• ISSN 1008-505X
  • CN 11-3996/S

利用离散元仿真及微结构分析法研究高铝瓷球对尿素表面改性和养分控释的效果

田虹雨, 董晶晶, 解臣硕, 崔静, 段建杭, 张天骄, 代佳颖, 王硕, 张丽莉, 魏占波, 武良, 郭武松, 刘之广, 张民

田虹雨, 董晶晶, 解臣硕, 崔静, 段建杭, 张天骄, 代佳颖, 王硕, 张丽莉, 魏占波, 武良, 郭武松, 刘之广, 张民. 利用离散元仿真及微结构分析法研究高铝瓷球对尿素表面改性和养分控释的效果[J]. 植物营养与肥料学报, 2023, 29(5): 900-911. DOI: 10.11674/zwyf.2022495
引用本文: 田虹雨, 董晶晶, 解臣硕, 崔静, 段建杭, 张天骄, 代佳颖, 王硕, 张丽莉, 魏占波, 武良, 郭武松, 刘之广, 张民. 利用离散元仿真及微结构分析法研究高铝瓷球对尿素表面改性和养分控释的效果[J]. 植物营养与肥料学报, 2023, 29(5): 900-911. DOI: 10.11674/zwyf.2022495
TIAN Hong-yu, DONG Jing-jing, XIE Chen-shuo, CUI Jing, DUAN Jian-hang, ZHANG Tian-jiao, DAI Jia-ying, WANG Shuo, ZHANG Li-li, WEI Zhan-bo, WU Liang, GUO Wu-song, LIU Zhi-guang, ZHANG Min. Using discrete element simulation and microstructure observation to study the urea surface modification and nutrients release performance of coated urea[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 900-911. DOI: 10.11674/zwyf.2022495
Citation: TIAN Hong-yu, DONG Jing-jing, XIE Chen-shuo, CUI Jing, DUAN Jian-hang, ZHANG Tian-jiao, DAI Jia-ying, WANG Shuo, ZHANG Li-li, WEI Zhan-bo, WU Liang, GUO Wu-song, LIU Zhi-guang, ZHANG Min. Using discrete element simulation and microstructure observation to study the urea surface modification and nutrients release performance of coated urea[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 900-911. DOI: 10.11674/zwyf.2022495

利用离散元仿真及微结构分析法研究高铝瓷球对尿素表面改性和养分控释的效果

基金项目: 辽宁省揭榜挂帅项目(2021JH1/10400039-2)
详细信息
    作者简介:

    田虹雨 E-mail: thy0634@qq.com

    通讯作者:

    刘之广 E-mail: liuzhiguang8235126@126.com

    张民 E-mail: minzhang-2002@163.com

Using discrete element simulation and microstructure observation to study the urea surface modification and nutrients release performance of coated urea

  • 摘要:
    目的 

    尿素表面改性是提高包膜质量和养分控释能力的关键措施之一。我们研究了不同磨料对肥料核芯表面的改性效果,以及改性提高肥料养分控释的效果。

    方法 

    供试肥芯为大颗粒尿素(直径3~5 mm,N 46%),供试磨料包括白刚玉、棕刚玉、高铝瓷球、高铝瓷柱和氧化锆球。经测量不同磨料研磨后尿素的休止角,证明采用堆密度1.336 g/cm3、直径6 mm的球形高铝瓷在10 min内对尿素表面改性效率最高,故用作后期的试验磨料。将1.5 kg的高铝瓷球与1 kg大颗粒尿素加入转鼓中,采用离散元仿真软件 (EDEM) 模拟磨料摩擦与尿素颗粒自摩擦的粒子运动、碰撞、受力和分布特征;使用扫描电子显微镜分析磨料、表面改性尿素和包膜尿素的表面和切面结构特性,采用原子力显微镜测试包膜尿素膜表面结构微观特征与粗糙度;采用静水溶出率法测定纳米SiO2改性蓖麻油基聚氨酯包膜的表面改性尿素的养分释放特征。

    结果 

    EDEM仿真结果表明,转鼓底部颗粒运动快(1.125 m/s),边缘运动慢(0.00309 m/s),转动过程中,小颗粒物聚集在转鼓底部产生偏析。尿素自摩擦力约0.035 N,加入密度大于尿素的球形高铝瓷磨料后,混合体系的摩擦力变大(约0.042 N),尿素颗粒间的碰撞次数较自摩擦体系高出13.0%,因此改性效率得以提高。表面改性显著降低了颗粒表面粗糙度,在1 μm2检测范围内,粗糙度(Ra)平均降低了79.2%。由扫描电镜图可以看出,普通尿素表面粗糙,膜材料填充在凹陷部位,包膜耗费的膜材料较多,且膜与尿素贴合不紧密,在运输或长期储存过程中易发生膜破损,失去养分控释能力;改性后的尿素表面光滑,减少了无功能的膜材浪费,且膜厚均匀,膜层与核芯结合紧密,膜切面结构均匀,不易破损。养分释放结果表明,以5%包膜率的纳米SiO2改性蓖麻油基聚氨酯对尿素包膜,表面改性尿素相较普通尿素可使养分释放期延长6倍,由表面改性前的24天提升至169天。

    结论 

    依据EDEM离散元软件模拟,球形高铝瓷作为磨料与尿素混合后,提高了尿素颗粒的摩擦效率,大大降低了尿素表面的粗糙度。表面改性后的尿素作为控释肥核芯,不仅节省了膜材料的用量,且膜层与肥芯结合紧密均匀,延长了等膜量下的养分释放期。

    Abstract:
    Objectives 

    Surface modification is a key step towards realization of nutrient-release control of coated urea production. We tested several abrasives, and studied the basis for modification in improving the coating property.

    Methods 

    In this study, large granular urea (3–5 mm, N 46%) was used as the fertilizer core, while the tested abrasives included brown-fused alumina, white-fused alumina, zirconia beads, alumina porcelain beads, and aluminum porcelain column. By measuring the repose angle of polished urea after polishing with the abrasives, alumina porcelain beads with a bulk density of 1.336 g/cm3 and a diameter of 6 mm were chosen as the abrasive in the later research stage. 1 kg urea and 1.5 kg alumina porcelain beads were loaded into a drum granulator, discrete element software (EDEM) was used to simulate the motion, collision, force and distribution of particles in system of abrasive friction and urea particle self-friction. The surface and sectional structure and the roughness of modified urea were scanned using electron microscopy. The microstructure of the coating was observed using atomic force microscopy (AFM). The nutrient release characteristics of polished and ordinary urea, coated with 3%, 5% and 7% of nano-SiO2 modified castor oil-based polyurethane, were determined by static water dissolution method.

