Effects of chemical fertilizer reduction on rice yield and soil fertility in yellow-mud paddy field under the continuous return of milk vetch
-
摘要:目的
基于福建稻区连续11年的黄泥田定位试验,研究长期翻压紫云英条件下,化肥不同减施比例对黄泥田水稻产量、稻米质量以及土壤肥力的影响。
方法田间试验从2009至2019年共进行了11年。设7个施肥处理:不施肥(CK),常规用量化肥 (100%F),紫云英翻压条件下施用常规化肥用量的100% (M+100%F)、80% (M+80%F)、60% (M+60%F)、40% (M+40%F),及紫云英翻压条件下不施化肥(M)。种植制度为种植翻压紫云英—单季稻。每年水稻成熟期,采集水稻籽粒与秸秆样品,测定氮磷钾含量,并对水稻进行测产、考种。2017—2019年,在水稻分蘖盛期,采集水稻植株样品,测定了氮磷钾含量。2019年分蘖期和成熟期采集0—20 cm土壤样品,测定容重、pH、有机碳、微生物生物量、可溶性氮等指标。
结果与CK相比,施肥处理水稻籽粒历年平均产量增幅为11.4%~21.3%,秸秆产量增幅为17.1%~39.0%,处理间差异达显著水平。与100%F处理相比,M+100%F和M+80%F处理的水稻籽粒历年平均产量分别提高3.7%与3.0%,秸秆产量分别增加5.1%与5.6%;M+60%F处理的籽粒与秸秆产量无显著变化;第11年(2019年) M+80%F处理的分蘖期植株氮素含量提高75.4%,成熟期籽粒氮含量提高5.7%;M+100%F处理的籽粒必需氨基酸与氨基酸总含量分别显著增加5.2%与6.7%,其他翻压紫云英+化肥处理籽粒必需氨基酸和氨基酸总含量没有显著变化。与100%F处理相比,翻压紫云英各处理的土壤微生物量碳含量提高了4.8%~14.3%,微生物量氮含量提高了−1.0%~23.5%,全氮含量提高了9.4%~14.1%,有机质含量提高了7.9%~12.0%。
结论在中低产稻田,翻压紫云英18000~22500 kg/hm2基础上,加施60%的常规量化肥用量,可维持水稻地上部生物量和籽粒产量不降低;加施80%的常规量化肥,不仅可改善土壤化学与生物学特性,提高水稻籽粒氨基酸含量,且显著提高水稻地上部生物产量和籽粒产量,因而是实现化肥减量提质增效的最佳养分管理措施。
Abstract:ObjectivesWe studied the effects of different chemical fertilizer reduction rates on rice yield and paddy field fertility under the long-term return of milk vetch (Astragalus sinicus) for efficient and sustainable rice production.
MethodsThe field experiment was carried out in Fujian Province from 2009 to 2019, with cropping system of single-rice cultivation followed by milk vetch planting. There were seven fertilization treatments: no fertilizer application (CK), conventional chemical fertilization rate (100%F), applying 100%, 80%, 60% and 40% of the conventional chemical fertilization rate under the return of milk vetch (M+100%F, M+80%F, M+60%F, M+40%F), and milk vetch (M) only. Rice grain and straw samples were collected at the rice harvest stage to detect the N, P, and K content, rice grain yield and amino acid content from 2017 to 2019. Soil samples at 0−20 cm depth were collected in 2019 at tillering and maturity stage for the determination of soil bulk density, pH, organic carbon, microbial biomass nitrogen (MBN) and soluble nitrogen.
ResultsCompared with CK, the rice grain and straw yields in all the fertilizer treatments (P<0.05) increased by 11.4%−21.3% and 17.1%−39.0%, respectively. Compared with 100%F, M+100%F and M+80%F increased rice yield by 3.7% and 3.0%, straw yield by 5.1% and 5.6%, while the other treatments produced similar grain and straw yields. M+80%F increased N uptake by 75.4% and 5.7% at peak tillering and maturity stage, increased the total and essential amino acid contents in grains by 5.2% and 6.7%, while the M+less than 60%F decreased the total and essential amino acid contents. Compared with the 100%F treatment, treatments including M increased soil nutrient contents by 7.3%−4.3%, soil MBN by −1.0%−23.5%, total N by 9.4%−14.1%, and organic matter by 7.9%−12.0%.
ConclusionsOn the basis of annual returning of 18000−22500 kg/hm2 milk vetch to the soil, applying 60% of the conventional rate of chemical fertilizer in the middle and low yield paddy field could maintain rice grain and straw yield. Applying 80% of the conventional chemical fertilizer rate could improve soil properties, stimulate rice N uptake, yield and nutritional quality, indicating it the optimum application rate.
-
Keywords:
- rice /
- milk vetch /
- fertilizer reduction /
- soil fertility /
- nutrient absorption /
- grain quality
-
紫云英(Astragalus sinicus L.)又名红花草,是我国南方冬闲稻区主要的豆科绿肥作物,含氮、磷、钾、有机质以及微量元素等,其可以固定空气中的氮,活化土壤磷、钾,利用效率高,植株腐解时可以产生大量的氮素,在农田生态系统中对维持氮循环具有重要作用[1-3]。俗语说“猪粪红花草,农家两件宝”。经过3~5年冬种紫云英绿肥可使黏土田、板结田变得疏松;沙质田可变得不容易渗漏水和肥,从而转变为一类的壤土田,地力提高2个档次[4]。
福建省地处东南沿海,属南、中亚热带季风气候,水量丰富,温暖潮湿且冬季光热资源丰富,适合水稻的生长。每年中、晚稻种植面积约66.7万hm2,中低产田面积约占80%,约53.3万hm2[5-6]。黄泥田属渗育型水稻土,是福建省主要中低产田类型之一,主要发育于凝灰岩、闪长岩、泥质岩、第四纪红色黏土和细粒结晶岩等风化物,包括黄泥田、灰黄泥田、乌黄泥田等类型,约占福建省水稻土总面积的30%[7]。黄泥田一般距离村庄较远,土质黏重,养分不平衡,有机质和矿质营养缺乏,土壤酸化,相当部分常年串灌或缺水干旱,存在酸、瘦、黏、浅、旱等障碍因素,影响土壤肥力的充分发挥,造成水稻产量较低。在实际生产中,为提高水稻产量,农民倾向于增施化肥尤其是氮肥以获得高产。过量施用氮肥造成大量养分的流失、土壤酸化板结,肥料利用率低下,水稻产量、质量下降的同时还引发环境污染,从而影响农业生产的可持续性,增加生产成本[8-9]。因此,提升福建中低产田地力水平与降低化肥用量是当前福建全省农田管理面临的双重任务。
鉴于长期定位施肥试验是具有时间长期性、气候重复性、地理定位性等显著优点的农田生态系统,该方法信息量丰富、准确可靠、解释能力强[10],翻压绿肥对土壤结构、理化性状以及化学肥料减施替代的影响正需要长期定位试验平台的支持。本试验利用连续11年紫云英绿肥翻压的黄泥田长期定位试验,研究连续压青紫云英绿肥对促进化肥减量、土壤肥力及水稻产质量的影响,为发展紫云英绿肥生产、合理施用化肥,提高农作物产量和质量提供理论依据。
1. 材料与方法
1.1 试验地概况
