Loading [MathJax]/jax/output/SVG/jax.js
  • ISSN 1008-505X
  • CN 11-3996/S

不同类型诱导子促进青钱柳生长与生物活性物质积累的效果及机制

林权, 王舒扬, 范文杰, 徐献刚, 洑香香

林权, 王舒扬, 范文杰, 徐献刚, 洑香香. 不同类型诱导子促进青钱柳生长与生物活性物质积累的效果及机制[J]. 植物营养与肥料学报, 2023, 29(5): 961-971. DOI: 10.11674/zwyf.2022487
引用本文: 林权, 王舒扬, 范文杰, 徐献刚, 洑香香. 不同类型诱导子促进青钱柳生长与生物活性物质积累的效果及机制[J]. 植物营养与肥料学报, 2023, 29(5): 961-971. DOI: 10.11674/zwyf.2022487
LIN Quan, WANG Shu-yang, FAN Wen-jie, XU Xian-gang, FU Xiang-xiang. Mechanism of elicitors in increasing plant biomass and bioactive compound accumulation in Cyclocarya paliurus[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 961-971. DOI: 10.11674/zwyf.2022487
Citation: LIN Quan, WANG Shu-yang, FAN Wen-jie, XU Xian-gang, FU Xiang-xiang. Mechanism of elicitors in increasing plant biomass and bioactive compound accumulation in Cyclocarya paliurus[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 961-971. DOI: 10.11674/zwyf.2022487

不同类型诱导子促进青钱柳生长与生物活性物质积累的效果及机制

基金项目: 江苏省林业科技创新与推广项目(LYKJ-句容[2021]01);江苏高校优势学科建设工程项目(PAPD)。
详细信息
    作者简介:

    林权 E-mail: linquan@njfu.edu.cn

    通讯作者:

    洑香香 E-mail: xxfu@njfu.edu.cn

Mechanism of elicitors in increasing plant biomass and bioactive compound accumulation in Cyclocarya paliurus

  • 摘要:
    目的 

    青钱柳是我国重要的药用植物之一,探究不同类型诱导子对青钱柳生长、抗性、药用品质的影响,以期为青钱柳叶用林定向培育提供理论依据。

    方法 

    以两年生青钱柳苗为试材进行盆栽试验,生物诱导子处理包括真菌诱导子棘孢木霉(Trichoderma asperellum,F)处理、细菌诱导子解淀粉芽孢杆菌(Bacillus amyloliquefaciens,B)处理,非生物诱导子壳聚糖Chitosan (C)处理,以及生物与非生物诱导子组合FC和BC处理,以等量清水处理为对照(CK)。在青钱柳幼苗定植5个月后进行诱导子处理,处理45天后收获。收获时,测定青钱柳幼苗株高和地径,根、茎、叶生物量,分析叶片中碳、氮、磷含量,超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,以及生物活性物质含量和产量。同时,取栽培基质样品,分析其pH、全氮和有效氮磷含量。

    结果 

    与对照相比,诱导子处理对青钱柳苗的相对生长率没有显著影响,但都显著提高了青钱柳的叶片生物量(P<0.05),其中F处理的提升效果显著高于其他处理,B、C、FC处理的效果相当,但均显著高于BC处理。5个诱导子处理均显著提高了叶片中SOD活性,提升效果表现为FC>F≈C>BC>B>CK,但只有F与FC处理显著提升了叶片POD活性。不同处理提升叶片中活性物质含量和产量的效应不同,F处理在总黄酮与总多酚的含量与产量中均表现为最高。F、FC、B和BC处理显著提高了叶片总三萜含量,全部处理三萜产量均高于对照。对总黄酮含量的提升效果表现为F处理远大于FC处理,B处理远大于BC处理;F、C处理对总多糖有显著提升效果,且C处理的效果显著高于F处理。青钱柳酸B为青钱柳所特有的三萜类单体,F和B处理的叶片青钱柳酸B含量分别高出对照77.8%和200.0%。施用诱导子影响了栽培基质的化学性质。由于采用叶面喷施方法,壳聚糖对栽培基质的直接影响不显著。F、FC、BC处理显著提高了栽培基质的pH,提高幅度为FC>F>BC (P<0.05);B、BC、F处理提高了基质的有效氮含量,B和BC处理的提升效果又显著高于F;B和BC处理提高基质有效磷含量的效果也最佳,F、FC处理其次。相关性分析表明,叶片氮、磷、总黄酮、总三萜含量与土壤有效氮、磷含量呈显著正相关;叶片总三萜含量与磷含量显著正相关;总多酚与SOD、POD活性呈极显著正相关,与叶片N/P呈极显著负相关;总多糖与SOD活性显著正相关。

    结论 

    真菌、细菌和壳聚糖类诱导子提高青钱柳叶片产量和品质的效果及机理均不同。真菌类诱导子可提高栽培基质的pH和全氮含量,提高植株抗氧化酶活性,促进青钱柳叶片养分和叶生物活性物质积累。细菌诱导子的促进效果不如真菌,但在提升土壤有效养分含量方面表现最优,在促进生物活性物质积累方面也有一定的效果。壳聚糖对大部分生物活性物质的积累无显著作用,但有利于叶多糖的积累。综合产量和品质指标,木霉菌为青钱柳最适诱导子,应尽量避免生物诱导子与非生物诱导子同时使用。

    Abstract:
    Objectives 

    Cyclocarya paliurus is one of the important herbs in China. In this study, we explored the effects of elicitors on the growth, resistance, and medicinal qualities of C. paliurus to provide a theoretical basis for its efficient cultivation.

    Methods 

    A pot experiment was conducted using 2 years-old container seedlings of C. paliurus. The tested bio-elicitors were fungal elicitor (Trichoderma asperellum, F), bacterial elicitor (Bacillus amyloliquefaciens, B), and abiotic elicitor chitosan (C), and the combination of biotic and abiotic elicitors (FC and BC), and an equal amount of water control (CK). Upon harvesting of C. paliurus, the plant height and ground diameter, root, stem, and leaf biomass were measured. The leaf C, N, and P contents, superoxide dismutase (SOD), peroxidase (POD) activity, and bioactive compound contents were measured. The cultivation substrate samples were taken to analyze the pH, total N, and available N and P contents.

    Results 

    Compared with CK, the elicitors did not (P>0.05) impact the relative growth rate of seedlings but significantly increased the leaf biomass; F exhibited the highest relative growth increase, B, C, and FC had similar but higher effect than BC. The five elicitors (P<0.05) increased leaf SOD activity in the order FC>F≈C>BC>B>CK; only F and FC (P<0.05) stimulated POD activity. The elicitor treatments showed a different effect on the bioactive component and yield of C. paliurus. F demonstrated the highest content and yield of total flavonoids and total polyphenols. Additionally, treatments F, FC, B, and BC significantly increased the total triterpene content in leaves, with all treatments resulting in higher triterpene yields compared to the control. The effect on total flavonoid content was more pronounced in treatment F than in FC, and in treatment B compared to BC. Both F and C treatments significantly influenced the content of total polysaccharides, with the effect of C treatment being notably higher than that of F treatment. Cyclocaric acid B is a unique triterpenoid monomer in C. paliurus, and F and B increased its content by 77.8% and 200%, compared with CK. The application of elicitors changed the chemical properties of cultivation substrates. F and FC elicited (P<0.05) alterations in the pH of the cultivation substrate, whereas B and BC resulted in substrates with 163% and 167% higher available phosphorus and nitrogen contents, respectively, compared to CK. According to the results of the correlation analysis, the leaf N and P contents were positively correlated with the availability of soil nutrients (P<0.05). The total flavonoids in biologically active substances also showed a significant positive correlation with available soil nutrients, while the total triterpenoid was positively correlated with soil available nutrients and leaf P content (P<0.05). Furthermore, the total polyphenols exhibited a positive correlation (P<0.05) with SOD and POD activities, but negative correlation (P<0.01) with leaf N/P ratio. The total polysaccharide content was positively correlated with SOD activity (P<0.05).