    Results 

    According to the simulation of EDEM, the urea particles near the bottom moved fast (1.125 m/s), and those at the edge moved slowly (0.00309 m/s), causing the segregation of small pAccording to the simulation of EDEM, the urea particles near the bottom moved fast (1.125 m/s), and those at the edge moved slowly (0.00309 m/s), causing the segregation of small particles at the bottom of the drum during the mixing process. The self-friction force of pure urea was about 0.035N, while the total friction force when mixed with the abrasive increased to about 0.042 N. This enlarged force increased the collision number of urea-abrasive mix system by 13.0% than that of the self-friction system, thus creating more efficient modification. The modification significantly reduced the surface average roughness (Ra) by 79.2% within 1 μm2 of detection area. From the electric micro-morphology images we could see, common urea surface was rough, film material filled into the low parts causing extra consume of film materials and obstructing the close bonding of coating layer with the urea chip, thereby the coating film was fragile during transportation or long-time storage and lost controlling capacity of nutrient release. While the modified urea surface was smooth, preventing the waste of film materials. The film layer was even in thickness and uniform in intersecting surface, and closely bonded with the core. The nutrient release period of urea coated with 5% nano-SiO2 modified castor oil-based polyurethane increased by 6 times, from 24 days before polishing to 169 days after polishing.

    Conclusions 

    According to the simulation of EDEM discrete element software, the mixture of alumina porcelain beads and urea greatly increased the modification efficiency, reduced the surface roughness of urea significantly. The surface microstructure of the modified urea core of controlled release fertilizer was significantly improved, the amount of coating material was reduced, and the nutrient release period was prolonged under the same coating rate.

  • 世界40%~60%的粮食增产归因于化肥的施用[1] ,然而大量且不合理的化肥施用不仅造成了资源的浪费还造成了环境污染[2]。缓控释肥(CRFs)的使用能够有效解决资源浪费和传统化肥带来的环境污染问题[3]。近年来包膜控释肥膜壳残留逐渐受到关注。一方面,为保证控释肥养分长期释放,往往采用提高包膜率的方式提高控释效果[4],因此大量的膜材使用造成了产品成本高昂,成为限制缓控释肥行业发展的瓶颈[5]。另一方面,大量的膜壳在土壤中残留导致了潜在的环境风险[6-7]。研究表明控释肥膜壳每年在土壤中的残留量为50 kg/hm²[8],日本也在连续10年长期施用控释肥的稻田中发现了浓度为6~369 mg/kg土的膜壳残留[9],因此减少控释肥膜材的使用尤为重要。

    以往研究大多关注于新型膜材料的开发[10-11],然而这些绿色膜材的开发往往伴随着大量石化材料改性,违背了新型膜材开发的初衷。实际上控释肥核芯对于控释肥成膜的影响也至关重要,Tian等[12] 提出用聚烯烃蜡改善尿素核芯表面,发现表面改性后颗粒流动性、保温性能及微观结构改善,Lu等[13] 研究了聚烯烃蜡改性磷酸二铵,发现蜡改性显著降低了磷酸二铵颗粒的比表面积、休止角,提高了颗粒硬度,Lu等[14] 还采用了水抛光法对核芯改性,发现其对延缓养分释放具有显著的效果。然而,这些表面改性方式仍存在不足,水抛光法改性效率低,水分残留易影响包膜过程,聚烯烃蜡改性对于表面凹陷处难以起到作用。

    自由磨具光整加工技术是机械加工领域的基础制造工艺,它是借助松散磨料与工件的相对运动产生的碰撞、挤压、滑擦和刻划,对工件表面进行光整加工,具有加工范围广、成本低、效率高、操作方便等优点[15-17] 。受零件机械加工启发,本研究采用磨料对尿素表面进行改性。然而由于颗粒运动的复杂性和非线性,微观加工机理认识难,因此采用计算机模拟的方式了解颗粒的运动过程。离散元方法(discrete element method,DEM)是用于解决不连续体力学问题的一种重要的数值分析方法。其基本思想是把散粒群体简化成具有一定形状和质量颗粒的集合,赋予颗粒间及接触边界间某种接触力学模型和参数,以跟踪模拟流场中的颗粒运动轨迹和状况[18-19]

    Tian等[20] 采用高铝瓷磨料对尿素表面进行改性,明确了基本工艺参数及其对尿素形态的影响,采用EDEM离散元软件和ABAQUS有限元模拟相结合的方式,研究了尿素与磨料的混合过程、表面改性过程,并采用环氧树脂、普通蓖麻油基聚氨酯、淀粉基聚氨酯3种典型膜材对表面改性尿素进行包膜,明确了表面改性对膜截面和表面结构及其对养分释放的影响。然而,磨料关键参数对表面改性的作用仍不清晰,尿素与磨料长期混合后的运动状态、研磨特征未深入探究,表面改性对群体颗粒的形貌特征尚不明确。另外,表面改性相较膜材改性哪个因素对于养分释放的影响更重要尚未提及。因此,本研究筛选了不同形状、密度、表面结构的磨料,以明确不同磨料对尿素表面改性的影响。通过采用DEM建立滚磨加工过程的动力学模型,对磨料与尿素两相体系和尿素自摩擦体系进行对比,考察尿素颗粒在转鼓中的运动状况、颗粒分散情况等特征,从而对不同体系下尿素的表面改性效率进行评价。对尿素表面的微观形态、膜结构进行研究。采用纳米气相二氧化硅改性蓖麻油聚氨酯、普通液化秸秆基聚氨酯,以及有机硅、聚醚双改性的液化秸秆基聚氨酯3种改性材料对尿素进行包膜,以探究表面改性作用与膜材改性作用对延缓养分释放的影响。

    大颗粒尿素颗粒(3~5 mm,N 46.4%)购自山东华鲁恒升化工股份有限公司;棕刚玉、白刚玉、球状高铝瓷、氧化锆珠和柱状高铝瓷磨料购自湖州市南浔恒美机械抛光厂;多异氰酸酯(PAPI,NCO含量31.1%)和聚醚购自烟台万华聚氨酯股份有限公司;棉花秸秆购自东海县黄川镇曹士江秸秆经营部;聚乙二醇(PEG-400, 99%)、蓖麻油、甘油(99%)、硫酸(98%)、羟基端羟基硅氧烷、纳米气相二氧化硅购自中国上海阿拉丁实业有限公司。

