Response of soil enzyme activity and rice yield to winter green manure incorporation in red paddy soil
-
摘要:目的
土壤酶活性与土壤养分周转和作物生长密切相关,不同绿肥翻压对土壤酶活性的影响不同,因此,调查了我国南方稻区典型冬季绿肥翻压还田条件下土壤关键酶活性的变化。
方法江西进贤县开展的绿肥定位试验始于2015年,设置冬闲(CK)、冬季种植并翻压紫云英(Astragalus sinicus L.)和肥田油菜(Brassica napus L.) 3个处理。于2018和2019年晚稻成熟期,采集土壤样品测定了微生物量碳氮和速效氮磷钾含量,脲酶(Urea)、α-葡萄糖苷酶(AG)、乙酰氨基葡萄糖苷酶(NAG)、β-1,4葡萄糖苷酶(BG)、β-纤维二糖苷酶(CBH)、β-木糖苷酶(BXYL)、酸性磷酸酶(ACP)、酚氧化物酶(POX)和过氧化物酶(PER)活性。利用冗余分析(redundancy analysis,RDA)评价了不同土壤酶对水稻土肥力变化的重要性,采用偏最小二乘路径模型(partial least squares path mode,PLS-PM)解析了土壤酶活性、土壤肥力指标以及水稻产量之间的相互关系。
结果紫云英和肥田油菜还田提高水稻产量的效果没有显著差异,2018和2019年水稻产量分别较CK处理提高了15.05%~15.10%和11.60%~11.82%。紫云英和肥田油菜提高土壤微生物量碳氮和速效氮磷钾含量的效果也无显著差异,翻压肥田油菜的土壤酶活性显著高于翻压紫云英,但两个年度酶活性变化不完全一致。2018年,肥田油菜处理只有Urea、AG和CBH活性较紫云英处理分别提高了22.57%、17.59%和64.89%,而2019年,有6种酶活性显著提高,如Urea、AG、BG、CBH、ACP和POX活性分别提高了54.24%、8.19%、28.84%、28.05%、64.68%和56.46%。RDA结果表明,AG和CBH活性与土壤肥力变化的相关性达到显著水平(P<0.05)。PLS-PM分析表明,土壤酶活性和微生物量碳氮量均可以通过影响土壤有机质和氮磷钾含量调控水稻产量,但土壤酶活性对速效氮磷钾含量的影响程度明显高于有机质含量。
结论土壤酶活性主要通过提升土壤氮磷钾养分有效性提高水稻产量。绿肥翻压引起的α-葡萄糖苷酶(AG)和β-纤维二糖苷酶(CBH)活性变化是驱动土壤肥力的关键因素。与紫云英相比,肥田油菜翻压更有利于提高土壤酶活性。
Abstract:ObjectivesSoil enzyme activity is closely related to soil nutrient turnover and sometimes is used to evaluate the fertility of soil. We investigated the effect of typical winter green manures on soil enzyme activities in south China.
MethodsThe localized field experiment in red paddy soil from 2015 located in Jinxian county, Jiangxi Province. At maturing stages of late rice in 2018 and 2019, soil samples were collected in the treatment plots of winter fallow (CK), planting in winter and incorporation of milkvetch (Astragalus sinicus L.), and rape (Brassica napus L.). The organic matter and available N, P and K content were measured, and the activities of urease (Urea), α-glucosidase (AG), glucosaminidase (NAG), β-1,4 glucosidase (BG), β-cellobiosidase (CBH), β-xylosidase (BXYL), acid phosphatase (ACP), phenoloxidase (POX) and peroxidase (PER) were analyzed. The importance of enzyme activity driving soil fertility change was evaluated using redundancy analysis (RDA). And the relationship between soil enzyme activity, soil fertility and rice yield were analyzed using partial least squares path mode (PLS-PM).
ResultsCompared with CK, both rape and milk vetch treatment increased the annual rice yield by 15.05%−15.10% and 11.60%−11.82% in 2018 and 2019 respectively, and increased soil microbial biomass carbon and nitrogen, available N, P and K content, but there was no significant difference between the two treatments. The rape incorporation was more efficient than milkvetch in enhancing soil enzyme activities in the two years, although the effect was not completely consistent in the two years. In 2018, the Urea, AG and CBH activities in rape treatment were 22.57%, 17.59% and 64.89% higher than in milkvetch, and in 2019, the Urea, AG, BG, CBH, ACP and POX showed higher activities of 54.24%, 8.19%, 28.84%, 28.05%, 64.68% and 56.46% in rape treatment. The results of RDA indicated that AG and CBH activity were the key factors driving soil fertility change. Moreover, PLS-PM analysis showed that soil enzyme activity and microbial biomass carbon and nitrogen regulated rice yield by affecting soil organic matter, N, P and K contents; the influence of enzyme activity on soil N, P and K contents was obviously higher than on soil organic matter.
ConclusionsThe planting and turnover of winter green manures induce the change of soil enzyme activities, the activities of AG and CBH play key roles in driving soil fertility change in red paddy soil, and soil enzyme activity regulate rice yield through enhancing soil organic matter and available nutrient contents. Planting in winter and incorporation of rape is more efficient than milkvetch in increasing soil enzyme activities.
