• ISSN 1008-505X
  • CN 11-3996/S

施肥方法对甘薯根际土壤真菌群落的影响

王静, 袁洁, 王磊, 张辉, 唐忠厚, 赵鹏, 张爱君, 汪吉东, 张永春

王静, 袁洁, 王磊, 张辉, 唐忠厚, 赵鹏, 张爱君, 汪吉东, 张永春. 施肥方法对甘薯根际土壤真菌群落的影响[J]. 植物营养与肥料学报, 2023, 29(5): 876-888. DOI: 10.11674/zwyf.2022510
引用本文: 王静, 袁洁, 王磊, 张辉, 唐忠厚, 赵鹏, 张爱君, 汪吉东, 张永春. 施肥方法对甘薯根际土壤真菌群落的影响[J]. 植物营养与肥料学报, 2023, 29(5): 876-888. DOI: 10.11674/zwyf.2022510
WANG Jing, YUAN Jie, WANG Lei, ZHANG Hui, TANG Zhong-hou, ZHAO Peng, ZHANG Ai-jun, WANG Ji-dong, ZHANG Yong-chun. Effects of fertilizer application methods on fungal communities in sweet potato rhizosphere[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 876-888. DOI: 10.11674/zwyf.2022510
Citation: WANG Jing, YUAN Jie, WANG Lei, ZHANG Hui, TANG Zhong-hou, ZHAO Peng, ZHANG Ai-jun, WANG Ji-dong, ZHANG Yong-chun. Effects of fertilizer application methods on fungal communities in sweet potato rhizosphere[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 876-888. DOI: 10.11674/zwyf.2022510

施肥方法对甘薯根际土壤真菌群落的影响

基金项目: 国家甘薯产业技术体系项目(CARS-10);江苏省农业科技自主创新资金项目[CX(21)3002];徐州市现代农业面上项目(KC21139);江苏省重点研发项目(BE2021311)。
详细信息
    作者简介:

    王静 E-mail: wangjing429645671@163.com

    通讯作者:

    张辉 E-mail: 1983hui@sina.com

    张永春 E-mail: yczhang66@sina.com

Effects of fertilizer application methods on fungal communities in sweet potato rhizosphere

  • 摘要:
    目的 

    真菌在根际土壤养分循环中发挥重要作用,探究磷肥施用方法对甘薯根际土壤真菌群落的影响,以减少施肥可能对甘薯根际土壤微生态环境的不利影响。

    方法 

    甘薯–小麦轮作长期肥料定位试验位于江苏南京,始于2011年。2020年选择该定位试验中的3个处理:不施磷肥(NK)、单施化肥(NPK)和有机无机肥配合(NPKM),在甘薯膨大期采集储藏根与纤维根根际土壤,测定化学性质,并利用Illumina Novaseq高通量测序技术,分析真菌群落相对丰度、群落组成与多样性,及其与根际土壤化学性质的关系。

    结果 

    1) 施肥处理改变了两类根根际土壤化学性质,储藏根和纤维根的根际土壤有机碳、溶解性有机碳、速效钾含量均表现为NPKM>NPK>NK处理,有效磷(AP)含量表现为NPK>NPKM>NK (P<0.05),同一处理两类根际间只有有效磷含量差异显著;纤维根和储藏根的根际土壤pH均以NPKM处理最高,NPK处理最低且显著低于NK处理,NPKM处理的纤维根根际pH显著高于储藏根根际0.81个单位。2) 3个施肥处理两类根系根际土壤的优势真菌类群均为子囊菌门(Ascomycota, 70.2%~77.9%)、担子菌门(Basidiomycota, 5.9%~8.5%)和被孢霉门(Mortierellomycota, 1.8%~8.1%)。3个处理间储藏根根际土壤子囊菌门的相对丰度无显著差异,而NK处理纤维根根际土壤子囊菌门的相对丰度显著高于NPKM处理(P<0.05);担子菌门和被孢霉门的相对丰度在NPK和NPKM处理间以及两类根系的根际土壤间均无显著差异,而NK处理的储藏根根际土壤担子菌门和被孢霉门的相对丰度较NPK处理分别低70.4%和62.9%,较NPKM处理分别降低44.0%和151% (P<0.05)。3) NPKM和NPK处理储藏根根际特有的真菌OTUs数分别为122和113个,而NK处理为86个,远低于NPKM和NPK处理。NPKM处理纤维根根际特有的真菌OTUs数最高(160个),而NPK和NK处理分别为114和127个。NK处理的纤维根根际土壤观察到的物种数和Shannon多样性指数显著高于储藏根(P<0.05),NPKM处理两类根际的观察到的物种数和Shannon指数在3个处理中最高。拓扑网络分析表明,储藏根根际土壤真菌类群关系较纤维根根际的更为复杂,而纤维根根际土壤真菌群落具有更强的相互作用关系。冗余分析(RDA)结果表明,根际土壤有效磷、有机碳含量和pH与根际土壤真菌群落结构显著相关(P<0.05)。

    结论 

    长期施用磷肥降低了甘薯两类根际土壤的pH,但显著提高了有机碳、有效磷和速效钾含量,磷肥配施有机肥还避免了pH的降低,因而较单施化肥更有效地提高了根际土壤的真菌数量和多样性。

    Abstract:
    Objectives 

    Fungi play an important role in rhizosphere soil nutrient cycling. Effects of long-term phosphorus fertilizer application on the soil fungal communities in sweet potato rhizosphere were explored, in order to diminish the potential unfavorable impacts of P application methods in the rhizospheric microecological environment.

    Methods 

    A long-term experiment was established in 2011 with sweet potato-wheat rotation system located in Nanjing, Jiangsu Province. In 2020, three treatments were selected for this experiment: no phosphorus fertilizer (NK), chemical fertilizers (NPK), and organic and chemical fertilizers (NPKM). The rhizospheric soils of storage and fibrous roots were collected at the storage root expansion stage of sweet potato. The basic soil chemical properties were determined using standard chemical analytical methods, and the relative abundance, composition and diversity of fungal community were analyzed using Illumina Novaseq High-throughput sequencing technology.

    Results 

    1) Long-term P application altered chemical properties of rhizospheric soils. The organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), and available potassium (AK) were all significantly increased by P application in both storage and fibrous rhizosphere. The SOC, DOC and AK contents were in order of NPKM>NPK>PK (P<0.05), while AP was in order of NPK>NPKM>NK (P<0.05). Only the AP under NPK was significantly different between the two root types. The pH in fibrous and storage rhizosphere were found to be highest in NPKM, and lowest in NPK treatment. The fibrous rhizosphere pH was 0.81 units higher than that in storage rhizosphere under NPKM treatment. 2) The dominant fungi were Ascomycota (70.2%–77.9%), Basidiomycota (5.9%–8.5%), and Mortierellomycota (1.8%–8.1%), regardless of treatments. The relative abundance of Ascomycota in storage rhizosphere was similar among the three treatments, while that in fibrous rhizosphere was significantly (P<0.05) higher in NK treatment than in NPKM treatment. The relative abundance of Basidiomycota and Mortierella was not significant different between NPK and NPKM treatments, nor between the two root types. While the relative abundance of Basidiomycetes and Mortierella in NK treatment decreased by 70.4% and 62.9% compared with NPK treatment, and decreased by 44.0% and 151% compared with NPKM treatment in storage roots. 3) The specific quantities of fungal OTUs were 122 and 113 in storage rhizosphere under NPKM and NPK treatments, respectively, while in NK treatment, it was only 86. The specific quantities of fungal OTUs were 160 in fibrous rhizosphere under NPKM treatment, and 114 and 127 in NPK and NK treatments, respectively. The observed species and Shannon diversity index were significantly higher in fibrous rhizosphere under NK treatment than those in storage rhizosphere (P<0.05). The observed species, and Shannon diversity index were highest under NPKM treatment. Topological network analysis showed that the relationships of fungal communities in the rhizosphere of storage roots were more complex, but those in fibrous rhizosphere had stronger interactions. Redundancy analysis indicated that the AP, SOC, and pH in rhizosphere soil were significantly (P<0.05) correlated with fungal community.