    分别将1.5 kg不同类型的磨料(表1)加入转鼓中,预热至磨料温度65℃,然后将1 kg尿素倒入转鼓中,分别表面改性10 min,将磨料与尿素筛分分离,磨料回收。取出的尿素测定休止角,以评价颗粒表面光滑程度。

    表  1  供试磨料基本性质
    Table  1.  Basic properties of tested abrasives
    磨料种类
    Abrasive material
    磨料形状
    Shape
    尺寸 (mm)
    Size
    洛氏硬度 (HRA)
    Rockwell hardness
    堆积密度 (g/mL)
    Bulk density
    主要成分
    Main composition
    棕刚玉
    Brown-fused alumina
    球形
    Spherical
    D=6≥1151.30395% Al2O3 和2.9% TiO2
    白刚玉
    White-fused alumina
    球形
    Spherical
    D=6≥1151.32899% Al2O3
    球状高铝瓷
    Alumina porcelain beads
    球形
    Spherical
    D=6≥1151.336Al2O3, SiO2
    氧化锆珠
    Zirconia beads
    球形
    Spherical
    D=5≥903.369ZrO2
    柱状高铝瓷
    Aluminum porcelain column
    柱状
    Columnar
    W=5
    L=16
    ≥871.794Al2O3, SiO2
    注: D—直径;W—圆柱底直径;L—圆柱高度。
    Note: D— Diameter; W— Bottom diameter of cylinder; L— Height of cylinder.
    下载: 导出CSV 
    | 显示表格

    建立了转鼓、尿素粒子、磨料粒子的虚拟仿真模型。首先基于 Solid Works 3D建模软件,对转鼓进行三维建模,转鼓内壁的泊松比设置为0.31,内壁为不锈钢,固体密度7850 kg/m3,剪切模量1.76×1011 Pa。高铝瓷磨料泊松比为0.2,固体密度设置为3700 kg/m3,剪切模量设置为3.0×1011 Pa,设置转鼓内壁直径为33 cm,深度25.5 cm,转速28 r/min,倾斜角31°,顺时针旋转,结果如图1 所示。将三维仿真模型导入离散元软件EDEM中运行。然后填充磨料和尿素颗粒。采用N含量46%的大颗粒尿素和球状高铝瓷进行模拟。尿素形状设为球形,直径符合3~5 mm正态分布,泊松比为0.38,弹性模量为8.2×107,剪切模量为2.3×107。填充材料为1 kg尿素和1.5 kg磨料。模拟过程中设置的所有计算参数均来自实验测量值或参考文献[20-22]

    图  1  模型构建与颗粒填充过程
    注:a、b、c分别为转鼓模型的构建、颗粒的构建以及磨料和尿素的数量比例;d、e、f分别为磨料填充过程、尿素填充过程以及填充后颗粒随转鼓的运动过程
    Figure  1.  Model construction and particle filling process
    Note: a, b and c are the construction of roller model, particle construction and number ratio of abrasive and urea, respectively; d, e and f are the abrasive filling process, urea filling process and the movement process of particles with the roller after filling, respectively.

    本研究在仿真过程中使用了防滑(Hertz-Mindlin)接触模型。根据赫兹弹性接触理论,可以用垒球模型来处理转鼓内“粒子–粒子”接触碰撞的问题。二元颗粒底部填充磨料,顶部填充尿素,建立基于EDEM仿真的磨料摩擦尿素的二元磨料体系。然后将磨料隐藏,建立仅含尿素的自摩擦体系作为对照。通过EDEM仿真软件计算颗粒在30 s内的运动过程,导出磨料和尿素两相体系(UA-U)和尿素自摩擦单相体系(U-U)中尿素运动过程的速度、碰撞、受力特征等参数。

    根据磨料选择试验结果(图2),选择球形高铝瓷作为磨料,制备表面改性尿素。

    图  2  不同磨料对尿素休止角影响的箱线图
    注:CK代表未表面改性尿素,BFA、WFA、APB、ZB、APC分别代表棕刚玉、白刚玉、球状高铝瓷、氧化锆珠、柱状高铝瓷表面改性后的尿素。箱体上数字为尿素休止角,箱体内红色虚线代表中位数,上、下框代表前25%和后25%的休止角数值。数值后不同字母表示处理间差异显著 (P<0.05)
    Figure  2.  Box plot of repose angle of urea treated with different abrasives
    Note: CK was the original urea, BFA, WFA, APB, ZB, and APC represent the urea modified by brown-fused alumina, white-fused alumina, alumina porcelain beads, zirconia beads, and aluminum porcelain column. The number above the boxes is the repose angle, the red dotted lines inside the boxes represent the median, and the up and bottom frame represent the top 25% and bottom 25% of the repose angle. Values followed by different letters mean significant difference among tretments (P<0.05).

    根据Liu等[23] 和Diego等[24] 的方法,制备纳米气相二氧化硅改性蓖麻油聚氨酯(NS-CO)包膜的普通尿素和表面改性尿素。首先,将 3.0 和 2.0 g 纳米气相二氧化硅颗粒(涂料的 0.5%, wt)分别分散到 600.0 g 蓖麻油和 400.0 g PAPI 中,通过快速搅拌和超声处理 1 h。纳米SiO2改性蓖麻油和纳米SiO2改性PAPI以3∶2的重量比混合,在转鼓中预热的1 kg尿素颗粒的表面上,分别加入30、50、70 g混合膜材,制备出包膜率分别为3%、5%和7%的普通包膜尿素(U-NS-CO)和改性包膜尿素(P-NS-CO)。

    参照Ma等[25] 的方法制备棉秸液化多元醇,按照棉秸液化多元醇与硅氧烷质量比1∶0.2超声混合1 h,将聚醚多元醇与硅氧烷按质量比1∶0.2超声混合1 h,然后按照SiO2改性棉秸液化多元醇∶SiO2改性聚醚多元醇∶PAPI=2.75∶2.75∶4.5的质量比混合,分别对普通尿素和表面改性尿素包膜,制备包膜率分别为3%、5% 和 7%的有机硅、聚醚双改性秸秆基聚氨酯(DLS)包膜尿素。

