Nitrogen fertilizer management for high yield and high efficiency of rice in the Songnen Plain
-
摘要:目的
明确控释尿素运筹对松嫩平原水稻产量、氮素利用效率及土壤氮素供应的影响,旨在为该区域水稻制定科学合理的控释尿素高效运筹模式提供依据。
方法于2021—2022年在吉林省松原市,以水稻品种东稻3为试验材料,在总氮量200 kg/hm2条件下,设置不施氮肥对照 (N0)、普通尿素农户施用(FP) 和优化施用 (OPT),以及4个控释尿素基施与普通尿素分蘖肥配施比例处理 (CRU40%、CRU60%、CRU80%和CRU100%)。于水稻主要生育时期调查植株生物量、氮含量和土壤无机氮含量,并于成熟期测定产量及其构成因素,计算作物氮积累量、氮素利用率和土壤−作物系统氮素平衡状况。
结果与FP处理相比,4个控释尿素处理均显著提高了水稻齐穗期至成熟期植株氮积累量、齐穗后植株氮素积累分配比例和齐穗后氮素积累对籽粒贡献率,以CRU80%处理提升幅度最高;控释尿素各处理在稳定结实率和千粒重的同时,显著提高了水稻有效穗数和每穗粒数,提高了水稻产量和净收益 (P<0.05)。4个控释肥处理中,以CRU80%处理产量和净收入最高,2年平均产量比CRU40%、CRU60%和CRU100%处理分别提高8.0%、2.9%、4.8%,净收益分别提高13.7%、4.8%和7.9%。CRU80%处理与OPT处理产量和净收益水平相当,而其他3个控释肥处理产量和净收益显著低于OPT处理。与FP处理相比,其他施肥处理氮素回收率、农学利用率和偏生产力均显著提高,以CRU80%和OPT处理最高。土壤−作物系统氮素平衡状况表明,氮素表观损失量以CRU80%处理最低,较CRU40%、CRU60%和CRU100%处理分别降低了16.6%、8.8%和8.0%,并与OPT处理相近。路径分析结果表明,齐穗前后水稻植株氮积累量均对水稻产量影响显著,主要是通过影响水稻有效穗数、每穗粒数和结实率而影响产量。而齐穗后氮素积累对水稻有效穗数、每穗粒数和结实率的影响均高于齐穗前氮素积累。
结论在松嫩平原水稻产区,采用80%控释尿素基施+20%普通尿素分蘖肥运筹模式,或者采用优化的普通尿素施肥方案,可以显著提升水稻产量、收益和氮素利用效率,降低氮素损失量。由于氮肥优化模式施肥劳力投入多,应优先考虑80%控释尿素基施配合20%普通尿素一次追施的管理模式。
Abstract:ObjectivesThe effects of controlled-release nitrogen fertilizer (CRU) management on rice yield, nitrogen (N) use efficiency and soil N supply in the Songnen Plain were investigated, in order to provide a basis for scientific and efficient CRU management of rice in this region.
MethodsField experiments were conducted in 2021 and 2022 in Songyuan City of Jilin Province, using rice cultivar Dongdao 3 as the test materials. Under the total N rate of 200 kg/hm2, no N application (N0), multiple urea topdressing (OPT), and conventional urea fertilization (FP) were taken as controls, CRU basal application plus common urea (CU) topdressing in N ratio of 4:6, 6:4, 8:2 and 10:0 were setup (denoted as CRU40%, CRU60%, CRU80% and CRU100%, in turn). Plant biomass, N content and soil inorganic N content were analyzed during the main growth period of rice. The yield and yield components were investigated at harvest. And N uptake, N use efficiency and N balance in soil-crop system were calculated.
ResultsCompared with FP treatment, all the fertilizer treatments increased plant N accumulation from full heading to mature stage, plant N accumulation and allocation ratio after full heading stage, and the contribution rate of N accumulation to grain after full heading stage of rice (P<0.05), and CRU80% and OPT were recorded similar but higher values than the other treatments. All the CRU and OPT treatments stabilized seed-setting rate and 1000-grain weight, and increased effective panicle number, grain number per panicle than FP, thereby significantly increased rice yields and net incomes (P<0.05), and CRU80% and OPT increased significantly yield and net incomes than the other treatments as well. The two year average yield of CRU80% was 8.0%, 2.9%, and 4.8% higher than CRU40%, CRU60% and CRU100%, and the average net income was 13.7%, 4.8%, and 7.9% higher, respectively. CRU80% and OPT were also recorded the highest N recovery efficiency, agronomic efficiency and partial factor productivity. N balance in soil-crop system showed that the apparent N loss in CRU80% was similar to that in OPT, but was 16.6%, 8.8% and 8.0% lower than those in CRU40%, CRU60% and CRU100% treatments, respectively. The path analysis results showed that plant N accumulation before and after full heading stage significantly affected on rice yield through affecting effective panicle number, grain number per panicle, and seed-setting rate of rice, the effects of N accumulation after the full heading stage were higher than those before the full heading stage.
ConclusionsIn the rice production region of Songnen Plain, basal application of 80% CRU combined with 20% CU topdressing as tillering fertilizer, or optimized application of common urea (multiple application) could significantly increase rice yield, net income and N use efficiency, and reduce N loss. Considering the high labor input by common urea, controlled release fertilizer is recommended.
-
Keywords:
- Songnen Plain /
- rice /
- controlled-release urea /
- yield /
- net income /
- nitrogen use efficiency /
- nitrogen balance /
- fertilization cost
-
松嫩平原是东北地区重要的水稻产区,该区域地势平坦、光照充足、土壤有机质丰富、水热资源优越,常年水稻种植面积约202.08万hm2,总产量1483.6万t,分别占东北水稻种植总面积的38.6%和总产的37.0%[1],作为我国60%以上人口的主食,其产量对保证我国粮食安全具有重要意义[2]。合理施用氮肥是提高水稻产量、降低环境污染的有效途径[3−4]。然而该区域氮肥用量普遍过高,同时多以普通尿素为氮源,采用基肥加多次追肥方式[5]。这种方式劳动强度大,且氮肥利用率低,当季回收率仅为30.6%,同时氮素损失风险严重[6−7]。在人口老龄化加剧,劳动力短缺的背景下,难以满足新形势下水稻规模化种植的需要。因此,亟须进一步发展氮肥轻简化施用技术。
