有效硼 (mg/kg)
Available B安徽池州 Chizhou, Anhui 5.22 23.92 1.33 13.05 56.0 0.29 重庆万州 Wanzhou, Chongqing 6.51 10.69 1.61 17.55 64.0 0.48 江西南昌 Nanchang, Jiangxi 4.85 16.91 1.91 23.73 98.0 0.22 1.2 试验设计
田间试验设置4个施硼水平处理,硼砂用量分别为0、4.5、9.0和13.5 kg/hm2,表示为B0、B4.5、B9.0和B13.5。各处理其他肥料用量均一致,分别为N 180 kg/hm2、P2O5 90 kg/hm2和K2O 120 kg/hm2。供试肥料为尿素(N 46%)、过磷酸钙(P2O5 12%)、氯化钾(K2O 46%)和缓释硼砂(B 10%)。氮肥分3次施用,基肥占60%,提苗肥和薹肥各占20%,磷钾硼肥全部作基肥一次性施入。试验各处理均设3次重复,小区长2 m,宽10 m,面积20 m2,随机区组排列。
试验采用直播方式,供试油菜品种为当地推荐品种,安徽为沣油737,江西为秀油杂363,重庆为中油杂19,播种量均为6 kg/hm2,根据小区面积(20 m2)换算并称量各小区的种子量 (12 g),在播种时将12 g种子倒入塑料盆中,加干燥的细土1 kg左右,将土与种子混匀,来回撒播,以保证小区的播种均匀一致。在试验过程中,所有田间管理措施均采用当地的栽培管理方式。各试验点播种、收获、施肥等关键时间点如表2所示。
表 2 各试验点关键田间管理措施日期(year/month/day)Table 2. Dates for the critical field management practices at each experimental site试验点 Experimental site 播种 Sowing 收获 Harvest 基肥 Base fertilizer 提苗肥 Seedling fertilizer 薹肥 Shooting fertilizer 安徽池州 Chizhou, Anhui 2020/10/22 2021/05/13 2020/10/22 2020/11/20 2021/01/20 重庆万州 Wanzhou, Chongqing 2020/10/09 2021/05/12 2020/10/09 2020/11/04 2021/01/13 江西南昌 Nanchang, Jiangxi 2020/09/30 2021/05/04 2020/09/30 2020/11/23 2021/02/14 1.3 样品采集与测定
基础土壤样品在前茬作物收获后、油菜播种前采集,在整个试验田以“S”形均匀布点15个,采集0—20 cm耕作层土壤。供试土壤基础理化性质按土壤理化分析常规方法测定[17],有效硼采用沸水浸提—姜黄素比色法测定。
油菜收获前1~2 天在各小区划定有代表性的样方0.36 m2 (0.6 m×0.6 m),调查产量构成因子,包括油菜收获时的密度、单株角果数、每角粒数和千粒重。采集样方中所有油菜地上部植株样品,于网袋中风干,脱粒后收集籽粒用于品质的测定,用样方的产量除以有效株数得到单株产量。各小区籽粒产量(实际产量)单打单收,以风干重计产。取部分籽粒样品经60℃烘干磨细过筛后,采用1 mol/L盐酸浸提—姜黄素比色法测定全硼含量[17]。
采用中国农业科学院油料作物研究所研制的NYDL-3000智能型多参数粮油品质速测仪测定油菜籽的品质指标,包括油分、粗蛋白、硫甙、芥酸、油酸、亚油酸、亚麻酸、硬脂酸和棕榈酸含量[15]。
1.4 参数计算与数据处理
产油量(kg/hm2)=籽粒含油量×籽粒产量[18]
饼粕蛋白质产量(kg/hm2)=籽粒蛋白质含量×籽粒产量[18]
含水率(%)=(风干籽粒重−烘干籽粒重)×100/风干籽粒重
采用Microsoft Excel 2021软件处理和计算试验数据,采用SPSS 20软件进行统计分析,采用Origin 2021软件制图,采用最小显著差异(LSD)法检验P<0.05水平的差异显著性。
2. 结果与分析
2.1 硼对油菜籽产量及其构成因子的影响
施硼显著提高了各试验点油菜籽产量(图1),B13.5处理产量达到最高。与B0处理相比,池州、万州和南昌施用硼肥最高可以增加油菜籽产量296、818和715 kg/hm2,增产率分别达到20.7%、42.6%和38.3%。统计分析结果表明,硼肥用量超过4.5或9.0 kg/hm2后,继续增加硼肥用量,产量不再显著增加,说明B4.5或B9.0处理已经达到最佳的硼肥用量水平。
直播油菜产量构成因子调查结果(表3)表明,施硼均增加了各试验点油菜的单株角果数和每角粒数,对收获密度和千粒重的影响较小,仅南昌试验点密度增加了18.1%~30.5%,万州千粒重增幅最高,在硼肥用量9.0 kg/hm2时增加了7.4%。施硼对单株角果数的增加幅度最大,与B0处理相比,B4.5、B9.0和B13.5处理平均增加20.0%、20.4%和35.0%;在池州、万州和南昌试验点B13.5处理分别增加了36.6%、18.8%和49.6%。其次是每角粒数,与B0处理相比,B4.5、B9.0和B13.5处理分别增加7.3%、13.1%和11.1%;3个试验点均是B9.0处理最高,比B0处理分别增加13.6%、13.6%和12.0%。单株产量最高可增加40%左右,说明了硼对生殖器官正常生长发育有重要的作用。
表 3 不同硼肥用量下油菜籽产量构成因子和单株产量Table 3. Yield composition and yield per plant of directly sown rapeseed relative to boron application rate试验点
Experimental site硼肥处理
Borax treatment产量构成因子 Yield composition 产量 (g/plant)
Yield收获密度 (plant/m2)
Harvest density单株角果数
Pod number per plant每角粒数
Seeds per pod千粒重 (g)
1000-seed weight池州
ChizhouB0 22.7 a 153.7 b 19.8 b 4.24 a 11.65 c B4.5 23.7 a 189.8 ab 22.1 a 4.31 a 14.52 b B9.0 26.7 a 195.7 a 22.5 a 4.23 a 14.86 ab B13.5 24.0 a 210.0 a 22.5 a 4.47 a 16.17 a 万州
WanzhouB0 35.8 a 135.3 c 21.3 c 3.26 ab 8.73 b B4.5 38.9 a 145.9 bc 22.6 b 3.15 b 10.25 ab B9.0 39.0 a 151.2 ab 24.2 a 3.50 a 11.64 a B13.5 41.0 a 160.8 a 23.3 ab 3.33 ab 12.02 a 南昌
NanchangB0 48.6 b 33.5 c 19.2 b 3.34 a 4.96 c B4.5 57.4 ab 43.1 ab 20.0 ab 3.50 a 5.65 bc B9.0 60.2 ab 40.9 bc 21.5 a 3.57 a 6.09 b B13.5 63.4 a 50.1 a 21.2 a 3.53 a 6.98 a 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著(P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).2.2 施硼量对籽粒硼含量的影响
在0~13.5 kg/hm2硼砂用量范围内,所有试验点籽粒硼含量均随施硼量的增加而增加(图2)。万州试验点籽粒硼含量增加幅度最大,B13.5处理籽粒硼含量较B0增加了56.9%,池州和南昌均是B13.5处理硼含量最高,比B0处理分别增加了26.3%和33.8%。我们将籽粒硼含量达到的最大显著水平定为平台值,3个试验点籽粒硼含量达到平台值所需的硼肥用量不同,池州点施硼量4.5 kg/hm2已达到最高水平,而南昌试验点B13.5处理籽粒硼含量仍然显著高于B9.0处理。