试验地位于福州市闽侯县白沙镇溪头村农业农村部福建耕地保育科学观测实验站(119°04′10′′E, 26°13′31′′N),属于亚热带季风性湿润气候,海拔15.4 m,年平均温度19.5℃,≥10℃的活动积温6422℃,年日照时数1812.5 h,无霜期311天,年降雨量 1200~1500 mm,降水集中在5、6、8、9月,占全年降水60%以上[11]。试验地成土母质为低丘坡积物,土壤类型为渗育型水稻土亚类的黄泥田土属,属中低产田,以黏、瘦为主要特征。试验前耕层土壤基本理化性状:pH 5.26,有机质24.4 g/kg,碱解氮 171.6 mg/kg,速效磷13.5 mg/kg,速效钾 83.4 mg/kg。
1.2 试验设计
试验始于2009年,设7个处理,即不施肥(CK)、100%化肥(100%F)、紫云英+100%化肥(M+100%F)、紫云英+80%化肥(M+80%F)、紫云英+60%化肥(M+60%F)、紫云英+40%化肥(M+40%F)、紫云英(M)。每个处理设3次重复,完全随机区组排列。每小区面积为15 m2 (5 m×3 m),共21个小区。小区间用水泥田埂隔开,筑高20 cm,埋深40 cm,以减少小区间串水串肥和侧渗。水稻种植密度20丛×15丛。试验地100%化肥用量为施纯N 135 kg/hm2,P2O5 54 kg/hm2,K2O 94.5 kg/hm2,即N∶P2O5∶K2O=1∶0.4∶0.7。各施肥处理磷肥全部作基肥,氮、钾肥60%作基施,分蘖期追施余下的40%。供试化肥为尿素(N,46%)、过磷酸钙(P2O5,12%)和氯化钾(K2O,60%)。试验从2009至2019年,连续11年在翻压紫云英后种植单季稻。紫云英年翻压量为 18000~22500 kg/hm2,多年平均翻压量为20250 kg/hm2,翻压时间均在盛花期(3—4月份),原田种植时多余的紫云英移出,不足时从外源补充。2009年紫云英品种为‘弋江籽’,2010—2016年为‘闽紫7号’,2017年为‘信阳籽’,2018—2019年为‘闽紫8号’。紫云英鲜草养分多年均值为:有机碳58.7 g/kg,N 4.0 g/kg,P2O5 0.9 g/kg,K2O 2.7 g/kg,水分含量85.9%。单季稻水稻品种2009—2011年为‘宜香优2292’,2012—2016年为‘中浙优1号’,2017—2019年为‘中浙优8号’。水稻种植密度 20万丛/hm2 。插秧时间为每年的6月下旬至7月上旬,收割时间为10月中旬。各处理养分投入量如表1所示。
表 1 各处理化肥和绿肥翻压养分投入量 [kg/(hm2·a)]Table 1. Annual nutrient input from chemical fertilizer and milk vetch return in each treatment处理
Treatment化肥 Chemical fertilizer 紫云英 Milk vetch return N P2O5 K2O N P2O5 K2O CK 0 0 0 0 0 0 100%F 135.0 54.0 94.5 0 0 0 M+100%F 135.0 54.0 94.5 81.0 18.2 54.7 M+80%F 108.0 43.2 75.6 81.0 18.2 54.7 M+60%F 81.0 32.4 56.7 81.0 18.2 54.7 M+40%F 54.0 21.6 37.8 81.0 18.2 54.7 M 0 0 0 81.0 18.2 54.7 注:CK—不施肥、100%F—100%化肥、M+100%F—紫云英+100%化肥、M+80%F—紫云英+80%化肥、M+60%F—紫云英+60%化肥、M+40%F—紫云英+40%化肥、M—紫云英。紫云英翻压量按平均20250 kg/hm2计算。
Note: CK—No fertilizer, 100%F—100% fertilizer, M+100%F—Milk vetch+100% fertilizer, M+80%F—Milk vetch+80% fertilizer, M+60%F—Milk vetch+60% fertilizer, M+40%F—Milk vetch+40% fertilizer, M—Milk vetch. The returning amount of milkvetch is 20250 kg/hm2.1.3 样品采集与分析
植株样品采集。2009—2019年于每年水稻成熟期,按“S”形布点采集各处理小区的籽粒与秸秆样品。2017—2019年于每年水稻分蘖盛期,按“S”形布点采集每处理每小区5株水稻植株。样品于105℃杀青15 min,65℃烘干24 h至质量恒定后,磨碎,检测籽粒和秸秆N、P、K含量。N、P、K采用H2SO4—H2O2消煮,全氮用凯氏法测定,全磷用钒钼黄比色法测定,全钾用火焰光度计法测定 [11]。籽粒氨基酸测定采用GB 5009.124—2016方法,用全自动氨基酸分析仪LA8080测定。
土壤样品采集。于2019年水稻分蘖盛期和成熟期,采用不锈钢取土器采集各试验小区0—20 cm的土壤样品,每个小区随机采集5点混合为1个样品,另用容重圈采集土壤样品测定耕层土壤容重。采集的土壤样品分为两部分:一部分在室温下自然风干,风干后样品用于土壤pH、有机碳等分析;另一部分鲜样直接用于土壤微生物生物量、可溶性总氮等指标分析。土壤基本生化理化性质测定分析方法如下[12-13]:1)土壤中C和N采用碳氮元素分析仪法测定;2)土壤pH采用酸度计法测定(土/水=1/5);3)土壤容重采用环刀法测定;4)微生物生物量碳、氮采用氯仿熏蒸—K2SO4浸提,总有机碳分析仪法测定;5)土壤可溶性总氮采用蒸馏水浸提,总有机碳分析仪法测定。
1.4 数据处理与分析
地上部养分吸收量(kg/hm2)=籽粒产量×籽粒养分含量+秸秆产量×秸秆养分含量
土壤N、P2O5、K2O养分表观平衡(kg/hm2)=肥料养分投入量−水稻养分携出量
原始数据采用 Excel 2019 进行整理,使用 SPSS 20.0软件将每年的数据进行统计分析和差异显著性(α=0.05)检验。使用 Excel 2019 进行绘图。
2. 结果与分析
2.1 紫云英连续翻压对水稻产量的影响
图1显示,从平均产量的年际变化来看,各施肥处理籽粒产量和秸秆产量都显著高于CK处理,籽粒历年平均产量提高11.4%~21.3%;秸秆历年平均产量提高17.1%~39.0%。与100%F处理相比,M+100%F和M+80%F处理水稻籽粒年均产量、秸秆年均产量均呈显著性提高,籽粒历年产量分别提高3.7%与3.0%,秸秆历年产量分别提高5.1%与5.6%,差异分析显示,M+100%F和M+80%F处理间差异不显著。M+60%F处理的水稻籽粒产量和秸秆产量与100%F处理的水稻籽粒产量和秸秆产量基本持平,差异不显著。随着化肥减施比例的增加,水稻籽粒产量和秸秆产量有下降趋势,与100%F处理相比,M+40%F、M处理的水稻籽粒产量和秸秆产量分别下降了2.9%和4.8%、5.1%和11.0%,差异均达显著水平。将化肥减施比例(x)与水稻籽粒10年产量平均值(y)拟合方程,可用直线回归方程y=−7.4541x+8403.9 (R2=0.9424**) (图2a)表示。
图 1 2009—2019年紫云英翻压下化肥减施的水稻籽粒与秸秆产量动态变化与平均产量注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。柱上不同小写字母代表处理间差异显著(P<0.05)Figure 1. Dynamics and the average rice grain yield and aboveground biomass as affected by fertilizer reduction under the continuous return of milk vetch from 2009 to 2019Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters above the bars indicate significant difference among treatments at 0.05 level从2009—2019年水稻籽粒年平均产量可以进一步看出(表2),与CK相比,长年翻压紫云英处理的水稻籽粒产量增加13.3%~26.9%,差异均达显著水平,其中M+100%F、M+80%F处理增幅最为明显,分别较100%F处理提高3.9%和3.1%,但二者间差异不显著。从2017—2019年水稻产量构成因素进一步可以得出,长年翻压紫云英处理的单位面积有效穗增幅最为明显,与CK相比,有翻压紫云英处理的单位面积有效穗均显著提高23.0%~34.6%,其中M+80%、M+100%F、M+60%F和M+40%F处理单位面积有效穗提高最多;与100%F处理相比,增幅7.1%~9.4%,差异显著,但这四者间差异不显著;与100%F处理相比,翻压紫云英与化肥配施处理的水稻每穗实粒数均有不同程度的提高,且随着化肥减施比例的增加水稻穗实粒数也有提高的趋势,但差异未达到显著水平。从水稻千粒重来看,与CK相比,紫云英连续翻压并配施不同用量化肥对水稻籽粒千粒重无显著影响。这说明单位面积有效穗是紫云英翻压与化肥配施和单施化肥水稻产量产生差异的重要性状因子。将化肥减施比例(x)与10年地上部生物产量平均值(y)拟合方程,可用直线回归方程y=−15.43x+13167 (R2=0.9550**)表示 (图2b)。
表 2 紫云英连续翻压及化肥减施处理下水稻产量与产量构成因素Table 2. Rice yield and yield components as affected by continuous milk vetch return and chemical fertilizer reduction处理
Treatment籽粒产量 (kg/hm2)
Grain yield有效穗 (×104/hm2)
Effective spike number穗粒数
Grain number per spike千粒重 (g)