控释氮肥通过低透水率的膜层调控,控制养分释放速度和时间,延迟释放施用后植物可吸收利用的氮,从而减少了水稻对氮肥多次施用的需求,是目前轻简化施肥技术的重要载体[8−9]。与普通尿素相比,控释氮肥可持续为水稻生长发育提供氮素供应[10],有效改善根系结构[11],提高叶片硝酸还原酶和谷氨酰胺合成酶的活性[12],并在水稻后期生长阶段延迟叶片衰老[13],进而提高其产量和氮素利用效率[14],同时施用控释氮肥可降低地表水和土壤溶液的铵态氮和硝态氮浓度,降低氮素损失[15],因此对环境影响较低。但也有研究表明,由于目前控释氮肥养分释放大多呈“S”型曲线[16],在一次性施用控释氮肥下,无法满足水稻分蘖期和幼穗分化期对氮素吸收高峰的需求[17],使水稻产量和氮肥利用效率无法达到普通尿素分次施用水平[18−19]。而将控释氮肥与普通尿素配施,可利用控释氮肥和普通尿素的氮素释放特性,实现多级供氮,是当前优化控释氮肥施用的主要方式。相关研究表明,与单施控释氮肥相比,控释氮肥配合分蘖期施用速效氮肥,可显著提高水稻群体光合物质生产,增加有效穗数,进而提高水稻产量和氮肥利用效率。如邢晓鸣等[20]研究表明,90%控释氮肥和10%普通尿素采用一基一蘖的施肥方式,可提高水稻群体干物质、叶面积指数与光合势,进而获得较高的水稻产量。魏海燕等[10]研究认为,在优选缓控释肥类型基施的基础上,在分蘖期配合施用总氮量的40%普通尿素,水稻增产效果最佳。而彭瑞雪等[21]指出,控释掺混肥(基肥)与尿素(分蘖肥)按基蘖肥比7∶3施用,可达到水稻高产高效和降低环境污染目的。可见这些研究结果不尽相同。而在松嫩平原稻区,控释氮肥大多采用一次性施用方式,在水稻整个生育期内不再追肥,并且控释氮肥与普通尿素的适宜配施比例研究较少,具有一定的经验性[22−23]。因此有必要系统性地开展研究,以确定松嫩平原稻区优化控释氮肥施用方式。鉴于此,本研究在松嫩平原水稻主产区,通过连续两年田间试验,探索不同控释氮肥基施与普通尿素分蘖期追施比例对水稻产量、氮素吸收利用的调控效应,并分析水稻生育期内土壤无机氮动态变化和农田氮素表观平衡特征,以期为该区域水稻高产及环境友好的水稻轻简化施肥提供理论依据和技术支撑。
1. 材料与方法
1.1 试验点概况
试验于2021年5月至2022年10月在吉林省松原市套浩太乡 (43°39′21.3″N,125°06′10.2″E) 进行,该区域地处松嫩平原南端,属中温带大陆性季风气候。年均气温4.5℃,年均降水量483 mm,年均日照时数2900 h左右。试验田块土壤类型为水稻土。试验起始时耕作层土壤基本性质为:土壤全氮1.82 g/kg、全磷0.23 g/kg、全钾11.29 g/kg、水解性氮105.81 mg/kg、有效磷17.22 mg/kg、速效钾106.7 mg/kg、有机质23.54 g/kg、pH 7.06。水稻生育期气温和降雨分布见图1。
1.2 试验设计
试验采用随机区组设计,根据2015—2016年度在该区域研究确定水稻高产氮肥用量200 kg/hm2[4]的基础上,设置4个基施控释尿素与分蘖肥尿素配施处理,分别为4∶6 (CRU40%)、6∶4 (CRU60%)、8∶2 (CRU80%)、10∶0 (CRU100%),并以普通尿素优化分次施肥处理 (OPT)、普通尿素传统施氮处理 (FP) 和不施氮肥处理 (N0) 为对照,共计7个处理。其中OPT处理氮肥用量为200 kg/hm2,施用方法为30%氮肥基施,50%氮肥分别在水稻分蘖初期和盛期等比例施入,剩余20%氮肥作为穗肥分别在倒4叶、倒2叶各施其70%和30%;FP处理氮肥用量为220 kg/hm2,施用方法为40%氮肥基施,15%氮肥于返青期施入,20%和15%氮肥分别在水稻分蘖初期和盛期施入,10%氮肥于孕穗期施入。所有试验处理磷、钾肥用量相同,分别为P2O5 80 kg/hm2和K2O 90 kg/hm2。均一次性基施。每个处理重复3次,共计21个小区,每小区面积为40 m2。供试肥料品种分别为普通尿素 (46% N)、控释尿素 (45% N,释放曲线为S型,释放期约为100天,图2)、重过磷酸钙(46% P2O5)和氯化钾 (60% K2O)。供试水稻品种为东稻3 (生育期146天),采用平盘育苗,分别于2021年5月12日和2022年5月16日人工移栽,移栽行株距为33.0 cm×12.4 cm,每穴3~4株苗。收获日期分别为2021年9月30日和2022年9月28日。田间其他栽培管理同当地高产栽培,及时控制和防治病虫害。
1.3 测定指标与方法
1.3.1 水稻产量与构成
水稻成熟时,采用样框法测产,测产面积10 m2,收割脱粒、晒干称重后用日本生产的谷物水分测量仪 (PM-8188 New) 测定各处理稻谷含水量,折算成14.5%标准含水量。同时各处理随机选取20穴,计算有效穗数,按每小区的平均穗数取有代表性的5穴植株,测定每穗粒数、结实率和千粒重等。
1.3.2 植株采样与测定
分别于水稻拔节期、齐穗期和成熟期,按每小区茎蘖数的平均值取有代表性的植株5穴。同时将所取植株样品于105℃杀青30 min,80℃烘至恒重后,测定各器官及全株的干物重。植株样品粉碎后,经H2SO4–H2O2消化,采用凯氏定氮法测定氮含量。
1.3.3 土壤无机氮含量测定
分别于水稻拔节期、抽穗期和成熟期从各小区采集0—20 cm土壤样品。在2021年水稻施肥前和2022年水稻收获后,采集0—40 cm深度土壤样品,每20 cm为1层,每小区随机取8点,同层次土壤混合均匀过5 mm筛后,用1 mol/L KCl溶液浸提土壤样品,使用AA3-A001流动分析仪测定土壤无机氮含量(NO3−-N和NH4+-N含量)。
1.4 数据计算与统计分析
植株氮素积累量(N accumulation, kg/hm2)=各时期干物质量×氮素含量(%);
齐穗后氮素积累量(kg/hm2)=成熟期植株氮素积累量−齐穗期植株氮素积累量;
齐穗后氮素积累量对籽粒氮贡献率(%)=(齐穗后氮素积累量/成熟期籽粒氮素积累量)×100;
氮素回收率(REN,%)=(施氮区植株地上部氮积累量−不施氮区植株地上部氮积累量)/施氮量×100;
氮素农学利用率(AEN,kg/kg)=(施氮区作物产量−不施氮区作物产量)/施氮量;
氮素偏生产力(PFPN,kg/kg)=施氮区作物产量/施氮量。
土壤氮素矿化量(kg/hm2)=不施氮区作物吸氮量+不施氮区土壤无机氮残留量−不施氮区试验初始土壤无机氮累积量;
生育期土壤氮素表观损失量(kg/hm2)=(施氮量+土壤初始无机氮累积量+土壤氮素净矿化量)−(作物携出量+收获后土壤无机氮残留量);
净收入=总收入−氮肥支出−施氮工费−其他成本。
试验数据采用Excel 365整理汇总,年份与施氮处理两因素间交互作用应用SPSS 19.0软件一般线性模型(GLM)多因素方差分析,处理间差异采用Duncan多重比较检验,P<0.05为显著。采用Sigma Plot 14.0软件绘图。
2. 结果与分析
2.1 不同氮肥运筹模式对水稻产量及其构成因子的影响
年份与氮肥运筹显著影响水稻产量、有效穗数、每穗粒数和结实率,二者的交互作用对有效穗数、每穗粒数和水稻产量有显著影响(表1)。与FP处理相比,控释尿素各处理和OPT处理均显著提高了水稻产量(P<0.05),两年平均增幅为3.3%~12.4%。增产的原因是控释尿素处理和OPT处理提高了水稻有效穗数、每穗粒数和结实率,两年平均增幅分别为0.8%~7.6%、2.1%~11.3%和1.8%~4.1%。不同比例控释尿素处理中,水稻产量、有效穗数、每穗粒数和结实率均随基施控释尿素比例的提高呈先增后减趋势,均以CRU80%处理最高,其中两年平均产量较CRU40%、CRU60%和CRU100%处理分别提高8.0%、2.9%和4.8%。而不同施氮处理水稻千粒重差异未达显著水平(P>0.05)。与OPT处理相比,CRU40%、CRU60%和CRU100%处理水稻产量均显著降低(P<0.05),降幅分别为8.1%、3.5%和5.3%,而CRU80%处理差异未达显著水平(P>0.05)。
表 1 不同处理水稻产量与构成因素Table 1. Rice yield and yield components under different treatments年份
Year处理
Treatment有效穗数
Panicles per hm2每穗粒数
Grain number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (kg/hm2)
Yield2021 N0 286.2 d 107.4 d 89.5 c 28.0 a 7293 e CRU40% 336.1 c 114.5 c 90.7 b 27.7 a 9051 c CRU60% 347.8 b 123.0 ab 91.9 ab 27.1 a 9504 b CRU80% 358.4 a 124.1 a 92.4 a 27.5 a 9811 a CRU100% 353.0 ab 121.9 b 91.5 ab 27.3 a 9323 b OPT 361.6 a 125.6 a 92.6 a 27.8 a 9852 a FP 332.9 c 111.3 c 89.3 c 27.9 a 8797 d 2022 N0 240.8 d 94.3 d 90.6 c 29.1 a 5688 e CRU40% 355.7 c 123.4 c 92.7 b 28.9 a 9703 c CRU60% 366.1 b 131.4 ab 93.9 a 28.5 a 10181 b CRU80% 373.1 a 133.8 a 94.6 a 28.4 a 10446 a CRU100% 360.9 bc 127.6 b 93.5 a 29.0 a 10002 b OPT 377.0 a 133.9 a 94.9 a 28.8 a 10550 a FP 353.4 c 121.9 c 90.8 c 28.3 a 9351 d 方差分析 ANOVA 年份 Year (Y) * * * ns ** 处理 Treatment (N) ** ** * ns ** Y × N * * ns ns * 注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。同列数据后不同小写字母表示同年处理间差异显著 (P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Values followed by different lowercase letters in the same column indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.2.2 不同氮肥运筹模式对水稻经济效益的影响
年份与氮肥运筹显著影响种植水稻总收入和净收入,且二者表现出显著的交互作用(表2)。与FP处理相比,控释尿素各处理和OPT处理均显著提高了总收入和净收益(P<0.05),两年平均增幅分别为3.3%~12.4%和8.8%~24.0%。不同比例控释尿素处理中,总收入和净收入均随基施控释尿素比例的提高呈先增后减趋势,以CRU80%处理最高,分别为28360.1和16894.4元/hm2,其中两年平均总收入较CRU40%、CRU60%和CRU100%处理分别提高8.0%、2.9%和4.8%,净收入平均提高13.7%、4.8%和7.9%。与OPT处理相比,CRU40%、CRU60%和CRU100%处理净收入均显著降低(P<0.05),降幅分别为12.2%、4.7%和7.5%,而CRU80%处理总收入和净收入与OPT处理差异未达显著水平(P>0.05)。
表 2 不同处理经济效益 (yuan/hm2)Table 2. Economic benefits under different treatments年份
