Effects of phosphorus side dressing on the phosphorus uptake and utilization and yield of different Brassica napus cultivars
-
摘要:目的
研究不同甘蓝型油菜品种对土壤磷分布异质性的响应规律及其差异,为减磷增效提供理论依据。
方法以中双11号(ZS11)和圣光168 (SG168)两个甘蓝型油菜品种为试验材料,于2019—2020年在湖北武汉开展根箱分根试验(供试土壤速效磷含量为2.75 mg/kg),在湖北武穴两个速效磷含量不同的田块(高磷肥力和低磷肥力田块土壤速效磷含量分别为17.63 和8.65 mg/kg)开展磷肥条施试验。试验设置不施磷(0P/0P)、局部供磷(1P/0P)和均匀供磷(1P/1P) 3个处理,于成熟期测定株高、分枝数、角果数、千粒重、产量、干物质积累、籽粒磷积累量和磷肥偏生产力等性状。
结果不施磷(0P/0P)处理,SG168的株高、分枝数、角果数、产量、各部位干物质积累量和籽粒磷积累量均高于ZS11。相同供磷处理,根箱试验和田间试验SG168的株高、分枝数、产量和磷肥偏生产力均高于ZS11。与1P/1P处理相比,1P/0P处理两个甘蓝型油菜品种的磷肥偏生产力均提高,并且高磷田块的提升幅度大于低磷田块。田间试验低磷田块中,与1P/1P处理相比,1P/0P处理两个油菜品种产量均显著降低;田间试验高磷田块,与1P/1P处理相比,1P/0P处理ZS11产量显著降低,而SG168的产量无显著差异。
结论局部供磷可以增强甘蓝型油菜对土壤中磷的吸收利用,提高地力贡献率和磷肥偏生产力。SG168的高产稳产和低磷适应能力强于ZS11。在土壤磷肥力水平高的田块,通过局部施磷的方式种植SG168可以实现不减产的同时减少一半磷肥的施用。
Abstract:ObjectivesReveals the response and differences of different Brassica napus cultivars to the heterogeneous distribution of soil available phosphorus (P) could provide theoretical support for improving the P use efficiency.
MethodsTwo Brassica napus cultivars, Zhongshuang11 (ZS11) and Shengguang168 (SG168), were used as test materials. Rhizotron and field experiments were conducted from 2019 to 2020 in Wuhan and Wuxue City of Hubei Province, respectively. The tested soil Olsen-P content in rhizotron experiment was 2.75 mg/kg; the field experiments were carried out at a low P fertility field (LP field) and a high P fertility field (HP field), with soil Olsen-P content of 8.65 mg/kg and 17.63 mg/kg, respectively, and the P fertilizer was applied in band. There were three treatments in all the experiments, including no P application (0P/0P), P side-dressing (1P/0P) and homogenous P supply (1P/1P). The plant height, branch number, silique number, 1000-seed weight, seed yield, dry matter accumulation, seed P accumulation and P partial factor productivity were measured at the mature stage.
ResultsSG168 showed higher plant height, branch number, silique number, seed yield, dry matter accumulation of each organ, seed P accumulation and P fertilizer partial productivity than ZS11 at the treatment of 0P/0P in both rhizotron and field experiments. SG168 showed higher plant height, branch number, seed yield and P fertilizer partial productivity than ZS11 under the same P treatment whether by rhizotron or by field experiments. Additionally, compared with 1P/1P treatment, 1P/0P treatment significantly improved P fertilizer partial productivity of Brassica napus, and the increase of P fertilizer partial productivity of HP field was higher than that of LP field. Compared with 1P/1P treatment, 1P/0P treatment significantly reduced the seed yield of two Brassica napus cultivars in LP field of field experiments. Compared with 1P/1P treatment, 1P/0P treatment significantly reduced the seed yield of ZS11 but had no significant effect on seed yield of SG168 under HP field of field experiments.
ConclusionsHeterogeneous P supply could enhance the absorption and utilization of soil phosphorus by Brassica napus, improve contribution rate of soil fertility and P fertilizer partial productivity. SG168 has higher and more stable yield, and higher adaptability to low P than ZS11. The yield-increasing effect of heterogeneous P supply is better in high P fertility field than that in low P fertility field in this study. In high P fertility field of this study, SG168 could maintain seed yield at the half rate of regular P application through local P supply.