1000-grain weightCK 6920.6±313.6 d 169.84±3.80 d 163.30±6.70 a 22.85±0.31 a 100%F 8161.7±35.7 b 208.90±6.70 c 154.50±13.90 a 23.40±0.27 a M+100%F 8478.7±157.8 a 223.69±4.22 a 169.00±13.41 a 23.32±0.12 a M+80%F 8412.5±163.8 a 228.60±2.07 a 156.91±12.69 a 23.24±0.40 a M+60%F 8137.5±159.5 b 226.89±1.69 a 160.39±10.54 a 23.43±0.24 a M+40%F 7951.0±141.0 c 223.71±3.55 a 172.74±13.67 a 23.34±0.17 a M 7740.5±247.1 c 215.10±5.40 b 148.90±28.1 a 23.52±0.48 a 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。籽粒产量为2009—2019年平均产量,产量构成因素为2017—2019年平均值,数据为平均值±SD。同一列数据后不同字母表示同一指标在不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Grain yield was the average of 11 years, and the yield components were the average of 2017−2019, the data were mean±SD. Different small letters after data in the same column indicate significant difference among treatments at 0.05 levels.2.2 紫云英连续翻压对水稻植株养分及吸收量的影响
依据第11年 (2019年) 分蘖期各处理水稻植株养分分析结果(表3),施肥处理均提高了分蘖期水稻植株氮、磷、钾含量,与CK相比,增幅分别为43.1%~77.6%、3.9%~26.6%、13.6~32.8%。各施肥处理植株氮含量与CK处理相比较,增幅均达显著水平,以M+100%F、M+80%F处理的氮含量最高,分别为23.58和23.29 g/kg,比CK处理分别提高了77.6%和75.4%,比100%F处理分别提高了24.0%和22.5%。其次是M+40%F和M+60%F处理。磷含量以M+60%F、M+80%F处理最高,含量分别达3.24和3.20 g/kg;钾含量最高的是M+80%F处理 (28.47 g/kg),与CK差异显著;其次是M+100%F和M+60%F处理,钾含量分别为26.17和27.04 g/kg,与CK差异同样达显著水平。
表 3 紫云英连续翻压和化肥减施下水稻籽粒和秸秆养分含量 (g/kg)Table 3. Nutrient content of rice grain and straw under continuous milk vetch return and chemical fertilizer reduction处理
Treatment分蘖期植株
Rice plant at tillering stage成熟期 Maturity stage 籽粒 Grain 秸秆 Straw N P K N P K N P K CK 13.28±0.92 d 2.56±0.07 b 21.44±0.12 c 9.91±0.86 bc 2.78±0.12 a 2.74±0.03 a 6.31±1.43 a 1.21±0.25 a 19.15±0.94 a 100%F 19.01±1.01 c 2.88±0.16 ab 24.60±0.10 bc 11.11±0.30 abc 3.11±0.16 a 2.91±0.25 a 6.21±0.66 a 1.15±0.25 a 17.91±0.78 ab M+100%F 23.58±1.06 a 2.94±0.43 ab 26.17±1.05 ab 14.70±0.461 ab 2.59±0.18 a 2.31±0.13 a 6.27±0.13 a 1.26±0.18 a 14.77±1.23 ab M+80%F 23.29±1.64 a 3.20±0.27 a 28.47±0.86 a 15.54±0.72 a 2.83±0.27 a 2.95±0.17 a 6.07±0.18 a 1.18±0.13 a 12.82±1.86 ab M+60%F 21.87±0.53 ab 3.24±0.67 a 27.04±0.49 ab 12.03±0.85 abc 2.75±0.17 a 2.54±0.12 a 5.91±0.12 ab 1.18±0.12 a 14.35±1.92 ab M+40%F 22.16±1.06 a 2.98±1.09 a 24.35±0.94 bc 13.63±0.64 abc 2.37±0.13 a 2.44±0.09 a 5.82±0.19 ab 1.21±0.11 a 14.84±1.32 ab M 19.70±1.57 bc 2.66±0.49 b 25.84±0.30 ab 10.49±0.30 abc 2.94±0.14 a 2.56±0.05 a 5.76±0.54 b 1.20±0.19 a 17.10±1.98 ab 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。分蘖期植株氮磷钾含量为2018年数据,成熟期为2017—2019年数据,表中数据为平均值±SD。同一列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. The plant NPK content at the tillering stage was data in 2018, and those at the maturing stage were the data from 2017 to 2019; data = mean ±SD. Different small letters after data in a column indicate significant difference among treatments at 0.05 level.从同年成熟期水稻籽粒和秸秆养分含量来看,施肥处理均提高了水稻籽粒氮含量,与CK相比,氮素含量增幅5.9%~56.8%。M+80%F处理的籽粒氮含量最高,较100%F处理显著增加了39.9%。各处理间水稻籽粒磷、钾素含量无显著差异。
不同施肥处理的水稻秸秆氮、磷、钾含量较CK处理总体呈现降低趋势,其中M处理的氮含量较CK处理显著降低,其余各处理秸秆氮、磷、钾含量与CK处理相比均无显著差异。
表4显示,各施肥处理水稻植株籽粒氮、磷、钾吸收量较CK处理分别增加14.9%~43.7%,3.3%~26.4%,4.2%~34.9%,其中M+80%F处理的籽粒氮、磷、钾吸收量都最高,且氮养分吸收量与CK处理相比达到差异显著水平,与100%F处理相比提高了39.9%,籽粒钾养分吸收量与M处理相比达到差异显著水平。100%F、M+100%F、M+80%F处理的籽粒氮、磷、钾吸收量差异不显著。各施肥处理水稻秸秆氮、磷、钾吸收量较CK分别增加5.9%~50.3%,14.8%~37.0%,2.5%~28.5%。其中M+80%F、M+100%F处理的秸秆氮、磷、钾吸收量都较高,都与CK处理差异达显著水平,但二者间无显著差异。各施肥处理的水稻地上部氮、磷、钾总吸收量较CK处理分别增加14.3%~38.8%,4.6%~25.4%,2.9%~24.2%,其中氮素、钾素吸收量与CK处理差异均达显著水平。此外,磷素吸收量紫云英与化肥配施各处理与100%F处理相比无显著差异,钾素吸收量除M处理外二者也均无显著差异。
表 4 紫云英连续翻压及化肥减施下水稻成熟期籽粒和秸秆养分吸收量(kg/hm2)Table 4. Nutrient absorption in rice grains and straws under continuous milk vetch return and chemical fertilizer reduction处理
Treatment籽粒 Grain 秸秆 Straw 合计 Total N P K N P K N P K CK 67.78±7.63 b 18.69±1.89 a 18.23±1.14 b 22.69±6.85 c 4.38±1.28 b 70.37±10.98 c 90.47±12.53 c 23.07±3.03 a 88.60±12.06 b 100%F 85.55±4.19 a 23.62±1.59 a 22.01±2.31 ab 28.50±4.42 ab 5.32±1.38 ab 83.05±0.94 ab 114.04±6.83 b 28.94±2.32 a 105.06±3.30 a M+100%F 91.78±5.16 a 20.10±1.22 a 19.60±1.01 ab 33.80±4.62 a 6.00±1.20 a 90.40±1.02 a 125.58±6.24 ab 26.10±2.86 a 110.00±1.53 a M+80%F 97.38±5.62 a 21.07±1.02 a 24.60±1.04 a 34.10±5.21 a 5.70±1.48 a 81.70±1.23 abc 131.48±9.24 a 26.77±3.08 a 106.30±5.12 a M+60%F 78.98±4.26 ab 20.90±1.20 a 21.10±4.20 ab 33.80±3.97 a 5.40±1.04 a 85.60±1.04 a 112.78±10.05 b 26.30±3.41 a 106.70±4.17 a M+40%F 77.88±6.23 ab 19.30±1.42 a 19.80±0.95 ab 30.00±3.03 ab 5.20±1.24 ab 83.50±1.30 a 107.88±7.23 b 24.50±3.16 a 103.30±3.85 a M 79.41±2.99 ab 20.11±1.22 a 18.99±0.60 b 24.03±2.42 c 5.03±0.94 b 72.16±10.53 c 103.44±5.06 b 25.14±1.64 a 91.15±11.00 b 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。数据为2017—2019年数据,平均值±SD。同一列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. The data were from 2017 to 2019, data were mean ±SD. Different small letters after data in a column indicate significant difference among treatments at 0.05 levels.从稻田土壤养分表观盈亏(表5)来看,除M处理外,其余施肥处理氮素和磷素均为盈余,氮素盈余量为27.12~90.42 kg/hm2,磷素盈余量为15.3~46.10 kg/hm2;M+100%F、M+80%F、M+60%F处理钾素盈余4.7~39.2 kg/hm2,而100%F、M+40%F、M处理亏缺10.56~36.45 kg/hm2。表明紫云英连续翻压与化肥合理配施有助于稻田生态系统氮、磷、钾的养分平衡。