    Conclusions 

    The fungal, bacterial, and chitosan elicitors enhanced the leaf yield and quality of C. paliurus efficiently. The fungal elicitor, Trichoderma asperellum, could improve the soil pH and total N, enhance the SOD and POD activity, and stimulate bioactive compound accumulation in C. paliurus leaves. The bacteria elicitor, Bacillus amyloliquefaciens, could enhance leaf enzyme activity and bioactive accumulation by improving available soil N and P, which is beneficial for leaf growth. The bacteria elicitor showed a weaker effect than the fungal elicitor in bioactive compound accumulation, while chitosan did not show a satisfactory effect except for the accumulation of leaf polysaccharides. Fungal elicitor is recommended for C. paliurus cultivation.

  • 青钱柳[Cyclocarya paliurus (Batal.) Iljinskaja]又名青钱李、摇钱树,属于胡桃科青钱柳属(Cyclocarya),广泛分布于中国南方,是我国特有的单种属植物[1]。经过临床与药理学研究证明,青钱柳叶提取物具有降血糖、降血脂、降血压、抗菌、抗氧化以及抗肿瘤等功效[2]。随着药用价值的发掘和利用,市场对青钱柳需求量日益增长。天然林资源已不能满足需求,人工林培育将成为未来发展的主要方向。然而随着我国土地政策的调整,人工林面积被进一步压缩。为满足日益增长的青钱柳需求量,提高单位面积生物活性物质产量已迫在眉睫。青钱柳的药用成分多为生物活性物质,其中多为次生代谢产物,而次生代谢的提高通常伴随着植株生物量的降低,这也是药用青钱柳人工林定向培育的技术难题。

    研究证明,某些生物诱导子(细菌类、真菌类、藻类等)和非生物诱导子(重金属盐类、紫外线等)作为一种特定的信号,可以诱导细胞中目的基因的表达,从而调节植物细胞中生物活性物质的合成[3-5]。细菌类诱导子解淀粉芽孢杆菌(Bacillus amyloliquefaciens) FZB42不仅能通过产生大量抗菌的次级代谢产物,使植株具有抵抗多种病原体的能力,还能有效地定殖在植物根部促进植物生长[6-7]。真菌类诱导子木霉菌(Trichoderma spp.)常见于植物根系生态系统,因其能产生抗生素与植物有害微生物竞争而被广泛研究[8]。木霉菌还通过调节植物生长素代谢,提高目标侧根的数量和改变根的构型,改善植物的养分吸收状况[9]。非生物诱导子种类繁多,例如水杨酸、茉莉酸甲酯以及钠离子等[10]。其中,壳聚糖(chitosan,CTS)作为优良的植物促生剂和病害抑制剂,因廉价安全可生物降解等优点被广泛应用[11]。有研究表明,叶面施用壳聚糖可促进植物生长、提高产量,并诱导植物合成次生代谢物,如多酚、类黄酮、木质素和植保素[12]。本课题组前期研究也表明,固氮菌、解磷菌与有机肥一起施用,提高了土壤养分含量,促进了青钱柳叶生物量积累,但提高叶中生物活性物质含量的效果不显著[13]。为此,我们研究了常用的生物与非生物类型诱导子周期性施用对青钱柳幼苗的效果,为叶用青钱柳人工林的高效栽培管理提供技术支撑。

    盆栽试验在江苏省镇江市下蜀镇南京林业大学实习林场温室内进行。供试材料为生长健壮且长势基本一致的广西金钟山30号家系2年生青钱柳幼苗,栽培基质由黄心土和醋糠以8∶2 (VV)混合制备。塑料盆大小为顶径21 cm、底径15 cm、高20 cm,每盆移栽一株,定植后,于苗高10 cm处进行截干处理,其余管理按照常规进行。

    供试生物诱导子包括真菌和细菌两种,真菌为棘孢木霉(Trichoderma asperellum) CBS.433.97,细菌为解淀粉芽孢杆菌(Bacillus amyloliquefaciens) FZB42,均购于中国农业科学院农业微生物菌种保藏中心(保藏号分别为ACCC30536、ACCC05742)。细菌菌种使用前接种在Lysogeny-Broth液体培养基(LB培养基,pH 7.0,每升水约10 g蛋白胨、5 g酵母膏、10 g氯化钠)中,摇床28℃培养至指数生长中期(约36 h),将菌液稀释到最终浓度1×107 CFU/mL后待用。真菌菌种接种在Potato Dextrose Agar固体培养基(PDA培养基,去皮马铃薯200 g,切成小块,加水1 L煮沸20 min,纱布过滤;加葡萄糖20 g,琼脂20 g,再加热使之溶化,最后定容至1 L),28℃恒温培养箱中暗培养7 天,向PDA平板内添加10 mL无菌水洗脱木霉孢子,利用血球计数板测定无菌水中木霉孢子浓度。用无菌水将孢子浓度稀释到1×107 CFU/mL待用。

    试验用非生物诱导子为壳聚糖,购自上海Sigma-Aldrich (CTS,CAS编号9012-76-4;脱乙酰度为85%)。将壳聚糖溶于5%的冰醋酸中,用蒸馏水稀释至400 mg/L;用2 mol/L NaOH调节pH至6.5后待用。

    试验设置6个诱导子处理:清水对照(CK)、真菌(F)、细菌(B)、壳聚糖(C)、真菌+壳聚糖(FC)、细菌+壳聚糖(BC),每个处理3个重复,每个重复10株幼苗(10盆)。幼苗移栽时间为2021年3月26日,诱导子处理于2021年8月25日开始进行,每15 天处理1次,共处理3次。生物诱导子处理采用灌根法,每次每株浇灌50 mL菌液+150 mL水。壳聚糖处理采用叶面喷施法,每次每株约100 mL,每次喷施时将壳聚糖溶液均匀喷布于植株的正反叶面上,直至全株湿透。对照(CK)为浇灌3次200 mL蒸馏水。第3次处理后15 天进行取样和调查分析。

    于植株开始处理时和收获时,使用钢卷尺(精度0.1 cm)和游标卡尺(精度0.1 cm)测量株高和地径。苗高和地径相对生长率,采用Mazarura等[14]使用的计算方法:

    RGRh=logehflogehit2t1
    RGRd=logedflogedit2t1

    式中:RGRhRGRd分别为苗高和地径相对生长率;hfdf分别为收获时的苗高和地径,hidi分别为处理前的苗高和地径;t2−t1为两次测定相隔天数。

    将植株分为根、茎和叶,在65℃烘干至质量恒定后称重,计算器官生物量和植株总生物量。收获的叶片样品分为两部分,一部分收获后立即放入冰盒,带回实验室用于抗氧化酶活性测定;另一部分叶片烘干后研磨过筛(孔径 100目),用于测定全量碳、氮、磷及生物活性物质含量。

    收获时每个重复随机采集3份栽培基质样品(5~10 cm),保存在4℃条件下,用于测定土壤pH、全碳、全氮、有效氮和有效磷含量。

    叶片与土壤中的全碳和全氮含量均采用元素分析仪(Germany,various MAXCN cube)测定。叶片磷含量测定采用高氯酸—硫酸消煮—钼锑抗比色法测定[15]

    土壤有效氮含量采用碱解扩散法测定,土壤有效磷含量采用钼锑抗比色法测定[15]