图 2 不同硼肥用量下籽粒硼含量注:图中数据为3次重复平均值;柱上不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)Figure 2. Boron content in rapeseed at different borax application ratesNote: Data are of the mean of three replicate. Different lowercase letters above the bars indicate significant difference among treatments at the same experimental site (P<0.05)2.3 硼对油菜籽品质的影响
施用硼肥可以影响油菜籽品质指标(表4)。与B0相比,施硼显著提高了籽粒的含油量和产油量,在池州、万州试验点,B4.5、B9.0和B13.5处理之间无显著差异,而在南昌试验点,B9.0和B13.5处理的结果一致,均显著提高了籽粒含油量和产油量。不同试验点的蛋白质含量变化不一致,南昌试验点的籽粒蛋白质含量随施硼量的增加而显著增加,B4.5处理与B0处理显著低于B9.0和B13.5处理,而B9.0和B13.5处理之间无显著差异;池州、万州2个试验点施硼没有显著影响油菜籽蛋白质含量。由于施硼对油菜产量的影响,B9.0和B13.5不同程度地提高了蛋白质产量,最高分别增加了53.4%和53.2%。施硼,特别是B9.0和B13.5处理在3个试验点均显著增加了油菜籽硫甙含量,与B0处理相比,B4.5、B9.0和B13.5处理分别增加19.1%、39.3%和57.3%,但整体来看其含量均低于或与国家规定的双低油菜硫甙标准(硫甙≤35 μmol/g)持平。
表 4 不同硼肥用量下油菜籽和饼粕的品质Table 4. Quality of rapeseed and cakes under different borax application rates试验点
Experimental site硼肥处理
Borax treatment籽粒品质 Seed quality 饼粕品质 Rapeseed cakes quality 含油量 (%)
Oil content产油量 (kg/hm2)
Oil yield蛋白含量 (%)
Protein content蛋白产量 (kg/hm2)
Protein yield硫甙 (μmol/g)
Thioside content池州
ChizhouB0 41.76 b 597 b 26.53 a 380 b 30.99 b B4.5 44.54 a 728 a 25.74 a 420 ab 33.72 ab B9.0 46.08 a 789 a 26.36 a 453 a 36.34 a B13.5 45.88 a 792 a 26.89 a 465 a 36.76 a 万州
WanzhouB0 43.35 b 833 b 25.96 a 499 b 18.62 b B4.5 45.70 a 1092 a 26.22 a 626 a 21.44 b B9.0 46.47 a 1163 a 26.35 a 659 a 23.53 ab B13.5 46.73 a 1278 a 27.29 a 748 a 27.97 a 南昌
NanchangB0 42.62 b 798 b 25.86 c 483 c 16.11 b B4.5 44.35 ab 875 b 26.95 b 532 c 21.50 b B9.0 45.98 a 1059 a 28.07 a 645 b 28.06 a B13.5 45.92 a 1187 a 28.69 a 740 a 32.70 a 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).施硼在提高含油量的同时,也影响了脂肪酸组分(表5)。与不施硼处理相比,施硼处理油菜籽油酸和亚麻酸的含量分别增加了5.1%~15.8%和8.9%~22.7%;施硼降低了亚油酸、硬脂酸和棕榈酸的含量,与不施硼处理相比分别降低了2.4%~19.4%和12.7%~36.1%和2.7%~14.1%。芥酸的含量因不同试验点而异,施硼显著降低了南昌试验点芥酸含量,但是其他两个试验点有增加的趋势。从平均值来看,与B0相比,B13.5处理的芥酸含量平均增加了35.8%。
表 5 不同硼肥用量下油菜籽脂肪酸组分含量(%)Table 5. Contents of fatty acid fractions of rapeseed at different borax application rates试验点
Experimental site硼肥处理
Borax treatment不饱和脂肪酸 Unsaturated fatty acids 饱和脂肪酸 Saturated fatty acidst 油酸
Oleic acid亚油酸
Linoleic acid亚麻酸
Linolenic acid芥酸
Erucic acid硬脂酸
Stearic acid棕榈酸
Palmitic acid池州
ChizhouB0 62.31 c 19.64 a 7.39 a 1.00 a 2.67 a 4.83 a B4.5 65.60 b 17.84 ab 8.33 a 1.07 a 2.33 b 4.47 b B9.0 68.47 a 16.35 b 8.37 a 1.63 a 2.15 bc 4.25 c B13.5 68.89 a 15.83 b 8.75 a 1.44 a 1.85 c 4.15 c 万州
WanzhouB0 57.41 b 18.56 a 7.29 b 1.10 b 2.08 a 4.66 a B4.5 60.31 b 17.67 ab 7.94 ab 1.15 b 1.76 ab 4.48 a B9.0 64.80 a 17.17 b 8.09 ab 1.51 b 1.51 b 4.31 a B13.5 66.06 a 16.91 b 8.47 a 2.30 a 1.33 b 4.11 a 南昌
NanchangB0 60.17 b 18.49 a 6.88 b 3.06 a 2.79 a 4.82 a B4.5 64.36 ab 18.04 a 8.17 ab 2.43 ab 2.18 b 4.69 ab B9.0 67.26 a 17.75 a 8.22 ab 1.84 ab 1.92 b 4.43 ab B13.5 69.65 a 17.88 a 8.44 a 1.66 b 2.10 b 4.27 b 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).综上可以看出,合理施用硼肥有利于油菜籽油分和油酸含量的提高,降低硬脂酸和棕榈酸等饱和脂肪酸含量,从而有利于改善油菜籽品质。施用硼肥可以提高油菜籽产量5.6%~42.6%,而含油量和蛋白质含量的增加率分别为4.1%~10.3%和−3.0%~10.9%,可以看出,施硼对产量的增加幅度显著大于品质。
2.4 籽粒硼含量和品质之间的相关关系
分析籽粒硼含量、含水率、脂肪酸各组分和其他品质指标的相关关系可以看出,籽粒硼含量与含油量、蛋白质含量、油酸和亚麻酸含量呈显著正相关关系,与亚油酸和棕榈酸含量呈显著负相关关系(图3)。油菜籽含油量和籽粒硼含量相关性最高,硼含量的增加是含油量提高的重要原因。产油量主要取决于油菜籽含油量和产量,饼粕蛋白质产量则主要由产量决定,此外,两者和自然风干状态下的籽粒含水率也呈现出显著正相关关系。脂肪酸各组分的影响因素不同,除硬脂酸和硼含量相关性不显著外,其余指标均和籽粒硼含量显著相关;所有脂肪酸组分,包括硬脂酸均与含油量呈显著负相关,硼营养可能有部分功能是通过影响含油量间接影响包括硬脂酸在内的脂肪酸含量。部分脂肪酸,如硬脂酸与棕榈酸,似乎也受籽粒含水率影响。可见,施用硼肥可显著增加油菜籽硼含量,进而提高油菜籽含油量和改善脂肪酸组分,油菜籽硼含量的增加也是提高油菜籽产油量、蛋白质产量的重要因素。