    普通尿素按照同样方法包膜,将棉秸液化多元醇与PAP按照质量比5.5∶4.5的比例制备包膜率分别为3%、5% 和 7%的普通秸秆基聚氨酯(LS)包膜尿素。

    使用扫描电子显微镜(QUANTA250;FEI Company)测定磨料形态、表面改性前后尿素核芯、U-NS-CO和P-NS-CO截面接触的形貌结构;使用原子力显微镜(Bruker Dension Icon; Bruker)测定U-NS-CO和P-NS-CO 1μm2内的表面结构,采用NanoScope Analysis 1.7软件对图片进行一阶平滑处理并读取检测范围内的平均粗糙度(Ra)。

    根据HG/T 4216—2011采用静水溶出率法测定了包膜尿素不同处理的氮素释放率[26-28]。将包膜尿素(10 g)加入一个装有200 mL去离子水的瓶子中,重复3次,置于25±0.5℃的培养箱中。采用折光率仪(RX-5000α, ATAGO株系)定期测定溶液样品的折光率,直到累计氮释放率超过80%。具体检测方法为:首先,清洗棱镜表面,然后将约0.04 mL样品溶液滴入棱镜中心并完全覆盖棱镜。当实际温度达到设定温度(20℃)时测定折光率读数。

    BFA (21.9°)、APB (18.8°)、ZB (19.0°)和APC (20.1°)的休止角分别比未表面改性的尿素(24.0°)低8.8%、21.7%、20.8%和 16.3% (图2),表明用这4种磨料表面改性提高了尿素的流动性。APB的堆密度是1.336 g/cm3,与尿素(1.335 g/cm3)无显著差异,而ZB 和 APC 的堆密度分别为 3.369 和 1.794 g/cm3,均高于尿素。因此它们可以提供足够的压力通过滑动摩擦、挤压作用来对尿素进行表面改性。且3种磨料表面光滑平整(图3A),这些结构能够提供足够均匀的接触压力和合适的表面粗糙度来去除尿素表面的毛刺和粗糙部分。棕刚玉(1.303 g/cm3)和白刚玉(1.328 g/cm3)堆密度显著低于尿素(1.335 g/cm3),因此对尿素表面作用力不足,而棕刚玉(图3B)表面粗糙,表面有许多有棱角的突出物、凹陷和不规则的碎屑,因此可以弥补压力不足的缺陷,通过表面摩擦对表面产生修饰作用。另外,磨粒的形态特别即形状和尺寸对表面修饰有很大影响。球形磨料比圆柱形磨料提供更均匀的力。圆柱体相较球体导致接触面和接触力更不均匀,因此降低了表面改性效果。因此,采用6 mm球形高铝瓷具有更低成本、更高效的表面改性效果,故选作本试验EDEM模拟的磨料。

    图  3  磨料形状(A)及电子扫描图像(B)
    注:(A)组图片中a、b、c、d、e分别为磨料棕刚玉、白刚玉、球状高铝瓷、氧化锆珠、柱状高铝瓷;扫描电子显微镜的图片 (B) 中 a1~e1 和 a2~e2 分别显示了 30 倍和 500 倍图像放大率下的磨料表面。
    Figure  3.  The shape (A) and SEM photographs (B) of abrasives
    Note: In the photograp(A), the abrasives are brown-fused alumina (a), white fused alumina (b), alumina porcelain beads (c), zirconia beads (d), aluminum porcelain column (e). In the scanning electron microscope pictures (B), a1−e1 and a2−e2 show the abrasive surface at 30× and 500× image magnification, respectively.

    2.1的试验结果表明,高铝瓷具有研磨效率高、投入成本低的优势,因此在EDEM仿真中采用高铝瓷与大颗粒尿素作为模拟的研究对象。两相流体均匀稳定混合后,转鼓内颗粒呈现不同的运动和分布特征。以往的研究主要关注磨料与尿素初期的混合过程[20] ,本研究明确了磨料体系长期运动后的颗粒运动状态和分布特征。结果表明,颗粒在转鼓底部中心运动最快,局部最大速度为1.125 m/s (图4A蓝色颗粒),是颗粒混合的重要区域,它增加颗粒之间的摩擦频率,从而加速表面改性过程。粒子的运动速度从中心向外逐渐减小。大多数粒子的平均移动速度为 0.564 m/s (图4A黄色粒子)。外围粒子群表面的红色部分粒子运动最慢(0.00309 m/s)。同时,经过均匀混合后,不同粒径的颗粒逐渐产生偏析效果(图4B)。粒径为5.4~6.0 mm的磨料分散在中间位置,并提供足够的压力去除表面的凸起,从而便于表面改性。而小颗粒(粒径<3 mm)多靠自磨擦和与内壁的摩擦改性。从表面到颗粒底部,配位数逐渐增加(图4C)。表面层的颗粒通常只接触1~2个颗粒,因此摩擦频率较低。从表面到颗粒底部,配位数逐渐增加,底层颗粒的配位数达到4~7,有利于提高表面改性效率。

    图  4  不同速度(A)、粒径(B)和配位数(C)的粒子在转鼓中的三维位置分布
    Figure  4.  Three-dimensional position distribution of particles in the drum with different velocity (A), particle diameter (B) and coordination number (C)

    根据两相介质运动情况,可将转鼓内的颗粒划分为4个区域:1)摩擦区,即与转鼓内壁接触的区域,通过从转鼓内壁摩擦获得能量使颗粒克服重力作用从底部提升至高处,颗粒主要受内壁摩擦力;②翻滚区(图4A蓝色部分),颗粒运动速度快,主要发生的是颗粒间的滚动摩擦;3)滑移区(图4A红色部分),重力和较弱的向上摩擦力作用下使得颗粒运动速度慢,因此颗粒发生相对滑动,所受摩擦力较小;4)挤压区(图4C红色部分),位于转鼓底部,受到上部颗粒重力作用的挤压、内壁摩擦以及其他颗粒间的挤压碰撞,因此更易进行表面修饰[29-31 ]