    Conclusions 

    Long-term chemical phosphorous fertilization decreased pH, but significantly increased organic carbon and AP in rhizosphere soil. Combined application of chemical and organic fertilizers alleviated the decrease in soil pH, thus maintained higher abundance and diversity of fungi communities in the rhizospheric soils.

  • 农田施肥是提高土壤养分和改善土壤肥力的重要措施之一[1],土壤养分作为土壤的重要组成部分,反映着施肥对土壤肥力的影响,包括土壤物理肥力、化学肥力和生物肥力。磷是作物生长必不可少的大量营养元素,而土壤有效磷含量往往偏低,无法满足作物正常的生长需求,农田施磷肥可提高土壤磷的有效性进而影响作物的产量与品质。在实际生产中,以往研究得出短期内增加土壤有效养分归于化肥的投入,但在长期的施肥管理措施中,施有机肥是提高土壤养分供给容量的主要措施[2]。因此,有机无机肥配施被认为是维持作物稳产增收和提高土壤生物肥力的有力举措。土壤微生物是表征土壤生物肥力的核心,也是土壤养分循环转化和有机质分解过程中的关键成员,且土壤微生物的代谢过程普遍受到碳和磷的限制[3]。土壤真菌是农田土壤中最为常见的微生物,其群落组成、多样性以及特定类群的功能被认为是评价农田生态系统稳定、健康和可持续性的重要指标[4-5]。相比于细菌,真菌具有更强的活化养分、分解土壤有机质及根系残体的能力[6],并且真菌与土传等多种病害现象密不可分。研究表明磷肥的施用可直接影响土壤真菌多样性及群落组成,也可通过改变土壤pH、全氮及有机碳含量进而间接影响真菌群落变化。施用生物有机肥可降低土壤病原真菌的数量,从而降低作物病害发生率。吕睿等[7]研究表明,施有机肥增加了果园土壤真菌群落的多样性;施有机肥改变真菌优势类群的相对丰度,但并未改变土壤真菌的群落结构;Zhou等[8]在东北黑土开展的研究表明,不同用量的氮磷配施可增加真菌数量,降低真菌的多样性,并改变真菌群落组成。丁建莉等[9]研究表明施用有机无机肥能有效改善真菌群落结构,增加真菌多样性,其中土壤有效磷含量是影响土壤真菌群落结构变化的重要因子。因此,不同类型的土壤或不同的施肥处理均在不同程度的影响土壤真菌群落结构变化,同时土壤真菌群落也在一定程度上受土壤环境(如pH、水分、养分含量、温度等)的影响[10-11]

    根际真菌群落多样性与作物健康状况密切相关,有害的根际真菌类群在一定程度会降低农作物生产力,因此,了解根际土壤真菌类群相对丰度、群落多样性及其组成等特征至关重要。研究表明,施用有机肥条件下根际土壤真菌OTU个数和子囊菌门的相对丰度高于单施化肥[12]。长期施肥可改变黑土玉米根际土壤真菌群落多样性及群落组成,其也受外源肥料类型的影响[13]。胡基华等[14]研究表明减施化肥配合微生物菌剂可有效降低大豆根际中有害真菌类群(如镰刀菌属)的相对丰度。施加生物炭可增加烤烟根际土壤真菌对腐生物质的分解速率,提高土壤养分含量并促进物质循环[15],根际土壤真菌群落在一定程度上影响作物品质与土壤微生态环境。因此,了解根际土壤真菌群落特征及其环境驱动因素对于构建合理的施肥策略与维持健康的土壤环境至关重要。

    甘薯(Ipomoea batatas L.)是重要的粮食和经济作物,其产量的稳定性与土壤理化和生物学性质密切相关[16]。甘薯根系分为纤维根、储藏根与未经膨大的柴根。其中纤维根的主要作用是吸收与活化土壤养分元素,供给甘薯地上部与地下部生长利用,而储藏根则是在土壤养分供给充足且环境良好的情况下,根系自然膨大而成。在甘薯根系发育过程中,土壤本身的异质性、土壤养分水平和环境条件等对根系的自然膨大与产量形成都具有重要的影响[17-19],施用磷肥和有机肥对甘薯根系的分化及产量形成至关重要[16, 20]。不同类型根系根际微生物的组成结构有差异,例如,玉米不同类型根系的根际中特异性菌群的相对丰度分布不同[21],水稻不同根系形态在磷和微生物协同作用下具有不同的微生物群落多样性和结构[22]。具有不同类型根系的作物间作可提高作物对磷养分的吸收并提高作物产量[23]。甘薯的储藏根易受真菌侵染,通过探究发现外接丛枝菌根真菌既增加了其对甘薯储藏根的侵染率,又增加了甘薯储藏根中的干物质积累量[24-25]。根际真菌作用也会影响其对百合纤维根的侵染率,根际真菌与百合根系的互作关系可促进增产[26]。因此,了解根际真菌群落组成对理解植株的抗病性与产量形成有积极意义。目前甘薯施肥对储藏根和纤维根根际真菌群落影响的研究相对匮乏,影响因素也不清楚。本研究利用黄棕壤薯麦轮作长期定位试验,研究了长期缺磷、单施化肥和有机肥替代部分化肥对甘薯储藏根与纤维根根际土壤真菌群落特征的影响。

    夏甘薯–冬小麦轮作长期肥料定位试验位于江苏省南京市六合区(32°28′N, 118°37′E)。该试验区域年均温度15.6℃,年均降雨量1100 mm。土壤类型为黄棕壤,试验前耕层土壤(0—20 cm)有机质含量13.31 g/kg,全氮含量0.73 g/kg,有效磷含量7.10 mg/kg,速效钾含量73.3 mg/kg ,碱解氮含量106 mg/kg,pH 6.48 (中性偏酸)。长期定位试验始于2011年,小区面积33.3 m2 (5.00 m × 6.66 m),每个处理3次重复,随机区组排列。供试氮肥为尿素(N 46%),施用量为N 120 kg/hm2;磷肥为过磷酸钙(P2O5 14%),施用量为P2O5 60 kg/hm2;钾肥为硫酸钾(K2O 50%),施用量为K2O 180 kg/hm2;有机肥为商品有机肥,施用量为2040 kg/hm2,商品有机肥主要由秸秆和猪粪腐熟而成,其养分含量分别为N 1.46%、P2O5 0.81%、K2O 1.10%。供试甘薯品种为‘苏薯29号’。

    2020年9月20日,甘薯膨大后期选取定位试验中不施磷肥(NK)、施氮磷钾化肥(NPK)、有机无机肥配合(NPKM) 3个处理,在每个小区选取5条垄,每条垄上随机选取1棵甘薯,挖取甘薯储藏根和纤维根根系,小心剥去外层土壤,保留根表皮1~2 mm附着的土壤作为储藏根和纤维根根际土壤样品。将土壤分别装入自封袋,冷藏于冰盒中带回实验室,过2 mm筛后去除根系和石块等杂质,混匀。所有样品分为2份,1份在室温下风干用于土壤化学性质测定,1份置于−20℃用于土壤总DNA的提取,测定土壤真菌群落组成。

    参照由鲍士旦主编的《土壤农化分析》[27]进行土壤理化性质的测定。pH采用水土质量比2.5∶1浸提,混合电极测定。总有机碳(SOC)采用重铬酸钾外加热法测定。溶解性有机碳(DOC)采用总碳氮分析仪测定。有效磷(AP)采用碳酸氢钠浸提,钼蓝比色法测定。土壤速效钾(AK)采用乙酸铵浸提,火焰光度法测定。