-
Keywords:
- red paddy soil /
- milkvetch /
- rape /
- enzyme activity /
- rice yield /
- redundancy analysis
-
长江中下游地区的红壤稻田是我国重要的耕地资源。自1980年以来,秸秆还田等措施的大力推广持续提升了该地区的稻田肥力[1],2011年该地区土壤有机碳含量比1980年增加了6.67~8.83 t/hm2 [2]。但是,随着利用年限的延长,稻田土壤中过氧化氢酶与转化酶活性均呈下降趋势[3]。研究表明,氮肥施用可以显著提高水稻土根际土壤中碳氮循环(矿化、转化等)过程关键酶β-1,4-葡萄糖苷酶(BG)和β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)活性[4]。在氮肥基础上进行秸秆还田也可以显著地增加双季稻田的β-纤维二糖苷酶活性[5]。长期施肥试验表明,长期施用化肥会导致土壤酶活性显著降低[6−7]。因此,千方百计增加有机肥的投入对该地区土壤的可持续利用具有十分重要的意义。冬季种植并在水稻插秧前翻压绿肥在长江中下游地区有悠久的历史。大量研究表明,绿肥翻压还田措施可以提高土壤速效氮磷钾养分含量,提高土壤微生物活性和土壤酶活性[8−10]。李增强等[11]研究表明,紫云英翻压还田提高土壤活性有机碳含量的主要机理是,直接提高了土壤纤维素酶、蔗糖酶和β-葡萄糖苷酶活性。研究表明,在绿肥翻压还田过程中,绿肥种类、用量和翻压年限等均可显著影响土壤酶活性的提升幅度[12−14],且不同研究者监测的土壤酶活性指标也存在较大差异。紫云英和肥田油菜是近年来利用面积较大的两种冬闲绿肥,肥田油菜由于投入成本低和生物产量高等特点,其在冬闲田中作为绿肥的发展潜力巨大[15−17]。位于江西进贤县红壤水稻土冬闲绿肥翻压定位试验始于2015年,2018、2019年,本研究连续分析了水稻成熟期,紫云英和肥田油菜种植并翻压还田处理小区的土壤酶活性,结合土壤速效养分和微生物量碳氮以及水稻产量等指标,利用冗余分析(RDA)探讨驱动红壤稻田土壤肥力变化的关键土壤酶活性因子,结合偏最小二乘路径模型(PLS-PM)解析土壤酶活性指标、土壤肥力指标与水稻产量的相互关系,为深入评估土壤酶活性对绿肥还田的响应机制提供理论依据。
1. 材料与方法
1.1 试验地概况
冬闲绿肥种植翻压定位试验于2015年12月在江西省进贤县张公镇进行。该试验地经纬度为28°15′30″N, 116°20′24″E,属中亚热带季风气候,年均气温18.1℃,≥10℃积温6480℃,年均降雨量1537 mm,年蒸发量1100~1200 mm,无霜期约为289天,年日照时数1950 h,干湿季节明显,3—6月为雨季,降雨量占全年雨量的61%~69%;7—9月为旱季,蒸发量占全年蒸发量的40%~59%,地形为典型低山丘陵,供试土壤为第四纪黏土母质发育的红壤水田,质地较黏重,试验地土壤pH 5.33、有机质28.07 g/kg、全氮1.76 g/kg、全磷0.61 g/kg、全钾11.21 g/kg、碱解氮154.35 mg/kg、有效磷14.02 mg/kg、速效钾97.5 mg/kg。
1.2 试验设计
本研究选取了定位试验的3个处理:1)冬闲—早稻—晚稻(CK),2)冬季紫云英翻压还田(Astragalus sinicus L.)—早稻—晚稻,3)冬季肥田油菜翻压还田(Brassica napus L.)—早稻—晚稻,每个处理3次重复,小区面积为32 m2 (宽4 m、长8 m)。
肥田油菜品种为‘阳光131’,播种量为12 kg/hm2,翻压还田量约为鲜重30 t/hm2,其含水量约为84%,N、P、K 含量约为4.0、1.1、3.5 g/kg。紫云英品种为‘余江大叶’,播种量36 kg/hm2,翻压还田量约为鲜重21 t/hm2,含水量为69%,N、P、K 含量分别约为3.8、1.2、3.4 g/kg。肥田油菜和紫云英均不施肥。早稻和晚稻品种分别为‘株两优538’和‘五优308’。早稻施肥量为:N 150 kg/hm2、P2O5 90 kg/hm2、K2O 150 kg/hm2,晚稻施肥量为:N 180 kg/hm2、P2O5 90 kg/hm2、K2O 180 kg/hm2,早晚稻氮肥按基肥:分蘖肥:穗肥比5∶2∶3 分施,磷肥作基肥一次施入,钾肥按照基肥:穗肥用量比7∶3 分施。水稻行株距23.3 cm×16.6 cm,早稻、晚稻均人工插秧。
1.3 样品采集和分析
1.3.1 土壤样品采集和指标测定
于2018和2019年晚稻季收获期,每个小区按5点取样法采集耕层(0—20 cm)土壤混合样品,带回室内,挑出根系、石块等杂质,按四分法分出一半鲜样做土壤酶活性和微生物量碳氮含量分析,剩余一半样品摊匀风干后,磨细过筛分析土壤有机质、全量和速效氮磷钾含量。
土壤酶活性测定采用96微孔酶标板荧光分析法[18]。多功能酶标仪在激发波长365 nm,发射波长450 nm的条件下测定,主要测定指标为:脲酶(Urea)、α-葡萄糖苷酶(AG)、乙酰氨基葡萄糖苷酶(NAG)、β-1,4葡萄糖苷酶(BG)、β-纤维二糖苷酶(CBH)、β-木糖苷酶(BXYL)、酸性磷酸酶(ACP)、酚氧化物酶(POX)和过氧化物酶(PER)活性。土壤微生物量碳氮含量采用氯仿熏蒸法—碳氮自动分析法测定[19]。土壤有机质用重铬酸钾氧化法测定;土壤全氮用凯氏定氮法测定,土壤全磷用HF–HClO4消煮—钼锑抗比色法测定,土壤全钾用HF–HClO4消煮—火焰光度计法测定;土壤碱解氮用扩散法测定;有效磷用Olsen法测定;速效钾用1 mol/L NH4OAC浸提—火焰光度法测定。具体分析方法参见《土壤农化分析》[20]。
1.3.2 早晚稻产量
在早、晚稻成熟期,每个小区实打实收,晒干后(籽粒含水量约13.5%)称重,测定籽粒产量。
1.4 数据统计分析
采用Excel 2003进行数据处理,统计分析采用SAS 9.1进行,各处理的土壤酶活性、土壤微生物量碳氮、速效氮磷钾和产量差异采用LSD进行显著性分析,土壤酶活性与土壤微生物量碳氮、有机质和氮磷钾养分的相互关系采用冗余分析(RDA)方法进行分析,基于R语言对土壤酶活性指标、土壤肥力指标与水稻产量的相互关系采用偏最小二乘路径模型(partial least squares path mode, PLS-PM)进行分析。其余图件均采用Origin 8.1进行制作。
2. 结果与分析
2.1 冬季绿肥对土壤酶活性的影响
在不同处理之间,2018、2019年土壤酶活性对不同绿肥的响应不同(图1)。在2018年,紫云英和肥田油菜处理土壤NAG、ACP和POX活性与对照以及二者之间均无显著差异(P>0.05),而Urea、AG、BG、CBH和BXYL均高于CK处理,多数有显著差异。与CK处理相比,紫云英处理的Urea、AG、BG、CBH和BXLY分别提高了35.53%、25.58%、40.09%、23.18%、56.25%,肥田油菜处理的增幅分别为66.12%、47.67%、50.94%、103.11%、100.00%,肥田油菜处理的Urea、AG和CBH活性显著高于紫云英处理,增幅分别为22.57%、17.59和64.89%。但是,肥田油菜和紫云英处理的PER活性分别较CK处理降低了37.64%和11.15%。
图 1 翻压冬季绿肥土壤的酶活性注:CK、A和B分别为冬闲、冬季种植翻压紫云英和肥田油菜处理。Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。柱上不同小写字母表示处理间存在显著差异(P<0.05)。Figure 1. Soil enzyme activities as affected by incorporation of winter green manuresNote: CK, A and B represent winter fallow, milk vetch (Astragalus sinicus L.), and rape (Brassica napus L.) planting in winter and incorporation treatment. Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER are abbreviation of urease, α-glucosidase, acetyl glucosaminidase, β-1,4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.在2019年,紫云英和肥田油菜翻压处理均对NAG和BXLY活性无显著影响;与CK处理相比,紫云英处理提高了Urea、AG和BG活性,增幅分别为22.49%、16.67%、32.60%;肥田油菜提高了Urea、AG、BG、CBH、ACP和POX活性,较CK处理的增幅分别为88.93%、26.23%、70.85%、37.79%、24.04%和60.06%,较紫云英处理的增幅分别为54.24%、8.19%、28.84%、28.05%、64.68%和56.46%。与2018相似,2019年紫云英和肥田油菜处理均显著降低了PER活性。