表 5 紫云英连续翻压及化肥减施下稻田土壤养分表观盈亏(kg/hm2)Table 5. Apparent balance of nutrients in paddy soil under continuous milk vetch return and chemical fertilizer reduction处理
Treatment输入 Input 输出 Output 盈亏 Budget N P2O5 K2O N P2O5 K2O N P2O5 K2O CK 0 0 0 90.47 23.07 88.60 −90.47 −23.07 −88.60 100%F 135.0 54.0 94.5 114.04 28.94 105.06 20.96 25.06 −10.56 M+100%F 216.0 72.2 149.2 125.58 26.10 110.00 90.42 46.10 39.20 M+80%F 189.0 61.4 130.3 131.48 26.77 106.30 57.52 34.63 24.00 M+60%F 162.0 50.6 111.4 112.78 26.30 106.70 49.22 24.30 4.70 M+40%F 135.0 39.8 92.5 107.88 24.50 103.30 27.12 15.30 −10.80 M 81.0 18.2 54.7 103.44 25.14 91.15 −22.44 −6.94 −36.45 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch.2.3 紫云英连续翻压和化肥减施对水稻籽粒氨基酸含量的影响
比较紫云英连续翻压及化肥减施下稻谷籽粒的氨基酸含量(图3)得知,施肥提高了水稻籽粒中必需氨基酸与氨基酸总量。与CK相比,各施肥处理水稻籽粒必需氨基酸含量增幅为11.1%~19.4%,氨基酸总量增幅为11.5%~20.7%,增幅均达显著水平。与100%F处理相比,M+100%F处理的籽粒必需氨基酸与氨基酸总含量分别提高5.2%和6.7% (P<0.05),继续减少化肥用量,籽粒必需氨基酸和氨基酸总量出现下降趋势,但仍与100%F处理无显著差异。
图 3 紫云英连续翻压及化肥减施下稻谷籽粒氨基酸含量(2019年)注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。柱上不同小写字母代表处理间差异显著 (P<0.05)Figure 3. Amino acid content in rice grains under continuous milk vetch return and chemical fertilizer reduction in 2019Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters above the bars indicate significant difference among treatments at 0.05 level2.4 紫云英连续翻压与化肥减施对土壤理化性状的影响
连续翻压紫云英改善了土壤理化和生化性状(表6)。与CK处理相比,施肥处理均提高了土壤微生物量碳、有机质、全氮、有效磷和速效钾含量,增幅分别为6.7%~21.9%、4.8%~17.4%、4.9%~19.7%、22.9%~69.6%、33.1%~123.3%。与100%F相比,各翻压紫云英处理的土壤微生物量碳含量提高了4.8%~14.3%,M+100%F处理含量增幅达显著水平。随化肥减施量的增加,土壤微生物量氮和可溶性氮含量呈下降趋势,与100%F处理相比,紫云英翻压处理土壤微生物量碳提高4.8%~14.3%,微生物量氮提高−1.0%~23.5%,M+100%F和M+80%F处理的土壤微生物生物量氮和可溶性氮含量高于100%F处理,M+100%F处理的土壤微生物生物量氮和可溶性氮比100%F处理分别提高了23.5%和14.2%;M+80%F处理的土壤微生物生物量氮和可溶性氮比100%F处理分别提高了13.1%和18.4%,但差异都不显著。此外,紫云英与化肥配施可提高土壤有机质、全氮、碱解氮、速效钾等养分含量,与100F%处理相比,紫云英翻压处理的全氮含量提高了9.4%~14.1%,有机质含量提高了7.9%~12.0%。其中M+80%F处理成熟期土壤有机质、全氮、碱解氮、速效钾含量都较高,与100%F处理相比,这些养分含量分别提高了8.3%、10.9%、8.9%、67.8%,且差异均达显著水平。此外,与CK相比,施肥处理的土壤pH均无显著差异,但长期翻压紫云英有降低土壤容重的趋势,这对黄泥田黏质土壤有一定程度的改良作用。
表 6 连续种植翻压紫云英及化肥减施下土壤理化和生化指标值Table 6. Soil physicochemical and biochemical property values under continuous milk vetch return and chemical fertilizer reduction处理
Treatment分蘖期 Tillering stage 成熟期 Maturity stage 微生物
生物量碳
MBC
(mg/kg)微生物
生物量氮
MBN
(mg/kg)可溶性氮
Soluble
nitrogen
(mg/kg)pH 有机质
Organic
matter
(g/kg)全氮
Total N
(g/kg)容重
Bulk density
(g/cm3)碱解氮
Alkali hydriodic N
(mg/kg)有效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)CK 555.51±66.97 c 34.15±8.44 a 18.58±3.26 ab 5.52±0.12 a 21.91±0.93 c 1.22±0.07 b 1.12±0.05 a 209.5±9.5 b 10.34±5.67 a 23.36±3.83 c 100%F 592.52±69.61 bc 34.33±12.68 a 18.44±2.75 ab 5.47±0.11 a 22.96±2.22 bc 1.28±0.12 b 1.15±0.04 a 206.4±15.9 b 17.54±2.84 a 31.09±9.94 b M+100%F 677.3±52.2 a 42.41±10.02 a 21.83±2.84 a 5.33±0.09 a 24.84±1.26 a 1.42±0.12 a 1.04±0.05 a 216.8±14.2 ab 18.62±3.02 a 48.62±6.39 a M+80%F 635.8±32.06 ab 39.19±9.44 a 20.85±3.24 ab 5.34±0.12 a 24.86±1.75 a 1.42±0.11 a 1.07±0.08 a 224.8±16.7 a 18.07±1.68 a 52.17±7.96 a M+60%F 621.2±46.27 abc 36.00±8.27 a 18.24±2.68 ab 5.50±0.09 a 24.78±2.04 ab 1.40±0.14 a 1.05±0.06 a 219.6±10.7 ab 15.62±2.07 a 46.75±8.27 ab M+40%F 657.0±46.18 ab 34.44±7.96 a 17.02±2.62 b 5.38±0.10 a 25.72±1.95 a 1.46±0.06 a 1.05±0.08 a 220.5±12.8 ab 14.95±2.34 a 42.68±9.64 ab M 639.49±52.28 ab 34.00±9.62 a 16.90±2.27 b 5.55±0.13 a 25.19±0.50 a 1.42±0.01 a 1.03±0.12 a 213.6±5.4 b 12.71±6.23 a 39.93±10.94 b 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。容重为2019 (第11年)数据,其余为2018 (第10年)数据。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: MBC—Microbial biomass of carbon; MBN—Microbial biomass of nitrogen. CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters after data in a column indicate significant difference among treatments at 0.05 level.3. 讨论
3.1 连续翻压紫云英对土壤养分供应的影响及适宜化肥减施量