Year处理
Treatment总收入
Total income氮肥支出
N fertilizer cost施肥工费
N fertilization labour cost其他支出
Other costs净收入
Net income2021 N0 20421.3 e 0.0 0 10020 10401.3 e CRU40% 25341.8 c 1281.5 100 10020 13940.3 c CRU60% 26610.8 b 1313.6 100 10020 15177.2 b CRU80% 27472.0 a 1345.7 100 10020 16006.3 a CRU100% 26103.8 b 1377.8 0 10020 14706.0 b OPT 27585.3 a 1217.4 400 10020 15947.9 a FP 24631.6 d 1339.1 400 10020 12872.5 d 2022 N0 15925.7 e 0.0 0 10020 5905.7 e CRU40% 27168.9 c 1281.5 100 10020 15767.4 c CRU60% 28505.9 b 1313.6 100 10020 17072.3 b CRU80% 29248.1 a 1345.7 100 10020 17782.4 a CRU100% 28004.6 b 1377.8 0 10020 16606.8 b OPT 29539.9 a 1217.4 400 10020 17902.5 a FP 26184.7 d 1339.1 400 10020 14425.6 d 方差分析 ANOVA 年份 Year (Y) ** ** 处理 Treatment (N) ** ** Y × N * ** 注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。2021和2022年水稻的平均价格是2.8 元/kg。氮肥价格分别为普通尿素2.8 元/kg; 控释尿素3.1 元/kg。施肥工费100元/次。其他支出主要包括磷、钾肥费用,田间管理、喷药费用、机械整地、收获费用等。同列数据后不同小写字母表示同年处理间差异显著 (P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. In 2021 and 2022, the average price was rice 2.8 yuan/kg, CU 2.8 yuan/kg, CRU 3.1 yuan/kg. The fertilization cost was 100 yuan once. Other costs include P and K fertilizer, field management, spraying, mechanical land preparation, harvest, etc. Values followed by different lowercase letters in the same column indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.2.3 不同氮肥运筹模式对水稻植株各生育期氮素积累、分配比例及其对籽粒贡献率的影响
2.3.1 不同氮肥运筹模式下水稻氮素积累量
水稻拔节期FP处理氮积累量高于控释尿素各处理和OPT处理,而在齐穗期和成熟期氮积累量则表现出相反趋势(图3)。说明农户习惯施氮方式虽然促进了水稻生育前期氮素积累,但无法满足拔节期至齐穗期和齐穗至成熟期氮素的需求,导致氮素积累量显著低于控释氮肥各处理和OPT处理。不同比例控释尿素处理中,随基施控释尿素比例的提高,水稻拔节期氮积累量呈下降趋势,而齐穗期和成熟期氮积累量则表现为先增后减趋势,均以CRU80%处理最高,其后依次为CRU60%、CRU100%和CRU40%处理。与OPT处理相比,CRU40%、CRU60%和CRU100%处理水稻成熟期氮积累量均显著降低(P<0.05),而CRU80%处理差异未达显著水平(P>0.05)。
图 3 不同处理植株氮素积累动态注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱上不同小写字母表示相同时期处理间差异显著(P<0.05)。Figure 3. The dynamics of N accumulation in plant under different treatmentsNote: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters above the bars indicate significant difference among treatments in the same period (P<0.05).2.3.2 不同氮肥运筹模式下水稻齐穗期前后地上部氮素积累量占整个植株氮素积累量的比例
与FP处理相比,控释尿素各处理和OPT处理提高了水稻齐穗期至成熟期氮素积累量占整个植株氮素积累比例(图4),两年平均增幅5.6%~21.0%。不同比例控释尿素处理中,随基施控释尿素比例的提高,水稻齐穗期至成熟期氮积累量占整个植株氮素总积累量的比例呈先增后减趋势,以CRU80%处理最高。齐穗期至成熟期两年平均氮积累量占整个植株氮素总积累量比例较CRU40%、CRU60%和CRU100%分别增加12.9%、6.8%和9.0%。与OPT处理相比,CRU40%、CRU60%和CRU100%处理齐穗期至成熟期氮积累量占整个植株氮素总积累量比例均显著降低(P<0.05),降幅分别为12.8%、7.7%和9.5%,而CRU80%处理差异未达显著水平(P>0.05)。
图 4 不同处理水稻齐穗前后地上部氮素积累占整株氮素积累比例注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱中不同小写字母表示相同时期处理间差异显著(P<0.05)。Figure 4. Proportions of above-ground N accumulation in the whole plant before and after full heading stage of rice under different treatmentsNote: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters in the bars indicate significant difference among treatments in the same growth stage (P<0.05).2.3.3 不同氮肥运筹模式下水稻齐穗后氮素积累对籽粒氮素的贡献率
与FP处理相比,控释尿素各处理和OPT处理提高了水稻齐穗后氮素积累对籽粒氮素积累的贡献率(图5),2年平均增幅为7.8%~27.9%。不同比例控释尿素处理中,随基施控释尿素比例的提高,水稻齐穗后氮素积累对籽粒氮素贡献率呈先增后减趋势,以CRU80%处理最高,齐穗后两年平均氮积累对籽粒氮素贡献率较CRU40%、CRU60%和CRU100%处理分别提高15.9%、8.8%和11.6%。与OPT处理相比,CRU40%、CRU60%和CRU100%处理齐穗后氮素积累对籽粒氮素贡献率均显著降低(P<0.05),降幅分别为15.7%、10.3%和12.5%,而CRU80%处理差异未达显著水平(P>0.05)。
图 5 不同处理水稻齐穗前后氮素积累对籽粒氮素的贡献率注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱中不同小写字母表示相同时期处理间差异显著(P<0.05)。Figure 5. Contribution rate of N accumulation to grain before and after full heading stage of rice under different treatmentsNote: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters in the bars indicate significant difference among treatments in the same growth stage (P<0.05).2.4 路径分析
通过路径分析方法分析水稻齐穗前后植株氮积累量对产量及其构成因素效应路径,结果(图6)表明,齐穗前后氮积累量均对水稻产量影响显著,主要是通过影响水稻有效穗数、每穗粒数和结实率而影响产量。而齐穗后氮素积累对水稻有效穗数、每穗粒数和结实率的影响均高于齐穗前氮素积累。
2.5 不同氮肥运筹模式下氮素利用效率
年份与氮肥运筹显著影响氮素回收率、农学利用率和偏生产力,且二者表现出显著的交互作用(图7)。与FP处理相比,控释尿素各处理和OPT处理显著提高了氮素回收率、农学利用率和偏生产力,2年累计利用率增幅分别为23.6%~53.7%、22.9%~58.0%和13.7%~23.7%。不同比例控释尿素处理中,随基施控释尿素比例的提高,水稻氮素回收率、农学利用率和偏生产力均呈先增后减趋势,均以CRU80%处理最高,2年累计分别达到了43.0%、18.2 kg/kg和50.6 kg/kg。与CRU40%、CRU60%和CRU100%处理相比,CRU80%处理的氮素回收率分别提高了24.3%、10.3%、14.8%;农学利用率分别提高了26.0%、8.5%和14.7%;偏生产力分别提高了8.0%、2.9%、4.8%。与OPT处理相比,CRU40%、CRU60%和CRU100%处理2年累计氮素回收率、农学利用率和偏生产力降幅均达显著水平(P<0.05),而CRU80%处理差异未达显著水平(P>0.05)。
图 7 不同施氮处理氮素效率注:CRU40%−40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%−60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%−80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%−100%控释尿素基施;OPT−普通尿素优化施用;FP−普通尿素农户施用方法。柱上不同小写字母表示相同年份不同处理间差异显著(P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。Figure 7. N use efficiency under different N treatmentsNote: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. REN—N recovery efficiency; AEN—N agronomic efficiency; PFPN—N partial factor productivity. Different lowercase letters above the bars indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.2.6 不同氮肥运筹模式下土壤无机氮含量