2.2 冬季绿肥对土壤微生物量碳氮的影响
在2018和2019年,土壤微生物量碳、氮含量对不同施肥的响应基本一致(图2),紫云英和肥田油菜处理的土壤微生物量碳在2018年分别比CK增加了53.67%和115.86%,2019年增加了40.25%和78.36%,肥田油菜处理的土壤微生物量碳增幅显著高于紫云英。
2018和2019年,紫云英和肥田油菜处理的土壤微生物量氮含量均显著高于CK,2018年增幅分别为49.42%和64.02%,2019年分别为52.48%和81.43%,但是紫云英和肥田油菜处理间无显著差异(P>0.05)。
2.3 冬季绿肥对土壤有机质和全量氮磷钾养分含量的影响
冬季绿肥处理显著影响土壤有机质含量,但对土壤全氮、全磷和全钾含量则无显著影响(表1)。与冬闲处理相比,紫云英处理的有机质含量在2018和2019年分别提高了3.09%和2.49%,肥田油菜处理在2018和2019年的增幅分别为6.99%和7.84%。虽然肥田油菜处理的土壤有机质含量略高于紫云英,但差异未达显著水平(P>0.05)。
表 1 翻压不同冬季绿肥土壤有机质和全量氮磷钾含量Table 1. Soil organic matter and nutrient total contents under different winter green manure incorporation年份 Year 处理 Treatment 有机质 Organic matter (g/kg) 全氮 Total N (g/kg) 全磷 Total P (g/kg) 全钾 Total K (g/kg) 2018 冬闲 Winter fallow 28.45±0.51 b 1.82±0.14 a 0.69±0.13 a 11.33±0.79 a 紫云英 Milk vetch 29.33±0.46 a 1.85±0.29 a 0.73±0.15 a 11.65±0.91 a 肥田油菜 Rape 30.44±0.79 a 1.84±0.44 a 0.72±0.11 a 11.77±1.01 a 2019 冬闲 Winter fallow 28.95±0.67 b 1.91±0.13 a 0.74±0.25 a 11.56±0.88 a 紫云英 Milk vetch 29.67±0.71 a 1.93±0.20 a 0.79±0.13 a 11.74±0.98 a 肥田油菜 Rape 31.22±0.91 a 1.96±0.57 a 0.82±0.16 a 11.85±1.89 a 注:同列数据后不同小写字母表示同一年份不同处理间存在显著差异 (P<0.05)。
Note: Different lowercase letters after data in a column mean significant difference among treatments in the same year (P<0.05).2.4 冬季绿肥对土壤速效氮磷钾养分含量的影响
冬季绿肥处理下土壤碱解氮、有效磷和速效钾在不同年份的变化趋势基本相似(图3),2018和2019年均呈现出紫云英和肥田油菜处理显著高于冬闲处理,紫云英和肥田油菜处理间无显著差异(P>0.05)。与冬闲处理相比,2018年紫云英处理的碱解氮、有效磷和速效钾含量分别增加了103.87%、55.71%和24.61%,肥田油菜处理的增幅分别为120.83%、70.25%和26.40%。
在2019年,除了碱解氮表现出明显低于2018之外,有效磷和速效钾均呈现出2018年和2019年无明显差异。在各处理间,紫云英处理的碱解氮、有效磷和速效钾含量分别比冬闲处理增加了27.85%、48.31%和32.93%;肥田油菜处理的增幅分别为34.23%、56.22%和28.88%。
2.5 冬季绿肥对早晚稻产量的影响
与冬闲处理相比,紫云英和肥田油菜处理可以显著增加水稻产量(表2)。在2018年,紫云英处理的早稻、晚稻和两季的产量分别比冬闲处理增加了10.08%、19.17%和15.05%,肥田油菜处理的早晚稻和两季的产量分别比冬闲处理提高了10.05%、19.30%和15.10%;2019年也呈现出紫云英和肥田油菜处理显著高于冬闲处理,两季的产量分别增加了11.60%和11.82%。但紫云英和肥田油菜处理间则无显著差异。
表 2 不同冬季绿肥翻压对水稻产量的影响(kg/hm2)Table 2. Rice grain yield as affected by winter green manure incorporation水稻季
Season处理
Treatment2018 2019 早稻
Early rice冬闲 Winter fallow 5952±47 b 6000±175 b 紫云英 Milkvetch 6552±476 a 6514±296 a 肥田油菜 Rape 6550±232 a 6391±268 ab 晚稻
Late rice冬闲 Winter fallow 7171±124 b 7125±254 b 紫云英 Milkvetch 8546±47 a 8134±372 a 肥田油菜 Rape 8555±408 a 8285±263a 双季
Total冬闲 Winter fallow 13123±120 b 13125±365 b 紫云英 Milkvetch 15098±506 a 14648±88 a 肥田油菜 Rape 15105±625 a 14676±418 a 注:同列数据后不同小写字母表示同一年份处理间存在显著差异 (P<0.05)。
Note: Different small letters after data in a column mean significant difference among treatments in the same year (P<0.05).2.6 不同土壤酶活性对土壤肥力变化的影响
RDA1、RDA2分别是土壤酶活性值在X轴、Y轴上的投影面积,投影面积的大小表征土壤酶活性对土壤肥力指标的解释程度,投影面积越大,解释程度越高。由图4可以看出,2018和2019年,土壤酶活性分别解释了土壤肥力变异程度的96.45%和93.72%,且土壤酶活性对土壤肥力指标的影响效应主要表征在RDA1上,其中RDA1的解释率分别为75.46%和74.73%,RDA2的解释率分别为20.99%和18.99%。但两年份中,影响土壤有机质、氮磷钾、微生物量碳氮指标的酶活性存在明显分异。表3详细列出了土壤酶活性与RAD1和RAD2数据的相关性,根据R2和P发现,2018年Urea、AG、BG、CBH和BXYL对肥力指标具有显著影响(P<0.05),而在2019年则呈现出AG、CBH和ACP对土壤肥力指标具有显著影响(P<0.05)。其他酶活性对土壤肥力指标的影响不显著。
图 4 2018和2019年土壤酶活性与肥力指标之间的冗余分析注:Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。Figure 4. Redundancy analyze of relationship between soil enzyme activities and fertility indexesNote: Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER represent urease, α-glucosidase, acetylglucosaminidase, β-1, 4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively.表 3 土壤酶活性对土壤肥力指标影响效应的显著性分析Table 3. Significance analysis of the effect of soil enzyme activities on soil fertility indexes年份
Year土壤酶
Soil enzymeRDA1 RDA2 R2 P 2018 Urea 0.93176 −0.36307 0.9429 0.001 AG 0.88167 −0.47186 0.9301 0.001 NAG 0.17094 −0.98528 0.4509 0.134 BG 0.96827 −0.24991 0.7767 0.016 CBH 0.88743 −0.46095 0.9834 0.001 BXYL 0.90392 −0.42771 0.8801 0.001 ACP 0.22486 −0.97439 0.4972 0.101 POX 0.3654 −0.93085 0.3218 0.378 PER −0.78455 −0.62007 0.3999 0.271 2019 Urea −0.29897 −0.04536 0.4481 0.161 AG −0.99223 −0.12442 0.9188 0.002 NAG −0.38205 0.92414 0.3691 0.292 BG −0.59058 −0.13693 0.4652 0.132 CBH −0.99669 −0.08133 0.8673 0.003 BXYL −0.62758 0.77855 0.4918 0.121 ACP −0.89334 −0.44938 0.9255 0.001 POX −0.48524 −0.17115 0.3929 0.281 PER −0.62484 0.78076 0.4449 0.151 注:Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。