种植紫云英是增辟肥源的有效方法,对改良土壤有很大作用,但要充分发挥紫云英的增产作用,必须做到合理施用。紫云英是豆科绿肥,具有很强的固氮能力,可增加土壤中氮素养分的供给,鲜草产量约为22500 kg/hm2 的绿肥可为农田提供氮素112.5 kg[14-16]。此外,紫云英作为豆科植物其根系还能分泌产生有机酸,能溶解土壤中部分难溶性磷、钾,转化为作物可吸收利用的有效性磷、钾[17]。本长期定位试验研究结果也显示翻压紫云英提高了土壤有机质,为土壤提供氮、磷、钾等元素,且能降低土壤容重,特别是大量激发了土壤氮素,有效提高了黄泥田中氮素含量,比100%F处理的全氮含量增加9.4%~14.1%。这说明,翻压紫云英对提高黄泥田土壤有机质、降低土壤容重,对其瘦、黏等种植障碍因素可起到一定程度的改良作用。
本定位试验结果还表明,紫云英与化肥合理配施能有效提高水稻地上部生物产量、籽粒以及秸秆年均产量。与100%F处理相比,水稻地上部生物产量、籽粒以及秸秆年均产量都显著提高的是M+100%F和M+80%F处理;产量基本持平,无显著差异的是M+60%F处理;产量显著降低的是M+40%F和 M处理。化肥减施比例(x)和水稻籽粒产量(y)可用直线回归方程y=−7.4541x+8403.9 (R2=0.9424**)表示,将100%F处理水稻籽粒产量10年平均值8099 kg/hm2代入方程得出x为40.9%。这表明化肥减施比例为40.9%时,水稻籽粒产量可与100%F处理齐平。化肥减施比例(x)和地上部生物产量(y)可用直线回归方程y=−15.43x+13167 (R2=0.9550**)表示,将100%F处理水稻地上部生物产量10平均值12556 kg/hm2代入方程得出x为39.6%。这表明化肥减施比例为39.6%时,水稻地上部生物产量可与100%F处理齐平。以上试验结果说明,黄泥田在年翻压紫云英18000~22500 kg/hm2 条件下,为确保水稻地上部生物产量和籽粒产量与100%F处理的产量保持相当,最多可减少约40%化肥用量,其中减少20%化肥用量时效果最佳,地上生物产量和籽粒产量都显著高于100%F处理。此研究结果与前人的研究结果[18, 19-21]一致。另分析不同处理水稻籽粒产量与地上部生物产量2009—2019年随着年限的增加增产的幅度得知,翻压紫云英各处理的增产幅度都高于100%F处理。这进一步说明多年单独翻压紫云英或配施少量化肥也能起到培肥土壤以促进水稻增产的效果。在长期翻压紫云英后,随着土壤肥力的持续提高,水稻化肥施用量可逐渐减少,有望减少40%以上,这有待持续深入研究。
3.2 紫云英与化肥配施对水稻产量及籽粒品质的影响
研究表明,有机无机肥配施可有效促进水稻对氮、磷、钾养分的吸收与植株干物质积累,提高作物产量[18-22]。稻米蛋白质、氨基酸含量以及必需氨基酸的含量、组成与平衡是评价稻米营养品质的重要指标[23]。本研究结果显示,与100%F处理相比,连续翻压紫云英,并配施适量化肥可有效提高氮素吸收累积和籽粒氨基酸总含量,M+100%F处理的籽粒必需氨基酸与氨基酸总含量分别提高5.2%与6.7%,差异均显著。前人研究发现,稻米氨基酸含量的高低除了受品种资源的影响外,还受到温度[24]、光照[24]、施肥[25-26]等因素的影响。本定位试验表明翻压紫云英绿肥且不减化肥施用量条件下,水稻籽粒氨基酸含量较100%F处理明显提高,其原因可能如下,一是水稻生育期植株氮素吸收较100%F处理明显提高,如生育期M+80%F处理氮素含量较100%F处理提高了39.9%,由于氮素是叶绿素的组分成分,可促进植株体内合成更多的酶和叶绿素,从而加速光合作用,促进氨基酸合成[27];二是紫云英绿肥含有丰富的矿物质,如钾、镁、钙、铁、锌等,水稻植株吸收养分更为均衡,有利于氨基酸的合成[4, 27],但有待进一步深入地研究。此外,与CK相比,紫云英与化肥配施各处理的水稻地上部生物积累量、籽粒产量以及秸秆产量均显著提高,其中以M+100% F和M+80%F处理提高最显著。与100%F处理相比,在长期翻压紫云英条件下,配施100%F和80%F处理的水稻地上部生物量、籽粒以及秸秆年产量都提高,提高了3.0%~5.6%,且差异均达显著水平;M+60%F处理的水稻籽粒、秸秆产量和地上部生物量基本持平。这说明年翻压紫云英18000~22500 kg/hm2 后,配施100%化肥(N 135 kg/hm2、P2O5 54 kg/hm2、K2O 94.5 kg/hm2)或80%化肥时能有效促进作物对养分的吸收,从而促进生长,提高籽粒产量和品质。
4. 结论
南方黄泥田单季稻在年翻压紫云英18000~22500 kg/hm2条件下,加施60%~80%的常规量化肥,可维持水稻地上部生物量和籽粒产量不降低;如加施80%的常规量化肥,不仅可改善土壤化学与生物学特性,提高水稻籽粒氨基酸含量,且显著提高地上部生物产量和籽粒产量,因而是实现化肥减量提质增效的最佳养分管理措施。
-
图 1 2009—2019年紫云英翻压下化肥减施的水稻籽粒与秸秆产量动态变化与平均产量
注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。柱上不同小写字母代表处理间差异显著(P<0.05)
Figure 1. Dynamics and the average rice grain yield and aboveground biomass as affected by fertilizer reduction under the continuous return of milk vetch from 2009 to 2019
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters above the bars indicate significant difference among treatments at 0.05 level
图 3 紫云英连续翻压及化肥减施下稻谷籽粒氨基酸含量(2019年)
注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。柱上不同小写字母代表处理间差异显著 (P<0.05)
Figure 3. Amino acid content in rice grains under continuous milk vetch return and chemical fertilizer reduction in 2019
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters above the bars indicate significant difference among treatments at 0.05 level
表 1 各处理化肥和绿肥翻压养分投入量 [kg/(hm2·a)]
Table 1 Annual nutrient input from chemical fertilizer and milk vetch return in each treatment
处理
Treatment化肥 Chemical fertilizer 紫云英 Milk vetch return N P2O5 K2O N P2O5 K2O CK 0 0 0 0 0 0 100%F 135.0 54.0 94.5 0 0 0 M+100%F 135.0 54.0 94.5 81.0 18.2 54.7 M+80%F 108.0 43.2 75.6 81.0 18.2 54.7 M+60%F 81.0 32.4 56.7 81.0 18.2 54.7 M+40%F 54.0 21.6 37.8 81.0 18.2 54.7 M 0 0 0 81.0 18.2 54.7 注:CK—不施肥、100%F—100%化肥、M+100%F—紫云英+100%化肥、M+80%F—紫云英+80%化肥、M+60%F—紫云英+60%化肥、M+40%F—紫云英+40%化肥、M—紫云英。紫云英翻压量按平均20250 kg/hm2计算。
Note: CK—No fertilizer, 100%F—100% fertilizer, M+100%F—Milk vetch+100% fertilizer, M+80%F—Milk vetch+80% fertilizer, M+60%F—Milk vetch+60% fertilizer, M+40%F—Milk vetch+40% fertilizer, M—Milk vetch. The returning amount of milkvetch is 20250 kg/hm2.表 2 紫云英连续翻压及化肥减施处理下水稻产量与产量构成因素
Table 2 Rice yield and yield components as affected by continuous milk vetch return and chemical fertilizer reduction
处理
Treatment籽粒产量 (kg/hm2)
Grain yield有效穗 (×104/hm2)
Effective spike number穗粒数
Grain number per spike千粒重 (g)
1000-grain weightCK 6920.6±313.6 d 169.84±3.80 d 163.30±6.70 a 22.85±0.31 a 100%F 8161.7±35.7 b 208.90±6.70 c 154.50±13.90 a 23.40±0.27 a M+100%F 8478.7±157.8 a 223.69±4.22 a 169.00±13.41 a 23.32±0.12 a M+80%F 8412.5±163.8 a 228.60±2.07 a 156.91±12.69 a 23.24±0.40 a M+60%F 8137.5±159.5 b 226.89±1.69 a 160.39±10.54 a 23.43±0.24 a M+40%F 7951.0±141.0 c 223.71±3.55 a 172.74±13.67 a 23.34±0.17 a M 7740.5±247.1 c 215.10±5.40 b 148.90±28.1 a 23.52±0.48 a 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。籽粒产量为2009—2019年平均产量,产量构成因素为2017—2019年平均值,数据为平均值±SD。同一列数据后不同字母表示同一指标在不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Grain yield was the average of 11 years, and the yield components were the average of 2017−2019, the data were mean±SD. Different small letters after data in the same column indicate significant difference among treatments at 0.05 levels.表 3 紫云英连续翻压和化肥减施下水稻籽粒和秸秆养分含量 (g/kg)