水稻拔节期FP处理土壤硝态氮和铵态氮含量高于控释尿素各处理和OPT处理,而在齐穗期和成熟期无机氮含量则表现出相反趋势(图8)。说明与农户习惯处理相比,控释尿素各处理和OPT处理可增加水稻后期土壤氮素供应强度,进而促进水稻生育后期氮素吸收和氮素利用率。不同比例控释尿素处理中,水稻拔节期土壤硝态氮和铵态氮含量随基施控释尿素比例的提高呈下降趋势,而齐穗期和成熟期土壤硝态氮和铵态氮含量则表现为随基施控释尿素比例的提高呈上升趋势。其中CRU80%处理水稻各生育时期土壤硝态氮和铵态氮含量多与OPT处理相近。
图 8 不同处理水稻生长季0—20 cm 土壤无机氮含量注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱上不同小写字母表示相同时期不同处理间差异显著 (P<0.05)。Figure 8. Soil inorganic N content in the 0−20 cm layer in rice growing season under different treatmentsNote: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters above the bars indicate significant difference among treatments in the same growth stage (P<0.05).2.7 不同氮肥运筹模式下土壤无机氮素表观平衡
土壤−植物系统氮素表观平衡结果(表3)表明,在氮素输入项中,施氮量所占比例最高,占总氮素输入的63.7%~65.9%;在氮素输出项中,以作物氮素吸收为主,占总氮素输出的50.1%~61.6%。与FP处理相比,控释尿素各处理和OPT处理显著降低了氮素表观损失量,降幅为18.7%~33.5%。不同比例控释尿素处理中,随基施控释尿素比例的提高,无机氮残留量呈增加趋势,作物氮素吸收呈先增后减趋势,以CRU80%处理最高。而氮素表观损失量表现为先降后升,以CRU80%处理最低,较CRU40%、CRU60%和CRU100%处理分别降低了16.6%、8.8%和8.0%。说明适宜的基施控释尿素比例可显著提高水稻氮素吸收,减少氮素损失。与OPT处理相比,CRU40%、CRU60%和CRU100%处理氮素表观损失量增幅分别为22.3%、11.8%和10.9%,差异均达显著水平(P<0.05)。而CRU80%处理差异未达显著水平(P>0.05)。
表 3 不同施氮处理土壤无机氮素表观平衡(2021—2022)Table 3. Soil inorganic N apparent balance under different N treatments (2021—2022)指标 Index (kg/hm2) CRU40% CRU60% CRU80% CRU100% OPT FP 起始无机氮 Inorganic N prior to sowing 32.6 32.6 32.6 32.6 32.6 32.6 氮矿化量 N mineralization 195.6 195.6 195.6 195.6 195.6 195.4 施氮量 Fertilizer N rate 400 400 400 400 400 440 作物氮素吸收 Crop N uptake 349.7 c 367.3 b 383.4 a 361.2 b 387.1 a 334.5 d 无机氮残留量 Inorganic N residual 26.2 d 30.3 c 34.5 b 38.3 a 34.8 b 23.1 e 氮素表观损失量 N apparent loss 252.3 b 230.6 c 210.3 d 228.7 c 206.3 d 310.4 a 注:CRU—控释尿素; CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。表中为0—40 cm土壤无机氮积累量;同行数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. The amounts of inorganic N accumulation are in the 0–40 cm soil layer. Different lowercase letters after data in the same row indicate significant difference among treatments (P<0.05).3. 讨论
3.1 不同比例控释尿素运筹模式对水稻产量及其构成因子的影响
施用控释氮肥可提高水稻群体有效生物量,构建高光效群体[24],显著增加群体颖花量,获得较高的有效穗数和每穗粒数[10],同时还能提高水稻后期物质生产力,保证水稻籽粒灌浆、增加结实率和千粒重[13],从而获得高产[25]。然而控释氮肥与普通尿素不同配施比例和施用方法对水稻产量效应存在差异。如付正豪等[26]研究指出,50%控释肥和50%普通氮肥一次性基施,可较好地满足优质粳稻各个生育阶段养分需求,进而获得高产。而胡群等[27]认为粳杂交稻适宜氮肥运筹为60%基蘖肥加40%穗肥施用比例,这可能是受水稻品种、控释氮肥种类、土壤类型与地力水平及气候特点等多种因素综合影响。而土壤pH是影响土壤氮素有效性的因素之一,土壤呈酸性(pH<6)会使固氮菌活动降低,而土壤偏碱(pH>8)则会抑制氮素硝化作用。本试验土壤为中性(pH 7.06),氮素有效性不受土壤pH胁迫。本研究中,水稻产量随控释尿素基施比例的增加呈先增后减趋势,以CRU80%处理最高。可能是由于控释氮肥受东北地区春季低温影响,在水稻生育前期释放速率过慢[28],使CRU100%处理抑制水稻生育前期生长发育,在一定程度上影响穗分化,而在水稻生育中后期氮素释放过多,则会引起水稻贪青晚熟,导致水稻结实率和粒重下降[29]。但如果控释氮肥占比过低,如本研究中的CRU40%和CRU60%处理,尽管促进了水稻前期氮素积累,但由于水稻基蘖肥冗余,使水稻生育前期无效分蘖发生过多,导致成穗率和结实率降低[18],水稻产量下降。而适宜的控释氮肥基施比例可在控释氮肥与普通尿素共同作用下,使水稻群体形成较为适宜的有效穗数,同时中后期充足的氮素供应有助于齐穗至成熟期维持较高的光合势[30−31],促进光合物质生产和库容的充实,提高了每穗粒数和结实率,进而获得了与OPT处理相近的水稻产量。此外虽然CRU80%处理肥料成本高于OPT处理,但由于减少了施肥次数,降低了人工成本,使净收入与OPT处理达到相同水平。
3.2 不同比例控释尿素运筹模式对水稻氮素吸收利用的影响
水稻产量的90%来源于齐穗后光合产物积累,这意味着水稻齐穗后的光合同化物是籽粒产量形成的主要来源,在很大程度上决定了籽粒产量[32]。本研究路径分析也发现,水稻齐穗后氮素积累对水稻产量形成的影响高于齐穗前。因此提高水稻中后期氮素积累是实现水稻高产的有效途径[4, 33]。相关研究表明,与普通尿素相比,施用控释氮肥可增加水稻齐穗期至成熟期氮积累量[34],这是由于控释氮肥与普通尿素配施可使水稻整个生育期土壤供氮能力维持在较高水平,有效延缓水稻生育后期根系衰老[11],提高水稻生育后期植株的吸氮能力,增加水稻生育后期氮素积累比例[35]。然而本研究结果表明,随控释氮肥基施比例的增加,水稻齐穗后氮素积累、分配比例和齐穗后氮素积累对籽粒氮贡献率均呈先增后减趋势,以CRU80%处理最高。这是由于控释氮肥比例过低虽可增加水稻穗分化期氮素积累,但不足以弥补水稻中后期氮素亏缺[36]。控释氮肥所占比重过高则会导致水稻生长前期氮素供应不足,抑制植株前期营养生长的氮素吸收,同样不利于水稻生育后期氮素的积累。而CRU80%处理在发挥普通尿素保证水稻营养生长期充足氮素供应的同时,利用控释氮肥养分释放特性,弥补水稻生育中后期氮的亏缺,提高水稻生育中后期叶片中硝酸还原酶和谷氨酰胺合成酶的活性,减缓群体功能绿叶面积的消亡[12, 37],使水稻生育后期维持较高的氮素吸收速率,为库器官籽粒的同化物奠定基础,进而提高了产量和氮素利用效率[38]。
3.3 不同比例控释尿素运筹模式对土壤氮素变化与氮素平衡的影响
氮流失风险增加通常与氮素供应和作物需求不同步有关,因此提高土壤氮素供应与作物需求的匹配程度是降低氮素损失和氮肥高效利用的有效途径[28]。本研究计算氮肥施入土壤−植物系统氮素损失发现,控释尿素各处理氮素表观损失量均显著低于FP处理。这是因为FP处理氮素前期投入比例过高,但该阶段由于植株个体小,氮素营养需求量相对较少[26],导致水稻生育前期土壤无机氮含量过高,使土壤氮素在重力水的作用下渗入土壤深层,造成氮素大量损失[39]。相较于普通尿素,控释氮肥通过延长氮素供应时间,可显著降低土壤氮素损失风险[40]。但当控释氮肥基施比例不当,同样会增加氮素损失风险。如本研究中CRU40%和CRU60%处理由于分蘖期配施速效氮肥比例过大,同样导致水稻生育前期土壤氮素供应高于水稻氮素需求,增加氮素损失。CRU100%处理则由于水稻生育后期释放比例过高,远超水稻该阶段对氮素的需求,使土壤氮素残留量显著提高,同样增加氮素向深层土壤淋失的风险。而CRU80%处理的土壤氮素供应在时间和空间上与水稻氮素需求更加接近,满足水稻不同生育时期对氮素的吸收,进一步降低了水稻生育期内氮素损失,使之达到与普通尿素优化施用处理(OPT)相同水平。可见,科学的控释氮肥基施与普通尿素配施比例可促进水稻对氮素的吸收与利用,降低施用氮肥对环境造成的负面效应。
4. 结论
在松嫩平原水稻产区,控释尿素基施与普通尿素分蘖期配施可减少施肥次数,提高水稻齐穗期至成熟期无机氮含量、氮吸收量、分配比例及氮素对籽粒贡献率,显著增加水稻有效穗数和每穗粒数,稳定结实率和千粒重,提高水稻产量、收益和氮素利用效率,显著降低氮素表观损失量。其中80%控释尿素基施和20%普通尿素分蘖期配施综合表现最佳,达到了普通尿素优化施用相同效果。因此,采用80%控释尿素基施+20%普通尿素分蘖肥运筹模式,或者采用优化的普通尿素施肥方案,可以显著提升水稻产量、收益和氮素利用效率,降低氮素损失量。由于氮肥优化模式施肥劳力投入多,应优先考虑80%控释尿素基施配合20%普通尿素一次追施的管理模式。
-
图 3 不同处理植株氮素积累动态
注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱上不同小写字母表示相同时期处理间差异显著(P<0.05)。
Figure 3. The dynamics of N accumulation in plant under different treatments
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters above the bars indicate significant difference among treatments in the same period (P<0.05).