    采用土壤DNA试剂盒(Power Soil TM kit)提取土壤总DNA。称取新鲜土壤样品0.5 g,参照试剂盒操作说明进行DNA提取,获得的总DNA样品于−20℃冰箱储存。真菌ITS基因的高通量测序委托南京集思慧远生物科技有限公司,采用Illumina Novaseq 6000测序平台完成。采用的引物为ITS1-1F-F (5′–CTTGGTCATTTAGAGGAAGTAA–3′)和ITS1-1F-R (5′–GCTGCGTTCTTCATCGATGC–3′)[28]。测序得到的原始数据(Raw Data)存在一定比例的干扰数据(Dirty Data),利用QIIME软件中的默认参数对数据进行控制与分析,去除低质量或模糊序列后得到所有样品的有效序列。利用pandaseq软件将成对reads拼接成一条序列,用PRINSEQ软件过滤read平均质量值20以下的碱基,过滤掉N碱基数量大于5的序列,用Usearch软件去除嵌合体等。

    采用SPSS 25进行单因素方差分析,利用图基方法标注施肥处理间的显著性。储藏根和纤维根根际土壤化学性质及真菌丰度的差异采用独立样本T检验法检验。筛选土壤真菌类群相对丰度大于0.5%的OTU分类单元进行网络分析,相关系数计算利用Rstudio软件,网络可视化利用Gephi (0.9.2)完成。冗余分析(RDA)采用CANOCO 5.0,排序轴的显著性通过前向选择(forward selection)检验(n=499)计算。

    表1可知,储藏根和纤维根的根际土壤有机碳、溶解性有机碳、速效钾含量表现为NPKM>NPK>NK处理(P<0.05),同一处理下两类根际间无差异显著。有效磷含量为NPK>NPKM>NK (P<0.05)。NPK处理下,储藏根根际的有效磷含量显著低于纤维根。纤维根和储藏根的根际土壤pH均以NPKM处理最高,NPK处理最低且显著低于NK处理,NPKM处理的纤维根根际pH显著高于储藏根根际0.81个单位。根系类型、施肥处理及二者的交互作用对根际土壤pH影响显著,施肥以及施肥和根系类型的交互作用对根际土壤有效磷含量影响显著。

    表  1  不同施肥处理甘薯根际土壤化学性质
    Table  1.  Soil chemical properties of rhizospheric soils of sweet potato under different fertilization treatments
    根系类型
    Root type
    处理
    Treatment
    pH有机碳
    Organic C
    (g/kg)
    溶解性有机碳
    Dissolved organic C
    (mg/kg)
    有效磷
    Available P
    (mg/kg)
    速效钾
    Available K
    (mg/kg)
    储藏根
    Storage root
    NK5.61±0.03 aA7.35±0.02 cA86.67±3.56 cA9.3±1.4 cA197.67±1.15 cA
    NPK5.34±0.03 bA8.82±0.02 bA108.67±1.61 bA56.1±1.3 aB204.67±0.58 bA
    NPKM5.62±0.09 aB10.31±0.09 aA128.67±1.53 aA31.4±1.7 bA267.67±0.58 aA
    纤维根
    Fibrous root
    NK5.63±0.01 bA7.07±0.21 cA87.33±0.58 cA8.1±0.8 cA146.33±2.52 cA
    NPK5.29±0.02 cA8.14±0.04 bA103.17±3.21 bA62.2±2.0 aA164.33±0.58 bA
    NPKM6.43±0.05 aA9.64±0.04 aA127.67±1.04 aA28.9±0.3 bA197.33±1.53 aA
    方差分析 Analysis of variance (F value)
    根系类型 Root type (R)147.51***144.71***3.491.677157.46***
    处理 Treatment (T)360.28***1268.18***522.58***2112.69***3338.46***
    根系类型×处理 R×T157.82***8.41***3.1317.57***188.46***
    注: NK、NPK和NPKM分别表示不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。同列不同小写字母表示同一类型根际施肥处理间差异显著;同列不同大写字母表示同一处理两种根系类型间差异显著 (P<0.05)。方差分析中,*、**、***分别表示变量效应达到0.05、0.01和0.001显著水平。
    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. Different lowercase letters after data in a column indicate significant difference among treatments under the same root type. Different capital letters after data in a column indicate significant difference between two root types under the same treatment (P<0.05). In the analysis of variance, *, **,*** indicate the effect of variable at 0.05, 0.01, 0.001 significant levels, respectively.
    下载: 导出CSV 
    | 显示表格

    图1所示,甘薯储藏根和纤维根的根际土壤真菌类群主要分布在8个门,相对丰度>1%的子囊菌门(Ascomycota)占真菌总量的70.2%~77.9%,担子菌门(Basidiomycota)占5.9%~8.5%,被孢霉门(Mortierellomycota)占1.8%~8.1%。

    图  1  不同施肥处理的不同类型根根际土壤真菌群落门水平组成
    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理
    Figure  1.  Main fungal phyla in storage and fibrous root rhizospheric soils as affected by fertilizer treatment
    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively

    图2可以看出,3个处理的储藏根根际土壤子囊菌门的相对丰度无显著差异,而纤维根NK处理显著高于NPKM处理(P<0.05);担子菌门和被孢霉门的相对丰度在NPK和NPKM处理间以及两类根的根际土壤间均无显著差异,而NK处理的储藏根根际土壤担子菌门和被孢霉门的相对丰度较NPK处理分别低70.4%和62.9%,较NPKM处理分别低44.0%和151% (P<0.05)。

    图  2  不同施肥处理根际土壤主要真菌门的相对丰度
    注:NK、NPK和NPKM分别代表不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。柱上误差线为标准差,不同小写字母表示同一类根际土壤施肥处理间差异显著(P<0.05),*表示同一施肥处理下储藏根与纤维根之间差异显著(P<0.05)
    Figure  2.  The relative abundance of the dominant fungi phyla in rhizospheric soils as influenced by fertilizer treatments
    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. The error bars above the bars are the standard deviation, different small letters indicate significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    比较两种类型根系根际土壤真菌门的相对丰度,NK处理下的担子菌门相对丰度呈显著差异,其在纤维根根际土壤中高于储藏根。

    进一步鉴定和调查不同施肥处理对甘薯根际土壤相对丰度大于0.5%的主要真菌属的影响。结果(图3)表明,储藏根根际NPK和NPKM处理的古生菌属相对丰度显著低于NK处理,而曲霉菌属、被孢霉属、木霉菌属和霍氏粉褶菌属相对丰度显著高于NK处理,NPK处理的镰刀菌属相对丰度显著高于NK和NPKM处理,增幅分别为107.3%和87.5%。纤维根根际古生菌属、曲霉菌属和木霉菌属的相对丰度在3个处理间没有显著差异;被孢霉属相对丰度NPK与NPKM处理之间无显著差异,但NPK处理显著高于NK处理22%;霍氏粉褶菌属的相对丰度NPK与NK处理之间无显著差异,但NPK处理显著高于NPKM处理26.5%;镰刀菌属相对丰度以NPKM处理最高,比NPK处理显著提高69.5%。

    图  3  不同施肥处理根际土壤真菌属的相对丰度
    注:NK、NPK和NPKM分别代表不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。所列真菌属相对丰度均>0.5%。柱上误差线为标准差,不同小写字母表示同一类根际土壤施肥处理间差异显著(P<0.05),*表示同一施肥处理下储藏根与纤维根之间差异显著(P<0.05)
    Figure  3.  The relative abundance of fungi genus in rhizospheric soils under different fertilizer treatments
    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. The relative abundance of the listed fungal genus >0.5%. The error bars above the bars are the standard deviation, different small letters indicate significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    两种类型根际土壤相比,NK处理根际古生菌属的相对丰度储藏根显著高于纤维根(P<0.01),而曲霉菌属(P<0.05)、木霉菌属(P<0.01)和霍氏粉褶菌属(P<0.01)的相对丰度储藏根显著低于纤维根;在NPK处理下,被孢霉属的相对丰度储藏根显著低于纤维根,镰刀菌属的相对丰度恰好相反(P<0.01),其他4个菌属两类根系间无显著差异;在NPKM处理下,被孢霉属的相对丰度储藏根高于纤维根,镰刀菌属的相对丰度正相反(P<0.05),其他4个菌属两类根际间无显著差异。总之,NK处理对两个类型根根际土壤中真菌属相对丰度的影响多于NPK和NPKM处理。