    叶片主要生物活性物质包括总黄酮、总三萜、总多酚和水溶性多糖等,其含量的测定参考Sun等[16]、Fu等[17]和Fang等[18]的方法,其单体测定参考Wang等[19]的方法。

    生物活性物质产量 (mg/株) = 叶生物量 (g/株 )× 生物活性物质含量 ( mg/g)

    叶片超氧化物歧化酶(SOD)活性采用氮蓝四唑法测定,过氧化物酶(POD)活性测定采用愈创木酚法[20]

    采用SPSS 20.0统计软件进行单因素方差分析、独立样本T检验,采用新复极差法(Duncan)检验各数据组间差异显著性。Pearson系数的线性回归用于指标相关性分析。数据表示为均值±标准差。

    与对照相比,诱导子对青钱柳幼苗苗高和地径的相对生长率的影响未达显著水平,但均显著提高了茎、叶和整株的干生物量(P<0.05)。诱导子处理间相比, F处理的幼苗叶片生物量显著高于其他处理,总生物量也显著高于FC处理以外的其他处理;B处理提高生物量的效果与壳聚糖相当,但促根生长作用低于壳聚糖,二者联合施用进一步降低了叶片生物量。从青钱柳的收获目标叶生物量来看,诱导子的影响效果表现为F>B/C/FC>BC。

    表2可知,诱导子对土壤pH、全氮和有效氮磷含量的影响均达显著水平(P<0.05)。其中,F、FC和BC处理的基质pH显著高于其他处理,这3个处理之间的pH差异也呈显著水平,呈现FC>F>BC (P<0.05),其他处理pH无显著差异。FC处理土壤全氮含量(0.87 g/kg)显著高于对照的;而与对照相比,B处理显著降低了全氮含量。

    表  2  诱导子处理对栽培基质理化性质的影响
    Table  2.  Effects of elicitors on the physiochemical properties of growth substrates
    处理
    Treatment
    pH全氮 (g/kg)
    Total N
    有效氮 (mg/kg)
    Available N
    有效磷 (mg/kg)
    Available P
    CK3.69±0.03 d0.78±0.004 bc14.74±2.76 c16.75±3.14 c
    F4.05±0.02 b0.82±0.002 ab20.39±3.46 b35.29±2.16 b
    B3.74±0.03 d0.73±0.012 d38.71±2.17 a44.81±3.49 a
    C3.74±0.01 d0.79±0.045 bc14.48±1.33 c17.27±1.75 c
    FC4.11±0.01 a0.87±0.028 a19.16±2.9 bc32.97±5.99 b
    BC3.82±0.02 c0.73±0.056 d36.84±1.47 a45.03±1.80 a
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。同列数据后不同字母表示处理间差异显著(P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    生物诱导子F、B和BC处理的基质中有效氮和有效磷含量均显著高于对照,且B处理显著高于F处理。壳聚糖处理C的有效氮和有效磷含量与CK无显著差异。

    与CK相比,BC、B及C处理显著提高了叶片氮含量,最高的BC处理(31.63 g/kg)高出对照27.7%,而F和FC处理氮含量均低于对照。F、B处理显著提升了叶片磷含量,C处理的提升效果不显著,FC和BC相对于F和B没有产生进一步的提升效果,叶片含磷量呈现B>F>CK (P<0.05)。叶片的C/N与全氮含量表现出相反的趋势,除B与BC处理之间差异不显著外,其余处理之间差异显著,且C/N由高到低表现为F>FC>CK>C>B。C/P的规律与全磷含量相反,C和CK处理相近,且显著高于真菌处理(F、FC),真菌处理又显著高于细菌处理(B、BC)。N/P最高的处理为壳聚糖,其次是细菌(B、BC),最低为真菌F、FC (表3)。

    表  3  诱导子处理对青钱柳叶片元素含量及其化学计量比的影响
    Table  3.  Effects of elicitors on elemental contents and their stoichiometry in the leaves of C. paliurus
    处理 TreatmentC (g/kg)N (g/kg)P (g/kg)C/NC/PN/P
    CK462.73±9.12 a24.77±0.31 c1.57±0.03 c18.68±0.14 c295.52±11.63 a15.82±0.51 c
    F464.27±12.27 a23.57±0.49 d1.68±0.04 b19.70±0.11 a276.99±9.94 b14.06±0.46 d
    B468.03±7.91 a31.53±0.29 a1.87±0.03 a14.84±0.14 e250.72±0.89 c16.89±0.10 b
    C469.1±1.51 a28.53±0.25 b1.61±0.02 bc16.44±0.09 d291.99±2.54 a17.76±0.15 a
    FC462.7±4.45 a24.23±0.35 cd1.67±0.02 b19.09±0.12 b276.53±4.17 b14.48±0.31 d
    BC465.07±4.79 a31.63±0.29 a1.86±0.04 a14.70±0.03 e249.62±2.53 c16.98±0.19 b
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。同列数据后不同字母表示处理间差异显著(P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    图1可知,生物和非生物诱导子处理均显著提高了叶片中SOD活性,SOD活性表现为FC>F ≈ C>BC>B>CK,其中FC处理的SOD活性最高,达750.64 U/(g·h)。但对POD活性,仅F和FC处理有显著的促进效果,POD活性分别高达6310.67和6140.00 U/(g·h),其他处理的效果不明显。

    图  1  施用诱导子对青钱柳幼苗叶 SOD和POD 活性的影响
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。柱上不同小写字母代表处理间酶活性差异显著 (P<0.05)
    Figure  1.  Effects of elicitors on SOD and POD activities in the leaves of C. paliurus seedlings
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Different small letters above the bars indicate significant difference among treatments (P<0.05)

    图2所示,诱导子F、B处理的总黄酮含量相当,但F处理的总黄酮产量显著高于B处理,且F和B两处理的总黄酮含量和产量都显著高于其他处理;其余处理的总黄酮含量与对照无显著差异,但FC的产量显著高于CK;FC和BC处理的总黄酮含量和产量均显著低于F、B,表明壳聚糖与真菌和细菌联合使用,降低了真菌和细菌对叶片中黄酮合成的促进作用。与对照相比,除壳聚糖外,其余F、B、FC、BC处理均显著提高了总三萜含量和产量,与总黄酮一样,真菌和细菌与壳聚糖联合使用降低了二者单独使用对总三萜产量的提高效果。生物诱导子显示了提高叶片总多酚含量和产量的效果,且真菌(F)的提升效果显著高于细菌,壳聚糖对总三萜含量未显示提升效果,且与F和B联合使用降低了生物诱导子的促进效果。对于总多糖而言,壳聚糖C处理对含量的提升效果最高,其次是F处理,B以及FC和BC对含量均无显著提升效果;总多糖产量也是C处理最高,然后是F处理,B、FC和BC处理的产量均高于对照,但这三者之间无显著差异。综合而言,真菌诱导子提高叶片活性成分的效果最佳,其次是细菌;壳聚糖对总多糖提升效果最好,值得注意的是,壳聚糖与真菌和细菌联合施用均会降低其提升活性物质含量的效果。

    图  2  施用诱导子对青钱柳叶主要生物活性物质含量和产量的影响
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。柱上不同小写和大写字母分别表示处理间生物活性物质含量和产量差异显著 (P<0.05)
    Figure  2.  Concentrations and yields of total flavonoids, triterpenes, polyphenols and polysaccharides in C. paliurus leaves as affected by elicitors
    None: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Different lowercase and capital letters above the bars indicate significant difference in concentrations and yields among treatments (P<0.05).