图 4 不同处理水稻齐穗前后地上部氮素积累占整株氮素积累比例
注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱中不同小写字母表示相同时期处理间差异显著(P<0.05)。
Figure 4. Proportions of above-ground N accumulation in the whole plant before and after full heading stage of rice under different treatments
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters in the bars indicate significant difference among treatments in the same growth stage (P<0.05).
图 5 不同处理水稻齐穗前后氮素积累对籽粒氮素的贡献率
注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱中不同小写字母表示相同时期处理间差异显著(P<0.05)。
Figure 5. Contribution rate of N accumulation to grain before and after full heading stage of rice under different treatments
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters in the bars indicate significant difference among treatments in the same growth stage (P<0.05).
图 7 不同施氮处理氮素效率
注:CRU40%−40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%−60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%−80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%−100%控释尿素基施;OPT−普通尿素优化施用;FP−普通尿素农户施用方法。柱上不同小写字母表示相同年份不同处理间差异显著(P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。
Figure 7. N use efficiency under different N treatments
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. REN—N recovery efficiency; AEN—N agronomic efficiency; PFPN—N partial factor productivity. Different lowercase letters above the bars indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.
图 8 不同处理水稻生长季0—20 cm 土壤无机氮含量
注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。柱上不同小写字母表示相同时期不同处理间差异显著 (P<0.05)。
Figure 8. Soil inorganic N content in the 0−20 cm layer in rice growing season under different treatments
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Different lowercase letters above the bars indicate significant difference among treatments in the same growth stage (P<0.05).
表 1 不同处理水稻产量与构成因素
Table 1 Rice yield and yield components under different treatments
年份
Year处理
Treatment有效穗数
Panicles per hm2每穗粒数
Grain number per panicle结实率 (%)
Seed-setting rate千粒重 (g)
1000-grain weight产量 (kg/hm2)
Yield2021 N0 286.2 d 107.4 d 89.5 c 28.0 a 7293 e CRU40% 336.1 c 114.5 c 90.7 b 27.7 a 9051 c CRU60% 347.8 b 123.0 ab 91.9 ab 27.1 a 9504 b CRU80% 358.4 a 124.1 a 92.4 a 27.5 a 9811 a CRU100% 353.0 ab 121.9 b 91.5 ab 27.3 a 9323 b OPT 361.6 a 125.6 a 92.6 a 27.8 a 9852 a FP 332.9 c 111.3 c 89.3 c 27.9 a 8797 d 2022 N0 240.8 d 94.3 d 90.6 c 29.1 a 5688 e CRU40% 355.7 c 123.4 c 92.7 b 28.9 a 9703 c CRU60% 366.1 b 131.4 ab 93.9 a 28.5 a 10181 b CRU80% 373.1 a 133.8 a 94.6 a 28.4 a 10446 a CRU100% 360.9 bc 127.6 b 93.5 a 29.0 a 10002 b OPT 377.0 a 133.9 a 94.9 a 28.8 a 10550 a FP 353.4 c 121.9 c 90.8 c 28.3 a 9351 d 方差分析 ANOVA 年份 Year (Y) * * * ns ** 处理 Treatment (N) ** ** * ns ** Y × N * * ns ns * 注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。同列数据后不同小写字母表示同年处理间差异显著 (P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. Values followed by different lowercase letters in the same column indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.表 2 不同处理经济效益 (yuan/hm2)
Table 2 Economic benefits under different treatments
年份
Year处理
Treatment总收入
Total income氮肥支出
N fertilizer cost施肥工费
N fertilization labour cost其他支出
Other costs净收入
Net income2021 N0 20421.3 e 0.0 0 10020 10401.3 e CRU40% 25341.8 c 1281.5 100 10020 13940.3 c CRU60% 26610.8 b 1313.6 100 10020 15177.2 b CRU80% 27472.0 a 1345.7 100 10020 16006.3 a CRU100% 26103.8 b 1377.8 0 10020 14706.0 b OPT 27585.3 a 1217.4 400 10020 15947.9 a FP 24631.6 d 1339.1 400 10020 12872.5 d 2022 N0 15925.7 e 0.0 0 10020 5905.7 e CRU40% 27168.9 c 1281.5 100 10020 15767.4 c CRU60% 28505.9 b 1313.6 100 10020 17072.3 b CRU80% 29248.1 a 1345.7 100 10020 17782.4 a CRU100% 28004.6 b 1377.8 0 10020 16606.8 b OPT 29539.9 a 1217.4 400 10020 17902.5 a FP 26184.7 d 1339.1 400 10020 14425.6 d 方差分析 ANOVA 年份 Year (Y) ** ** 处理 Treatment (N) ** ** Y × N * ** 注:CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。2021和2022年水稻的平均价格是2.8 元/kg。氮肥价格分别为普通尿素2.8 元/kg; 控释尿素3.1 元/kg。施肥工费100元/次。其他支出主要包括磷、钾肥费用,田间管理、喷药费用、机械整地、收获费用等。同列数据后不同小写字母表示同年处理间差异显著 (P<0.05)。方差分析中,Y和N分别代表年份、氮肥运筹处理,*和**分别表示在0.05和0.01水平显著,ns表示不显著。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. In 2021 and 2022, the average price was rice 2.8 yuan/kg, CU 2.8 yuan/kg, CRU 3.1 yuan/kg. The fertilization cost was 100 yuan once. Other costs include P and K fertilizer, field management, spraying, mechanical land preparation, harvest, etc. Values followed by different lowercase letters in the same column indicate significant difference among treatments in the same year (P<0.05). In ANOVA, Y and N are year and N fertilizer treatment, respectively, * and ** indicate significant effect at 0.05 and 0.01 levels, and ns indicates no significant effect.表 3 不同施氮处理土壤无机氮素表观平衡(2021—2022)
Table 3 Soil inorganic N apparent balance under different N treatments (2021—2022)
指标 Index (kg/hm2) CRU40% CRU60% CRU80% CRU100% OPT FP 起始无机氮 Inorganic N prior to sowing 32.6 32.6 32.6 32.6 32.6 32.6 氮矿化量 N mineralization 195.6 195.6 195.6 195.6 195.6 195.4 施氮量 Fertilizer N rate 400 400 400 400 400 440 作物氮素吸收 Crop N uptake 349.7 c 367.3 b 383.4 a 361.2 b 387.1 a 334.5 d 无机氮残留量 Inorganic N residual 26.2 d 30.3 c 34.5 b 38.3 a 34.8 b 23.1 e 氮素表观损失量 N apparent loss 252.3 b 230.6 c 210.3 d 228.7 c 206.3 d 310.4 a 注:CRU—控释尿素; CRU40%—40%控释尿素基施+60%普通尿素分蘖期追施;CRU60%—60%控释尿素基施+40%普通尿素分蘖期追施;CRU80%—80%控释尿素基施+20%普通尿素分蘖期追施;CRU100%—100%控释尿素基施;OPT—普通尿素优化施用;FP—普通尿素农户施用方法。表中为0—40 cm土壤无机氮积累量;同行数据后不同小写字母表示处理间差异显著 (P<0.05)。
Note: CRU40%—40% controlled release urea (CRU) as basal application with 60% common urea (CU) as tillering fertilizer; CRU60%—60% CRU as basal application with 40% CU as tillering fertilizer; CRU80%—80% CRU as basal application with 20% CU as tillering fertilizer; CRU100%—100% CRU as basal application; OPT—Multiple CU topdressing; FP—Conventional CU fertilization. The amounts of inorganic N accumulation are in the 0–40 cm soil layer. Different lowercase letters after data in the same row indicate significant difference among treatments (P<0.05). -
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021. National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2021. National Bureau of Statistics of the People's Republic of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2021.