    各施肥处理下储藏根与纤维根根际土壤中共有的OTU数(688个)和各处理特有的OTU数如图4所示。储藏根根际特有的真菌OTU数NPKM和NPK处理分别为122和113个,而NK处理为86个,远少于NPKM和NPK。纤维根根际NPKM处理的特有真菌OTU数最高(160个),而NPK和NK处理分别为114和127个。

    图  4  不同施肥处理的根际土壤真菌特有OTUs数目
    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理
    Figure  4.  The specific OTUs of rhizosphere soil fungi under different fertilizer treatments
    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively

    图5显示,储藏根根际土壤中NPKM处理的丰富度指数Chao1显著高于NK和NPK处理,而纤维根根际土壤3个处理间无显著差异;两类根系相比,NPK处理下纤维根根际的Chao1丰富度指数显著高于储藏根(P<0.05)。储藏根根际土壤中NPKM处理观察到的物种数(observed species)显著高于NK,与NPK处理无显著差异;而在纤维根根际中NPKM处理观察到的物种数显著高于NPK处理,而与NK处理间无显著差异;两类根际相比,只有NK处理的纤维根观察到的物种数显著高于储藏根(P<0.05)。对于Shannon多样性指数,储藏根根际土壤中NPK和NPKM处理显著高于NK处理;纤维根根际中各施肥处理间无显著差异;NK处理纤维根根际土壤的Shannon多样性指数显著高于储藏根。

    图  5  不同施肥处理根际土壤真菌群落多样性指数
    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。图中每个箱体上下横线、箱体上下边框和中间横线分别代表样本数的最大值、最小值、3/4值、1/4值和平均数。不同字母表示同一类型根系不同施肥处理间差异显著,*表示同一施肥处理下两种类型根系间差异显著 (P<0.05)
    Figure  5.  The alpha diversity index of soil fungi in rhizosphere under different fertilization treatments
    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively. The upper and bottom horizontal line outside the box, the upper and bottom frame and the horizontal line inside the boxes represent the maximum, minimum, 3/4 value, 1/4 value and average value of the sample number, respectively. Different small letters above the box indicate the significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    根际土壤化学性质与以上根际真菌类群相对丰度的皮尔逊相关性分析结果(表2)表明,土壤有机碳含量与子囊菌门的相对丰度呈显著负相关,与被孢霉门、被孢霉属和木霉菌属的相对丰度呈显著正相关;土壤AP含量与担子菌门、被孢霉属、木霉菌属和霍氏粉褶菌属的相对丰度呈显著正相关,与古生菌属的相对丰度呈显著负相关;土壤AK含量与被孢霉门的相对丰度显著正相关;土壤溶解性有机碳含量与被孢霉门的相对丰度显著正相关,与子囊菌门和古生菌属的相对丰度呈显著负相关。

    表  2  根际土壤真菌相对丰度与根际土壤化学性质的相关系数
    Table  2.  The relationship coefficient of fungal relative abundance with soil chemical properties
    指标 Index土壤有机碳
    Soil organic C
    pH有效磷
    Available P
    速效钾
    Available K
    溶解性有机碳
    Dissolved organic C
    子囊菌门 Ascomycota−0.644**NSNSNS−0.681**
    担子菌门 BasidiomycotaNSNS0.654**NSNS
    被孢霉门 Mortierellomycota0.715**NSNS0.571*0.698**
    古生菌属 ArchaeorhizomycesNSNS−0.522*NS−0.475*
    曲霉菌属 AspergillusNSNSNSNSNS
    被孢霉属 Mortierella0.543*NS0.515*NSNS
    镰刀菌属 FusariumNSNSNSNSNS
    木霉菌属 Trichoderma0.474*NS0.627**NSNS
    霍氏粉褶菌属 EntolomaNSNS0.516*NSNS
    注:*—P<0.05;**—P<0.01;NS—无显著相关。
    Note: *—P<0.05; **—P<0.01; NS—No significant correlation.
    下载: 导出CSV 
    | 显示表格

    根际土壤真菌群落多样性与土壤化学性质之间相关性分析结果(表3)表明,Chao1与土壤pH显著正相关(P<0.05),观察到的物种数与pH和土壤溶解性有机碳含量呈显著正相关(P<0.05)。

    表  3  根际土壤真菌群落多样性与根际土壤化学性质的关系
    Table  3.  The relationship of fungal community diversity indices with chemical properties of rhizosphere soil
    指标 Index土壤有机碳
    Soil organic C
    pH有效磷
    Available P
    速效钾
    Available K
    溶解性有机碳
    Dissolved organic C
    Chao1指数 Chao1NS0.584*NSNSNS
    观察到的物种数 Observed speciesNS0.501*NSNS0.535*
    香农指数 ShannonNSNSNSNSNS
    注:*—P<0.05;NS—无显著相关。
    Note: *—P<0.05; NS—No significant correlation.
    下载: 导出CSV 
    | 显示表格

    不同施肥处理的根际真菌分类单元之间的拓扑网络关系表明,甘薯储藏根根际土壤的真菌类群关系更为复杂,根际子囊菌门与担子菌门和被孢霉门存在相互作用关系,并且不同施肥处理强化了根际子囊菌门中OTU4002和未知类群OTU3387之间的关系。而甘薯纤维根根际中仅有子囊菌门和被孢霉门之间存在相互作用关系,并且根际真菌类群的复杂程度相对较缓和,但施肥强化了多个OTUs之间的相互作用关系(图6)。

    图  6  不同施肥处理的根际土壤真菌网络
    注:连接线的粗细表示各OTU之间的权重关系,点的大小表示度的大小
    Figure  6.  The networks of rhizosphere soil fungi under different fertilization treatments
    Note: The thickness of the connecting line represents the weight relationship between OTUs, and the size of the point represents the size of the degree

    对根际真菌群落组成(所有OTU分类单元)与施肥处理、根际土壤化学性质的关系进行冗余分析(RDA),通过前向选择和显著性检验筛选了与根际真菌群落组成存在显著性关系(P<0.05)的根际土壤理化因子(图7)。结果表明,RDA1和RDA2两轴共同解释真菌群落结构差异的79.38%。在轴一方向上,NPKM处理与NK、NPK处理明显分开,其中NPKM处理对DOC含量和pH的影响较大,而NPK处理主要影响土壤AP含量。前向选择结果表明根际土壤AP、DOC及pH与真菌群落结构存在显著相关性,其中在轴一方向上,根际土壤真菌群落结构与根际土壤DOC、pH呈显著正相关关系(P<0.01),而根际土壤真菌群落结构与AP呈显著负相关关系。

    图  7  根际土壤真菌群落组成与施肥处理、土壤化学性质的关系
    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。AP—有效磷;DOC—溶解性有机碳。
    Figure  7.  Relationships between fungal community composition and soil chemical properties, fertilizer treatments in rhizosphere soils
    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively. AP—Available P; DOC—Dissolved organic carbon.