图 3 籽粒硼含量、含水率和各品质指标、脂肪酸组分之间的关系注:产量—籽粒风干重;含水率—风干籽粒含水率;其他指标均为籽粒中对应的含量。相关分析所用数据为试验所有养分、品质和脂肪酸数据。*、**和***分别表示在0.05、0.01和0.001水平上相关显著Figure 3. Relationship among boron content, moisture content, quality indicators, and fatty acid componentsNote: Yield—Seed air-dry weight; Water—Water content of air-dried seeds; and all other indicators are the corresponding content in the seeds. The data used for correlation analysis are all nutrient, quality and fatty acid data of all the experiments. *, ** and *** indicate significant correlations at the 0.05, 0.01 and 0.001 probability levels, respectively为进一步明确籽粒产油量和蛋白质产量的影响因素,对产油量和蛋白质产量及可能的影响因素进行通径分析(表6),发现对产油量和蛋白质产量影响最大的均是产量,其次是含油量和蛋白质含量,籽粒硼含量和含水率对产油量和蛋白质产量均有显著增加作用,但其增加作用是通过增加产量和含油量来间接实现的。
表 6 油菜籽质量对产油量和蛋白质产量影响的通径分析Table 6. The path coefficients of effects of rapeseed quality indicators on oil and protein yield项目
Item质量因子
Factor相关系数
Relative
coefficient直接通径系数
Direct effect间接通径系数 Indirect effect 含水率
Water content硼含量
Boron content产量
Yield含油量
Oil content决定系数
R2产油量
Oil yield含水率 Water content 0.650** 0.010 <0.01 <0.01 0.581 0.059 0.013 硼含量 Boron content 0.558** 0.007 <0.01 <0.01 0.459 0.093 0.008 产量 Yield 0.991** 0.894** 0.007 0.004 <0.01 0.086 0.973 含油量 Oil content 0.660** 0.155** 0.004 0.004 0.496 <0.01 0.181 蛋白质
Protein yield含水率 Water content 0.596** −0.011 <0.01 <0.01 0.592 0.015 −0.013 硼含量 Boron content 0.558** 0.014 <0.01 <0.01 0.467 0.077 0.015 产量 Yield 0.980** 0.911** −0.007 0.007 <0.01 0.069 0.956 含油量 Oil content 0.518** 0.202** −0.001 0.005 0.312 <0.01 0.168 注:**表示影响效应达0.01显著水平。
Note: ** indicates the effect reaches 0.01 probability level.3. 讨论
3.1 施硼增产效果显著
施用硼肥显著增加油菜籽产量。3个试验点土壤硼含量均处于缺乏水平[9, 19],硼肥最佳用量为4.5~9.0 kg/hm2,若追求最高的油菜籽产量,硼肥用量应为13.5 kg/hm2,这和普通油菜的研究结果基本一致[10, 20]。一般情况下,在土壤硼含量越低的地区施硼效果越好,而在我们的试验结果中,万州试验点硼含量高于其他2个试验点,但施硼增产效果却高于池州,和南昌相近。这可能是土壤中硼的有效性受到了影响,如较低的土壤有机质[21]等。万州土壤因有机质低而导致持续供硼能力较差,不施硼处理籽粒中较低的硼含量可以和此结果相互印证。此外,不同油菜品种对硼的响应差异较大[11],且适应较高海拔环境可能需要更高的养分来合成和转移同化物[22],因而导致对硼的敏感性增加。
油菜对硼敏感体现在适合其生长的硼浓度范围较低,缺乏或者过量均会降低油菜产量[10]。施硼增产的主要因素是增加了油菜的角果数,从而提高角果皮面积指数,利于建立高效结角层结构,利于产量提高[23]。在土壤硼含量极低的地区,施硼在提高单株生产力的同时提高了油菜成株率,这也是直播油菜产量增加的关键因素[10]。硼素的增产效果是硼对油菜全生育期贡献的集中体现,因硼在花器官中糖的转运、分配和代谢过程中发挥重要功能[7-8]。缺硼导致花粉发育受阻,花粉畸形、空瘪占比增加,同时导致花粉管胼胝质增加促进植物抗毒素的合成,阻碍受精过程,各过程均和油菜角果的建成和发育关系密切[24],因此施硼肥最直接的表现是单株角果数和每角粒数显著增加。
3.2 施硼提高油菜籽品质
提高油菜籽品质,尤其是含油量是硼肥重要的优势之一。施硼对油菜籽品质的提升和产量的提升具有一致性,施硼对产量的增加效果和品质的改善作用同时进行,超过其增产范围的硼肥不会继续改善油菜籽品质。目前种植的油菜品种普遍为双低油菜,低硫甙的菜籽饼是高品质的动物饲料,施硼提高产油量的同时,产生更多满足动物饲料要求的饼粕,这对于兼顾满足油料和动物饲料的油菜种植来说具有重要意义。
油脂供能比呈快速上升的同时,人们也在追求脂肪酸的均衡摄入[25]。硼肥的效果则是增加了不饱和脂肪酸含量而降低饱和脂肪酸(如硬脂酸和棕榈酸)含量。人们普遍认为高油酸植物油是最健康的食用油之一[26],施硼提高的油酸则是最主要的不饱和脂肪酸。研究表明,亚油酸与亚麻酸需要维持一定比例,亚油酸和亚麻酸过高或者过低均不利于人体健康[16],随着人们膳食结构的调整,往往亚油酸比较充足,普遍缺乏亚麻酸,施硼后降低亚油酸而增加亚麻酸含量的特性改善了油菜油品质。施硼处理芥酸含量虽有升高,但均低于国家3%的标准[15]。
尽管由于种植模式、管理条件和品种特性等不同,不同地区施硼油菜籽品质改善程度不同[27],但整体来看,施用硼肥在油菜籽增产提质中发挥重要作用。
3.3 施硼提高油菜籽品质的原因分析
本研究显示了硼肥对品质提升不可忽视的作用,进一步证明施硼肥虽然不能改变其遗传特性,但是有助于稳定和发挥品种的遗传特性,而这主要归因于硼与同化物合成、运输,酶激活等方面的密切关系[13, 28-29]。
蔗糖和淀粉是油脂合成的重要碳源[30-31]。硼缺乏时,叶绿体结构遭到破坏[32],光合效率下降,同化物合成减少;硼参与尿嘧啶的合成,而尿嘧啶是蔗糖合成前体尿嘧啶二磷酸葡萄糖的重要部分;缺硼形成的胼胝质会堵塞筛管而影响糖的运输[33-35]。可见,施硼有助于调控糖的合成、运输和代谢。叶绿体能够通过在光合电子传递反应中捕获光能来产生脂肪酸合成所需的还原力和ATP。同时光照和叶绿体结构会影响脂肪酸合成过程中的限速酶乙酰辅酶A羧化酶的活性[36-37],而脂肪酸合成的第一步(乙酰辅酶A转化为丙二酰辅酶A)则由乙酰辅酶A羧化酶催化。此外,缺硼还可使过氧化物氧化酶的活性增加及过氧化氢酶活性下降,前者活性的增加可导致植物体内激素代谢紊乱,细胞分裂素合成减少,赤霉素含量下降,ABA及乙烯合成显著增加,而后者活性的降低将使植物代谢趋于下降,纤维酶和果胶酶的活性显著提高,导致植物早衰和器官脱落[33],从而减少角果中由同化物转化为油脂的时间。综上可知,施硼能提高含油量的原因可能有以下几点:一是增加了碳源供应;二是保持叶绿体正常结构和功能,保证能量供应和乙酰辅酶A羧化酶的活性来间接影响脂肪酸的合成;三是维持正常的酶和激素代谢,增加脂质转化时间。同化物除了供给脂肪酸的合成,蛋白质的合成也依赖于光合产物,所以油脂与蛋白质在合成过程中存在竞争。有研究指出,由同化物向油脂或者蛋白质合成的多少与还原性氮含量有密切关系[11],还原性氮含量增加导致蛋白质合成增加而含油量降低[38]。施硼会通过促进氮吸收提高油菜氮含量和硝酸还原酶的活性[39],从而促进蛋白质的合成。王利红等[24]的研究结果显示通过合理配施硼锌肥可以实现含油量和蛋白质含量同时增加。然而蛋白质含量和含油量在多数研究中呈负相关关系,在含油量增加的情况下,蛋白质含量更多的是变化不显著或者降低[10-11],这其实并不矛盾,施硼促进蛋白质合成是针对总积累量而言的,由于油菜植株生物量的增加,内部的稀释效应可能会导致还原性氮含量的降低,导致蛋白质含量下降,但是总累积量均是增加的。