    尿素在转鼓内进行三维方向的周期性运动(图5 a)。尿素自摩擦体系在约2.5 s时达到稳定运动,所有颗粒在单一方向上的平均速度最高达到0.01 m/s,而磨料体系中尿素颗粒速度呈现周期性波动,前10 s内剧烈波动,X轴向最高平均速度可达0.084 m/s,该阶段主要是聚集尿素的径向扩散及其与磨料的快速混合阶段;然后分别以1.52、1.42、1.32 s的周期逐渐降低运动速度和周期频率;10~20 s内尿素颗粒在0.02 m/s的速度内进行小幅速度波动,该阶段尿素颗粒与磨料已形成均匀的混合体系[22,32]

    图  5  尿素在自摩擦体系(a)和磨料体系(b)中的不同轴向运动速度、颗粒碰撞次数(c)和所受合力(d)
    注:UA-U和U-U分别代表磨料摩擦两相颗粒体系和尿素自摩擦单相颗粒体系中尿素的运动、碰撞和受力情况。X为平行于转鼓底部的横向方向,Y为平行于转鼓底部的纵向方向,Z为垂直与转鼓底部的轴向方向
    Figure  5.  Axial velocity of urea in self-friction system (a) and abrasive system (b), and the number of particle contacts (c) and particle total force (d) under the system UA-U and U-U
    Note: UA-U and U-U represent the movement, collision and force of urea in abrasive friction two-phase particle system and urea self-friction single-phase particle system, respectively. X is the transverse direction parallel to the bottom of the drum, Y is the longitudinal direction parallel to the bottom of the drum, and Z is the axial direction perpendicular to the bottom of the drum

    尿素在转鼓中的碰撞频率呈现周期性波动且幅度逐渐降低(图5 a)。磨料体系中,尿素的碰撞次数在前10 s内呈现大幅波动,首次循环用时2.45 s,随后以约1.42 s的周期波动,因此该阶段主要是尿素与磨料从完全分离到快速混合的过程,10~20 s波动频率逐渐减缓,稳定后磨料摩擦体系较自摩擦体系平均碰撞次数高出13.0%。

    此外,表面改性通过磨料与尿素的碰撞、挤压等接触来实现,磨料体系中的尿素所受合力(约0.042 N)较自摩擦的尿素(约0.035 N)高出20.0%,因此具有更高的摩擦效率。

    普通尿素表面粗糙,存在大量碎屑,边缘起伏不平,因此导致膜材与肥料表面接触不致密,加速养分释放。通过短时间(10 min)表面改性后,表面碎屑显著减少,超过50%面积被磨平,尤其是突起部分,但浅洼处仍保持原有粗糙结构。研磨15 min后,超过70%的表面变得平整光滑,平整处存在磨料刮擦的条形痕迹,浅洼处基本被磨平,大而深的凹陷处边缘平整。研磨20 min后,除较深的凹陷难以磨平外其余位置变得光亮平整。

    微观结构下尿素边缘起伏不平,这些凸起结构会导致包膜时涂层较薄。尽管表面改性对边缘微观结构起到了修饰作用,但仍不能完全平整(20 min, 图6 )。

    图  6  不同时间表面改性的尿素表面及边缘扫描电镜照片
    Figure  6.  Scanning electron microscope photos of the surface and edge of urea at different modification time

    包膜后,U-NS-CO 表面具有大量不规则的凸起(图7a),在1 μm2检测范围内平均粗糙度(Ra)为13.3 nm,这些凸起主要是由核芯表面的碎屑存在导致膜层覆盖后保留了核芯表面的形态。而P-NS-CO 表面平整,Ra为2.76 nm,降低了79.2%,因此光滑的表面有利于膜层与核芯紧密结合。

    图  7  普通尿素和表面改性尿素膜层结构原子力显微镜图
    注:包膜材料为纳米气相SiO2改性蓖麻油基聚氨酯。
    Figure  7.  Atomic force microscopy images of coating layers
    Note: The coating material are nano-SiO2 modified castor oil based polyurethane.

    此外,尽管采用了纳米气相SiO2对膜材进行改性,但膜表面未见纳米结构,说明尿素包膜后表面仍主要呈现核芯表面的形状[20] ,其条纹状凸起可能是磨料刮擦尿素表面形成(图7b),因此如果核芯表面凸起,不仅会导致膜层与核芯的结合不紧密从而加速养分释放,还会使包膜尿素易在冷却、出料过程中受到挤压和摩擦导致膜材的损坏,因此核芯表面结构对控释肥质量至关重要。

    普通尿素核芯存在大量凹陷和凸起,膜层结构不平整,膜材填充凹陷部分导致膜用量增加(图8a1)。而且膜层与核芯接触界面不致密,受到外界磨损、挤压会造成局部膜破裂,降低养分释放的控制效果(图8a2)。表面改性后,膜层均匀(图8b1),与肥芯接触致密(图8b2),较少的膜材即可严密均匀地覆盖肥芯,减少了运输或者存放过程中膜材的损坏,提高了养分释放的均匀性 [20]

    图  8  膜层结构电镜扫描图
    注:包膜材料为纳米气相SiO2改性蓖麻油基聚氨酯。图a1、a2为包膜普通尿素,b1、b2为包膜表面改性尿素
    Figure  8.  Scanning electron microscope images of coating layer structures
    Note: The coating material are nano-SiO2 modified castor oil based polyurethane. Figure a1 and a2 show coated non-surface modified urea, and b1 and b2 show coated surface modified urea, respectively

    由6个纳米气相二氧化硅改性蓖麻油聚氨酯包膜的尿素样品(NS-CO)、6个液化秸秆基聚氨酯包膜尿素样品(LS)和6个有机硅、聚醚双改性秸秆基聚氨酯包膜(DLS)的养分释放率和释放特征(图9)可以看出,6个NS-CO样品(图9a)中,包膜率为3%时,即U-NS-CO 3的养分在加入水中后立即释放,释放率达到97.62%,包膜率为5%甚至7%时,释放期也较短。而P-NS-CO 3初期释放率仅为0.9%,释放期为110天;包膜率为5%时,释放期提高了6倍,由表面改性前的24天提升至169天,包膜率为7%时,释放期由表面改性前的75天提升至222天。这可能是粗糙的尿素表面在低包膜率下难以被完全覆盖,因此形成释放优势孔使暴露的尿素迅速溶解[33]。表面改性后由于表面平滑,颗粒表面实现了完全覆盖,从而发挥了膜材的控释作用。