    甘薯生长前期根系形态受施磷肥的影响显著,施磷肥利于甘薯生长前期根系的生长和分化根的形成[29]。农田施用有机肥对甘薯产量和地上部生物量有显著的提升效应,并且改善植薯土壤理化和生物学性质[16]。探究施磷肥和有机肥对黄棕壤甘薯纤维根和储藏根根际真菌群落的影响,结果表明根际土壤子囊菌门、担子菌门和被孢霉门是相对丰度较高的真菌类群,从高到低依次为子囊菌门、担子菌门、被孢霉门(图1)。子囊菌和担子菌作为真菌界的两大门类[30],其非常重要的功能是分解动植物等有机残体[31]。根际被孢霉菌具有转化和活化土壤养分的功能,且在富含有机质的土壤中相对丰度很高,根际被孢霉菌为根际土壤碳源和养分转化的关键微生物成员[32]

    在本研究中,3种优势真菌类群在不同施肥处理下表现不同。首先,NPK和NPKM处理均降低了根际土壤子囊菌门的相对丰度,而缺磷的NK处理下其相对丰度表现最高,主要原因可能是根际子囊菌对缺磷土壤的响应更为敏感。刘纪爱[33]研究表明,土壤真菌类群会对不同营养元素的缺失产生丰度上的调节。相关性分析表明,子囊菌门的相对丰度与根际土壤SOC和DOC含量显著负相关,其原因可能是磷养分缺失下,根际子囊菌为维持自身生长,需消耗更多的碳源活化根际磷养分进而维持自身的碳磷比,因此这种刺激耗碳与竞争作用提高了根际子囊菌的相对丰度。隶属于子囊菌门的古生菌属的相对丰度也表现出与子囊菌门相同的变化趋势,由此可见,磷营养缺乏时子囊菌群中的古生菌可能争夺磷源的优势更大。根际担子菌门的相对丰度在NPK处理下最高,相关性分析结果表明担子菌门的相对丰度与根际土壤有效磷含量显著正相关,由此可见,根际担子菌门的相对丰度受根际土壤有效磷水平影响,并且另一原因可能与施磷形态有关。本研究中,NPKM处理提高了储藏根根际被孢霉门和被孢霉属的相对丰度,说明在有机碳源充足条件下,被孢霉菌主要富集于储藏根根际,并与根际土壤理化性质存在相互作用关系,显著提高了根际土壤有机碳和速效钾含量。相关性分析也表明被孢霉门的相对丰度与根际土壤SOC、DOC和AK含量呈显著正相关。被孢霉菌还是一种解磷真菌,能够提高不同土壤类型中磷酸酶活性[34],并且释放多种有机酸来溶解土壤磷[35]。本研究表明被孢霉属与SOC和AP含量显著正相关,宁琪等[32]研究表明被孢霉菌可显著提高土壤溶解性有机碳、有效磷含量。

    NPK处理下甘薯储藏根根际土壤镰刀菌属的相对丰度达到最高,而其在NK和NPKM处理均显著下降,可见,碳源充足而磷源不足会降低镰刀菌属的丰度。根际土壤镰刀菌属是多功能真菌,既能降解多种环境污染物[36],也有较强的致病性,在作物土传病害的传播中存在隐患[37]。本研究中NPKM处理显著降低了镰刀菌属的相对丰度,表明有机肥可在一定程度上降低甘薯根系膨大过程中根际土传病害的传播风险。储藏根与纤维根根际土壤真菌数量在缺磷和施用有机肥条件下有较大差异,主要是甘薯根际土壤真菌数量受种植时间、肥料类型、轮作模式等因素影响[38-40]。NK处理下的纤维根根际土壤真菌数量高于储藏根根际真菌数量,这主要是因为纤维根根际的养分需求多、周转快,有限的磷资源导致真菌菌群之间存在竞争,从而增加了真菌数量,这可能是担子菌门和被孢霉门相对丰度增加的原因。此外,碳源是影响根际真菌数量非常重要的因素之一[39,41]。本研究中,施有机肥可提高甘薯储藏根根际真菌多样性指数和丰富度指数,可能是由于储藏根膨大期根际真菌对碳源的响应更加强烈,并且根系膨大对碳源的需求也更为迫切,所以富集在储藏根根际的真菌群落多样性更为丰富。甘薯根际土壤真菌群落结构主要受根际土壤有效磷、溶解性有机碳和土壤pH的影响。施磷后提高土壤有效磷水平,将重新塑造甘薯不同功能根系的根际真菌群落结构。根际土壤溶解性有机碳为根际真菌类群提供碳源,从而引起真菌群落发生变化。本研究结果表明根际土壤真菌群落对根际土壤pH变化存在响应,这可能是不同根际位置产生的有机酸含量不同,改变了土壤养分有效性和有机碳进而影响真菌群落结构[41]。有研究者在茶园开展研究表明,土壤真菌群落与土壤pH、有机质、有效磷含量呈显著正相关关系[42]。李猛[43]在黑土上的研究表明,土壤有机碳和pH是改变真菌多样性和组成的重要因素。

    甘薯根系的良好分化是其后期薯块顺利膨大和产量形成的重要前提。甘薯储藏根是光合同化物富集的核心[44],而纤维根的主要作用是汲取养分和水分等以供给植株生长。两种类型的根系尽管各自功能不同,但在甘薯整个生育期对甘薯高产高效均发挥着非常重要的作用。已有研究表明甘薯储藏根根系发育受外界环境因素调控,如光、水、温度、栽培环境和施肥等[45]。根际是根系与土壤间能量与物质交换的直接界面,根际微生物与根系健康、病虫害预防以及产量等关系十分密切[46],明确根际土壤真菌的群落多样性及其组成,对于了解根际养分循环过程具有关键的意义。本研究结果发现,NK处理下甘薯纤维根根际土壤担子菌门的相对丰度显著高于储藏根,证明纤维根根际土壤养分周转迅速。相关性分析表明担子菌门相对丰度与根际土壤有效磷含量呈显著正相关,并且纤维根根际土壤有效磷含量显著高于储藏根(表1),可能是担子菌与土壤速效磷相互作用的结果。本研究中,在缺磷条件下,古生菌属、曲霉菌属、木霉菌属和霍氏粉褶菌属的相对丰度均在储藏根和纤维根根际土壤中呈现显著差异,说明以上真菌群在甘薯根系膨大后更容易受到低磷环境的刺激,对碳源和养分等需求与竞争更为强烈,从而在两种类型根系根际环境中的数量不同。曲霉菌属被认为在土壤中具有较强的定殖能力,且溶磷能力高于细菌[47]。可见,曲霉菌类群在纤维根根际土壤吸收更多的磷养分以供储藏根的顺利膨大。OTU网络分析结果表明,储藏根根际土壤中的各真菌类群具有复杂的相互作用关系,而纤维根根际土壤的各真菌类群的作用关系更强。

    土壤子囊菌门、担子菌门和被孢霉门为甘薯根际中的优势真菌门类群。缺磷提高了储藏根根际土壤子囊菌门的相对丰度,施磷肥则增加担子菌门和被孢霉门相对丰度。缺磷甘薯纤维根根际土壤中特有的真菌数量高于储藏根,观察到的真菌物种数和shannon多样性指数也显著高于储藏根。施有机肥甘薯根际特有的真菌数量和多样性指数最高。施肥强化了甘薯纤维根根际真菌类群的相互作用关系。本研究表明,不同施磷方法通过改变根际土壤有效磷、有机碳和土壤pH,进而重新塑造甘薯不同功能根系的根际真菌群落。

  • 图  1   不同施肥处理的不同类型根根际土壤真菌群落门水平组成

    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理

    Figure  1.   Main fungal phyla in storage and fibrous root rhizospheric soils as affected by fertilizer treatment

    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively

    图  2   不同施肥处理根际土壤主要真菌门的相对丰度

    注:NK、NPK和NPKM分别代表不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。柱上误差线为标准差,不同小写字母表示同一类根际土壤施肥处理间差异显著(P<0.05),*表示同一施肥处理下储藏根与纤维根之间差异显著(P<0.05)

    Figure  2.   The relative abundance of the dominant fungi phyla in rhizospheric soils as influenced by fertilizer treatments

    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. The error bars above the bars are the standard deviation, different small letters indicate significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    图  3   不同施肥处理根际土壤真菌属的相对丰度

    注:NK、NPK和NPKM分别代表不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。所列真菌属相对丰度均>0.5%。柱上误差线为标准差,不同小写字母表示同一类根际土壤施肥处理间差异显著(P<0.05),*表示同一施肥处理下储藏根与纤维根之间差异显著(P<0.05)

    Figure  3.   The relative abundance of fungi genus in rhizospheric soils under different fertilizer treatments