Table 3 Nutrient content of rice grain and straw under continuous milk vetch return and chemical fertilizer reduction
处理
Treatment分蘖期植株
Rice plant at tillering stage成熟期 Maturity stage 籽粒 Grain 秸秆 Straw N P K N P K N P K CK 13.28±0.92 d 2.56±0.07 b 21.44±0.12 c 9.91±0.86 bc 2.78±0.12 a 2.74±0.03 a 6.31±1.43 a 1.21±0.25 a 19.15±0.94 a 100%F 19.01±1.01 c 2.88±0.16 ab 24.60±0.10 bc 11.11±0.30 abc 3.11±0.16 a 2.91±0.25 a 6.21±0.66 a 1.15±0.25 a 17.91±0.78 ab M+100%F 23.58±1.06 a 2.94±0.43 ab 26.17±1.05 ab 14.70±0.461 ab 2.59±0.18 a 2.31±0.13 a 6.27±0.13 a 1.26±0.18 a 14.77±1.23 ab M+80%F 23.29±1.64 a 3.20±0.27 a 28.47±0.86 a 15.54±0.72 a 2.83±0.27 a 2.95±0.17 a 6.07±0.18 a 1.18±0.13 a 12.82±1.86 ab M+60%F 21.87±0.53 ab 3.24±0.67 a 27.04±0.49 ab 12.03±0.85 abc 2.75±0.17 a 2.54±0.12 a 5.91±0.12 ab 1.18±0.12 a 14.35±1.92 ab M+40%F 22.16±1.06 a 2.98±1.09 a 24.35±0.94 bc 13.63±0.64 abc 2.37±0.13 a 2.44±0.09 a 5.82±0.19 ab 1.21±0.11 a 14.84±1.32 ab M 19.70±1.57 bc 2.66±0.49 b 25.84±0.30 ab 10.49±0.30 abc 2.94±0.14 a 2.56±0.05 a 5.76±0.54 b 1.20±0.19 a 17.10±1.98 ab 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。分蘖期植株氮磷钾含量为2018年数据,成熟期为2017—2019年数据,表中数据为平均值±SD。同一列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. The plant NPK content at the tillering stage was data in 2018, and those at the maturing stage were the data from 2017 to 2019; data = mean ±SD. Different small letters after data in a column indicate significant difference among treatments at 0.05 level.表 4 紫云英连续翻压及化肥减施下水稻成熟期籽粒和秸秆养分吸收量(kg/hm2)
Table 4 Nutrient absorption in rice grains and straws under continuous milk vetch return and chemical fertilizer reduction
处理
Treatment籽粒 Grain 秸秆 Straw 合计 Total N P K N P K N P K CK 67.78±7.63 b 18.69±1.89 a 18.23±1.14 b 22.69±6.85 c 4.38±1.28 b 70.37±10.98 c 90.47±12.53 c 23.07±3.03 a 88.60±12.06 b 100%F 85.55±4.19 a 23.62±1.59 a 22.01±2.31 ab 28.50±4.42 ab 5.32±1.38 ab 83.05±0.94 ab 114.04±6.83 b 28.94±2.32 a 105.06±3.30 a M+100%F 91.78±5.16 a 20.10±1.22 a 19.60±1.01 ab 33.80±4.62 a 6.00±1.20 a 90.40±1.02 a 125.58±6.24 ab 26.10±2.86 a 110.00±1.53 a M+80%F 97.38±5.62 a 21.07±1.02 a 24.60±1.04 a 34.10±5.21 a 5.70±1.48 a 81.70±1.23 abc 131.48±9.24 a 26.77±3.08 a 106.30±5.12 a M+60%F 78.98±4.26 ab 20.90±1.20 a 21.10±4.20 ab 33.80±3.97 a 5.40±1.04 a 85.60±1.04 a 112.78±10.05 b 26.30±3.41 a 106.70±4.17 a M+40%F 77.88±6.23 ab 19.30±1.42 a 19.80±0.95 ab 30.00±3.03 ab 5.20±1.24 ab 83.50±1.30 a 107.88±7.23 b 24.50±3.16 a 103.30±3.85 a M 79.41±2.99 ab 20.11±1.22 a 18.99±0.60 b 24.03±2.42 c 5.03±0.94 b 72.16±10.53 c 103.44±5.06 b 25.14±1.64 a 91.15±11.00 b 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。数据为2017—2019年数据,平均值±SD。同一列数据后不同小写字母表示不同处理间差异显著 (P<0.05)。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. The data were from 2017 to 2019, data were mean ±SD. Different small letters after data in a column indicate significant difference among treatments at 0.05 levels.表 5 紫云英连续翻压及化肥减施下稻田土壤养分表观盈亏(kg/hm2)
Table 5 Apparent balance of nutrients in paddy soil under continuous milk vetch return and chemical fertilizer reduction
处理
Treatment输入 Input 输出 Output 盈亏 Budget N P2O5 K2O N P2O5 K2O N P2O5 K2O CK 0 0 0 90.47 23.07 88.60 −90.47 −23.07 −88.60 100%F 135.0 54.0 94.5 114.04 28.94 105.06 20.96 25.06 −10.56 M+100%F 216.0 72.2 149.2 125.58 26.10 110.00 90.42 46.10 39.20 M+80%F 189.0 61.4 130.3 131.48 26.77 106.30 57.52 34.63 24.00 M+60%F 162.0 50.6 111.4 112.78 26.30 106.70 49.22 24.30 4.70 M+40%F 135.0 39.8 92.5 107.88 24.50 103.30 27.12 15.30 −10.80 M 81.0 18.2 54.7 103.44 25.14 91.15 −22.44 −6.94 −36.45 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。
Note: CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch.表 6 连续种植翻压紫云英及化肥减施下土壤理化和生化指标值
Table 6 Soil physicochemical and biochemical property values under continuous milk vetch return and chemical fertilizer reduction
处理
Treatment分蘖期 Tillering stage 成熟期 Maturity stage 微生物
生物量碳
MBC
(mg/kg)微生物
生物量氮
MBN
(mg/kg)可溶性氮
Soluble
nitrogen
(mg/kg)pH 有机质
Organic
matter
(g/kg)全氮
Total N
(g/kg)容重
Bulk density
(g/cm3)碱解氮
Alkali hydriodic N