虽然硼生理功能的研究持续了很多年,但硼对植物的直接功能尚不清楚,很少有研究剖析硼对植物种子品质影响的机理,特别是对种子脂肪酸组分相互转化分配的影响。虽然施硼提高油菜含油量和油酸含量的结论基本达成一致,但是硼和其他脂肪酸(如芥酸、亚油酸等)的关系还没有统一定论,在脂肪酸合成的整个过程中,硼的直接或间接功能和机理需要更加深入的试验配合新技术新方法来进一步研究。
4. 结论
施硼增加了油菜的单株角果数和每角粒数,提高单株生产力,并且土壤硼含量极低时可以增加油菜收获密度,从而提高了油菜产量。施硼促进了油菜对硼的吸收并显著提高籽粒硼含量,进而改善油菜籽的品质。施硼改善油菜籽的品质主要体现在施硼提高了油菜籽含油量、油酸和亚麻酸含量,降低亚油酸、硬脂酸和棕榈酸含量,并提高了饼粕蛋白质产量。因此,合理施用硼肥是提高双低油菜产量、产油量,改善菜油品质,提高饼粕产量的有效途径之一。
-
图 2 不同硼肥用量下籽粒硼含量
注:图中数据为3次重复平均值;柱上不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)
Figure 2. Boron content in rapeseed at different borax application rates
Note: Data are of the mean of three replicate. Different lowercase letters above the bars indicate significant difference among treatments at the same experimental site (P<0.05)
图 3 籽粒硼含量、含水率和各品质指标、脂肪酸组分之间的关系
注:产量—籽粒风干重;含水率—风干籽粒含水率;其他指标均为籽粒中对应的含量。相关分析所用数据为试验所有养分、品质和脂肪酸数据。*、**和***分别表示在0.05、0.01和0.001水平上相关显著
Figure 3. Relationship among boron content, moisture content, quality indicators, and fatty acid components
Note: Yield—Seed air-dry weight; Water—Water content of air-dried seeds; and all other indicators are the corresponding content in the seeds. The data used for correlation analysis are all nutrient, quality and fatty acid data of all the experiments. *, ** and *** indicate significant correlations at the 0.05, 0.01 and 0.001 probability levels, respectively
表 1 供试土壤基础理化性质(0—20 cm)
Table 1 Basic physiochemical properties of the test soil (0–20 cm)
试验点
Experimental sitepH 有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N有效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K有效硼 (mg/kg)
Available B安徽池州 Chizhou, Anhui 5.22 23.92 1.33 13.05 56.0 0.29 重庆万州 Wanzhou, Chongqing 6.51 10.69 1.61 17.55 64.0 0.48 江西南昌 Nanchang, Jiangxi 4.85 16.91 1.91 23.73 98.0 0.22 表 2 各试验点关键田间管理措施日期(year/month/day)
Table 2 Dates for the critical field management practices at each experimental site
试验点 Experimental site 播种 Sowing 收获 Harvest 基肥 Base fertilizer 提苗肥 Seedling fertilizer 薹肥 Shooting fertilizer 安徽池州 Chizhou, Anhui 2020/10/22 2021/05/13 2020/10/22 2020/11/20 2021/01/20 重庆万州 Wanzhou, Chongqing 2020/10/09 2021/05/12 2020/10/09 2020/11/04 2021/01/13 江西南昌 Nanchang, Jiangxi 2020/09/30 2021/05/04 2020/09/30 2020/11/23 2021/02/14 表 3 不同硼肥用量下油菜籽产量构成因子和单株产量
Table 3 Yield composition and yield per plant of directly sown rapeseed relative to boron application rate
试验点
Experimental site硼肥处理
Borax treatment产量构成因子 Yield composition 产量 (g/plant)
Yield收获密度 (plant/m2)
Harvest density单株角果数
Pod number per plant每角粒数
Seeds per pod千粒重 (g)
1000-seed weight池州
ChizhouB0 22.7 a 153.7 b 19.8 b 4.24 a 11.65 c B4.5 23.7 a 189.8 ab 22.1 a 4.31 a 14.52 b B9.0 26.7 a 195.7 a 22.5 a 4.23 a 14.86 ab B13.5 24.0 a 210.0 a 22.5 a 4.47 a 16.17 a 万州
WanzhouB0 35.8 a 135.3 c 21.3 c 3.26 ab 8.73 b B4.5 38.9 a 145.9 bc 22.6 b 3.15 b 10.25 ab B9.0 39.0 a 151.2 ab 24.2 a 3.50 a 11.64 a B13.5 41.0 a 160.8 a 23.3 ab 3.33 ab 12.02 a 南昌
NanchangB0 48.6 b 33.5 c 19.2 b 3.34 a 4.96 c B4.5 57.4 ab 43.1 ab 20.0 ab 3.50 a 5.65 bc B9.0 60.2 ab 40.9 bc 21.5 a 3.57 a 6.09 b B13.5 63.4 a 50.1 a 21.2 a 3.53 a 6.98 a 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著(P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).表 4 不同硼肥用量下油菜籽和饼粕的品质