Note: Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER in the table represent urease, α-glucosidase, acetylglucosaminidase, β-1,4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively.图5为PLS-PM法分析的土壤酶活性、肥力指标以及水稻产量之间的作用方向及通径系数,土壤酶活性主要受土壤微生物量碳氮的影响,且土壤酶活性和微生物量碳氮均可以通过影响土壤有机质和氮磷钾调控水稻产量。结合通经系数表明,土壤酶活性对土壤氮磷钾的影响程度较高(通径系数为0.6918),而对土壤有机质的影响较小(通径系数为0.3614);土壤微生物量碳氮对土壤有机质的影响程度较高(通径系数为0.6435),而对土壤氮磷钾的影响较小(通径系数为0.3226)。同时,土壤有机质也显著影响土壤氮磷钾(通径系数为0.8014)。进一步分析发现,土壤氮磷钾养分是影响水稻产量的关键(通径系数为0.9827),其影响程度明显高于土壤有机质(通径系数为0.6924)。
图 5 土壤酶活性、土壤肥力指标和水稻产量的相关关系注:线的粗细程度表示各指标之间影响程度的大小。线旁边的数值为通径系数,红色和黑色线分别表示显著(P<0.05)和不显著(P>0.05)水平。Figure 5. Complex interrelationships between soil enzyme activities, soil fertility indexes and rice yieldNote: The line thickness indicates the strength of the interrelationship between variables, and the attached values are the average path coefficients, the red and black lines indicate significant (P<0.05) and not significant (P>0.05) levels, respectively.3. 讨论
3.1 冬季绿肥种植下土壤酶活性变化
在红壤稻田上,不同年份土壤酶活性对绿肥种植的响应不一,但大体呈现出肥田油菜和紫云英更有利于提高土壤酶活性,而冬闲则不利于土壤酶活性的提升。这与前人的研究结果[6−7,21−22]相似。这主要与油菜和紫云英处理提高了土壤有机碳投入,从而促进了土壤微生物活性等有关。同时,肥田油菜处理在2018年Urea、AG和CBH和2019年Urea、AG、BG、CBH、ACP和POX均显著高于紫云英处理。原因主要与油菜处理的有机碳投入量显著高于紫云英处理有关。在本研究中,紫云英还田下有机碳投入量明显低于肥田油菜处理,且已有研究表明土壤酶活性与有机肥投入量呈显著的线性正相关关系[23]。
在本研究中,与冬闲相比,2018和2019年油菜和紫云英处理的土壤酶活性指标不一,同时,与紫云英相比,油菜处理提升的土壤酶活性指标在2018和2019年也有一定差异。且2019年的酶活性指标明显高于2018年。这可能与绿肥翻压下有机碳投入的累积效应有关,很多研究表明,长期绿肥还田下,土壤物理结构和微生物群落均得到明显改善,从而有利于更多土壤酶活性指标的提升[24−26]。此外,前人的研究表明土壤酶活性在水稻生长旺盛的时期对土壤肥力的表征更为突出[4,27]。而本研究采集土壤的时期则为水稻收获期,且为非根际土壤,因此,关于不同绿肥种植下土壤酶活性的研究仍有待进一步验证。
3.2 驱动土壤肥力特征和水稻产量的关键土壤酶活性因子
除了提升土壤酶活性指标之外,紫云英和油菜还田均显著提高了土壤微生物量碳氮、速效氮磷钾含量和作物产量。这与前人的研究结果[8,15−16]相似。但是肥力指标的增幅则明显不同,这主要与绿肥翻压还田量和年限有关。说明在绿肥还田条件下,土壤酶活性指标的变化规律与土壤碳氮指标和作物产量较为吻合。然而,在众多的土壤酶活性指标中,不同酶活性指标参与土壤养分周转的过程不一[28−32]。本研究利用RDA分析方法发现,不同年份驱动土壤肥力变化的关键土壤酶活性因子存在较大差异。其中,在2018年呈现出Urea、AG、BG、CBH和BXYLAG是关键影响因子(P<0.05),而在2019年的关键酶活性因子则为AG、CBH和ACP (P<0.05)。原因可能与土壤温湿度、作物产量水平和灌排水等因素有关,因为这些人为和环境因素均可以显著改变土壤酶活性[9]。基于长期施肥定位试验的结果也表明,水稻分蘖期、开花期驱动土壤养分周转的土壤酶活性指标与成熟期的结果存在明显分异[33]。综合2018和2019年的结果表明,AG和CBH均是表征土壤肥力指标变化的关键酶活性因子,这为该地区绿肥翻压条件开展土壤酶活性指标筛选提供了理论依据。然而,由于红壤稻田的土壤肥力水平存在较大差异[34],且本研究中绿肥翻压年限较短,因此,本研究获取的关键酶活性指标还有待进一步验证。
进一步分析发现,与土壤微生物量碳氮主要通过土壤有机质调控水稻产量的结果不同,土壤酶活性主要通过影响土壤氮磷钾养分调控水稻产量。不同绿肥翻压年限的研究也证明,土壤有机质和氮磷钾养分是影响水稻产量的关键因子[35]。且本研究结合通径系数的研究结果表明,土壤氮磷钾对水稻产量的影响程度明显高于土壤有机质,原因主要与本研究的土壤基础肥力有关,在本试验开始前,除了土壤有机质和碱解氮含量较高之外,土壤有效磷和速效钾含量均处于较低水平[36]。本研究还表明,土壤有机质对土壤氮磷钾养分的影响程度较高,这与很多的研究结果[35,37−38]一致。由于不同绿肥种类对土壤有机质的提升效果不一,因此,在后续的研究中,建议探讨不同绿肥种类的合理配置措施,从而最大程度增加稻田土壤有机质的提升幅度,进而有效改善土壤氮磷钾供给能力,以期为合理减少外源氮磷钾肥的投入提供技术支撑。
4. 结论
在红壤稻田上,连续2年的田间试验表明,虽然种植并翻压紫云英和肥田油菜均显著提升了土壤微生物碳氮含量、速效氮磷钾含量和水稻产量,但是,与紫云英相比,肥田油菜更有利于提高红壤稻田的土壤酶活性。进一步分析发现,α-葡萄糖苷酶和β-纤维二糖苷酶活性是驱动绿肥翻压提高土壤肥力的关键因素,且土壤酶活性主要通过提升土壤氮磷钾养分有效性提高水稻产量。
-
图 1 翻压冬季绿肥土壤的酶活性
注:CK、A和B分别为冬闲、冬季种植翻压紫云英和肥田油菜处理。Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。柱上不同小写字母表示处理间存在显著差异(P<0.05)。
Figure 1. Soil enzyme activities as affected by incorporation of winter green manures
Note: CK, A and B represent winter fallow, milk vetch (Astragalus sinicus L.), and rape (Brassica napus L.) planting in winter and incorporation treatment. Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER are abbreviation of urease, α-glucosidase, acetyl glucosaminidase, β-1,4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.
图 4 2018和2019年土壤酶活性与肥力指标之间的冗余分析
注:Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。
Figure 4. Redundancy analyze of relationship between soil enzyme activities and fertility indexes
Note: Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER represent urease, α-glucosidase, acetylglucosaminidase, β-1, 4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively.
图 5 土壤酶活性、土壤肥力指标和水稻产量的相关关系
注:线的粗细程度表示各指标之间影响程度的大小。线旁边的数值为通径系数,红色和黑色线分别表示显著(P<0.05)和不显著(P>0.05)水平。