(mg/kg)有效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)CK 555.51±66.97 c 34.15±8.44 a 18.58±3.26 ab 5.52±0.12 a 21.91±0.93 c 1.22±0.07 b 1.12±0.05 a 209.5±9.5 b 10.34±5.67 a 23.36±3.83 c 100%F 592.52±69.61 bc 34.33±12.68 a 18.44±2.75 ab 5.47±0.11 a 22.96±2.22 bc 1.28±0.12 b 1.15±0.04 a 206.4±15.9 b 17.54±2.84 a 31.09±9.94 b M+100%F 677.3±52.2 a 42.41±10.02 a 21.83±2.84 a 5.33±0.09 a 24.84±1.26 a 1.42±0.12 a 1.04±0.05 a 216.8±14.2 ab 18.62±3.02 a 48.62±6.39 a M+80%F 635.8±32.06 ab 39.19±9.44 a 20.85±3.24 ab 5.34±0.12 a 24.86±1.75 a 1.42±0.11 a 1.07±0.08 a 224.8±16.7 a 18.07±1.68 a 52.17±7.96 a M+60%F 621.2±46.27 abc 36.00±8.27 a 18.24±2.68 ab 5.50±0.09 a 24.78±2.04 ab 1.40±0.14 a 1.05±0.06 a 219.6±10.7 ab 15.62±2.07 a 46.75±8.27 ab M+40%F 657.0±46.18 ab 34.44±7.96 a 17.02±2.62 b 5.38±0.10 a 25.72±1.95 a 1.46±0.06 a 1.05±0.08 a 220.5±12.8 ab 14.95±2.34 a 42.68±9.64 ab M 639.49±52.28 ab 34.00±9.62 a 16.90±2.27 b 5.55±0.13 a 25.19±0.50 a 1.42±0.01 a 1.03±0.12 a 213.6±5.4 b 12.71±6.23 a 39.93±10.94 b 注:CK—不施肥;100%F—100%化肥;M+100%F—紫云英+100%化肥;M+80%F—紫云英+80%化肥;M+60%F—紫云英+60%化肥;M+40%F—紫云英+40%化肥;M—紫云英。容重为2019 (第11年)数据,其余为2018 (第10年)数据。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: MBC—Microbial biomass of carbon; MBN—Microbial biomass of nitrogen. CK—No fertilizer; 100%F—100% fertilizer; M+100%F—Milk vetch+100% fertilizer; M+80%F—Milk vetch+80% fertilizer; M+60%F—Milk vetch+60% fertilizer; M+40%F—Milk vetch+40% fertilizer; M—Milk vetch. Different small letters after data in a column indicate significant difference among treatments at 0.05 level. -
[1] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1444–1455. Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1444–1455.
[2] 王慧, 周国朋, 常单娜, 等. 湘北双季稻区种植翻压紫云英的氮肥减施效应[J]. 植物营养与肥料学报, 2022, 28(1): 33–44. DOI: 10.11674/zwyf.2021292 Wang H, Zhou G P, Chang D N, et al. Nitrogen reduction effects in double rice by planting and returning Chinese milk vetch to the field in northern Hunan Province[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 33–44. DOI: 10.11674/zwyf.2021292
[3] Zhu B, Yi L, Hu Y, et al. Nitrogen release from incorporated 15N labelled Chinese milk vetch (Astragalus sinicus L.) residue and its dynamics in a double rice cropping system[J]. Plant and Soil, 2014, 374(1/2): 331–344.
[4] 林多胡, 顾荣申. 中国紫云英[M]. 福州: 福建科学技术出版社, 2000. Lin D H, Gu R S. Chinese milk vetch[M]. Fuzhou: Fujian Science and Technology Press, 2000.
[5] 张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响[J]. 中国农学通报, 2010, 26(11): 182–187. Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 182–187.
[6] 王飞, 林诚, 卓旭升. 紫云英留种田高产施肥技术[J]. 福建农业科技, 2010, (2): 59–60. DOI: 10.3969/j.issn.0253-2301.2010.02.033 Wang F, Lin C, Zhuo X S. High yield fertilization technology of Chinese milk vetch[J]. Fujian Agricultural Science and Technology, 2010, (2): 59–60. DOI: 10.3969/j.issn.0253-2301.2010.02.033
[7] 林景亮, 福建土壤[M]. 福州: 福建科学技术出版社, 1991. Lin J L. Fujian soil[M]. Fuhzou: Fujian Science and Technology Press, 1991.
[8] 张秀, 张黎明, 龙军, 等. 亚热带耕地土壤酸化程度差异及影响因素[J]. 中国生态农业学报, 2017, 25(3): 441–450. Zhang X, Zhang L M, Long J, et al. Soil acidification degree difference and impact factors of subtropical cropland[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 441–450.
[9] 王子凤, 李絮花, 王鹏. 长期定位施肥条件下土壤理化性质的演变[J]. 山东农业科学, 2020, 52(6): 65–70. Wang Z F, Li X H, Wang P. Evolution of soil physical and chemical properties under the condition of long-term located fertilization[J]. Shandong Agricultural Sciences, 2020, 52(6): 65–70.
[10] 王飞, 李清华, 林诚, 何春梅. 福建黄泥田肥力质量特征与最小数据集[J]. 中国生态农业学报, 2018, 26(12): 1855–1865. DOI: 10.13930/j.cnki.cjea.180194 Wang F, Li Q H, Lin C, He C M. Characteristics of soil fertility quality and minimum dataset for yellow-mud paddy fields in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1855–1865. DOI: 10.13930/j.cnki.cjea.180194
[11] 孙丽丽, 查轩. 福州市降雨量及降雨侵蚀力变化趋势[J]. 亚热带资源与环境学报, 2019, 14(3): 38–43. DOI: 10.3969/j.issn.1673-7105.2019.03.007 Sun L L, Zha X. Trend of rainfall and rainfall erosion in Fuzhou city[J]. Journal of Subtropical Resources and Environment, 2019, 14(3): 38–43. DOI: 10.3969/j.issn.1673-7105.2019.03.007
[12] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2005. Gao J F. Plant physiology experimental guide[M]. Beijing: Higher Education Press, 2005.
[13] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. Lu R K. Soil and agrochemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 1999.