Table 4 Quality of rapeseed and cakes under different borax application rates
试验点
Experimental site硼肥处理
Borax treatment籽粒品质 Seed quality 饼粕品质 Rapeseed cakes quality 含油量 (%)
Oil content产油量 (kg/hm2)
Oil yield蛋白含量 (%)
Protein content蛋白产量 (kg/hm2)
Protein yield硫甙 (μmol/g)
Thioside content池州
ChizhouB0 41.76 b 597 b 26.53 a 380 b 30.99 b B4.5 44.54 a 728 a 25.74 a 420 ab 33.72 ab B9.0 46.08 a 789 a 26.36 a 453 a 36.34 a B13.5 45.88 a 792 a 26.89 a 465 a 36.76 a 万州
WanzhouB0 43.35 b 833 b 25.96 a 499 b 18.62 b B4.5 45.70 a 1092 a 26.22 a 626 a 21.44 b B9.0 46.47 a 1163 a 26.35 a 659 a 23.53 ab B13.5 46.73 a 1278 a 27.29 a 748 a 27.97 a 南昌
NanchangB0 42.62 b 798 b 25.86 c 483 c 16.11 b B4.5 44.35 ab 875 b 26.95 b 532 c 21.50 b B9.0 45.98 a 1059 a 28.07 a 645 b 28.06 a B13.5 45.92 a 1187 a 28.69 a 740 a 32.70 a 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).表 5 不同硼肥用量下油菜籽脂肪酸组分含量(%)
Table 5 Contents of fatty acid fractions of rapeseed at different borax application rates
试验点
Experimental site硼肥处理
Borax treatment不饱和脂肪酸 Unsaturated fatty acids 饱和脂肪酸 Saturated fatty acidst 油酸
Oleic acid亚油酸
Linoleic acid亚麻酸
Linolenic acid芥酸
Erucic acid硬脂酸
Stearic acid棕榈酸
Palmitic acid池州
ChizhouB0 62.31 c 19.64 a 7.39 a 1.00 a 2.67 a 4.83 a B4.5 65.60 b 17.84 ab 8.33 a 1.07 a 2.33 b 4.47 b B9.0 68.47 a 16.35 b 8.37 a 1.63 a 2.15 bc 4.25 c B13.5 68.89 a 15.83 b 8.75 a 1.44 a 1.85 c 4.15 c 万州
WanzhouB0 57.41 b 18.56 a 7.29 b 1.10 b 2.08 a 4.66 a B4.5 60.31 b 17.67 ab 7.94 ab 1.15 b 1.76 ab 4.48 a B9.0 64.80 a 17.17 b 8.09 ab 1.51 b 1.51 b 4.31 a B13.5 66.06 a 16.91 b 8.47 a 2.30 a 1.33 b 4.11 a 南昌
NanchangB0 60.17 b 18.49 a 6.88 b 3.06 a 2.79 a 4.82 a B4.5 64.36 ab 18.04 a 8.17 ab 2.43 ab 2.18 b 4.69 ab B9.0 67.26 a 17.75 a 8.22 ab 1.84 ab 1.92 b 4.43 ab B13.5 69.65 a 17.88 a 8.44 a 1.66 b 2.10 b 4.27 b 注:同列数据后不同小写字母表示相同试验点不同处理间差异显著 (P<0.05)。
Note: Values followed by different lowercase letters in a column indicate significan differences among treatments at the same experimental site (P<0.05).表 6 油菜籽质量对产油量和蛋白质产量影响的通径分析
Table 6 The path coefficients of effects of rapeseed quality indicators on oil and protein yield
项目
Item质量因子
Factor相关系数
Relative
coefficient直接通径系数
Direct effect间接通径系数 Indirect effect 含水率
Water content硼含量
Boron content产量
Yield含油量
Oil content决定系数
R2产油量
Oil yield含水率 Water content 0.650** 0.010 <0.01 <0.01 0.581 0.059 0.013 硼含量 Boron content 0.558** 0.007 <0.01 <0.01 0.459 0.093 0.008 产量 Yield 0.991** 0.894** 0.007 0.004 <0.01 0.086 0.973 含油量 Oil content 0.660** 0.155** 0.004 0.004 0.496 <0.01 0.181 蛋白质
Protein yield含水率 Water content 0.596** −0.011 <0.01 <0.01 0.592 0.015 −0.013 硼含量 Boron content 0.558** 0.014 <0.01 <0.01 0.467 0.077 0.015 产量 Yield 0.980** 0.911** −0.007 0.007 <0.01 0.069 0.956 含油量 Oil content 0.518** 0.202** −0.001 0.005 0.312 <0.01 0.168 注:**表示影响效应达0.01显著水平。
Note: ** indicates the effect reaches 0.01 probability level. -
[1] Lewis D H. Boron: The essential element for vascular plants that never was[J]. New Phytologist, 2019, 221(4): 1685–1690. DOI: 10.1111/nph.15519
[2] 徐芳森, 王运华. 我国作物硼营养与硼肥施用的研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1556–1564. Xu F S, Wang Y H. Advances in studies on crop boron nutrition and application of boron fertilizers in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1556–1564. Xu F S, Wang Y H. Advances in studies on crop boron nutrition and application of boron fertilizers in China[J]. Journal of Plant Nutrition and Fertilizer Science, 2017, 23(6): 1556–1564.