Figure 5. Complex interrelationships between soil enzyme activities, soil fertility indexes and rice yield
Note: The line thickness indicates the strength of the interrelationship between variables, and the attached values are the average path coefficients, the red and black lines indicate significant (P<0.05) and not significant (P>0.05) levels, respectively.
表 1 翻压不同冬季绿肥土壤有机质和全量氮磷钾含量
Table 1 Soil organic matter and nutrient total contents under different winter green manure incorporation
年份 Year 处理 Treatment 有机质 Organic matter (g/kg) 全氮 Total N (g/kg) 全磷 Total P (g/kg) 全钾 Total K (g/kg) 2018 冬闲 Winter fallow 28.45±0.51 b 1.82±0.14 a 0.69±0.13 a 11.33±0.79 a 紫云英 Milk vetch 29.33±0.46 a 1.85±0.29 a 0.73±0.15 a 11.65±0.91 a 肥田油菜 Rape 30.44±0.79 a 1.84±0.44 a 0.72±0.11 a 11.77±1.01 a 2019 冬闲 Winter fallow 28.95±0.67 b 1.91±0.13 a 0.74±0.25 a 11.56±0.88 a 紫云英 Milk vetch 29.67±0.71 a 1.93±0.20 a 0.79±0.13 a 11.74±0.98 a 肥田油菜 Rape 31.22±0.91 a 1.96±0.57 a 0.82±0.16 a 11.85±1.89 a 注:同列数据后不同小写字母表示同一年份不同处理间存在显著差异 (P<0.05)。
Note: Different lowercase letters after data in a column mean significant difference among treatments in the same year (P<0.05).表 2 不同冬季绿肥翻压对水稻产量的影响(kg/hm2)
Table 2 Rice grain yield as affected by winter green manure incorporation
水稻季
Season处理
Treatment2018 2019 早稻
Early rice冬闲 Winter fallow 5952±47 b 6000±175 b 紫云英 Milkvetch 6552±476 a 6514±296 a 肥田油菜 Rape 6550±232 a 6391±268 ab 晚稻
Late rice冬闲 Winter fallow 7171±124 b 7125±254 b 紫云英 Milkvetch 8546±47 a 8134±372 a 肥田油菜 Rape 8555±408 a 8285±263a 双季
Total冬闲 Winter fallow 13123±120 b 13125±365 b 紫云英 Milkvetch 15098±506 a 14648±88 a 肥田油菜 Rape 15105±625 a 14676±418 a 注:同列数据后不同小写字母表示同一年份处理间存在显著差异 (P<0.05)。
Note: Different small letters after data in a column mean significant difference among treatments in the same year (P<0.05).表 3 土壤酶活性对土壤肥力指标影响效应的显著性分析
Table 3 Significance analysis of the effect of soil enzyme activities on soil fertility indexes
年份
Year土壤酶
Soil enzymeRDA1 RDA2 R2 P 2018 Urea 0.93176 −0.36307 0.9429 0.001 AG 0.88167 −0.47186 0.9301 0.001 NAG 0.17094 −0.98528 0.4509 0.134 BG 0.96827 −0.24991 0.7767 0.016 CBH 0.88743 −0.46095 0.9834 0.001 BXYL 0.90392 −0.42771 0.8801 0.001 ACP 0.22486 −0.97439 0.4972 0.101 POX 0.3654 −0.93085 0.3218 0.378 PER −0.78455 −0.62007 0.3999 0.271 2019 Urea −0.29897 −0.04536 0.4481 0.161 AG −0.99223 −0.12442 0.9188 0.002 NAG −0.38205 0.92414 0.3691 0.292 BG −0.59058 −0.13693 0.4652 0.132 CBH −0.99669 −0.08133 0.8673 0.003 BXYL −0.62758 0.77855 0.4918 0.121 ACP −0.89334 −0.44938 0.9255 0.001 POX −0.48524 −0.17115 0.3929 0.281 PER −0.62484 0.78076 0.4449 0.151 注:Urea、AG、NAG、BG、CBH、BXYL、ACP、POX和PER分别为脲酶、α-葡萄糖苷酶、乙酰氨基葡萄糖苷酶、β-1,4葡萄糖苷酶、β-纤维二糖苷酶、β-木糖苷酶、酸性磷酸酶、酚氧化物酶和过氧化物酶。
Note: Urea, AG, NAG, BG, CBH, BXYL, ACP, POX, and PER in the table represent urease, α-glucosidase, acetylglucosaminidase, β-1,4 glucosidase, β-celloglucosidase, β-xylosidase, acid phosphatase, phenoloxidase and peroxidase, respectively. -
[1] 李建军, 辛景树, 张会民, 等. 长江中下游粮食主产区25年来稻田土壤养分演变特征[J]. 植物营养与肥料学报, 2015, 21(1): 92–103. Li J J, Xin J S, Zhang H M, et al. Evolution characteristics of soil nutrients in the main rice production regions, the middle-lower reach of Yangtze River of China[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 92–103. Li J J, Xin J S, Zhang H M, et al . Evolution characteristics of soil nutrients in the main rice production regions, the middle-lower reach of Yangtze River of China[J]. Journal of Plant Nutrition and Fertilizers,2015 ,21 (1 ):92 –103 .[2] Zhao Y, Wang M, Hu S, et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4045–4050.