[2] Peng S B, Tang Q Y, Zhou Y B. Current status and challenges of rice production in China[J]. Plant Production Sciences, 2009, 12(1): 3−8. DOI: 10.1626/pps.12.3
[3] 侯云鹏, 韩立国, 孔丽丽, 等. 不同施氮水平下水稻的养分吸收、转运及土壤氮素平衡[J]. 植物营养与肥料学报, 2015, 21(4): 836−845. Hou Y P, Han L G, Kong L L, et al. Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 836−845. DOI: 10.11674/zwyf.2015.0402 Hou Y P, Han L G, Kong L L, et al . Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses[J]. Journal of Plant Nutrition and Fertilizers,2015 ,21 (4 ):836 −845 . DOI: 10.11674/zwyf.2015.0402[4] 孔丽丽, 侯云鹏, 尹彩侠, 等. 秸秆还田下寒地水稻实现高产高氮肥利用率的氮肥运筹模式[J]. 植物营养与肥料学报, 2021, 27(7): 1282−1293. Kong L L, Hou Y P, Yin C X, et al. Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(7): 1282−1293. DOI: 10.11674/zwyf.20614 Kong L L, Hou Y P, Yin C X, et al . Nitrogen fertilizer management for high nitrogen utilization efficiency and rice yield under straw incorporation in a cold region[J]. Journal of Plant Nutrition and Fertilizers,2021 ,27 (7 ):1282 −1293 . DOI: 10.11674/zwyf.20614[5] 侯云鹏, 孔丽丽, 李前, 等. 不同施肥模式对水稻养分吸收利用及土壤养分平衡的影响[J]. 东北农业科学, 2018, 43(1): 1−8. Hou Y P, Kong L L, Li Q, et al. Effects of different fertilization patterns on nutrient absorption, utilization and soil nutrient balance of rice[J]. Journal of Northeast Agricultural Sciences, 2018, 43(1): 1−18. Hou Y P, Kong L L, Li Q, et al . Effects of different fertilization patterns on nutrient absorption, utilization and soil nutrient balance of rice[J]. Journal of Northeast Agricultural Sciences,2018 ,43 (1 ):1 −18 .[6] 刘奕, 王寅, 李春林, 等. 吉林省中部一季稻区推荐施肥方法研究[J]. 水土保持学报, 2018, 32(4): 273−278. Liu Y, Wang Y, Li C L, et al. Study on recommended fertilization method in one-season rice area of central Jilin Province[J]. Journal of Soil and Water Conversation, 2018, 32(4): 273−278. DOI: 10.13870/j.cnki.stbcxb.2018.04.043 Liu Y, Wang Y, Li C L, et al . Study on recommended fertilization method in one-season rice area of central Jilin Province[J]. Journal of Soil and Water Conversation,2018 ,32 (4 ):273 −278 . DOI: 10.13870/j.cnki.stbcxb.2018.04.043[7] 侯云鹏, 杨建, 李前, 等. 施氮对水稻产量、氮素利用及土壤无机氮积累的影响[J]. 土壤通报, 2016, 47(1): 118−124. Hou Y P, Yang J, Li Q, et al. Effects of nitrogen application on yield, nitrogen utilization and accumulation of soil inorganic nitrogen of rice[J]. Chinese Journal of Soil Science, 2016, 47(1): 118−124. DOI: 10.19336/j.cnki.trtb.2016.01.019 Hou Y P, Yang J, Li Q, et al . Effects of nitrogen application on yield, nitrogen utilization and accumulation of soil inorganic nitrogen of rice[J]. Chinese Journal of Soil Science,2016 ,47 (1 ):118 −124 . DOI: 10.19336/j.cnki.trtb.2016.01.019[8] 杨金宇, 李援农, 王凯瑜, 等. 控释氮肥与普通尿素配施比例和方法对冬小麦灌浆特性的影响[J]. 植物营养与肥料学报, 2020, 26(3): 442−452. Yang J Y, Li Y N, Wang K Y, et al. Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 442−452. Yang J Y, Li Y N, Wang K Y, et al . Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers,2020 ,26 (3 ):442 −452 .[9] 刘仲阳, 吴小宾, 郑福丽, 等. 我国主要粮食作物一次性施肥的长期效应研究进展[J]. 土壤, 2022, 54(4): 667−675. Liu Z Y, Wu X B, Zheng F L, et al. Progress of long-term effects of one-off fertilization on major food crops in China[J]. Soils, 2022, 54(4): 667−675. Liu Z Y, Wu X B, Zheng F L, et al . Progress of long-term effects of one-off fertilization on major food crops in China[J]. Soils,2022 ,54 (4 ):667 −675 .[10] 魏海燕, 李宏亮, 程金秋, 等. 缓释肥类型与运筹对不同穗型水稻产量的影响[J]. 作物学报, 2017, 43(5): 730−740. Wei H Y, Li H L, Cheng J Q, et al. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle[J]. Acta Agronomica Sinica, 2017, 43(5): 730−740. DOI: 10.3724/SP.J.1006.2017.00730 Wei H Y, Li H L, Cheng J Q, et al . Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicle[J]. Acta Agronomica Sinica,2017 ,43 (5 ):730 −740 . DOI: 10.3724/SP.J.1006.2017.00730[11] 郑圣先, 聂军, 戴平安, 郑颖俊. 控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J]. 植物营养与肥料学报, 2006, 12(2): 188−194. Zheng S X, Nie J, Dai P A, Zheng Y J. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(2): 188−194. DOI: 10.3321/j.issn:1008-505X.2006.02.008 Zheng S X, Nie J, Dai P A, Zheng Y J . Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice[J]. Journal of Plant Nutrition and Fertilizers,2006 ,12 (2 ):188 −194 . DOI: 10.3321/j.issn:1008-505X.2006.02.008[12] Yang Y C, Zhang M, Li Y C, et al. Controlled release urea improved nitrogen use efficiency, activities of leaf enzymes, and rice yield[J]. Soil Science Society of America Journal, 2012, 76(6): 2307−2317. DOI: 10.2136/sssaj2012.0173
[13] 李敏, 郭熙盛, 叶舒娅, 等. 硫膜和树脂膜控释尿素对水稻产量、光合特性及氮肥利用率的影响[J]. 植物营养与肥料学报, 2013, 19(4): 808−815. Li M, Guo X S, Ye S Y, et al. Effects of sulfur-and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(4): 808−815. DOI: 10.11674/zwyf.2013.0405 Li M, Guo X S, Ye S Y, et al . Effects of sulfur-and polymer-coated controlled release urea on yield, photosynthetic characteristics and nitrogen fertilizer efficiency of rice[J]. Journal of Plant Nutrition and Fertilizers,2013 ,19 (4 ):808 −815 . DOI: 10.11674/zwyf.2013.0405[14] 徐明岗, 李菊梅, 李冬初, 等. 控释氮肥对双季水稻生长及氮肥利用率的影响[J]. 植物营养与肥料学报, 2009, 15(5): 1010−1015. Xu M G, Li J M, Li D C, et al. Effect of controlled-release nitrogen fertilizer on growth and fertilizer nitrogen use efficiency of double rice in southern China[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(5): 1010−1015. DOI: 10.3321/j.issn:1008-505X.2009.05.004 Xu M G, Li J M, Li D C, et al . Effect of controlled-release nitrogen fertilizer on growth and fertilizer nitrogen use efficiency of double rice in southern China[J]. Journal of Plant Nutrition and Fertilizers,2009 ,15 (5 ):1010 −1015 . DOI: 10.3321/j.issn:1008-505X.2009.05.004[15] 鲁艳红, 纪雄辉, 郑圣先, 廖育林. 施用控释氮肥对减少稻田氮素径流损失和提高水稻氮素利用率的影响[J]. 植物营养与肥料学报, 2008, 14(3): 490−495. Lu Y H, Ji X H, Zheng S X, Liao Y L. Effect of controlled-release nitrogen fertilizer on reducing nitrogen runoff loss and increasing nitrogen recovery efficiency of rice plant[J]. Journal of Plant Nutrition and Fertilizers, 2008, 14(3): 490−495. DOI: 10.3321/j.issn:1008-505X.2008.03.013 Lu Y H, Ji X H, Zheng S X, Liao Y L . Effect of controlled-release nitrogen fertilizer on reducing nitrogen runoff loss and increasing nitrogen recovery efficiency of rice plant[J]. Journal of Plant Nutrition and Fertilizers,2008 ,14 (3 ):490 −495 . DOI: 10.3321/j.issn:1008-505X.2008.03.013[16] 侯云鹏, 李前, 孔丽丽, 等. 不同缓/控释氮肥对春玉米氮素吸收利用、土壤无机氮变化及氮平衡的影响[J]. 