    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. The relative abundance of the listed fungal genus >0.5%. The error bars above the bars are the standard deviation, different small letters indicate significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    图  4   不同施肥处理的根际土壤真菌特有OTUs数目

    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理

    Figure  4.   The specific OTUs of rhizosphere soil fungi under different fertilizer treatments

    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively

    图  5   不同施肥处理根际土壤真菌群落多样性指数

    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。图中每个箱体上下横线、箱体上下边框和中间横线分别代表样本数的最大值、最小值、3/4值、1/4值和平均数。不同字母表示同一类型根系不同施肥处理间差异显著,*表示同一施肥处理下两种类型根系间差异显著 (P<0.05)

    Figure  5.   The alpha diversity index of soil fungi in rhizosphere under different fertilization treatments

    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively. The upper and bottom horizontal line outside the box, the upper and bottom frame and the horizontal line inside the boxes represent the maximum, minimum, 3/4 value, 1/4 value and average value of the sample number, respectively. Different small letters above the box indicate the significant difference among treatments of the same root type, and * indicates the significant difference between two root types in the same treatment (P<0.05)

    图  6   不同施肥处理的根际土壤真菌网络

    注:连接线的粗细表示各OTU之间的权重关系,点的大小表示度的大小

    Figure  6.   The networks of rhizosphere soil fungi under different fertilization treatments

    Note: The thickness of the connecting line represents the weight relationship between OTUs, and the size of the point represents the size of the degree

    图  7   根际土壤真菌群落组成与施肥处理、土壤化学性质的关系

    注:S-NK、S-NPK和S-NPKM分别表示储藏根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理;F-NK、F-NPK和F-NPKM分别表示纤维根根际不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。AP—有效磷;DOC—溶解性有机碳。

    Figure  7.   Relationships between fungal community composition and soil chemical properties, fertilizer treatments in rhizosphere soils

    Note: S-NK, S-NPK and S-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of storage roots, respectively. F-NK, F-NPK and F-NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers in rhizosphere soils of fibrous roots, respectively. AP—Available P; DOC—Dissolved organic carbon.

    表  1   不同施肥处理甘薯根际土壤化学性质

    Table  1   Soil chemical properties of rhizospheric soils of sweet potato under different fertilization treatments

    根系类型
    Root type
    处理
    Treatment
    pH有机碳
    Organic C
    (g/kg)
    溶解性有机碳
    Dissolved organic C
    (mg/kg)
    有效磷
    Available P
    (mg/kg)
    速效钾
    Available K
    (mg/kg)
    储藏根
    Storage root
    NK5.61±0.03 aA7.35±0.02 cA86.67±3.56 cA9.3±1.4 cA197.67±1.15 cA
    NPK5.34±0.03 bA8.82±0.02 bA108.67±1.61 bA56.1±1.3 aB204.67±0.58 bA
    NPKM5.62±0.09 aB10.31±0.09 aA128.67±1.53 aA31.4±1.7 bA267.67±0.58 aA
    纤维根
    Fibrous root
    NK5.63±0.01 bA7.07±0.21 cA87.33±0.58 cA8.1±0.8 cA146.33±2.52 cA
    NPK5.29±0.02 cA8.14±0.04 bA103.17±3.21 bA62.2±2.0 aA164.33±0.58 bA
    NPKM6.43±0.05 aA9.64±0.04 aA127.67±1.04 aA28.9±0.3 bA197.33±1.53 aA
    方差分析 Analysis of variance (F value)
    根系类型 Root type (R)147.51***144.71***3.491.677157.46***
    处理 Treatment (T)360.28***1268.18***522.58***2112.69***3338.46***
    根系类型×处理 R×T157.82***8.41***3.1317.57***188.46***
    注: NK、NPK和NPKM分别表示不施磷肥、施氮磷钾化肥和有机无机肥配合施用处理。同列不同小写字母表示同一类型根际施肥处理间差异显著;同列不同大写字母表示同一处理两种根系类型间差异显著 (P<0.05)。方差分析中,*、**、***分别表示变量效应达到0.05、0.01和0.001显著水平。
    Note: NK, NPK and NPKM represent no phosphorus fertilizer, chemical fertilizers and organic and chemical fertilizers, respectively. Different lowercase letters after data in a column indicate significant difference among treatments under the same root type. Different capital letters after data in a column indicate significant difference between two root types under the same treatment (P<0.05). In the analysis of variance, *, **,*** indicate the effect of variable at 0.05, 0.01, 0.001 significant levels, respectively.
    下载: 导出CSV

    表  2   根际土壤真菌相对丰度与根际土壤化学性质的相关系数

    Table  2   The relationship coefficient of fungal relative abundance with soil chemical properties

    指标 Index土壤有机碳
    Soil organic C
    pH有效磷
    Available P
    速效钾
    Available K
    溶解性有机碳
    Dissolved organic C
    子囊菌门 Ascomycota−0.644**NSNSNS−0.681**
    担子菌门 BasidiomycotaNSNS0.654**NSNS
    被孢霉门 Mortierellomycota0.715**NSNS0.571*0.698**
    古生菌属 ArchaeorhizomycesNSNS−0.522*NS−0.475*
    曲霉菌属 AspergillusNSNSNSNSNS
    被孢霉属 Mortierella0.543*NS0.515*NSNS
    镰刀菌属 FusariumNSNSNSNSNS
    木霉菌属 Trichoderma0.474*NS0.627**NSNS
    霍氏粉褶菌属 EntolomaNSNS0.516*NSNS
    注:*—P<0.05;**—P<0.01;NS—无显著相关。
    Note: *—P<0.05; **—P<0.01; NS—No significant correlation.
    下载: 导出CSV

    表  3   根际土壤真菌群落多样性与根际土壤化学性质的关系

    Table  3   The relationship of fungal community diversity indices with chemical properties of rhizosphere soil

    指标 Index土壤有机碳
    Soil organic C
    pH有效磷
    Available P
    速效钾
    Available K
    溶解性有机碳
    Dissolved organic C
    Chao1指数 Chao1NS0.584*NSNSNS
    观察到的物种数 Observed speciesNS0.501*NSNS0.535*
    香农指数 ShannonNSNSNSNSNS
    注:*—P<0.05;NS—无显著相关。
    Note: *—P<0.05; NS—No significant correlation.
    下载: 导出CSV
  • [1] 王小英, 陈占飞, 王孟, 等. 渭北旱塬近40年来农田施肥与土壤肥力变化特征研究[J]. 西部大开发(土地开发工程研究), 2018, 3(5): 23–29.

    Wang X Y, Chen Z F, Wang M, et al. The variation of farmland fertilization and soil fertility in Weibei dry plateau in the past 40 years[J]. Land Development and Engineering Research, 2018, 3(5): 23–29.

    [2] 唐继伟, 林治安, 许建新. 有机肥与无机肥在提高土壤肥力中的作用[J]. 中国土壤与肥料, 2006, (3): 44–47.

    Tang J W, Lin Z A, Xu J X. Effect of organic manure and chemical fertilizer on soil nutrient[J]. Soil and Fertilizer Sciences in China, 2006, (3): 44–47.

    [3] 崔勇兴. 土壤微生物养分限制特征及驱动机制研究[D]. 北京: 中国科学院大学 (中国科学院教育部水土保持与生态环境研究中心) 博士学位论文, 2020.

    Cui Y X. Study on the characteristics and driving mechanisms of soil microbial nutrient limitation[D]. Beijing: PhD Dissertation of University of Chinese Academy of Sciences (Research Centre of Soil and Water Conservation), 2020.

    [4]

    Abu H M, Guo Z M, Moniruzzaman M, et al. Plant taxonomic diversity better explains soil fungal and bacterial diversity than functional diversity in restored forest ecosystems[J]. Plants, 2019, 8(11): 479. DOI: 10.3390/plants8110479

    [5]

    Siciliano S D, Palmer A S, Winsley T, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities[J]. Soil Biology and Biochemistry, 2014, 78: 10–20. DOI: 10.1016/j.soilbio.2014.07.005

    [6] 陈松鹤, 向晓玲, 雷芳, 等. 秸秆覆盖配施氮肥条件下根际土真菌群落及其与小麦产量关系的研究[J]. 生态学报, 2022, 42(21): 8751–8761.