    图  9  不同包膜材料和包膜率下普通尿素和表面改性包膜尿素的养分释放曲线
    注:U-NS-CO和P-NS-CO分别代表纳米二氧化硅改性植物油聚氨酯包膜的普通尿素和表面改性尿素样品,代码中的3、5、7为包膜率。U-LS和P-LS分别代表液化棉秸秆聚氨酯包膜的普通尿素和表面改性尿素样品,U-DLS和P-DLS分别代表有机硅和聚醚双改性液化棉秸秆聚氨酯包膜的普通尿素和表面改性尿素样品
    Figure  9.  The nutrient release curves of common urea and surface modified urea coated with different coating materials and coating rates
    Note: U-NS-CO and P-NS-CU indicate common and surface modified urea coated with nano-silica modified plant oil-based polyurethane, the number 3, 5, and 7 at the end of codes indicate the coating rate of 3%, 5% and 7%. U-LS and P-LS indicate common and surface modified urea coated with ordinary straw-based polyurethane; U-DLS and P-DLS indicate common and surface modified urea coated with silicone and polyether double-modified straw-based polyurethane

    而对于液化秸秆基聚氨酯包膜(LS)尿素和聚醚双改性秸秆基聚氨酯包膜(DLS)的尿素,表面改性对养分控释性能影响较少(图9b),这可能与液化秸秆基聚氨酯膜材疏松多孔的性质有关[25]

    控释肥养分释放受到膜材控释性能和肥芯表面结构的双重影响。大颗粒尿素表面的粗糙度、圆整度、大小均一性等形貌因素对肥料养分释放性能具有重要影响。图6图8清晰表明,核芯表面粗糙导致成膜均匀性和膜界面结合致密性降低,膜层较薄的位置产生优势入渗位点,水分子向膜内入渗速率产生差异,进而导致养分释放均匀性差[15] 。肥芯的圆整度影响颗粒流动性,圆度高的颗粒能够减少滚动或运输过程中自身和接触面的磨损[34]

    以高铝瓷球为磨料,通过表面改性提高了尿素颗粒流动性,减少了尿素颗粒的偏析,提高了尿素颗粒的碰撞次数和受力,因此具有更高的改性效率。尿素改性降低了表面粗糙度,减少了包膜材料用量,增加了膜层均匀性及与肥芯结合的紧密性,包膜率为5% 的包膜尿素的控释期可提高6倍,由表面改性前的24天提高至169天。

  • 图  1   模型构建与颗粒填充过程

    注:a、b、c分别为转鼓模型的构建、颗粒的构建以及磨料和尿素的数量比例;d、e、f分别为磨料填充过程、尿素填充过程以及填充后颗粒随转鼓的运动过程

    Figure  1.   Model construction and particle filling process

    Note: a, b and c are the construction of roller model, particle construction and number ratio of abrasive and urea, respectively; d, e and f are the abrasive filling process, urea filling process and the movement process of particles with the roller after filling, respectively.

    图  2   不同磨料对尿素休止角影响的箱线图

    注:CK代表未表面改性尿素,BFA、WFA、APB、ZB、APC分别代表棕刚玉、白刚玉、球状高铝瓷、氧化锆珠、柱状高铝瓷表面改性后的尿素。箱体上数字为尿素休止角,箱体内红色虚线代表中位数,上、下框代表前25%和后25%的休止角数值。数值后不同字母表示处理间差异显著 (P<0.05)

    Figure  2.   Box plot of repose angle of urea treated with different abrasives

    Note: CK was the original urea, BFA, WFA, APB, ZB, and APC represent the urea modified by brown-fused alumina, white-fused alumina, alumina porcelain beads, zirconia beads, and aluminum porcelain column. The number above the boxes is the repose angle, the red dotted lines inside the boxes represent the median, and the up and bottom frame represent the top 25% and bottom 25% of the repose angle. Values followed by different letters mean significant difference among tretments (P<0.05).

    图  3   磨料形状(A)及电子扫描图像(B)

    注:(A)组图片中a、b、c、d、e分别为磨料棕刚玉、白刚玉、球状高铝瓷、氧化锆珠、柱状高铝瓷;扫描电子显微镜的图片 (B) 中 a1~e1 和 a2~e2 分别显示了 30 倍和 500 倍图像放大率下的磨料表面。

    Figure  3.   The shape (A) and SEM photographs (B) of abrasives

    Note: In the photograp(A), the abrasives are brown-fused alumina (a), white fused alumina (b), alumina porcelain beads (c), zirconia beads (d), aluminum porcelain column (e). In the scanning electron microscope pictures (B), a1−e1 and a2−e2 show the abrasive surface at 30× and 500× image magnification, respectively.

    图  4   不同速度(A)、粒径(B)和配位数(C)的粒子在转鼓中的三维位置分布

    Figure  4.   Three-dimensional position distribution of particles in the drum with different velocity (A), particle diameter (B) and coordination number (C)

    图  5   尿素在自摩擦体系(a)和磨料体系(b)中的不同轴向运动速度、颗粒碰撞次数(c)和所受合力(d)

    注:UA-U和U-U分别代表磨料摩擦两相颗粒体系和尿素自摩擦单相颗粒体系中尿素的运动、碰撞和受力情况。X为平行于转鼓底部的横向方向,Y为平行于转鼓底部的纵向方向,Z为垂直与转鼓底部的轴向方向

    Figure  5.   Axial velocity of urea in self-friction system (a) and abrasive system (b), and the number of particle contacts (c) and particle total force (d) under the system UA-U and U-U

    Note: UA-U and U-U represent the movement, collision and force of urea in abrasive friction two-phase particle system and urea self-friction single-phase particle system, respectively. X is the transverse direction parallel to the bottom of the drum, Y is the longitudinal direction parallel to the bottom of the drum, and Z is the axial direction perpendicular to the bottom of the drum

    图  6   不同时间表面改性的尿素表面及边缘扫描电镜照片

    Figure  6.   Scanning electron microscope photos of the surface and edge of urea at different modification time

    图  7   普通尿素和表面改性尿素膜层结构原子力显微镜图

    注:包膜材料为纳米气相SiO2改性蓖麻油基聚氨酯。

    Figure  7.   Atomic force microscopy images of coating layers

    Note: The coating material are nano-SiO2 modified castor oil based polyurethane.