中国农业科学, 2018, 51(20): 3928−3940. Hou Y P, Li Q, Kong L L, et al. Effects of different slow/controlled release nitrogen fertilizers on spring maize nitrogen uptake and utilization, soil inorganic nitrogen and nitrogen balance[J]. Scientia Agricultura Sinica, 2018, 51(20): 3928−3940. DOI: 10.3864/j.issn.0578-1752.2018.20.011 Hou Y P, Li Q, Kong L L, et al . Effects of different slow/controlled release nitrogen fertilizers on spring maize nitrogen uptake and utilization, soil inorganic nitrogen and nitrogen balance[J]. Scientia Agricultura Sinica,2018 ,51 (20 ):3928 −3940 . DOI: 10.3864/j.issn.0578-1752.2018.20.011[17] 李敏, 罗德强, 蒋明金, 等. 不同减氮栽培模式对杂交籼稻氮素吸收利用及产量的影响[J]. 植物营养与肥料学报, 2022, 28(4): 598−610. Li M, Luo D Q, Jiang M J, et al. Effects of nitrogen-reduction cultivation models on nitrogen accumulation and yield of hybrid indica rice[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 598−610. DOI: 10.11674/zwyf.2021664 Li M, Luo D Q, Jiang M J, et al . Effects of nitrogen-reduction cultivation models on nitrogen accumulation and yield of hybrid indica rice[J]. Journal of Plant Nutrition and Fertilizers,2022 ,28 (4 ):598 −610 . DOI: 10.11674/zwyf.2021664[18] 程爽, 李绍平, 田晋钰, 等. 氮肥一次性基施对不同机直播水稻产量和品质的影响[J]. 农业工程学报, 2020, 36(24): 1−10. Cheng S, Li S P, Tian J Y, et al. Effects of one-time nitrogen basal application on the yield and quality of different direct-seeding rice crops by machine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 1−10. DOI: 10.11975/j.issn.1002-6819.2020.24.001 Cheng S, Li S P, Tian J Y, et al . Effects of one-time nitrogen basal application on the yield and quality of different direct-seeding rice crops by machine[J]. Transactions of the Chinese Society of Agricultural Engineering,2020 ,36 (24 ):1 −10 . DOI: 10.11975/j.issn.1002-6819.2020.24.001[19] Mi W H, Zheng S Y, Yang X, et al. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China [J]. European Journal of Agronomy, 2017, 90: 78−86. DOI: 10.1016/j.eja.2017.07.013
[20] 邢晓鸣, 李小春, 丁艳锋, 等. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响[J]. 中国农业科学, 2015, 48(24): 4892−4902. Xing X M, Li X C, Ding Y F, et al. Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production[J]. Scientia Agricultura Sinica, 2015, 48(24): 4892−4902. DOI: 10.3864/j.issn.0578-1752.2015.24.004 Xing X M, Li X C, Ding Y F, et al . Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production[J]. Scientia Agricultura Sinica,2015 ,48 (24 ):4892 −4902 . DOI: 10.3864/j.issn.0578-1752.2015.24.004[21] 彭瑞雪, 朱建强, 吴启侠, 等. 不同氮肥运筹对直播稻田氮素损失与利用的影响 [J]. 农业资源与环境学报, 2023, 40(3): 651−659. Peng R X, Zhu J Q, Wu Q X, et al. Nitrogen loss and utilization characteristics of different N fertilizer translocations in direct seeding rice[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 651−659. DOI: 10.13254/j.jare.2022.0330 Peng R X, Zhu J Q, Wu Q X, et al . Nitrogen loss and utilization characteristics of different N fertilizer translocations in direct seeding rice[J]. Journal of Agricultural Resources and Environment,2023 ,40 (3 ):651 −659 . DOI: 10.13254/j.jare.2022.0330[22] 刘汝亮, 王芳, 王开军, 等. 控释氮肥侧条施用对东北地区水稻产量和氮肥损失的影响[J]. 水土保持学报, 2018, 32(2): 252−256. Liu R L, Wang F, Wang K J, et al. Effects of side strip application of controlled release nitrogen fertilizer on rice yield and nitrogen loss in Northeast China[J]. Journal of Soil and Water Conservation, 2018, 32(2): 252−256. DOI: 10.13870/j.cnki.stbcxb.2018.02.037 Liu R L, Wang F, Wang K J, et al . Effects of side strip application of controlled release nitrogen fertilizer on rice yield and nitrogen loss in Northeast China[J]. Journal of Soil and Water Conservation,2018 ,32 (2 ):252 −256 . DOI: 10.13870/j.cnki.stbcxb.2018.02.037[23] 马昕, 杨艳明, 刘智蕾, 等. 机械侧深施控释掺混肥提高寒地水稻的产量和效益[J]. 植物营养与肥料学报, 2017, 23(4): 1095−1103. Ma X, Yang Y M, Liu Z L, et al. Yield increasing effect of mechanical topdressing of polymer-coated urea mixed with compound fertilizer in cold area rice[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4): 1095−1103. DOI: 10.11674/zwyf.16316 Ma X, Yang Y M, Liu Z L, et al . Yield increasing effect of mechanical topdressing of polymer-coated urea mixed with compound fertilizer in cold area rice[J]. Journal of Plant Nutrition and Fertilizers,2017 ,23 (4 ):1095 −1103 . DOI: 10.11674/zwyf.16316[24] 宋付朋, 张民, 史衍玺, 等. 控释氮肥的氮素释放特征及其对水稻的增产效应[J]. 土壤学报, 2005, 42(4): 619−627. Song F P, Zhang M, Shi Y X, et al. Releasing characteristics of controlled-release nitrogen fertilizer and its effects on rice yield[J]. Acta Pedologica Sinica, 2005, 42(4): 619−627. DOI: 10.3321/j.issn:0564-3929.2005.04.013 Song F P, Zhang M, Shi Y X, et al . Releasing characteristics of controlled-release nitrogen fertilizer and its effects on rice yield[J]. Acta Pedologica Sinica,2005 ,42 (4 ):619 −627 . DOI: 10.3321/j.issn:0564-3929.2005.04.013[25] Wei H Y, Chen Z F, Xing Z P, et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice[J]. Journal of Integrative Agriculture, 2018, 17(10): 2222−2234. DOI: 10.1016/S2095-3119(18)62052-0
[26] 付正豪, 马中涛, 魏海燕, 等. 不同机械化栽培方式下控释肥配比对迟熟中粳水稻产量形成及氮素吸收利用的影响[J]. 作物学报, 2022, 48(1): 165−179. Fu Z H, Ma Z T, Wei H Y, et al. Effects of controlled release fertilizer ratio on yield formation and nitrogen absorption and utilization of late-maturing medium japonica rice under different mechanized cultivation methods[J]. Acta Agronomica Sinica, 2022, 48(1): 165−179. Fu Z H, Ma Z T, Wei H Y, et al . Effects of controlled release fertilizer ratio on yield formation and nitrogen absorption and utilization of late-maturing medium japonica rice under different mechanized cultivation methods[J]. Acta Agronomica Sinica,2022 ,48 (1 ):165 −179 .[27] 胡群, 夏敏, 张洪程, 等. 氮肥运筹对钵苗机插优质食味水稻产量及氮素吸收利用的影响[J]. 作物学报, 2016, 42(11): 1666−1676. Hu Q, Xia M, Zhang H C, et al. Effect of nitrogen application regime on yield, nitrogen absorption and utilization of mechanical pot-seedling transplanting rice with good taste quality[J]. Acta Agronomica Sinica, 2016, 42(11): 1666−1676. DOI: 10.3724/SP.J.1006.2016.01666 Hu Q, Xia M, Zhang H C, et al . Effect of nitrogen application regime on yield, nitrogen absorption and utilization of mechanical pot-seedling transplanting rice with good taste quality[J]. Acta Agronomica Sinica,2016 ,42 (11 ):1666 −1676 . DOI: 10.3724/SP.J.1006.2016.01666[28] 姜红芳, 郭晓红, 兰宇辰, 等. 氮肥运筹对寒地水稻产量及光合物质生产的影响[J]. 中国土壤与肥料, 2020, (1): 45−57. Jiang H F, Guo X H, Lan Y C, et al. Effects of nitrogen fertilizer management on yield and photosynthetic matter production of rice in cold regions[J]. Soil and Fertilizer Sciences in China, 2020, (1): 45−57. DOI: 10.11838/sfsc.1673-6257.19049 Jiang H F, Guo X H, Lan Y C, et al . Effects of nitrogen fertilizer management on yield and photosynthetic matter production of rice in cold regions[J]. Soil and Fertilizer Sciences in China,2020 , (1 ):45 −57 . DOI: 10.11838/sfsc.1673-6257.19049[29] 唐文雪, 马忠明, 陈娟, 罗双龙. 