    Chen S H, Xiang X L, Lei F, et al. Relationship between rhizosphere fungal community and wheat yield under straw mulching combined with nitrogen fertilizer[J]. Acta Ecologica Sinica, 2022, 42(21): 8751–8761.

    [7] 吕睿, 常帆, 张兴昌, 等. 黄土高原土壤细菌和真菌群落结构及其多样性对菌糠有机肥响应机制研究[J]. 环境生态学, 2022, 4(2/3): 40–49.

    Lü R, Chang F, Zhang X C, et al. Responses of soil bacterial and fungal community structure and diversity to microbial bran organic manure in the Loess Plateau[J]. Environmental Ecology, 2022, 4(2/3): 40–49.

    [8]

    Zhou J, Jiang X, Zhou B K, et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biology and Biochemistry, 2016, 95: 135–143. DOI: 10.1016/j.soilbio.2015.12.012

    [9] 丁建莉, 姜昕, 马鸣超, 等. 长期有机无机肥配施对东北黑土真菌群落结构的影响[J]. 植物营养与肥料学报, 2017, 23(4): 914–923.

    Ding J L, Jiang X, Ma M C, et al. Structure of soil fungal communities under long-term inorganic and organic fertilization in black soil of Northeast China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 914–923.

    [10]

    Liu D, Liu G H, Chen L, et al. Soil pH determines fungal diversity along an elevation gradient in Southwestern China[J]. Science China-Life Sciences, 2018, 61(6): 718–726. DOI: 10.1007/s11427-017-9200-1

    [11] 阳祥, 李先德, 刘吉龙, 等. 不同轮作模式的土壤真菌群落结构及功能特征分析[J]. 环境科学学报, 2022, 42(4): 432–442.

    Yang X, Li X D, Liu J L, et al. Analysis on the structure and function of soil fungi community in different crop rotation modes[J]. Acta Scientiae Circumstantiae, 2022, 42(4): 432–442.

    [12] 黄晓曼, 李文卿, 陈顺辉, 等. 长期有机肥投入对烟株根际土壤真菌群落结构的影响[J]. 江西农业学报, 2022, 34(1): 108–118.

    Huang X M, Li W Q, Chen S H, et al. Effects of long-term organic fertilizer input on soil fungi community structure in tobacco rhizosphere[J]. Acta Agriculturae Jiangxi, 2022, 34(1): 108–118.

    [13] 武俊男. 长期不同施肥对玉米根际微生物多样性及功能菌群的影响[D]. 吉林长春: 吉林农业大学硕士学位论文. 2018.

    Wu J N. Effects of long-term different fertilization on microbial diversity and functional microflora in corn rhizosphere[D]. Changchun, Jilin: MS Thesis of Jilin Agricultural University, 2018.

    [14] 胡基华, 张烨, 张淑梅, 等. 微生物菌肥对寒地大豆根际土壤真菌多样性的影响[J]. 大豆科学, 2021, 40(6): 805–812. DOI: 10.11861/j.issn.1000-9841.2021.06.0805

    Hu J H, Zhang Y, Zhang S M, et al. Effects of microbial fertilizer on fungal diversity of soybean rhizosphere soil in cold region[J]. Soybean Science, 2021, 40(6): 805–812. DOI: 10.11861/j.issn.1000-9841.2021.06.0805

    [15] 李茂森, 王丽渊, 杨波, 等. 生物炭对烤烟成熟期根际真菌群落结构的影响及功能预测分析[J]. 农业资源与环境学报, 2022, 39(5): 1041–1048.

    Li M S, Wang L Y, Yang B, et al. Effects of biochar on fungal community structure and function on flue cured tobacco[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 1041–1048.

    [16] 王静, 王磊, 刘耀斌, 等. 长期施用不同有机肥对甘薯产量和土壤生物性状的影响[J]. 水土保持学报, 2021, 35(2): 184–192.

    Wang J, Wang L, Liu Y B, et al. Effects of long-term different types of organic fertilizer application on sweet potato yield and soil biological traits[J]. Journal of Soils and Water Conservation, 2021, 35(2): 184–192.

    [17]

    Marques J M, Mateus J R, da Silva T F, et al. Nitrogen fixing and phosphate mineralizing bacterial communities in sweet potato rhizosphere show a genotype-dependent distribution[J]. Diversity, 2019, 11(12): 231. DOI: 10.3390/d11120231

    [18] 刘健, 娄运生, 任丽轩, 等. 海南澄迈甘薯营养品质与土壤养分相关性研究[J]. 西南农业学报, 2021, 34(11): 2398–2403.

    Liu J, Lou Y S, Ren L X, et al. Correlation between nutritional quality of sweet potatoes and soil nutrients in Chengmai, Hainan[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(11): 2398–2403.

    [19] 许仙菊, 张永春, 汪吉东, 等. 中国三大薯区土壤养分状况及土壤肥力质量评价[J]. 中国土壤与肥料, 2021, (5): 27–33.

    Xu X J, Zhang Y C, Wang J D, et al. Soil nutrient status and soil fertility evaluation of farmland in three main sweet potato regions in China[J]. Soil and Fertilizer Sciences in China, 2021, (5): 27–33.

    [20]

    Ichikawa E T M, Fernandes A M, Mota L H. Rooting of sweet potato seedlings submitted to supplemental calcium and phosphorus nutrition on substrate[J]. Revista Brasileira de Engenharia Agrícola e Ambiental, 2019, 23(11): 860–868.

    [21] 崔亚俊. 玉米不同类型的根系特异性菌群随根系生长发育的动态变化[D]. 安徽合肥: 合肥工业大学硕士学位论文, 2020.

    Cui Y J. The dynamics of root-type specific bacteria microbiota with root development in field-grown maize[D]. Hefei, Anhui: MS Thesis of Hefei University of Technology, 2020.

    [22] 王萌. 磷和微生物协同作用对不同根系形态水稻生长和细菌群落结构多样性的影响[D]. 北京: 中国农业科学院硕士学位论文, 2021.

    Wang M. The synergistic effect of phosphorus and microorganisms on rice growth and bacterial community structure diversity with different root systems[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2021.

    [23] 柏文恋, 郑毅, 肖靖秀. 豆科禾本科间作促进磷高效吸收利用的地下部生物学机制研究进展[J]. 作物杂志, 2018, (4): 20–27.

    Bai W L, Zheng Y, Xiao J X. Below-ground biotic mechanisms of phosphorus uptake and utilization improved by cereal and legume intercropping-a review[J]. Crops, 2018, (4): 20–27.

    [24] 陈佳华. 甘薯采后主要病原真菌分离鉴定及其与块根互作机制的研究[D]. 浙江杭州: 浙江农林大学硕士学位论文, 2019.

    Chen J H. Isolation and identification of main pathogenic fungi from sweet potato after harvest and its interaction with roots and roots[D]. Hangzhou, Zhejiang: MS Thesis of Zhejiang A&F University, 2019.

    [25] 张树海, 李欢, 刘庆, 等. 接种根内球囊霉提高氮素向甘薯块根转移和再分配的机理[J]. 植物营养与肥料学报, 2019, 25(9): 1542–1549.

    Zhang S H, Li H, Liu Q, et al. Inoculation of Glomus intraradices BEG141 to increase transfer and redistribution of nitrogen to tuber of sweet potato[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1542–1549.

    [26] 侯宇虹. 施肥与丛枝菌根真菌对兰州百合生长的影响[D]. 甘肃兰州: 兰州大学硕士学位论文, 2012.

    Hou Y H. The influences of fertilization and arbuscular mycorrhizal fungi on Lilium davidi var. unicdor cotton[D]. Lanzhou, Gansu: MS Thesis of Lanzhou University, 2012.

    [27] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.

    Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.