    图  8   膜层结构电镜扫描图

    注:包膜材料为纳米气相SiO2改性蓖麻油基聚氨酯。图a1、a2为包膜普通尿素,b1、b2为包膜表面改性尿素

    Figure  8.   Scanning electron microscope images of coating layer structures

    Note: The coating material are nano-SiO2 modified castor oil based polyurethane. Figure a1 and a2 show coated non-surface modified urea, and b1 and b2 show coated surface modified urea, respectively

    图  9   不同包膜材料和包膜率下普通尿素和表面改性包膜尿素的养分释放曲线

    注:U-NS-CO和P-NS-CO分别代表纳米二氧化硅改性植物油聚氨酯包膜的普通尿素和表面改性尿素样品,代码中的3、5、7为包膜率。U-LS和P-LS分别代表液化棉秸秆聚氨酯包膜的普通尿素和表面改性尿素样品,U-DLS和P-DLS分别代表有机硅和聚醚双改性液化棉秸秆聚氨酯包膜的普通尿素和表面改性尿素样品

    Figure  9.   The nutrient release curves of common urea and surface modified urea coated with different coating materials and coating rates

    Note: U-NS-CO and P-NS-CU indicate common and surface modified urea coated with nano-silica modified plant oil-based polyurethane, the number 3, 5, and 7 at the end of codes indicate the coating rate of 3%, 5% and 7%. U-LS and P-LS indicate common and surface modified urea coated with ordinary straw-based polyurethane; U-DLS and P-DLS indicate common and surface modified urea coated with silicone and polyether double-modified straw-based polyurethane

    表  1   供试磨料基本性质

    Table  1   Basic properties of tested abrasives

    磨料种类
    Abrasive material
    磨料形状
    Shape
    尺寸 (mm)
    Size
    洛氏硬度 (HRA)
    Rockwell hardness
    堆积密度 (g/mL)
    Bulk density
    主要成分
    Main composition
    棕刚玉
    Brown-fused alumina
    球形
    Spherical
    D=6≥1151.30395% Al2O3 和2.9% TiO2
    白刚玉
    White-fused alumina
    球形
    Spherical
    D=6≥1151.32899% Al2O3
    球状高铝瓷
    Alumina porcelain beads
    球形
    Spherical
    D=6≥1151.336Al2O3, SiO2
    氧化锆珠
    Zirconia beads
    球形
    Spherical
    D=5≥903.369ZrO2
    柱状高铝瓷
    Aluminum porcelain column
    柱状
    Columnar
    W=5
    L=16
    ≥871.794Al2O3, SiO2
    注: D—直径;W—圆柱底直径;L—圆柱高度。
    Note: D— Diameter; W— Bottom diameter of cylinder; L— Height of cylinder.
    下载: 导出CSV
  • [1]

    Erisman J W, Sutton M A, Galloway J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1: 636–639. DOI: 10.1038/ngeo325

    [2] 何海斌, 王海斌, 陈祥旭, 等. 壳聚糖包膜缓释钾肥的初步研究[J]. 亚热带农业研究, 2006, 2(3): 194–197.

    He H B, Wang H B, Chen X X, et al. The preliminary study on the slow release fertilizer of potassium coated by chitosan[J]. Subtropical Agriculture Research, 2006, 2(3): 194–197.

    [3]

    Majeed Z, Ramli N K, Mansor N, et al. A comprehensive review on biodegradable polymers and their blends used in controlled–release fertilizer processes[J]. Reviews in Chemical Engineering, 2015, 31(1): 69–95.

    [4] 王浩, 樊小林, 杜建军, 等. 粒径和包膜厚度对控释肥氮素释放特性的影响[J]. 水土保持学报, 2007, 21(5): 86–89.

    Wang H, Fan X L, Du J J, et al. Effect of granular diameter and coating thickness on characteristics of nitrogen release of controlled release fertilizer[J]. Journal of Soil and Water Conservation, 2007, 21(5): 86–89.

    [5] 许秀成. 缓释控释肥料生产使用前景展望[J]. 磷肥与复肥, 2006, 21(6): 3.

    Xu X C. Prospects for the production and application of slow and controlled release fertilizers[J]. Phosphate & Compound Fertilizer, 2006, 21(6): 3.

    [6]

    Lian J, Liu W, Meng L, et al. Effects of microplastics derived from polymer–coated fertilizer on maize growth, rhizosphere, and soil properties[J]. Journal of Cleaner Production, 2021, 318: 128571. DOI: 10.1016/j.jclepro.2021.128571

    [7]

    Pan P, Jiang H, Zhang J, et al. Shifts in soil bacterial communities induced by the controlled–release fertilizer coatings[J]. Journal of Integrative Agriculture., 2016, 15(12): 2855–2864. DOI: 10.1016/S2095-3119(15)61309-0

    [8]

    Trenkel M E. Controlled–release and stabilized fertilizers in agriculture: An option for enhancing nutrient efficiency in agriculture[M]. Paris, France: International Fertilizer Industry Association (IFA), 2010.

    [9]

    Katsumi N, Kusube T, Nagao S, et al. Accumulation of microcapsules derived from coated fertilizer in paddy field[J]. Chemosphere, 2021, 267: 129185. DOI: 10.1016/j.chemosphere.2020.129185

    [10]

    Zhang S, Yang Y, Gao B, et al. Superhydrophobic controlled–release fertilizers coated with bio–based polymers with organosilicon and nano–silica modifications[J]. Journal of Materials Chemistry A, 2017, 5: 19943–19953. DOI: 10.1039/C7TA06014A

    [11]

    Liu J, Yang Y, Gao B, et al. Bio–based elastic polyurethane for controlled–release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics[J]. Journal of Cleaner Production, 2019, 209: 528–537. DOI: 10.1016/j.jclepro.2018.10.263

    [12]

    Tian H, Liu Z, Zhang M, et al. Biobased polyurethane, epoxy resin, and polyolefin wax composite coating for controlled–release fertilizer[J]. ACS Applied Materials & Interfaces, 2019, 11: 5380–5392.

    [13]

    Lu H, Tian H, Liu Z, et al. Polyolefin wax modification improved characteristics of nutrient release from biopolymer–coated phosphorus fertilizers[J]. ACS Omega, 2019, 4: 20402–20409. DOI: 10.1021/acsomega.9b03348

    [14]

    Lu H, Tian H, Zhang M, et al. Water polishing improved controlled–release characteristics and fertilizer efficiency of castor oil–based polyurethane coated diammonium phosphate[J]. Scientific Reports, 2020, 10(1): 5763. DOI: 10.1038/s41598-020-62611-w

    [15] 杨世春, 杨胜强. 自由磨具光整加工技术的发展方向[J]. 机械工人·冷加工, 2002, (1): 11–12.