[3] 廖伯寿, 殷艳, 马霓. 中国油料作物产业发展回顾与展望[J]. 农学学报, 2018, 8(1): 107–112. Liao B S, Yin Y, Ma N. Review and future prospects of oil crops industry development in China[J]. Journal of Agriculture, 2018, 8(1): 107–112. Liao B S, Yin Y, Ma N. Review and future prospects of oil crops industry development in China[J]. Journal of Agriculture, 2018, 8(1): 107–112.
[4] 王寅, 鲁剑巍, 李小坤, 等. 长江流域直播冬油菜氮磷钾硼肥施用效果[J]. 作物学报, 2013, 39(8): 1491–1500. Wang Y, Lu J W, Li X K, et al. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L.) direct-sown in the Yangtze River Basin[J]. Acta Agronomica Sinica, 2013, 39(8): 1491–1500. DOI: 10.3724/SP.J.1006.2013.01491 Wang Y, Lu J W, Li X K, et al. Effects of nitrogen, phosphorus, potassium, and boron fertilizers on winter oilseed rape (Brassica napus L. ) direct-sown in the Yangtze River Basin [J]. Acta Agronomica Sinica, 2013, 39(8): 1491–1500. DOI: 10.3724/SP.J.1006.2013.01491
[5] 曹凑贵, 张光远, 王运华, 等. 鄂南丘陵棕红壤水土流失及硼损失特征[J]. 华中农业大学学报, 1998, 17(1): 54–58. Cao C G, Zhang G Y, Wang Y H, et al. Water loss, soil erosion and boron loss characteristics of the brown red soil in south Hubei Province under different cover degrees[J]. Journal of Huazhong Agricultural University, 1998, 17(1): 54–58. DOI: 10.3321/j.issn:1000-2421.1998.01.011 Cao C G, Zhang G Y, Wang Y H, et al. Water loss, soil erosion and boron loss characteristics of the brown red soil in south Hubei Province under different cover degrees[J]. Journal of Huazhong Agricultural University, 1998, 17(1): 54–58. DOI: 10.3321/j.issn:1000-2421.1998.01.011
[6] 张智, 任意, 鲁剑巍, 等. 长江中游农田土壤微量养分空间分布特征[J]. 土壤学报, 2016, 53(6): 1489–1496. Zhang Z, Ren Y, Lu J W, et al. Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River[J]. Acta Pedologica Sinica, 2016, 53(6): 1489–1496. Zhang Z, Ren Y, Lu J W, et al. Spatial distribution of micronutrients in farmland soils in the mid-reaches of the Yangtze River[J]. Acta Pedologica Sinica, 2016, 53(6): 1489–1496.
[7] 赵庆华, 黄剑华, 颜昌敬. 油菜花粉发芽的研究[J]. 作物学报, 1986, 12(1): 17–22. Zhao Q H, Huang J H, Yan C J. A study on the pollen germination of Brassica napus L.[J]. Acta Agronomica Sinica, 1986, 12(1): 17–22. DOI: 10.3321/j.issn:0496-3490.1986.01.003 Zhao Q H, Huang J H, Yan C J. A study on the pollen germination of Brassica napus L. [J]. Acta Agronomica Sinica, 1986, (1): 17–22. DOI: 10.3321/j.issn:0496-3490.1986.01.003
[8] Krudnak A, Wonprasaid S, Machikowa T. Boron affects pollen viability and seed set in sunflowers[J]. African Journal of Agricultural Research, 2013, 8(2): 162–166.
[9] 全国微肥科研协作组. 几种主要农作物锌、硼肥施用技术规范的研究Ⅲ. 棉花、油菜硼肥施用技术规范的研究[J]. 土壤肥料, 1989, (6): 1–4. The Group of Microfertilizer Fertilizer Research in China. Application criterion of zinc and boron to several primary crops: Research on the application criterion of boron to cotton and rape[J]. Soil and Fertilizer Sciences in China, 1989, (6): 1–4. The Group of Microfertilizer Fertilizer Research in China. Application criterion of zinc and boron to several primary crops: research on the application criterion of boron to cotton and rape[J]. Soil and Fertilizer Sciences in China, 1989, (6): 1–4.
[10] 耿国涛, 陆志峰, 卢涌, 等. 红壤地区直播油菜施硼对籽粒产量和品质的影响[J]. 土壤学报, 2020, 57(4): 928–936. Geng G T, Lu Z F, Lu Y, et al. Effect of boron application on seed yield and quality of direct sown winter rapeseed (Brassica napus L.) in red soil region[J]. Acta Pedologica Sinica, 2020, 57(4): 928–936. Geng G T, Lu Z F, Lu Y, et al. Effect of boron application on seed yield and quality of direct sown winter rapeseed (Brassica napus L. ) in red soil region[J]. Acta Pedologica Sinica, 2020, 57(4): 928–936.
[11] 年夫照, 石磊, 徐芳森, 等. 硼对油菜产量和品质效应的研究进展[J]. 山地农业生物学报, 2005, 24(1): 79–83. Nian F Z, Shi L, Xu F S, et al. The progress of effect of boron on seed yield and quality in oilseed rape[J]. Journal of Mountain Agriculture and Biology, 2005, 24(1): 79–83. DOI: 10.3969/j.issn.1008-0457.2005.01.017 Nian F Z, Shi L, Xu F S, et al. The progress of effect of boron on seed yield and quality in oilseed rape[J]. Journal of Mountain Agriculture and Biology, 2005, 24(1): 79–83. DOI: 10.3969/j.issn.1008-0457.2005.01.017
[12] 王萍, 宋海星, 马淑英, 等. 花期低温对大豆荚和籽粒形成的影响[J]. 中国油料作物学报, 2000, 22(2): 34–36. Wang P, Song H X, Ma S Y, et al. Effects of low temperature at blooming on podding and seed filling in soybean varieties[J]. Chinese Journal of Oil Crop Sciences, 2000, 22(2): 34–36. Wang P, Song H X, Ma S Y, et al. Effects of low temperature at blooming on podding and seedfilling in soybean varieties[J]. Chinese Journal of Oil Crop Sciences, 2000, 2(2): 34–36.