    [28] 王艳, 郭良栋, 程虎印, 等. 不同生境重楼内生真菌及土壤真菌多样性比较[J]. 微生物学通报, 2020, 47(9): 2867–2876.

    Wang Y, Guo L D, Cheng H Y, et al. Comparison of endophytic and soil fungi of Paris polyphylla diversity from different habitat[J]. Microbiology China, 2020, 47(9): 2867–2876.

    [29] 宁运旺, 马洪波, 张辉, 等. 氮、磷、钾对甘薯生长前期根系形态和植株内源激素含量的影响[J]. 江苏农业学报, 2013, 29(6): 1326–1332.

    Ning Y W, Ma H B, Zhang H, et al. Effects of nitrogen, phosphorus and potassium on root morphology and endogenous hormone contents of sweet potato at early growing stages[J]. Jiangsu Journal of Agricultural Science, 2013, 29(6): 1326–1332.

    [30] 马建军, 姚虹, 刘辉, 等. 燕山矿区苜蓿恢复过程中土壤养分与微生物的演变特征[J]. 环境工程技术学报, 2023, 13(1): 270–279.

    Ma J J, Yao H, Liu H, et al. Evolution characteristics of soil nutrients and microorganisms during alfalfa restoration of quarry in Yanshan Mountain[J]. Journal of Environmental Engineering Technology, 2023, 13(1): 270–279.

    [31] 南丽丽, 谭杰辉, 郭全恩, 等. 黄土高原半干旱区轮作休耕模式对土壤真菌的影响[J]. 生态学报, 2020, 40(23): 8582–8592.

    Nan L L, Tan J H, Guo Q E, et al. Effects of fallow rotation modes on soil fungal communities in semi-arid area of the Loess Plateau, northwest China[J]. Acta Ecologica Sinica, 2020, 40(23): 8582–8592.

    [32] 宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206–217.

    Ning Q, Chen L, Li F, et al. Effects of mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 2022, 59(1): 206–217.

    [33] 刘纪爱. 长期不均衡施肥对稻田土壤微生物群落分布和功能的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2022.

    Liu J A. Effects of long-term unbalanced fertilization on microbial community distribution and functions in paddy soil[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2022.

    [34]

    Zhang H S, Wu X H, Li G, et al. Interactions between arbuscular mycorrhizal fungi and phosphate-solubilizing fungus (Mortierella sp.) and their effects on Kostelelzkya virginica growth and enzyme activities of rhizosphere and bulk soils at different salinities[J]. Biology and Fertility of Soils, 2011, 47(5): 543–554. DOI: 10.1007/s00374-011-0563-3

    [35]

    Osorio N W, Habte M. Soil phosphate desorption induced by a phosphate-solubilizing fungus[J]. Communications in Soil Science and Plant Analysis, 2014, 45(4): 451–460. DOI: 10.1080/00103624.2013.870190

    [36] 王世伟, 王卿惠, 李小鹏, 等. 镰刀菌分子鉴定与重要应用的研究进展[J]. 微生物学通报, 2018, 45(4): 907–919.

    Wang S W, Wang Q H, Li X P, et al. Progress in molecular identification in the genus Fusarium and its important applicions[J]. Microbiology China, 2018, 45(4): 907–919.

    [37] 王玲玲. 玉米根际微生物分离及防控种栖镰刀菌的根际菌群构建[D]. 江苏南京: 南京农业大学硕士学位论文, 2019.

    Wang L L. Rhizobacteria isolation and community construct for controlling seed-borne fusarium in maize[D]. Nanjing, Jiangsu: MS Thesis of Nanjing Agricultural University, 2019.

    [38] 高志远, 胡亚亚, 刘兰服, 等. 甘薯连作对根际土壤微生物群落结构的影响[J]. 核农学报, 2019, 33(6): 1248–1255.

    Gao Z Y, Hu Y Y, Liu L F, et al. The effects of continuous cropping on the microbial community structure of rhizosphere soil of sweetpotato[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(6): 1248–1255.

    [39] 顾泽辰. 氮素形态对黄瓜枯萎病及土壤真菌群落特征的影响[D]. 江苏南京: 南京农业大学博士学位论文, 2020.

    Gu Z C. The effect of nitrogen nutrition froms on fusarium wilt and soil fungal community of cucumber[D]. Nanjing, Jiangsu: PhD Dissertation of Nanjing Agricultural University, 2020.

    [40] 乔月静. 轮作方式与杀线剂对甘薯产量及根际线虫、真菌、细菌群落的影响[D]. 北京: 中国农业大学博士学位论文, 2014.

    Qiao Y J. Effect of cropping patterns and nematicides on yield and communities of nematodes, bacterial, fungi in the rhizosphere of sweet potato[D]. Beijing: PhD Dissertation of China Agricultural University, 2014.

    [41] 李敏, 吕桂芬, 牛艳芳, 等. 内蒙古不同气候带白桦外生菌根真菌群落结构及影响因素[J]. 生态学报, 2022, 42(12): 4847–4860.

    Li M, Lü G F, Niu Y F, et al. Ectomycorrhizal community structure and driving factors of Betula platyphylla in different climate zones in Inner Mongolia[J]. Acta Ecologica Sinica, 2022, 42(12): 4847–4860.

    [42] 万人源, 马会杰, 蒋宾, 等. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88–97.

    Wan R Y, Ma H J, Jiang B, et al. The fungi community structure and influencing factors in tea gardens soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 88–97.

    [43] 李猛. 免耕对黑土农田土壤微生物群落结构的影响[D]. 北京: 中国科学院大学 (中国科学院东北地理与农业生态研究所) 博士学位论文, 2021.

    Li M. Impact of no tillage system on soil microbial community structure of cropland in Mollisol[D]. Beijing: PhD Dissertation of University of Chinese Academy of Sciences (Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences), 2021.

    [44]

    Tanaka M. Recent progress in molecular studies on storage root formation in sweetpotato (Ipomoea batatas)[J]. Japan Agricultural Research Quarterly: JARQ, 2016, 50(4): 293–299. DOI: 10.6090/jarq.50.293

    [45] 吴银亮, 王红霞, 杨俊, 等. 甘薯储藏根形成及其调控机制研究进展[J]. 植物生理学报, 2017, 53(5): 749–757.

    Wu Y L, Wang H X, Yang J, et al. Advances in storage root development and regulation in sweetpotato [Ipomoea batatas (L.) Lam.][J]. Plant Physiology Journal, 2017, 53(5): 749–757.

    [46] 崔纪超, 武小霞, 林怡, 等. 甘薯根际土壤微生物群落结构及多样性分析[J]. 西南农业学报, 2022, 35(9): 2086–2095.

    Cui J C, Wu X X, Lin Y, et al. Analysis on community structure and diversity in rhizosphere soil of sweet potato[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2086–2095.

    [47]

    Zhang F G, Huo Y Q, Cobb A B, et al. Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass[J]. Frontiers in Microbiology, 2018, 9: 848. DOI: 10.3389/fmicb.2018.00848

  • 期刊类型引用(3)

    1. 王文静,刘亚军,胡启国,储凤丽. 不同地膜覆盖与施肥方式对土壤质量及甘薯生长发育的影响. 江苏农业科学. 2024(10): 62-68 . 百度学术
    2. 李伟,黄战,谢文歌,张曦瑜,冯雷,徐巧,柴仲平. 施氮对库尔勒香梨园土壤真菌群落的影响. 中国土壤与肥料. 2024(06): 56-69 . 百度学术
    3. 李其胜,杨凯,蒋伟勤,贾艳艳,殷小冬,李青,董青君,杨文飞,杜小凤,顾大路. 有机(类)肥料对作物产量、土壤养分及土壤微生物多样性的影响. 江苏农业学报. 2023(08): 1772-1783 . 百度学术

    其他类型引用(3)

图(7)  /  表(3)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  311
  • PDF下载量:  100
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-12-02
  • 网络出版日期:  2023-05-24
  • 刊出日期:  2023-05-24

目录

/

返回文章
返回