    供试诱导子对黄酮单体和酚酸单体的含量均有不同程度的提升作用(表4)。F处理对黄酮单体F5、F6含量的提升效果最佳;B和FC处理对酚酸单体P1的提升效果最佳;FC和BC处理对黄酮单体F1和F2及F4的提升效果突出;C处理对F3、BC处理对F7、C和BC处理对酚酸单体P2含量的提升均达到较高水平;各处理中最大的单体含量是对照的2~3倍。

    表  4  诱导子处理对青钱柳幼苗黄酮类和酚酸类单体含量的影响
    Table  4.  Effects of elicitors on content of individual flavonoids and phenolic acids in the leaves of C. paliurus seedlings
    处理
    Treatment
    黄酮单体 Individual flavonoids (mg/g)酚酸单体 Individual phenolic acid (mg/g)
    F1F2F3F4F5F6F7P1P2
    CK2.09±0.13 b0.38±0.02 c0.52±0.03 c0.9±0.06 c1.59±0.09 d0.14±0.00 c0.14±0.01 c2.27±0.13 c0.38±0.01 c
    F3.31±0.21 ab0.57±0.03 bc1.26±0.08 ab1.43±0.09 bc3.88±0.24 a0.22±0.01 a0.28±0.02 ab2.01±0.05 c0.57±0.01 bc
    B2.74±1.10 ab0.36±0.09 c0.48±0.17 c1.81±0.69 ab1.1±0.37 d0.16±0.01 bc0.25±0.09 ab8.43±3.10 a0.82±0.25 b
    C2.26±0.21 b0.37±0.03 c1.4±0.41 a1.06±0.11 c2.94±0.79 b0.17±0.07 b0.15±0.02 c3.90±0.45 bc1.55±0.14 a
    FC3.94±0.79 a1.33±0.23 a1.01±0.18 b2.18±0.41 a1.36±0.23 cd0.17±0.01 b0.21±0.04 bc6.01±1.21 ab0.57±0.08 bc
    BC4.17±0.22 a0.63±0.03 b1.21±0.06 ab2.02±0.09 ab2.11±0.10 c0.14±0.01 c0.31±0.01 a3.90±0.26 bc1.57±0.13 a
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。F1、F2、F3、F4、F5、F6和F7分别代表黄酮单体中的槲皮素-3-O-葡萄糖醛酸苷、槲皮素-3-O-吡喃半乳糖苷、异槲皮素、山奈酚-3-O-葡萄糖醛酸苷、山奈酚-3-O-葡萄糖苷、槲皮素-3-O-鼠李糖苷和山奈酚-3-O-鼠李糖苷;P1和P2分别代表3-O-咖啡酰基奎宁酸和4-O-咖啡酰基奎宁酸;nd—未检出。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. F1, F2, F3, F4, F5, F6 and F7 represent Quercetin-3-O-glucuronide, Quercetin-3-O-galactoside, isoquercitrin, Kaempferol-3-O-glucuronide, Kaempferol-3-O-glucoside, Quercetin-3-O-rhamnoside and Kaempferol-3-O-rhamnoside of individual flavonoids, respectively. P1 and P2 represent 3-O-Caffeoyluinic acid and 4-O-Caffeoyluinic acid of individual phenolic, respectively. nd—Not detected. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    诱导子对各三萜类单体含量的影响也存在显著差异(P<0.05,表5)。FC处理下的三萜单体T1、T6的含量均达最高(0.93和0.15 mg/g),BC处理的T2、T5含量分别达0.57和0.62 mg/g, F处理的T3含量为最大(1.9 mg/g);各单体的最大值为对照的2~3倍甚至更高。F和B处理的叶片青钱酸B含量分别高出对照77.8%和200.0%。但各处理对T4无显著影响。综合看来,生物诱导子与非生物诱导子组合处理更有利于三萜单体的积累。

    表  5  诱导子处理对青钱柳幼苗三萜类单体含量(mg/g)的影响
    Table  5.  Effects of applying elicitors on content of individual triterpenoids in the leaves of C. paliurus seedlings
    处理
    Treatment
    T1T2T3T4T5T6
    CK0.37±0.03 c0.18±0.02 bc0.87±0.04 bc2.11±0.16 a0.12±0.03 c0.03±0.01c
    F0.4±0.03 c0.32±0.03 b1.90±0.10 a2.55±0.18 a0.14±0.02 c0.05±0.01bc
    B0.51±0.20 bc0.54±0.13 a0.77±0.23 c2.58±1.15 a0.46±0.32 abcnd
    C0.29±0.09 c0.14±0.11 c0.89±0.10 bc2.09±0.17 a0.26±0.02 bcnd
    FC0.93±0.19 a0.33±0.07 b1.07±0.21 b2.55±0.57 a0.56±0.19 ab0.15±0.05a
    BC0.69±0.03 ab0.57±0.04 a1.07±0.04 b2.05±0.11 a0.62±0.05 a0.11±0.01ab
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。 T1、T2、T3、T4、T5、T6分别代表三萜单体中的阿江榄仁酸、青钱柳酸B、pterocaryoside B、pterocaryoside A、常春藤皂苷元、齐墩果酸。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. T1, T2, T3, T4, T5 and T6 represent arjunolic acid, cyclocaric acid B, pterocaryoside B, pterocaryoside A, hederagenin and oleanolic acid of individual triterpenoids, respectively. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    分析植物叶片C、N、P、生物活性物质含量与土壤有效养分之间的相关性,结果(表6)表明,叶片N、P含量分别与土壤有效氮和有效磷养分呈显著正相关,相关系数分别为0.65、0.88。总黄酮含量与土壤有效养分含量均显著正相关;总三萜含量与土壤有效养分、叶片全磷含量呈显著正相关,而与N/P呈负相关;此外,总多酚与N/P呈极显著负相关,相关系数达−0.73。

    表  6  植物叶片C、N、P含量与土壤有效养分以及生物活性物质含量之间的相关性(n=18)
    Table  6.  Correlation among leaf C, N, P, bioactive compound contents, and available soil N and P contents
    项目
    Item
    黄酮
    Flavonoids
    三萜
    Triterpenes
    多酚
    Polyphenols
    多糖
    Polysaccharides
    土壤有效氮
    Soil available N
    土壤有效磷
    Soil available P
    N C P C/N C/P
    三萜
    Triterpenes
    0.650**
    多酚
    Polyphenols
    0.560* 0.490*
    多糖
    Polysaccharides
    −0.220 −0.480* −0.07
    土壤有效氮
    Soil available N
    0.580* 0.610** 0.04 −0.36
    土壤有效磷
    Soil available P
    0.580* 0.870** 0.43 −0.45 0.73**
    N 0.020 0.280 −0.40 0.02 0.65** 0.48*
    C −0.002 −0.04 −0.11 0.24 0.11 0.003 0.32
    P 0.440 0.770** 0.18 −0.37 0.80** 0.88** 0.75** 0.11
    C/N 0.020 −0.250 0.44 −0.03 −0.63** −0.45 −0.99** −0.22 −0.72**
    C/P −0.450 −0.790** −0.24 0.41 −0.76** −0.89** −0.66** 0.12 −0.97** 0.65**
    N/P −0.350 −0.250 −0.73** 0.36 0.25 −0.06 0.82** 0.38 0.23 −0.83** −0.12
    Note: *—P<0.05; **—P<0.01.
    下载: 导出CSV 
    | 显示表格

    相关性分析结果(表7)表明,青钱柳幼苗叶片SOD活性与总多酚含量、总多糖含量均为显著正相关,POD活性与总多酚含量呈极显著正相关。

    表  7  叶片生物活性物质含量与防御酶活性的相关性(r
    Table  7.  Pearson correlation coefficients of leaf bioactive compound content and defensive enzyme activity