[3] 胡君利, 林先贵, 尹睿, 等. 浙江慈溪不同利用年限水稻土微生物生物量与酶活性比较[J]. 生态学报, 2008, 28(4): 1552–1557. Hu J L, Lin X G, Yin R, et al. Comparison of microbial biomass and enzyme activities in paddy soils with different utilized years in Cixi, Zhejiang Province[J]. Acta Ecologica Sinica, 2008, 28(4): 1552–1557. Hu J L, Lin X G, Yin R, et al . Comparison of microbial biomass and enzyme activities in paddy soils with different utilized years in Cixi, Zhejiang Province[J]. Acta Ecologica Sinica,2008 ,28 (4 ):1552 –1557 .[4] 魏亮, 汤珍珠, 祝贞科, 等. 水稻不同生育期根际与非根际土壤胞外酶对施氮的响应[J]. 环境科学, 2017, 38(8): 397–404. Wei L, Tang Z Z, Zhu Z K, et al. Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environmental Science, 2017, 38(8): 397–404. Wei L, Tang Z Z, Zhu Z K, et al . Responses of extracellular enzymes to nitrogen application in rice of various ages with rhizosphere and bulk soil[J]. Environmental Science,2017 ,38 (8 ):397 –404 .[5] 王倩倩, 尧水红, 张斌, 等. 秸秆配施氮肥还田对水稻土酶活性的影响[J]. 土壤, 2017, 49(1): 19–26. Wang Q Q, Yao S H, Zhang B, et al. Effects of rice straw returning timing combined with nitrogen fertilization on enzyme activities of paddy soil[J]. Soils, 2017, 49(1): 19–26. Wang Q Q, Yao S H, Zhang B, et al . Effects of rice straw returning timing combined with nitrogen fertilization on enzyme activities of paddy soil[J]. Soils,2017 ,49 (1 ):19 –26 .[6] 荣勤雷, 梁国庆, 周卫, 等. 不同有机肥对黄泥田土壤培肥效果及土壤酶活性的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1168–1177. Rong Q L, Liang G Q, Zhou W, et al. Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1168–1177. Rong Q L, Liang G Q, Zhou W, et al. Effects of different organic fertilization on fertility and enzyme activities of yellow clayey soil[J]. Journal of Plant Nutrition and Fertilizers,
2014 ,20 (5 ):1168 –1177 .[7] 陆海飞, 郑金伟, 余喜初, 等. 长期无机有机肥配施对红壤性水稻土微生物群落多样性及酶活性的影[J]. 植物营养与肥料学报, 2015, 21(3): 632–643. Lu H F, Zheng J W, Yu X C, et al. Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(3): 632–643. Lu H F, Zheng J W, Yu X C, et al . Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization[J]. Journal of Plant Nutrition and Fertilizers,2015 ,21 (3 ):632 –643 .[8] 曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望[J]. 植物营养与肥料学报, 2017, 23(6): 1450–1461. Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450–1461. Cao W D, Bao X G, Xu C X, et al . Reviews and prospects on science and technology of green manure in China[J]. Journal of Plant Nutrition and Fertilizers,2017 ,23 (6 ):1450 –1461 .[9] 杨曾平, 高菊生, 郑圣先, 等. 长期冬种绿肥对红壤性水稻土微生物特性及酶活性的影响[J]. 土壤, 2011, 43(4): 576–583. Yang Z P, Gao J S, Zheng S X, et al. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil[J]. Soils, 2011, 43(4): 576–583. Yang Z P, Gao J S, Zheng S X, et al. Effects of long-term winter planting-green manure on microbial properties and enzyme activities in reddish paddy soil[J]. Soils,
2011 ,43 (4 ):576 –583 .[10] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015 , 52(4): 902–910. Gao S J, Cao W D, Bai J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902–910. Gao S J, Cao W D, Bai J S, et al . Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica,2015 ,52 (4 ):902 –910 .[11] 李增强, 张贤, 王建红, 等. 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响[J]. 植物营养与肥料学报, 2019, 25(4): 525–534. Li Z Q, Zhang X, Wang J H, et al. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 525–534. Li Z Q, Zhang X, Wang J H, et al. Effect of chemical fertilizer reduction with return of Chinese milk vetch (Astragalus sinicus L.) on soil labile organic carbon and carbon conversion enzyme activities[J]. Journal of Plant Nutrition and Fertilizers,
2019 ,25 (4 ):525 –534 .[12] 高桂娟, 李志丹, 韩瑞宏, 等. 3种南方绿肥腐解特征及其对淹水土壤养分和酶活性的影响[J]. 热带作物学报, 2016, 37(8): 1476–1483. Gao G J, Li Z D, Han R H, et al. Effects of three south green manures on flooded soil nutrient and enzyme activities and their decomposition properties[J]. Chinese Journal of Tropical Crops, 2016, 37(8): 1476–1483. Gao G J, Li Z D, Han R H, et al . Effects of three south green manures on flooded soil nutrient and enzyme activities and their decomposition properties[J]. Chinese Journal of Tropical Crops,2016 ,37 (8 ):1476 –1483 .[13] Elfstrand S, Hedlund K, Martensson A. Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring[J]. Applied Soil Ecology, 2020, 35(3): 610–621.