[13] Zanetti F, Eynck C, Christou M, et al. Agronomic performance and seed quality attributes of camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada[J]. Industrial Crops and Products, 2017, 107: 602–608. DOI: 10.1016/j.indcrop.2017.06.022
[14] Sijo J T, Pema R, Xavier L L, et al. Canola oil rich in oleic acid improves diastolic heart function in diet-induced obese rats[J]. Journal of Physiological Sciences, 2017, 67(3): 425–430. DOI: 10.1007/s12576-016-0504-x
[15] 李培武, 谢立华, 李光明, 等. 双低油菜质量标准及其检测技术[J]. 中国食物与营养, 2003, (6): 22–25. Li P W, Xie L H, Li G M, et al. Double low oilseed rape quality standard and its testing technology[J]. Food and Nutrition in China, 2003, (6): 22–25. Li P W, Xie L H, Li G M, et al. Double low oilseed rape quality standard and its testing technology[J]. Food and Nutrition in China, 2003, (6): 22–25.
[16] Andrzej K, Natalia P, Klaudia M, et al. Volatile composition and sensory properties as quality attributes of fresh and dried hemp flowers (Cannabis sativa L.)[J]. Foods, 2020, 9(8): 1118. DOI: 10.3390/foods9081118
[17] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000, 25–114. Bao S D. Soil and agricultural chemistry analysis (third edition)[M]. Beijing: China Agriculture Press, 2000, 25–114.
[18] 汪瑞清, 杨国正, 史茜莎, 等. 氮磷钾镁锌混合施用对油菜产油量和蛋白质产量的影响[J]. 湖北农业科学, 2009, 48(5): 1096–1100. Wang R Q, Yang G Z, Shi X S, et al. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L.)[J]. Hubei Agricultural Sciences, 2009, 48(5): 1096–1100. DOI: 10.14088/j.cnki.issn0439-8114.2009.05.028 Wang R Q, Yang G Z, Shi X S, et al. Effects of the mixed application of N, P, K, Mg, Zn on oil and protein yield of rapeseed (Brassica napus L. )[J]. Hubei Agricultural Sciences, 2009, 48(5): 1096–1100. DOI: 10.14088/j.cnki.issn0439-8114.2009.05.028
[19] 邹娟, 鲁剑巍, 廖志文, 等. 湖北省油菜施硼效果及土壤有效硼临界值研究[J]. 中国农业科学, 2008, 41(3): 752–759. Zou J, Lu J W, Liao Z W, et al. Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province[J]. Scientia Agricultura Sinica, 2008, 41(3): 752–759. DOI: 10.3864/j.issn.0578-1752.2008.03.016 Zou J, Lu J W, Liao Z W, et al. Study on response of rapeseed to boron application and critical level of soil available B in Hubei Province[J]. Scientia Agricultura Sinica, 2008, 41(3): 752–759. DOI: 10.3864/j.issn.0578-1752.2008.03.016
[20] 胡敏, 朱芸, 鲁剑巍, 等. 硼肥与菜籽同播对油菜出苗、产量及硼肥表观利用率的影响[J]. 中国油料作物学报, 2017, 39(4): 509–514. Hu M, Zhu Y, Lu J W, et al. Effects of simultaneous sowing of boron fertilizer and rapeseeds on seedling emergence, yield and boron utilization efficiency[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(4): 509–514. Hu M, Zhu Y, Lu J W, et al. Effects of simultaneous sowing of boron fertilizer and rapeseeds on seedling emergence, yield and boron utilization efficiency[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(4): 509–514.
[21] 胡瑞文, 刘勇军, 唐春闺, 等. 稻作烟区土壤硼钼养分垂直分布及与有机质的关系[J]. 中国烟草科学, 2020, 41(3): 9–15. Hu R W, Liu Y J, Tang C G, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas[J]. Chinese Tobacco Science, 2020, 41(3): 9–15. Hu R W, Liu Y J, Tang C R, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas [J]. Chinese Tobacco Science, 2020, 41(3): 9–15.
[22] 徐亮. 不同海拔条件下春油菜光合生理和产油量的响应[J]. 江苏农业科学, 2017, 45(1): 92–94. Xu L. Response of photosynthetic physiology and oil yield of spring oilseed rape under different altitude conditions[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 92–94. Xu L. Response of photosynthetic physiology and oil yield of spring oilseed rape under different altitude conditions[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 92–94.
[23] 冷锁虎, 左青松, 戴敬, 等. 油菜高产群体质量指标研究[J]. 中国油料作物学报, 2004, 26(4): 40–46. Leng S H, Zuo Q S, Dai J, et al. Studies on indices of high yield population guality of rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2004, 26(4): 40–46. Leng S H, Zuo Q S, Dai J, et al. Studies on seed filling and water requirement after anthesis of vegetable soybean for export[J]. Chinese Journal of Oil Crop Sciences, 2004, (4): 40-46.
[24] 王利红, 徐芳森, 王运华. 硼钼锌配合对甘蓝型油菜产量和品质的影响[J]. 植物营养与肥料学报, 2007, 13(2): 318–323. Wang L H, Xu F S, Wang Y H. Effects of B, Mo, Zn interaction on the seed yield and quality of Brassica napus[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 318–323. DOI: 10.11674/zwyf.2007.0222 Wang L H, Xu F S, Wang Y H. Effects of B, Mo, Zn interaction on the seed yield and quality of Brassica napus[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(2): 318–323. DOI: 10.11674/zwyf.2007.0222
[25] Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 217, 541: 41–45.