    Enzyme
    黄酮
    Flavonoids
    三萜
    Triterpenes
    多酚
    Polyphenols
    多糖
    Polysaccharides
    SOD0.220.260.63**0.49*
    POD0.440.400.87**−0.19
    Note: *—P<0.05; **—P<0.01.
    下载: 导出CSV 
    | 显示表格

    诱导子一般以微小剂量作用于植株,通过激活某些转录因子和调控基因来影响生物活性物质合成途径,从而促进生物活性物质的积累,是目前提高植物次生代谢物产率最有效的技术手段之一[10]。一般来说,非生物诱导子和生物诱导子会通过不同的途径影响植株,产生的效果也不一样[21]

    施用诱导子均对青钱柳幼苗的苗高及地径有一定的促进作用,但未达显著水平。主要原因可能是处理开始时间(8月25日)已错过了速生期,因而影响了促生效果,但对叶片生物量的促进效果仍十分显著(表1)。施用诱导子可有效提高土壤肥力[22]。在本试验中,壳聚糖(C)处理由于施用方法为叶面喷施,因而对土壤有效养分的影响不显著,其提高植株生物量的效应,一方面可能通过促进光合作用来提高初生代谢[23],另一方面可能壳聚糖诱导植株内源激素的合成,如赤霉素和生长素,促进了植物的生长发育[24]。真菌(F、FC处理)和细菌(B、BC处理)诱导子由于直接施用于根部土壤(灌根),显著改变了土壤肥力(表2)。本试验采用的真菌诱导子为木霉,有研究表明,木霉可通过固氮提高土壤全氮含量[25-26],因而F、FC处理提高了土壤全氮含量,细菌处理显著降低了土壤全氮含量。此外,F、FC处理还显著提高了土壤pH以及土壤有效磷含量,因而创造了有利于植株生长的养分环境。

    表  1  诱导子处理对青钱柳幼苗生长和生物量的影响
    Table  1.  Effects of elicitors on seedling growth traits and biomass of C. paliurus
    处理
    Treatment
    RGRh
    (×10−3)
    RGRd
    (×10−3)
    干重 Dry biomass (g/plant)
    根 Root茎 Stem叶 Leaf植株 Total
    CK1.52±0.30 a1.74±0.64 a10.76±0.65 c11.05±0.67 c8.14±0.49 d29.95±1.82 d
    F1.57±0.18 a1.97±0.75 a11.54±0.61 b15.24±0.81 ab11.81±0.63 a38.59±4.39 a
    B1.62±0.45 a1.82±0.49 a9.59±0.34 d14.46±0.51 b10.21±0.36 b34.26±4.7 c
    C1.65±0.56 a1.87±0.69 a10.73±0.33 c15.02±0.46 ab10.29±0.32 b36.04±5.13 bc
    FC1.65±0.23 a1.95±0.62 a12.75±0.36 a14.53±0.41 b10.08±0.28 b37.36±3.55 ab
    BC1.67±0.42 a1.82±0.36 a9.47±0.53 d15.89±0.89 a9.35±0.52 c34.7±2.05 c
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。RGRh和RGRd分别为苗高和地径相对生长率。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. RGRh and RGRd were the relative growth rate of seedling height and stem diameter. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    植物初生代谢产物和生物活性物质的主要组成元素均为C、N、P,化学计量比与植物生长和细胞代谢密切相关[27-28]。在本试验中,细菌诱导子处理的叶片N、P含量均有所增加,相关性分析也表明叶片氮磷含量分别与土壤速效氮磷含量呈极显著相关关系(表6),说明生物诱导子的施用促进了土壤养分循环,改善植物对养分的吸收,这与Wang等[19]的研究结果一致。同时,我们发现总三萜含量与C/P、总多酚含量与N/P均呈极显著负相关,说明次生代谢与植物内部养分的化学计量存在一定的分配平衡。Vessey[29]也认为氮、磷的吸收会引起植物内部碳氮磷化学计量比的变化,从而影响初级生长和次级生长的分配平衡。

    诱导植物产生系统获得性抗性(systemic acquired resistance, SAR)是诱导子诱抗的途径之一,该过程伴随着一系列的物质代谢,催化这些代谢反应的生物酶是作用的关键部分,酶活性的变化通常被作为衡量植物体内防御反应的重要指标,其中SOD和POD是植物防御系统中保护酶体系的关键组成部分[30-31]。本研究结果表明,青钱柳在诱导子的诱导下,防御酶活性多获得不同程度的提高,其中木霉处理的效果最优,与之对应的SOD和POD活性也达最高,同时各种次生代谢产物的含量也获得了提高。进一步相关性分析(表7)发现,防御酶活性与抗氧化多酚类物质含量的变化呈显著正相关,表明诱导子诱导青钱柳产生了SAR,植株通过提高防御酶活性和抗氧化多酚类物质含量达到清除活性氧自由基的目的,防止自由基对细胞的损害,从而提高其抗性。

    青钱柳作为药用植物,提高其生物活性物质的积累是其主要的栽培目标。在本研究中,生物诱导子与非生物诱导子处理多对青钱柳生物活性物质积累有提升效果。本研究结果表明,非生物诱导子壳聚糖处理显著提高了青钱柳总多糖含量,Ou等[32]的研究也发现施用壳聚糖可显著提高茶树(Camellia sinensis)总多糖含量。在本研究中发现生物诱导子与非生物诱导子的联合施用并没有对生物活性物质的积累产生叠加效应,甚至在总黄酮、总多酚上表现为壳聚糖的施用抵消了生物诱导子的提升效果。考虑到不同物种对壳聚糖的响应效果不尽相同,本研究中所采用的壳聚糖施用浓度、施用方式未必适合青钱柳,故出现壳聚糖与生物诱导子的联合施用效果不佳的情况,这一结果与刘冉等[33]的研究结果类似。值得关注的是,所有处理多数生物活性物质单体的积累都有显著影响。三萜类单体T2即青钱柳酸B作为青钱柳所特有的三萜类药用成分,生物诱导子(真菌和细菌)处理组含量分别高出对照77.8%、200.0% ,表明诱导子处理可以显著提高青钱柳叶片的药用品质。相关性分析可知,土壤有效养分与生物活性物质(总黄酮、总三萜)呈显著正相关,因此认为植物体内养分吸收的增加可能有助于生物活性物质前体的产生,如苯丙氨酸(初级代谢和次级代谢的共同前体),从而提高生物活性物质的含量与产量[34]

    真菌、细菌和壳聚糖类诱导子提高青钱柳叶片产量和品质的效果及机理均不同。真菌类诱导子可提高栽培基质的pH和全氮含量,提高植株抗氧化酶活性,促进青钱柳叶片养分和叶生物活性物质积累。细菌诱导子的效果不如真菌,但在提升土壤有效养分方面表现最优,在提升生物活性物质积累方面也有一定的效果。壳聚糖对大部分生物活性物质的积累无显著作用,但有利于叶多糖的积累。综合产量和品质,木霉菌为青钱柳最适诱导子,应尽量避免生物诱导子与非生物诱导子同时使用。

  • 图  1   施用诱导子对青钱柳幼苗叶 SOD和POD 活性的影响

    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。柱上不同小写字母代表处理间酶活性差异显著 (P<0.05)

    Figure  1.   Effects of elicitors on SOD and POD activities in the leaves of C. paliurus seedlings

    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Different small letters above the bars indicate significant difference among treatments (P<0.05)

    图  2   施用诱导子对青钱柳叶主要生物活性物质含量和产量的影响

    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。柱上不同小写和大写字母分别表示处理间生物活性物质含量和产量差异显著 (P<0.05)

    Figure  2.   Concentrations and yields of total flavonoids, triterpenes, polyphenols and polysaccharides in C. paliurus leaves as affected by elicitors

    None: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Different lowercase and capital letters above the bars indicate significant difference in concentrations and yields among treatments (P<0.05).