    Yang S C, Yang S Q. Development direction of finishing technology of free abrasive tools[J]. Mechanic (Cold Working), 2002, (1): 11–12.

    [16] 杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术[M]. 北京: 国防工业出版社, 2011.

    Yang S Q, Li W H, Cheng H L, et al. Theory and new technology of surface finishing[M]. Beijing: National Defense Industry Press, 2011.

    [17]

    Domblesky J, Evans R, Cariapa V. Material removal model for vibratory finishing[J]. International Journal of Production Research, 2004, 42(5): 1029–1041. DOI: 10.1080/00207540310001619641

    [18] 田雨. 基于EDEM的滚磨光整加工机理分析和参数优化[D]. 太原: 太原理工大学硕士学位论文, 2014.

    Tian Y. Mechanism analysis and parameter optimization of barrel finishing based on EDEM[D]. Taiyuan: MS Thesis of Taiyuan University of Technology, 2014.

    [19] 胡国强. 颗粒系统的离散元素法分析仿真——离散元素法的工业应用与EDEM软件简介[M]. 武汉: 武汉理工大学出版社, 2010.

    Hu G Q. Analysis and simulation of granular system by discrete element method-industrial application of discrete element method and brief introduction of EDEM software[M]. Wuhan: Wuhan University of Technology Press, 2010.

    [20]

    Tian H Y, Zhang L N, Dong J T, et al. A one-step surface modification technique improved the nutrient release characteristics of controlled–release fertilizers and reduced the use of coating materials[J]. Journal of Cleaner Production, 2022, 369: 133331. DOI: 10.1016/j.jclepro.2022.133331

    [21] 温翔宇, 袁洪方, 王刚, 等. 颗粒肥料离散元仿真摩擦因数标定方法研究[J]. 农业机械学报, 2020, 51(2): 116–122.

    Wen X Y, Yuan H F, Wang G, et al. Calibration method of friction coefficient of granular fertilizer by discrete element simulation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 116–122.

    [22] 吕春旺, 谭培来, 刘柏谦, 等. 滚筒冷渣机中的颗粒径向扩散运动研究[J]. 热能动力工程, 2014, 29(5): 532–597.

    Lü C W, Tan P L, Liu B Q, et al. Study on radial diffusion movement of particles in roller slag cooler[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(5): 532–597.

    [23]

    Liu L, Shen T, Yang Y, et al. Bio-based large tablet controlled-release urea: Synthesis, characterization, and controlled-released mechanisms[J]. Journal of Agricultural and Food Chemistry, 2018, 66(43): 11265–11272. DOI: 10.1021/acs.jafc.8b04042

    [24]

    Diego F C, Ricardo B S, Gelton G F G, et al. Role of polymeric coating on the phosphate availability as a fertilizer: Insight from phosphate release by castor polyurethane coatings[J]. Journal of Agricultural and Food Chemistry, 2017, 65(29): 5890–5895. DOI: 10.1021/acs.jafc.7b01686

    [25]

    Ma X, Chen J, Yang Y, et al. Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics[J]. Chemical Engineering Journal, 2018, 350: 1125. DOI: 10.1016/j.cej.2018.06.061

    [26] 白亚昊, 夏攀登, 邹惠玲, 等. 折光率测定尿素水溶液中尿素含量的方法研究[J]. 山东化工, 2020, 49(15): 119–122.

    Bai Y H, Xia P D, Zou H L, et al. Study on the method of measuring urea content in urea aqueous solution by refractive index[J]. Shandong Chemical Industry, 2020, 49(15): 119–122.

    [27] HG/T 4216—2011. 缓释/控释肥料养分释放期及释放率的快速检测方法[S].

    HG/T 4216—2011. Fast methods to determine longevity and release rate of slow/controlled release fertilizers[S].

    [28] 刘海林, 郑丽行, 樊小林. 折光率法在控释尿素释放率和肥效期检测中的应用[J]. 西北农林科技大学学报(自然科学版), 2013, 41(3): 140–146.

    Liu H L, Zheng L X, Fan X L. Application of refractive index method to test nutrient release rate and longevity of controlled release urea[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(3): 140–146.

    [29] 宋春花. 基于三维离散元法的离心式滚磨光整加工理论分析和仿真模拟[D]. 太原: 太原理工大学博士论文, 2010.

    Song C H. Theoretic analysis and simulation of centrifugal barrel finishing based on three-dimensional discrete element method[D]. Taiyuan: PhD Dissertation of Taiyuan University of Technology, 2010.

    [30] 张立栋, 李连好, 王擎, 等. 椭圆型混合器内二元颗粒径向混合[J]. 中国有色金属学报, 2017, 37(4): 825–832.

    Zhang L D, Li L H, Wang Q, et al. Transverse mixing of binary granular in elliptical mixer[J]. The Chinese Journal of Nonferrous Metals, 2017, 37(4): 825–832.

    [31] 张立栋, 刘朝青, 朱明亮, 等. 基于图像处理的回转滚筒内颗粒群提取方法[J]. 中国粉体技术, 2013, 19(4): 42–45.

    Zhang L D, Liu C Q, Zhu M L, et al. Extraction method of particle groups based on image processing in rotary drum[J]. China Powder Science and Technology, 2013, 19(4): 42–45.

    [32] 柳东. 新型磨料流加工设备的仿真设计与实验研究[D]. 天津工业大学硕士论文, 2008.

    Liu D. Simulation design and experimental study of new abrasive flow processing equipment[D]. MS Thesis of Tiangong University, 2008.

    [33] 杨相东, 李娟, 孙明雪, 等. 聚乙烯包膜肥料控释膜层结构特征研究[J]. 植物营养与肥料学报, 2018, 25(12): 2032–2043.

    Yang X D, Li J, Sun M X, et al. Morphological structure and pore property of polyethylene controlled-release film sprayed on urea[J] Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2032–2043.

    [34] 肖浩然. YAG陶瓷球制备工艺及其性能研究[D]. 武汉理工大学硕士论文, 2012.

    Xiao H R. Study on fabrication and properties of YAG ceramic balls [D]. MS Thesis of Wuhan University of Technology, 2012.

图(9)  /  表(1)
计量
  • 文章访问数:  816
  • HTML全文浏览量:  349
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 录用日期:  2022-12-02
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回