[26] Huth P J, Fulgoni V L, Larson B T. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: Implications for novel high-oleic soybean oils[J]. Advances in Nutrition, 2015, 6(6): 674–693. DOI: 10.3945/an.115.008979
[27] 杨美, 石磊, 徐芳森, 等. 不同硼水平对双低油菜华双4号产量和品质的影响[J]. 植物营养与肥料学报, 2008, 14(6): 1118–1122. Yang M, Shi L, Xu F S, et al. Effect of different boron levels on yield and quality of double low rapeseed (Brassica napus cv. Huashuang 4)[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(6): 1118–1122. DOI: 10.3321/j.issn:1008-505X.2008.06.014 Yang M, Shi L, Xu F S, et al. Effect of different boron levels on yield and quality of double low rapeseed (Brassica napus cv. Huashuang 4)[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(6): 1118–1122. DOI: 10.3321/j.issn:1008-505X.2008.06.014
[28] Aghdasi S, Aghaalikhani M, Modarres-Sanavy S A, et al. Exogenously used boron and 24-epibrassinolide improved oil quality and mitigate late-season water deficit stress in camelina[J]. Industrial Crops and Products, 2021, 171: 113885. DOI: 10.1016/j.indcrop.2021.113885
[29] Geng G, Cakmak I, Ren T, et al. Effect of magnesium fertilization on seed yield, seed quality, carbon assimilation and nutrient uptake of rapeseed plants – ScienceDirect[J]. Field Crops Research, 2021, 264: 108082. DOI: 10.1016/j.fcr.2021.108082
[30] 周丹, 赵江哲, 柏杨, 等. 植物油脂合成代谢及调控的研究进展[J]. 南京农业大学学报, 2012, 35(5): 77–86. Zhou D, Zhao J Z, Bai Y, et al. Research advance in triacylglycerol synthesis, metabolism, and regulation in plants[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 77–86. Zhou D, Zhao J Z, Bai Y, Zhang Q, et al. Research advance in triacylglycerol synthesis, metabolism, and regulation in plants[J]. Journal of Nanjing Agricultural University, 2012, 35(5): 77–86.
[31] Ni F, Liu J, Zhang J, et al. Effect of soluble sugar content in silique wall on seed oil accumulation during the seed-filling stage in Brassica napus[J]. Crop and Pasture Science, 2018, 69(12): 1251–1263. DOI: 10.1071/CP17392
[32] 魏文学, 王运华, 孙香芝, 等. 缺硼条件下向日葵叶片叶绿体及线粒体解剖结构的观察[J]. 华中农业大学学报, 1989, 8(4): 361–363. Wei W X, Wang Y H, Sun X Z, et al. Effects of boron on chloroplast and mitochondria of leaf mesophyll cells of sunflower[J]. Journal of Huazhong Agricultural University, 1989, 8(4): 361–363. Wei W X, Wang Y H, Sun X Z, et al. Effects of boron on chloroplast and mitochondria of leaf mesophyll cells of sunflower[J]. Journal of Huazhong Agricultural University, 1989, 8(4): 361–363.
[33] 皮美美. 硼对植物生理代谢的影响[J]. 华中农业大学学报, 1995, (supplement): 13–17. Pi M M. Effect of boron on plant physiological metabolism[J]. Journal of Huazhong Agricultural University, 1995, (supplement): 13–17. Pi M M. Effect of boron on plant physiological metabolism[J]. Journal of Huazhong Agricultural University, 1995, (supplement): 13–17.
[34] 宗毓铮, 王雯玥, 韩清芳, 等. 喷施硼肥对紫花苜蓿光合作用及可溶性糖源库间运转的影响[J]. 作物学报, 2010, 36(4): 665–672. Zong Y Z, Wang W Y, Han Q F, et al. Effects of different levels of boron fertilizer on alfalfa photosynthesis and source-sink translocation of soluble carbohydrate in alfalfa[J]. Acta Agronomica Sinica, 2010, 36(4): 665–672. DOI: 10.3724/SP.J.1006.2010.00665 Zong Y Z, Wang W Y, Han Q F, et al. Effects of different levels of boron fertilizer on alfalfa photosynthesis and source-sink translocation of soluble carbohydrate in alfalfa[J]. Acta Agronomica Sinica, 2010, 36(4): 665–672. DOI: 10.3724/SP.J.1006.2010.00665
[35] Al-Amery M M, Hamza J H, Fuller M P. Effect of boron foliar application on reproductive growth of sunflower (Helianthus annuus L.)[J]. International Journal of Agronomy, 2011: 230712.
[36] Sasaki Y, Kozaki A, Hatano M. Link between light and fatty acid synthesis: Thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(20): 11096–11101. DOI: 10.1073/pnas.94.20.11096
[37] Thelen J J, Ohlrogge J B. The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits[J]. Archives of Biochemistry and Biophysics, 2002, 400(2): 245–257. DOI: 10.1016/S0003-9861(02)00025-5
[38] 闫贵欣, 陈碧云, 许鲲, 等. 不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J]. 作物学报, 2012, 38(11): 2052–2060. Yan G X, Chen B Y, Xu K, et al. Differential gene expression profiles in developing seeds of Brassica napus L. under different nitrogen application levels[J]. Acta Agronomica Sinica, 2012, 38(11): 2052–2060. Yan G X, Chen B Y, Xu K, et al. Differential gene expression profiles in developing seeds of Brassica napus L. under different nitrogen application levels[J]. Acta Agronomica Sinica, 2012, 38(11): 2052–2060.
[39] Bellaloui N, Abbas H K, Gillen A M, et al. Effect of glyphosate-boron application on seed composition and nitrogen metabolism in glyphosate-resistant soybean[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19): 9050–9056. DOI: 10.1021/jf901801z
-
期刊类型引用(6)
1. 文和明,李华健,刘娜,罗贞媛,邓国军,农全东,李玉祥,王茜,胡效章,陈碧钦. 文山州直播油菜肥药双减增效栽培技术. 农业与技术. 2024(01): 19-22 . 百度学术
2. 龙梦洁,赵平,阎淑滑,陈建芳. 冬油菜施肥技术与养分管理措施. 农业科技通讯. 2024(01): 173-176 . 百度学术
3. 于聪灵,刘安,王立平,李龙飞,宋娟娟,李晓敬,金倩. 沸水振荡浸提-电感耦合等离子体质谱(ICP-MS)法测定土壤中有效硼. 中国无机分析化学. 2024(09): 1306-1312 . 百度学术
4. 刘桂东,姜存仓,石磊,袁亮. 我国微量元素肥料研究及应用的历程与展望. 植物营养与肥料学报. 2024(09): 1794-1811 . 本站查看
5. 李富荣,王琳清,曹怡然,吴志超,石含之,李冬琴,文典,李蕾,王旭. 硼对菜心镉吸收及抗氧化酶和AsA-GSH循环关键酶活性的调控效应. 中山大学学报(自然科学版中英文). 2024(06): 141-149 . 百度学术
6. 鲁剑巍,任涛,李小坤,丛日环,陆志峰,张洋洋,刘诗诗,廖世鹏,朱俊. 我国冬油菜养分精准调控策略与高效施肥技术体系. 华中农业大学学报. 2023(06): 18-25 . 百度学术
其他类型引用(1)