    表  2   诱导子处理对栽培基质理化性质的影响

    Table  2   Effects of elicitors on the physiochemical properties of growth substrates

    处理
    Treatment
    pH全氮 (g/kg)
    Total N
    有效氮 (mg/kg)
    Available N
    有效磷 (mg/kg)
    Available P
    CK3.69±0.03 d0.78±0.004 bc14.74±2.76 c16.75±3.14 c
    F4.05±0.02 b0.82±0.002 ab20.39±3.46 b35.29±2.16 b
    B3.74±0.03 d0.73±0.012 d38.71±2.17 a44.81±3.49 a
    C3.74±0.01 d0.79±0.045 bc14.48±1.33 c17.27±1.75 c
    FC4.11±0.01 a0.87±0.028 a19.16±2.9 bc32.97±5.99 b
    BC3.82±0.02 c0.73±0.056 d36.84±1.47 a45.03±1.80 a
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。同列数据后不同字母表示处理间差异显著(P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  3   诱导子处理对青钱柳叶片元素含量及其化学计量比的影响

    Table  3   Effects of elicitors on elemental contents and their stoichiometry in the leaves of C. paliurus

    处理 TreatmentC (g/kg)N (g/kg)P (g/kg)C/NC/PN/P
    CK462.73±9.12 a24.77±0.31 c1.57±0.03 c18.68±0.14 c295.52±11.63 a15.82±0.51 c
    F464.27±12.27 a23.57±0.49 d1.68±0.04 b19.70±0.11 a276.99±9.94 b14.06±0.46 d
    B468.03±7.91 a31.53±0.29 a1.87±0.03 a14.84±0.14 e250.72±0.89 c16.89±0.10 b
    C469.1±1.51 a28.53±0.25 b1.61±0.02 bc16.44±0.09 d291.99±2.54 a17.76±0.15 a
    FC462.7±4.45 a24.23±0.35 cd1.67±0.02 b19.09±0.12 b276.53±4.17 b14.48±0.31 d
    BC465.07±4.79 a31.63±0.29 a1.86±0.04 a14.70±0.03 e249.62±2.53 c16.98±0.19 b
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。同列数据后不同字母表示处理间差异显著(P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  4   诱导子处理对青钱柳幼苗黄酮类和酚酸类单体含量的影响

    Table  4   Effects of elicitors on content of individual flavonoids and phenolic acids in the leaves of C. paliurus seedlings

    处理
    Treatment
    黄酮单体 Individual flavonoids (mg/g)酚酸单体 Individual phenolic acid (mg/g)
    F1F2F3F4F5F6F7P1P2
    CK2.09±0.13 b0.38±0.02 c0.52±0.03 c0.9±0.06 c1.59±0.09 d0.14±0.00 c0.14±0.01 c2.27±0.13 c0.38±0.01 c
    F3.31±0.21 ab0.57±0.03 bc1.26±0.08 ab1.43±0.09 bc3.88±0.24 a0.22±0.01 a0.28±0.02 ab2.01±0.05 c0.57±0.01 bc
    B2.74±1.10 ab0.36±0.09 c0.48±0.17 c1.81±0.69 ab1.1±0.37 d0.16±0.01 bc0.25±0.09 ab8.43±3.10 a0.82±0.25 b
    C2.26±0.21 b0.37±0.03 c1.4±0.41 a1.06±0.11 c2.94±0.79 b0.17±0.07 b0.15±0.02 c3.90±0.45 bc1.55±0.14 a
    FC3.94±0.79 a1.33±0.23 a1.01±0.18 b2.18±0.41 a1.36±0.23 cd0.17±0.01 b0.21±0.04 bc6.01±1.21 ab0.57±0.08 bc
    BC4.17±0.22 a0.63±0.03 b1.21±0.06 ab2.02±0.09 ab2.11±0.10 c0.14±0.01 c0.31±0.01 a3.90±0.26 bc1.57±0.13 a
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。F1、F2、F3、F4、F5、F6和F7分别代表黄酮单体中的槲皮素-3-O-葡萄糖醛酸苷、槲皮素-3-O-吡喃半乳糖苷、异槲皮素、山奈酚-3-O-葡萄糖醛酸苷、山奈酚-3-O-葡萄糖苷、槲皮素-3-O-鼠李糖苷和山奈酚-3-O-鼠李糖苷;P1和P2分别代表3-O-咖啡酰基奎宁酸和4-O-咖啡酰基奎宁酸;nd—未检出。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. F1, F2, F3, F4, F5, F6 and F7 represent Quercetin-3-O-glucuronide, Quercetin-3-O-galactoside, isoquercitrin, Kaempferol-3-O-glucuronide, Kaempferol-3-O-glucoside, Quercetin-3-O-rhamnoside and Kaempferol-3-O-rhamnoside of individual flavonoids, respectively. P1 and P2 represent 3-O-Caffeoyluinic acid and 4-O-Caffeoyluinic acid of individual phenolic, respectively. nd—Not detected. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  5   诱导子处理对青钱柳幼苗三萜类单体含量(mg/g)的影响

    Table  5   Effects of applying elicitors on content of individual triterpenoids in the leaves of C. paliurus seedlings

    处理
    Treatment
    T1T2T3T4T5T6
    CK0.37±0.03 c0.18±0.02 bc0.87±0.04 bc2.11±0.16 a0.12±0.03 c0.03±0.01c
    F0.4±0.03 c0.32±0.03 b1.90±0.10 a2.55±0.18 a0.14±0.02 c0.05±0.01bc
    B0.51±0.20 bc0.54±0.13 a0.77±0.23 c2.58±1.15 a0.46±0.32 abcnd
    C0.29±0.09 c0.14±0.11 c0.89±0.10 bc2.09±0.17 a0.26±0.02 bcnd
    FC0.93±0.19 a0.33±0.07 b1.07±0.21 b2.55±0.57 a0.56±0.19 ab0.15±0.05a
    BC0.69±0.03 ab0.57±0.04 a1.07±0.04 b2.05±0.11 a0.62±0.05 a0.11±0.01ab
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。 T1、T2、T3、T4、T5、T6分别代表三萜单体中的阿江榄仁酸、青钱柳酸B、pterocaryoside B、pterocaryoside A、常春藤皂苷元、齐墩果酸。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. T1, T2, T3, T4, T5 and T6 represent arjunolic acid, cyclocaric acid B, pterocaryoside B, pterocaryoside A, hederagenin and oleanolic acid of individual triterpenoids, respectively. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV

    表  6   植物叶片C、N、P含量与土壤有效养分以及生物活性物质含量之间的相关性(n=18)

    Table  6   Correlation among leaf C, N, P, bioactive compound contents, and available soil N and P contents