[14] Ye X F, Liu H G, Li Z, et al. Effects of green manure continuous application on soil microbial biomass and enzyme activity[J]. Journal of Plant Nutrition, 2015, 37(4): 498–508.
[15] 王丹英, 彭建, 徐春梅, 等. 油菜作绿肥还田的培肥效应及对水稻生长的影响[J]. 中国水稻科学, 2012, 26(1): 85–91. Wang D Y, Peng J, Xu C M, et al. Effects of rape straw manuring on soil fertility and rice growth[J]. Chinese Journal of Rice Science, 2012, 26(1): 85–91. Wang D Y, Peng J, Xu C M, et al . Effects of rape straw manuring on soil fertility and rice growth[J]. Chinese Journal of Rice Science,2012 ,26 (1 ):85 –91 .[16] 杨滨娟, 黄国勤, 王超, 等. 稻田冬种绿肥对水稻产量和土壤肥力的影响[J]. 中国生态农业学报, 2013 , 21(10): 1209–1216. Yang B J, Huang G Q, Wang C, et al. Effects of winter green manure cultivation on rice yield and soil fertility in paddy field[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1209–1216. DOI: 10.3724/SP.J.1011.2013.01209 Yang B J, Huang G Q, Wang C, et al . Effects of winter green manure cultivation on rice yield and soil fertility in paddy field[J]. Chinese Journal of Eco-Agriculture,2013 ,21 (10 ):1209 –1216 . DOI: 10.3724/SP.J.1011.2013.01209[17] 兰延, 黄国勤, 杨滨娟, 等. 稻田绿肥轮作提高土壤养分增加有机碳库[J]. 农业工程学报, 2014 , 30(13): 146–152. Lan Y, Huang G Q, Yang B J, et al. Effect of green manure rotation on soil fertility and organic carbon pool[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(13): 146–152. Lan Y, Huang G Q, Yang B J, et al . Effect of green manure rotation on soil fertility and organic carbon pool[J]. Transactions of the Chinese Society of Agricultural Engineering,2014 ,30 (13 ):146 –152 .[18] Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long-term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309–1315. DOI: 10.1016/S0038-0717(02)00074-3
[19] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006. Wu J S, Lin Q M, Huang Q Y, et al. Soil microbial biomass-methods and application[M]. Beijing: China Meteorological Press, 2006. Wu J S, Lin Q M, Huang Q Y, et al. Soil microbial biomass-methods and application[M]. Beijing: China Meteorological Press, 2006.
[20] 鲁如坤, 土壤农化分析[M]. 北京: 中国农业科技出版社. 2000. Lu R K. Soil and agricultural chemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000. Lu R K. Soil and agricultural chemical analysis method[M]. Beijing: China Agricultural Science and Technology Press, 2000.
[21] 张逸飞, 钟文辉, 李忠佩, 等. 长期不同施肥处理对红壤水稻土酶活性及微生物群落功能多样性的影响[J]. 生态与农村环境学报, 2006, 22(4): 39–44. Zhang Y F, Zhong W H, Li Z P, et al. Effects of long-term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay[J]. Journal of Ecology and Rural Environment, 2006, 22(4): 39–44. Zhang Y F, Zhong W H, Li Z P, et al . Effects of long-term different fertilization on soil enzyme activity and microbial community functional diversity in paddy soil derived from quaternary red clay[J]. Journal of Ecology and Rural Environment,2006 ,22 (4 ):39 –44 .[22] 李委涛, 李忠佩, 刘明, 等. 红壤水稻土累积酶活性及养分对长期不同施肥处理的响应[J]. 土壤, 2016, 48(4): 686–691. Li W T, Li Z P, Liu M, et al. Activities of extracellular enzymes and nutrients in red paddy soil response to long term fertilizations[J]. Soils, 2016, 48(4): 686–691. Li W T, Li Z P, Liu M, et al . Activities of extracellular enzymes and nutrients in red paddy soil response to long term fertilizations[J]. Soils,2016 ,48 (4 ):686 –691 .[23] Chang E H, Chung R S, Tsai Y H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population[J]. Soil Science & Plant Nutrition, 2007, 53(2): 132–140.
[24] Fang H, Zhang Z, Li D, et al. Temporal dynamics of paddy soil structure as affected by different fertilization strategies investigated with soil shrinkage curve[J]. Soil and Tillage Research, 2018, 187: 102–109.
[25] Gao S J, Zhang R G, Cao W D, et al. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in south China[J]. Journal of Integrative Agriculture, 2015, 14(12): 2512–2520.