[14] 张达斌, 姚鹏伟, 李婧, 等. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 2013, 33(7): 2272–2281. DOI: 10.5846/stxb201112261981 Zhang D B, Yao P W, Li J, et al. Effects of two years' incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33(7): 2272–2281. DOI: 10.5846/stxb201112261981
[15] 李欣欣, 杨永庆, 钟永嘉, 等. 豆科作物适应酸性土壤的养分高效根系遗传改良[J]. 华南农业大学学报, 2019, 40(5): 186–194. DOI: 10.7671/j.issn.1001-411X.201905067 Li X X, Yang Y Q, Zhong Y J, et al. Genetic improvement for nutrient efficient roots of leguminous crops adapted to acidic soils[J]. Journal of South China Agricultural University, 2019, 40(5): 186–194. DOI: 10.7671/j.issn.1001-411X.201905067
[16] 吴荣, 刘善江, 孙昊. 长期定位不同施肥方式对土壤肥力和微生物的影响[J]. 中国土壤与肥料, 2020, (4): 42–45. Wu R, Liu S J, Sun H. Effects of long-term fertilization on soil fertility and microbial characteristics[J]. Soil and Fertilizer Sciences in China, 2020, (4): 42–45.
[17] 赵文杰, 张丽静, 畅倩, 等. 低磷胁迫下豆科植物有机酸分泌物研究进展[J]. 草业科学, 2011, 28(6): 1207–1213. Zhao W J, Zhang L J, Chang Q, et al. The research progress of organic acids metabolism in leguminous plant under phosphorus deficiency[J]. Pratacultural Science, 2011, 28(6): 1207–1213.
[18] 徐昌旭, 谢志坚, 许政良, 等. 等量紫云英条件下化肥用量对早稻养分吸收和干物质积累的影响[J]. 江西农业学报, 2010, 22(10): 13–14. Xu C X, Xie Z J, Xu Z L, et al. Effects of applying mineral fertilizer reasonably on nutrient absorption and dry matter accumulation of early rice under applying equivalent Astragalus sinicus[J]. Acta Agriculturae Jiangxi, 2010, 22(10): 13–14.
[19] 张成兰, 吕玉虎, 刘春增, 等. 减量化肥配施紫云英对水稻产量稳定性的影响[J]. 核农学报, 2021, 35(3): 704–713. DOI: 10.11869/j.issn.100-8551.2021.03.0704 Zhang C L, Lü Y H, Liu C Z, et al. Effects of combination of reduced chemical fertilizer and Chinese Milk Vetch on rice yield stability[J]. Journal of Nuclear Agricultural sciences, 2021, 35(3): 704–713. DOI: 10.11869/j.issn.100-8551.2021.03.0704
[20] 王建红, 曹凯, 张贤. 紫云英还田配施化肥对单季晚稻养分利用和产量的影响[J]. 土壤学报, 2014, 51(4): 888–896. Wang J H, Cao K, Zhang X. Effects of incorporation of Chinese milk vetch coupled with application of chemical fertilizer on nutrient use efficiency and yield of single-cropping late rice[J]. Acta Pedologica Sinica, 2014, 51(4): 888–896.
[21] 程会丹, 鲁艳红, 聂军, 等. 减量化肥配施紫云英对稻田土壤碳、氮的影响[J]. 农业环境科学学报, 2020, 39(6): 1259–1270. DOI: 10.11654/jaes.2019-1356 Cheng H D, Lu Y H, Nie J, et al. Effects of reducing chemical fertilizer combined with Chinese milk vetch on soil carbon and nitrogen in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(6): 1259–1270. DOI: 10.11654/jaes.2019-1356
[22] 唐海明, 程爱武, 徐一兰, 等. 长期有机无机肥配施对双季稻区水稻干物质积累及产量的影响[J]. 农业现代化研究, 2015, 36(6): 1091–1098. Tang H M, Cheng A W, Xu Y L, et al. Effects of long-term mixed application of organic and inorganic fertilizers on dry matter accumulation and yield of rice in double cropping rice fields[J]. Research of Agricultural Modernization, 2015, 36(6): 1091–1098.
[23] 谢桂先, 刘强, 荣湘民, 等. 不同栽培法对食用稻子粒氨基酸含量的影响及其机理初探[J]. 植物营养与肥料学报, 2007, 13(5): 781–788. DOI: 10.11674/zwyf.2007.0504 Xie G X, Liu Q, Rong X M, et al. The effects of three cultivation methods on amino acid content of rice grains and preliminary study on its mechanism[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(5): 781–788. DOI: 10.11674/zwyf.2007.0504
[24] 周广洽, 徐孟亮, 谭周镃, 李训贞. 温光对稻米蛋白质及氨基酸含量的影响[J]. 生态学报, 1997, 17(5): 537–542. Zhou G Q, Xu M L, Tan Z Z, Li X Z. Effects of ecological factors of protein and amino acids of rice[J]. Acta Ecologica Sinica, 1997, 17(5): 537–542.
[25] 陆福勇, 江立庚, 秦华东, 唐茂艳. 不同氮、硅用量对水稻产量和品质的影响[J]. 植物营养与肥料学报, 2005, 11(6): 846–850. DOI: 10.11674/zwyf.2005.0622 Lu F Y, Jiang L G, Qin H D, Tang M Y. Effects of nitrogen and silicon levels on grain yield and qualities of rice[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(6): 846–850. DOI: 10.11674/zwyf.2005.0622
[26] Araki M, Matsuc Y, Kaneko A. Relation between nitrogen fertilizer and free amino acid composition of brown rice[J]. Japanese Journal of Soil Science and Plant Nutrition, 1999, 70(1): 19–24.
[27] 蒋跃林, 张庆国, 岳伟, 等. 大气CO2浓度升高对大豆生长和产量的影响[J]. 中国农学通报, 2005, 21(6): 355–357. Jiang Y L, Zhang Q G, Yue W, et al. Effects of elevated atmospheric CO2 concentration on growth and yield of soybean[J]. Chinese Agricultural Science Bulletin, 2005, 21(6): 355–357.
-
期刊类型引用(8)
1. 周聃,张金鹏,刘梅,胡大雁,原居林,周志金. 大口黑鲈稻田嵌入流水槽养殖效果研究. 浙江农业科学. 2025(02): 475-482 . 百度学术
2. 黄相龙,李忠义. 广西隆林各族自治县绿肥产业SWOT分析及发展策略. 农村经济与科技. 2025(05): 66-69 . 百度学术
3. 陈丽清,韦世强. 绿肥还田对水稻产量及土壤肥力的影响研究. 中国农机装备. 2025(05): 136-138 . 百度学术
4. 王建红,冯含笑,曹凯,张贤,徐静,斯林林,徐昌旭,王佳宇,曹卫东. 我国南方紫云英还田的水稻产量和效益的量化研究. 植物营养与肥料学报. 2025(04): 819-828 . 本站查看
5. 张琳,吕玉虎,聂良鹏,丁丽,杜光辉,张丽霞,史鹏飞,刘耀,魏一苗,程捷,范家慧,卢旭东,钟思志. 减施20%化肥下绿肥翻压量对豫南地区水稻养分吸收及转运的影响. 中国土壤与肥料. 2025(04): 180-190 . 百度学术
6. 王小红,王晨,谷祥勇,马威,向东山,翟琨. 菜用紫云英中硒赋存形态及含硒有机化合物提取工艺研究. 湖北民族大学学报(自然科学版). 2024(02): 151-157 . 百度学术
7. 陆佳泉,孙莉,姚梦雅,张金卫,陈宇眺. 湖州市南浔区单季稻施肥方式调查. 浙江农业科学. 2024(12): 2840-2844 . 百度学术
8. 冯含笑,曹卫东,徐昌旭,曹凯,张贤,徐静,斯林林,王佳宇,王建红. 紫云英异地还田的水稻产量和经济效益研究. 植物营养与肥料学报. 2024(12): 2331-2341 . 本站查看
其他类型引用(4)