    项目
    Item
    黄酮
    Flavonoids
    三萜
    Triterpenes
    多酚
    Polyphenols
    多糖
    Polysaccharides
    土壤有效氮
    Soil available N
    土壤有效磷
    Soil available P
    N C P C/N C/P
    三萜
    Triterpenes
    0.650**
    多酚
    Polyphenols
    0.560* 0.490*
    多糖
    Polysaccharides
    −0.220 −0.480* −0.07
    土壤有效氮
    Soil available N
    0.580* 0.610** 0.04 −0.36
    土壤有效磷
    Soil available P
    0.580* 0.870** 0.43 −0.45 0.73**
    N 0.020 0.280 −0.40 0.02 0.65** 0.48*
    C −0.002 −0.04 −0.11 0.24 0.11 0.003 0.32
    P 0.440 0.770** 0.18 −0.37 0.80** 0.88** 0.75** 0.11
    C/N 0.020 −0.250 0.44 −0.03 −0.63** −0.45 −0.99** −0.22 −0.72**
    C/P −0.450 −0.790** −0.24 0.41 −0.76** −0.89** −0.66** 0.12 −0.97** 0.65**
    N/P −0.350 −0.250 −0.73** 0.36 0.25 −0.06 0.82** 0.38 0.23 −0.83** −0.12
    Note: *—P<0.05; **—P<0.01.
    下载: 导出CSV

    表  7   叶片生物活性物质含量与防御酶活性的相关性(r

    Table  7   Pearson correlation coefficients of leaf bioactive compound content and defensive enzyme activity


    Enzyme
    黄酮
    Flavonoids
    三萜
    Triterpenes
    多酚
    Polyphenols
    多糖
    Polysaccharides
    SOD0.220.260.63**0.49*
    POD0.440.400.87**−0.19
    Note: *—P<0.05; **—P<0.01.
    下载: 导出CSV

    表  1   诱导子处理对青钱柳幼苗生长和生物量的影响

    Table  1   Effects of elicitors on seedling growth traits and biomass of C. paliurus

    处理
    Treatment
    RGRh
    (×10−3)
    RGRd
    (×10−3)
    干重 Dry biomass (g/plant)
    根 Root茎 Stem叶 Leaf植株 Total
    CK1.52±0.30 a1.74±0.64 a10.76±0.65 c11.05±0.67 c8.14±0.49 d29.95±1.82 d
    F1.57±0.18 a1.97±0.75 a11.54±0.61 b15.24±0.81 ab11.81±0.63 a38.59±4.39 a
    B1.62±0.45 a1.82±0.49 a9.59±0.34 d14.46±0.51 b10.21±0.36 b34.26±4.7 c
    C1.65±0.56 a1.87±0.69 a10.73±0.33 c15.02±0.46 ab10.29±0.32 b36.04±5.13 bc
    FC1.65±0.23 a1.95±0.62 a12.75±0.36 a14.53±0.41 b10.08±0.28 b37.36±3.55 ab
    BC1.67±0.42 a1.82±0.36 a9.47±0.53 d15.89±0.89 a9.35±0.52 c34.7±2.05 c
    注:CK—清水对照;F—真菌;B—细菌;C—壳聚糖;FC—真菌+壳聚糖;BC—细菌+壳聚糖。RGRh和RGRd分别为苗高和地径相对生长率。同列数据后不同小写字母代表处理间差异显著 (P<0.05)。
    Note: CK—Water control; F—Fungi; B—Bacteria; C—Chitosan; FC—Fungi + chitosan; BC—Bacteria + chitosan. RGRh and RGRd were the relative growth rate of seedling height and stem diameter. Values followed by different small letters in the same column denote significant difference among treatments (P<0.05).
    下载: 导出CSV
  • [1] 方升佐. 青钱柳产业发展历程及资源培育研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 115–126. Fang S Z. Development history of wheel wingnut industry and its research progress on the resource silvicuture[J]. Journal of Nanjing Forestry University (Natural Sciences Edition)., 2022, 46(6): 115–126.

    Fang S Z. Development history of wheel wingnut industry and its research progress on the resource silvicuture[J]. Journal of Nanjing Forestry University (Natural Sciences Edition). 2022, 46(6): 115-126.

    [2]

    Wang X, Tang L, Ping W X, et al. Progress in research on the alleviation of glucose metabolism disorders in type 2 diabetes using Cyclocarya paliurus[J]. Nutrients, 2022, 14(15): 3169. DOI: 10.3390/nu14153169

    [3]

    Correa-Higuera L J, Sepulveda-Garcia E B, Ponce-Noyola T, et al. Glucoindole alkaloid accumulation induced by yeast extract in Uncaria tomentosa root cultures is involved in defense response[J]. Biotechnology Letters, 2019, 41(10): 1233–1244. DOI: 10.1007/s10529-019-02714-1

    [4]

    Hao Y J, An X L, Sun H D, et al. Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules[J]. Industrial Crops and Products, 2020, 150: 112414. DOI: 10.1016/j.indcrop.2020.112414

    [5]

    Bhaskar R, Xavier L S E, Udayakumaran G, et al. Biotic elicitors: A boon for the in-vitro production of plant secondary metabolites[J]. Plant Cell Tissue and Organ Culture, 2022, 149(1/2): 7–24.

    [6]

    Okoroafor P U, Mann L, Ngu K A, et al. Impact of soil inoculation with Bacillus amyloliquefaciens FZB42 on the phytoaccumulation of germanium, rare earth elements, and potentially toxic elements[J]. Plants-Basel, 2022, 11(3): 341. DOI: 10.3390/plants11030341

    [7]

    Hao H T, Zhao X, Shang Q H, et al. Comparative digital gene expression analysis of the Arabidopsis response to volatiles emitted by Bacillus amyloliquefaciens[J]. PLoS ONE, 2016, 11(8): 158621.

    [8]

    Chen J, Harman G E, Comis A, et al. Proteins related to the biocontrol of Pythium damping-off in maize with Trichoderma hardanum Rifai[J]. Journal of Integrative Plant Biology, 2005, 47(8): 988–997. DOI: 10.1111/j.1744-7909.2005.00053.x

    [9]

    Contreras-Cornejo H A, Macias-Rodriguez L, Cortes-Penagos C, et al. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 149(3): 1579–1592. DOI: 10.1104/pp.108.130369

    [10]

    Sak M, Dokupilova I, Kanukova S, et al. Biotic and abiotic elicitors of stilbenes production in Vitis vinifera L. cell culture[J]. Plants-Basel, 2021, 10(3): 490. DOI: 10.3390/plants10030490

    [11]

    Park Y, Kim M H, Park S C, et al. Investigation of the antifungal activity and mechanism of action of LMWS-Chitosan[J]. Journal of Microbiology and Biotechnology, 2008, 18(10): 1729–1734.

    [12]

    Fundora D G P, Falcon-Rodriguez A B, Menendez D C, et al. Chitosan induces tomato basal resistance against Phytophthora nicotianae and inhibits pathogen development[J]. Canadian Journal of Plant Pathology, 2021, 44(3): 400–414.

    [13]

    Wang Z K, Chen Z Y, Xu Z H, et al. Microbial inoculants modulate growth traits, nutrients acquisition and bioactive compounds accumulation of Cyclocarya paliurus (Batal. ) Iljinskaja under degraded field condition[J]. Forest Ecology and Management, 2021, 482: 118897. DOI: 10.1016/j.foreco.2020.118897

    [14]

    Mazarura U, Goss M, Macherera G. Effect of media type on initial establishment and early growth of multipurpose Moringa[J]. International Journal of Agricultural Technology, 2013, 9(3): 681–689.

    [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000, 164–165.

    Lu R K. Methods for analysis of soil and agriculture chemistry[M]. Beijing: China Agricultural Science and Technology Press, 2000, 164–165.