[26] 张钦, 于恩江, 林海波, 等. 连续种植不同绿肥作物耕层的土壤团聚体特征[J]. 西南农业学报, 2019, 32(1): 148–153. Zhang Q, Yu E J, Lin H B, et al. Soil aggregate characteristics in topsoil layer under continuity planting same green manure crop[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(1): 148–153. Zhang Q, Yu E J, Lin H B, et al . Soil aggregate characteristics in topsoil layer under continuity planting same green manure crop[J]. Southwest China Journal of Agricultural Sciences,2019 ,32 (1 ):148 –153 .[27] 曾路生, 廖敏, 黄昌勇, 等. 水稻不同生育期的土壤微生物量和酶活性的变化[J]. 中国水稻科学, 2005, 19(5): 441–446. Zeng L S, Liao M, Huang C Y, et al. Variation of soil microbial biomass and enzyme activities at different developmental stages in rice[J]. Chinese Journal of Rice Science, 2005, 19(5): 441–446. Zeng L S, Liao M, Huang C Y, et al . Variation of soil microbial biomass and enzyme activities at different developmental stages in rice[J]. Chinese Journal of Rice Science,2005 ,19 (5 ):441 –446 .[28] 颜志雷, 方宇, 陈济琛, 等. 连年翻压紫云英对稻田土壤养分和微生物学特性的影响[J]. 植物营养与肥料学报, 2014, 20(5): 1151–1160. Yan Z L, Fang Y, Chen J C, et al. Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial propeties in paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1151–1160. Yan Z L, Fang Y, Chen J C, et al . Effect of turning over Chinese milk vetch (Astragalus sinicus L.) on soil nutrients and microbial propeties in paddy fields[J]. Journal of Plant Nutrition and Fertilizers,2014 ,20 (5 ):1151 –1160 .[29] 黄容, 高明, 万毅林, 等. 秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响[J]. 环境科学, 2016, 37(11): 4446–4456. Huang R, Gao M, Wan Y L, et al. Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J]. Environmental Science, 2016, 37(11): 4446–4456. Huang R, Gao M, Wan Y L, et al . Effects of straw in combination with reducing fertilization rate on soil nutrients and enzyme activity in the paddy-vegetable rotation soils[J]. Environmental Science,2016 ,37 (11 ):4446 –4456 .[30] 唐玉姝, 慈恩, 颜廷梅, 等. 太湖地区长期定位试验稻麦两季土壤酶活性与土壤肥力关系[J]. 土壤学报, 2008, 45(5): 1000–1006. Tang Y S, Ci E, Yan T M, et al. Relationship between soil enzyme activity and soil fertility on paddy fields under wheat-rice cropping system in a long-term experiment in Taihu lake region[J]. Acta Pedologica Sinica, 2008, 45(5): 1000–1006. Tang Y S, Ci E, Yan T M, et al . Relationship between soil enzyme activity and soil fertility on paddy fields under wheat-rice cropping system in a long-term experiment in Taihu lake region[J]. Acta Pedologica Sinica,2008 ,45 (5 ):1000 –1006 .[31] 黄继川, 徐培智, 彭智平, 等. 基于稻田土壤肥力及生物学活性的沼液适宜用量研究[J]. 植物营养与肥料学报, 2016, 22(2): 362–371. Huang J C, Xu P Z, Peng Z P, et al. Biogas slurry use amount for suitable soil nutrition and biodiversity in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(2): 362–371. Huang J C, Xu P Z, Peng Z P, et al . Biogas slurry use amount for suitable soil nutrition and biodiversity in paddy soil[J]. Journal of Plant Nutrition and Fertilizers,2016 ,22 (2 ):362 –371 .[32] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105–109. Cao H, Sun H, Yang H, et al. A review: Soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied Environmental Biology, 2003, 9(1): 105–109. Cao H, Sun H, Yang H, et al . A review: Soil enzyme activity and its indication for soil quality[J]. Chinese Journal of Applied Environmental Biology,2003 ,9 (1 ):105 –109 .[33] Li Y Z, Chen J, Han T F, et al. Soil enzymatic activities response to long-term fertilization during key growth stages of early rice[J]. Archives of Agronomy and Soil Science, 2022, 68(10): 1443–1456. DOI: 10.1080/03650340.2021.1898595
[34] 柳开楼, 李大明, 胡志华, 等. 养分专家系统在双季稻中的应用和评价[J]. 中国土壤与肥料, 2019, (1): 184–189. Liu K L, Li D M, Hu Z H, et al. Application and evaluation of Nutrient Expert in double-cropping rice[J]. Soil and Fertilizer Sciences in China, 2019, (1): 184–189. Liu K L, Li D M, Hu Z H, et al. Application and evaluation of Nutrient Expert in double-cropping rice[J]. Soil and Fertilizer Sciences in China,
2019 , (1 ):184 –189 .[35] 柳开楼, 韩天富, 李文军, 等. 紫云英不同翻压年限下驱动水稻产量变化的土壤理化因子分析[J]. 中国水稻科学, 2021, 35(3): 291–302. Liu K L, Han T F, Li W J, et al. Analysis on the key factors of soil physicochemical properties responsible for changes in rice yield with Chinese milk vetch turned over for different years[J]. Chinese Journal of Rice Science, 2021, 35(3): 291–302. Liu K L, Han T F, Li W J, et al . Analysis on the key factors of soil physicochemical properties responsible for changes in rice yield with Chinese milk vetch turned over for different years[J]. Chinese Journal of Rice Science,2021 ,35 (3 ):291 –302 .[36] 周卫. 低产水稻土改良与管理: 理论方法技术[M]. 北京: 科学出版社, 2015. Zhou W. Theories and approaches of amelioration and management of low yield paddy soils[M]. Beijing: Science Press, 2015. Zhou W. Theories and approaches of amelioration and management of low yield paddy soils[M]. Beijing: Science Press, 2015.
[37] 柳开楼, 胡志华, 叶会财, 等. 双季玉米种植下长期施肥改变红壤氮磷活化能力[J]. 水土保持学报, 2016, 30(2): 187–192. Liu K L, Hu Z H, Ye H C, et al. Long-term fertilization changes soil nitrogen and phosphorus activation in red soil under double maize system[J]. Journal of Soil and Water Conservation, 2016, 30(2): 187–192. Liu K L, Hu Z H, Ye H C, et al . Long-term fertilization changes soil nitrogen and phosphorus activation in red soil under double maize system[J]. Journal of Soil and Water Conservation,2016 ,30 (2 ):187 –192 .[38] Wu X Y, Wang L Z, An J, et al. Relationship between soil organic carbon, soil nutrients, and land use in Linyi city (East China)[J]. Sustainability, 2022, 14: 13585. DOI: 10.3390/su142013585
-
期刊类型引用(3)
1. 樊剑波,柳开楼,李继文,孙明珠,胡丹丹. 冬季绿肥翻压下氮肥用量对早稻生长和产量的影响. 中国土壤与肥料. 2025(01): 92-97 . 百度学术
2. 付越,黄智刚,吴丽雪,张天,巩怡斐,黎玉婷,唐秀梅,唐荣华,孙婷婷. 甘蔗花生间作对土壤微生物磷限制的影响. 江苏农业科学. 2025(02): 262-270 . 百度学术
3. 吕帅磊,常单娜,周国朋,刘蕊,赵鑫,刘佳,徐昌旭,曹卫东. 江西红壤绿肥季施用磷矿粉的磷素效应. 草业学报. 2024(11): 149-160 . 百度学术
其他类型引用(5)