氮肥运筹对河西绿洲灌区膜下滴灌水稻产量、氮肥利用率的影响[J]. 灌溉排水学报, 2022, 41(S2): 1−8. Tang W X, Ma Z M, Chen J, Luo S L. Effects of nitrogen management on rice yield and nitrogen fertilizer utilization rate under drip irrigation in Hexi Oasis Irrigation Area[J]. Journal of Irrigation and Drainage, 2022, 41(S2): 1−8. Tang W X, Ma Z M, Chen J, Luo S L . Effects of nitrogen management on rice yield and nitrogen fertilizer utilization rate under drip irrigation in Hexi Oasis Irrigation Area[J]. Journal of Irrigation and Drainage,2022 ,41 (S2 ):1 −8 .[30] 聂军, 郑圣先, 戴平安, 等. 控释氮肥调控水稻光合功能和叶片衰老的生理基础[J]. 中国水稻科学, 2005, 19(3): 255−261. Nie J, Zheng S X, Dai P A, et al. Regulation of senescence and photosynthetic function of rice leaves by controlled release nitrogen fertilizer[J]. Chinese Journal of Rice Science, 2005, 19(3): 255−261. DOI: 10.3321/j.issn:1001-7216.2005.03.010 Nie J, Zheng S X, Dai P A, et al . Regulation of senescence and photosynthetic function of rice leaves by controlled release nitrogen fertilizer[J]. Chinese Journal of Rice Science,2005 ,19 (3 ):255 −261 . DOI: 10.3321/j.issn:1001-7216.2005.03.010[31] 司东霞, 崔振岭, 陈新平, 吕福堂. 不同控释氮肥对夏水稻同化物积累及氮平衡的影响[J]. 应用生态学报, 2014, 25(6): 1745−1751. Si D X, Cui Z L, Chen X P, Lü F T. Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize[J]. Chinese Journal of Applied Ecology, 2014, 25(6): 1745−1751. Si D X, Cui Z L, Chen X P, Lü F T . Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize[J]. Chinese Journal of Applied Ecology,2014 ,25 (6 ):1745 −1751 .[32] 李敏, 张洪程, 杨雄, 等. 水稻高产氮高效型品种的物质积累与转运特性[J]. 作物学报, 2013, 39(1): 101−109. Li M, Zhang H C, Yang X, et al. Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency[J]. Acta Agronomica Sinica, 2013, 39(1): 101−109. DOI: 10.3724/SP.J.1006.2013.00101 Li M, Zhang H C, Yang X, et al . Characteristics of dry matter accumulation and translocation in rice cultivars with high yield and high nitrogen use efficiency[J]. Acta Agronomica Sinica,2013 ,39 (1 ):101 −109 . DOI: 10.3724/SP.J.1006.2013.00101[33] 韦还和, 孟天瑶, 李超, 等. 水稻甬优12产量13.5 t hm−2以上超高产群体的氮素积累、分配与利用特征[J]. 作物学报, 2016, 42(9): 1363−1373. Wei H H, Meng T Y, Li C, et al. Accumulation, translocation and utilization characteristics of nitrogen in Yongyou 12 yielding over 13.5 t ha−1[J]. Acta Agronomica Sinica, 2016, 42(9): 1363−1373. DOI: 10.3724/SP.J.1006.2016.01363 Wei H H, Meng T Y, Li C, et al . Accumulation, translocation and utilization characteristics of nitrogen in Yongyou 12 yielding over 13.5 t ha−1[J]. Acta Agronomica Sinica,2016 ,42 (9 ):1363 −1373 . DOI: 10.3724/SP.J.1006.2016.01363[34] Tang S H, Yang S H, Chen J S, et al. Studies on the mechanism of single basal application of controlled-release fertilizers for increasing yield of rice ( Oryza saiiva L.)[J]. Agricultural Sciences in China, 2007, 6(5): 586−596. DOI: 10.1016/S1671-2927(07)60087-X
[35] 乔月, 朱建强, 吴启侠, 等. 氮肥运筹下不同种植方式水稻对氮素的吸收、转运和利用[J]. 中国土壤与肥料, 2021,(6): 180−188. Qiao Y, Zhu J Q, Wu Q X, et al. Effects of nitrogen fertilizer management on nitrogen absorption, translocation and utilization of rice in different planting methods[J]. Soil and Fertilizer Sciences in China, 2021,(6): 180−188. DOI: 10.11838/sfsc.1673-6257.20439 Qiao Y, Zhu J Q, Wu Q X, et al . Effects of nitrogen fertilizer management on nitrogen absorption, translocation and utilization of rice in different planting methods[J]. Soil and Fertilizer Sciences in China,2021 ,(6 ):180 −188 . DOI: 10.11838/sfsc.1673-6257.20439[36] 张小翠, 戴其根, 胡星星, 等. 不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响[J]. 作物学报, 2012, 38(8): 1494−1503. Zhang X C, Dai Q G, Hu X X, et al. Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures[J]. Acta Agronomica Sinica, 2012, 38(8): 1494−1503. Zhang X C, Dai Q G, Hu X X, et al . Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures[J]. Acta Agronomica Sinica,2012 ,38 (8 ):1494 −1503 .[37] 杜君, 孙克刚, 雷利君, 等. 控释尿素与普通尿素配施对水稻氮代谢关键酶活性及产质量的影响[J]. 河南农业科学, 2016, 45(3): 67−72. Du J, Sun K G, Lei L J, et al. Effects of combined application of controlled release urea and common urea on activities of key enzymes related with nitrogen metabolism, yield and quality of rice[J]. Journal of Henan Agricultural Sciences, 2016, 45(3): 67−72. DOI: 10.15933/j.cnki.1004-3268.2016.03.013 Du J, Sun K G, Lei L J, et al . Effects of combined application of controlled release urea and common urea on activities of key enzymes related with nitrogen metabolism, yield and quality of rice[J]. Journal of Henan Agricultural Sciences,2016 ,45 (3 ):67 −72 . DOI: 10.15933/j.cnki.1004-3268.2016.03.013[38] 柯健, 陈婷婷, 徐浩聪, 等. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372−1382. Ke J, Chen T T, Xu H C, et al. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted[J]. Acta Agronomica Sinica, 2021, 47(7): 1372−1382. Ke J, Chen T T, Xu H C, et al . Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted[J]. Acta Agronomica Sinica,2021 ,47 (7 ):1372 −1382 .[39] 曾科, 朱文彬, 田玉华, 尹斌. 尿素施肥方式对水稻增产增效和土壤氮素损失的影响[J]. 植物营养与肥料学报, 2023, 29(3): 427−436. Zeng K, Zhu W B, Tian Y H, Yin B. Influence of urea fertilization methods on rice yield, nitrogen use efficiency and soil nitrogen loss[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 427−436. DOI: 10.11674/zwyf.2022336 Zeng K, Zhu W B, Tian Y H, Yin B . Influence of urea fertilization methods on rice yield, nitrogen use efficiency and soil nitrogen loss[J]. Journal of Plant Nutrition and Fertilizers,2023 ,29 (3 ):427 −436 . DOI: 10.11674/zwyf.2022336[40] 侯坤, 荣湘民, 韩磊, 等. 速效氮与缓控释氮配比一次性侧深施对双季稻产量、氮素利用率及氮素损失的影响[J]. 农业环境科学学报, 2021, 40(9): 1923−1934. Hou K, Rong X M, Han L, et al. Effects of one-time deep application of available nitrogen and slow and controlled-release nitrogen on rice yield, nitrogen use efficiency, and nitrogen loss[J]. Journal of Agro-Environment Science, 2021, 40(9): 1923−1934. DOI: 10.11654/jaes.2021-0290 Hou K, Rong X M, Han L, et al . Effects of one-time deep application of available nitrogen and slow and controlled-release nitrogen on rice yield, nitrogen use efficiency, and nitrogen loss[J]. Journal of Agro-Environment Science,2021 ,40 (9 ):1923 −1934 . DOI: 10.11654/jaes.2021-0290 -
期刊类型引用(3)
1. 王雪,佟丙辛,李长青,孙志梅. 免耕技术对三大粮食作物的区域产量效应及其影响因素的Meta分析. 农业工程学报. 2024(16): 133-142 . 百度学术
2. 陈文超,张辉,杨柳,李瑞霞,张奇,张斯梅,朱慧敏,郁洁. 基于缓释氮肥的稻季减次施肥技术研究. 中国农技推广. 2024(09): 69-73 . 百度学术
3. 张勇,管菊,赵庆勇,陈涛,王军,王才林,张亚东,赵凌. 优质粳稻南粳5818氮高效机制初探. 江苏农业学报. 2024(09): 1586-1593 . 百度学术
其他类型引用(0)