    [16]

    Sun C W, Shang X L, Ding H F, et al. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J]. Journal of Forestry Research, 2021, 32(2): 805–814. DOI: 10.1007/s11676-020-01139-1

    [17]

    Fu X X, Zhou X D, Deng B, et al. Seasonal and genotypic variation of water-soluble polysaccharide content in leaves of Cyclocarya paliurus[J]. Southern Forests, 2015, 77(3): 231–236. DOI: 10.2989/20702620.2015.1010698

    [18]

    Fang S Z, Yang W X, Chu X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus[J]. Food Chemistry, 2011, 124(4): 1382–1386. DOI: 10.1016/j.foodchem.2010.07.095

    [19]

    Wang Z K, Chen Z Y, Xu Z H, et al. Effects of probiotic consortia on plant metabolites are associated with soil indigenous microbiota and fertilization regimes[J]. Industrial Crops and Products, 2022, 185: 115138. DOI: 10.1016/j.indcrop.2022.115138

    [20] 李合生. 植物生理生化试验原理和技术[M]. 北京: 高等教育出版社, 2006.

    Li H S. Principles and techniques of plant physiology and biochemistry experiment[M]. Beijing: Chinese High Education Press, 2006.

    [21]

    Radman R, Saez T, Bucke C, et al. Elicitation of plants and microbial cell systems[J]. Biotechnology and Applied Biochemistry, 2003, 37(1): 91–102. DOI: 10.1042/BA20020118

    [22]

    Zhai T T, Wang Y F, Liu C L, et al. Trichoderma asperellum ACCC30536 inoculation improves soil nutrition and leaf artemisinin production in Artemisia annua[J]. Acta Physiologiae Plantarum, 2019, 41(4): 46. DOI: 10.1007/s11738-019-2836-7

    [23]

    Ahmed K B M, Khan M M A, Siddiqui H, et al. Chitosan and its oligosaccharides, a promising option for sustainable crop production: A review[J]. Carbohydrate Polymers, 2020, 227: 115331. DOI: 10.1016/j.carbpol.2019.115331

    [24]

    Ahmed A H H, Nesiem M R A E, Allam H A, et al. Effect of preharvest chitosan foliar application on growth, yield and chemical composition of Washington navel orange trees grown in two different regions[J]. African Journal of Biochemistry Research, 2016, 10(7): 59–69. DOI: 10.5897/AJBR2016.0908

    [25] 薛应钰, 叶巍, 杨树, 等. 高效溶磷木霉菌株复合诱变选育及促生作用[J]. 核农学报, 2018, 32(11): 2289–2297. Xue Y Y, Ye W, Yang S, et al. Growth-promoting effect and screening of high phosphorus dissolving strains of Trichoderma sp. by compound mutation[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2289–2297. DOI: 10.11869/j.issn.100-8551.2018.12.2289

    Xue Y Y, Ye W, Yang S, et al. Growth-promoting effect and screening of high phosphorus dissolving strains of Trichoderma sp. by compound mutation[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2289-2297. DOI: 10.11869/j.issn.100-8551.2018.12.2289

    [26] 贺字典, 高玉峰, 叶雪玲, 等. 溶磷木霉菌对辣椒促生效果[J]. 北方园艺, 2021, (13): 62–68. He Z D, Gao Y F, Ye X L, et al. Effects of Trichoderma phosphate solubilizing on the pepper growth[J]. Northern Horticulture, 2021, (13): 62–68.

    He Z D, Gao Y F, Ye X L, et al. Effects of Trichoderma phosphate solubilizing on the pepper growth[J]. Northern Horticulture, 2021(13): 62-68.

    [27]

    Gigolashvili T, Kopriva S. Transporters in plant sulfur metabolism[J]. Frontiers in Plant Science, 2014, 5: 442.

    [28]

    Canovas F M, Canas R A, de la Torre F N, et al. Nitrogen metabolism and biomass production in forest trees[J]. Frontiers in Plant Science, 2018, 9: 1449. DOI: 10.3389/fpls.2018.01449

    [29]

    Vessey J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 2003, 255(2): 571–586. DOI: 10.1023/A:1026037216893

    [30] 杜茜, 郑亚杰, 纪东铭, 等. 公主岭霉素对草莓的防病诱抗和促生效应[J]. 植物保护学报, 2021, 48(3): 679–688. Du Q, Zheng Y J, Ji D M, et al. Efficacy of gongzhulingmycin against powdery mildew caused by fungus Sphaerotheca aphanis and its effects on the growth of strawberry[J]. Journal of Plant Protection, 2021, 48(3): 679–688.

    Du Q, Zheng Y J, Ji D M, et al. Efficacy of gongzhulingmycin against powdery mildew caused by fungus Sphaerotheca aphanis and its effects on the growth of strawberry[J]. Journal of Plant Protection, 2021, 48(3): 679-688.

    [31] 戚秀秀, 刘艺凝, 魏畅, 等. 施硅提高玉米抗蚜性的组成型和诱导型生理代谢机制[J]. 植物营养与肥料学报, 2021, 27(9): 1506–1522. Qi X X, Liu Y N, Wei C, et al. Mechanism of silicon application to improve constitutive and inducible resistance to aphid during physiological metabolism of maize[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1506–1522. DOI: 10.11674/zwyf.2021086

    Qi X X, Liu Y N, Wei C, et al. Mechanism of silicon application to improve constitutive and inducible resistance to aphid during physiological metabolism of maize[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(9): 1506–1522. DOI: 10.11674/zwyf.2021086

    [32]

    Ou L N, Zhang Q Q, Ji D Z, et al. Physiological, transcriptomic investigation on the tea plant growth and yield motivation by chitosan oligosaccharides[J]. Horticulturae, 2022, 8(1): 68. DOI: 10.3390/horticulturae8010068

    [33] 刘冉, 王振宇, 李婷婷, 等. 壳聚糖对红松幼苗多酚积累和抗氧化防御酶的诱导作用[J]. 植物生态学报, 2014, 38(7): 749–756. Liu R, Wang Z Y, Li T T, et al. The role of chitosan in polyphenols accumulation and induction of defense enzymes in Pinus koraiensis seedlings[J]. Chinese Journal of Plant Ecology, 2014, 38(7): 749–756.

    Liu R, Wang Z Y, Li T T, et al. The role of chitosan in polyphenols accumulation and induction of defense enzymes in Pinus koraiensis seedlings [J]. Chinese Journal of Plant Ecology, 2014, 38 (7): 749–756.

    [34]

    Schmidt S, Zietz M, Schreiner M, et al. Genotypic and climatic influences on the concentration and composition of flavonoids in kale (Brassica oleracea var. sabellica)[J]. Food Chemistry, 2010, 119(4): 1293–1299. DOI: 10.1016/j.foodchem.2009.09.004

  • 期刊类型引用(5)

    1. 赵珮,高琴琼,周利华,朱荣霞,张莉,吴均. 保鲜剂对桑椹采前活性物质积累及采后保鲜效果的影响. 北方园艺. 2025(03): 88-96 . 百度学术
    2. 温思琦,王晓恩,王河川,余宇潇,谢帆,刘建福,吴新泉. 外源物质和光质对铁皮石斛生理效应的影响. 东南园艺. 2025(01): 48-56 . 百度学术
    3. 黄岩萌,易炎,卞国良,胡凤荣,尚旭岚. 青钱柳染色体的制片技术及核型分析. 东北林业大学学报. 2024(04): 46-51+65 . 百度学术
    4. 谢涛,田秀,袁丛军,田凡,霍达,姜霞. 截干对青钱柳生长及主要药用活性成分积累的影响. 贵州林业科技. 2024(02): 6-11+49 . 百度学术
    5. 刘益宏,聂江力,裴毅. 诱导子对药用植物次生代谢产物积累的作用综述. 天津农林科技. 2024(05): 39-42 . 百度学术

    其他类型引用(3)

图(2)  /  表(7)
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  541
  • PDF下载量:  40
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-09-13
  • 录用日期:  2023-05-08
  • 网络出版日期:  2023-05-10
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回