-
磷是植物生长发育所必需的大量营养元素[1],磷肥的投入是提升农作物产量的有效措施[2]。由于磷矿资源储量有限[3],过量施用磷肥不仅会增加生产成本,还浪费磷矿资源,增加环境风险[4−6]。我国长江流域稻–油轮作区土壤周年磷盈余量较高[7−8],土壤磷含量呈逐年上升趋势[9],迫切需要减肥增效,实现农业的可持续发展。
磷肥施入土壤后,土壤中的Fe3+、Al3+和Ca2+等金属阳离子会与磷肥中的可溶性磷结合,形成难溶的闭蓄态磷[10],降低磷肥的当季利用率。采用适当的方式施用磷肥是提高磷肥利用效率的重要途径之一[11−12]。局部施磷(穴施、条施或侧施等)能够减少磷肥与Fe3+、Al3+和Ca2+等金属阳离子的接触,减少土壤对磷肥的固定[13],还有利于供磷一侧作物根系吸收到更多的磷[14],提高磷肥的回收效率。
作物根系形态对局部供磷的响应不同,局部供磷会诱导拟南芥(Arabidopsis thaliana L.)、水稻(Oryza sativa L.)、玉米(Zea mays L.)、小麦(Triticum aestivum L.)、大麦(Hordeum vulgare L.)、野大豆(Glycine soja Sieb. et Zucc.)、白羽扇豆(Lupinus albus L.)、棉花(Gossypium hirsutum L.)、苹果(Malus pumila)、杉木(Cunninghamia lanceolata)和野蔷薇(Rosa multiflora Thunb. ex Murr)等供磷一侧根系增加,显著提高磷的吸收[15−28],而蚕豆(Vicia faba L.)供磷一侧的根构型对局部供磷没有显著响应[18, 29]。作物地上部生物量对局部供磷的响应也具有物种特异性,局部供磷会显著降低拟南芥地上部鲜重[15],显著增加野大豆、棉花、苹果和杉木的整株干重[24−27],但对水稻、玉米、小麦和蚕豆的地上部干重没有显著影响[17, 21, 29−31]。同一作物对局部供磷的响应也存在基因型差异,玉米、小麦、棉花、小白菜(Brassica chinensis)局部供磷一侧磷高效基因型的根系增加较磷低效基因型更多,分泌的酸性磷酸酶更多,获取磷的能力更强[21, 25, 31−32]。
油菜是我国第一大油料作物,主要在长江流域种植[33],所产菜籽油占国产油料作物产油量的47%[34],甘蓝型油菜(Brassica napus L.)在我国油菜生产中占主导地位[35]。本实验室前期研究发现,局部供磷可以促进甘蓝型油菜的根系向供磷区域增加,同时不降低地上部鲜重[36],但局部供磷对甘蓝型油菜成熟期产量和产量相关性状的影响还鲜有报道。本研究以甘蓝型油菜品种中双11号和圣光168为研究材料,采用根箱试验和田间试验,探究局部供磷对甘蓝型油菜成熟期生物量、产量和产量相关性状以及磷的吸收利用的影响,为甘蓝型油菜磷肥的合理施用以及减磷增效提供理论基础。
1. 材料与方法
1.1 试验材料
供试甘蓝型油菜品种为中双11号(ZS11)和圣光168 (SG168),二者均为半冬性油菜。ZS11是2008年登记的长江中下游推广品种,由中国农业科学院油料作物研究所培育和提供;SG168是2019年登记的丰产、稳产且适应性广的杂交品种,由华中农业大学作物遗传改良全国重点实验室油菜研究室培育和提供。课题组前期研究结果表明,SG168相对于ZS11是磷高效品种[37−39]。
1.2 试验地概况
根箱试验于2019年9月—2020年5月在华中农业大学微量元素研究中心盆栽场(30°28′N,114°22′E)进行,供试土壤为酸紫砂土,采自湖北当阳的丘陵地区,取土深度为40 cm,土壤基本理化性质见表1。田间试验于2019年10月—2020年5月在湖北省黄冈市武穴市梅川镇(30°06′N,115°35′E)进行,该地属亚热带季风性湿润气候,当季平均气温13.5℃,当季总降水量920.3 mm。试验选择了两个土壤速效磷含量差异较大的田块,其中土壤速效磷含量较低的田块命名为低磷田块(low P fertility field,LP field),土壤速效磷含量较高的田块命名为高磷田块(high P fertility field,HP field),两个田块的前茬作物均为水稻,土壤均为砂壤土,基本理化性质见表1。
表 1 根箱和田间试验供试土壤基本性状Table 1. Physiochemical properties of soils used in the rhizotron and field experiments试验地点
Experiment site土壤
SoilpH 有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N全磷 (g/kg)
Total P速效磷 (mg/kg)
Olsen-P速效钾 (mg/kg)
NH4OAc-K武汉
Wuhan酸紫砂土
Acid purplish sandy soil6.40 2.88 0.34 0.01 2.75 90.60 武穴–低磷田块
Wuxue-LP field砂壤土
Sandy loam soil6.38 35.60 0.95 0.57 8.65 147.40 武穴–高磷田块
Wuxue-HP field砂壤土
Sandy loam soil6.01 36.31 1.13 0.61 17.63 168.60 1.3 试验设计
1.3.1 根箱试验
采用定制根箱[40]进行油菜全生育期培养。根箱内有定制隔板。试验设置3个处理,分别为:1)不施磷,隔板两侧的根层土壤均不施磷,记作0P/0P;2)局部供磷,隔板一侧的根层土壤施磷,另一侧不施磷,记作1P/0P;3)均匀供磷,隔板两侧的根层土壤均施磷,记作1P/1P。每个处理设置3个重复,采用完全随机设计。使用(NH4)2SO4、KH2PO4、KCl、MgSO4·7H2O、EDTA-Fe、1000×Arnon微量元素营养液作为肥源,其中1000×Arnon微量元素营养液含有2.85 g/L H3BO3、1.81 g/L MnCl2·4H2O、0.22 g/L ZnSO4·7H2O、0.08 g/L CuSO4·5H2O和0.09 g/L Na2MoO4·2H2O。试验前,首先在根箱底部装填120 kg未施肥的土壤,再在隔板两侧分别装填15 kg施磷或不施磷的根层土壤。1P处理的根层土壤施N 0.2 g/kg 、P2O5 0.15 g/kg、K2O 0.15 g/kg、MgSO4·7H2O 0.25 g/kg、1000×Arnon 1 mL/kg 微量元素营养液以及0.05 mmol/L EDTA-Fe 1 mL/kg。0P处理的土壤除未施用磷肥外,其余肥料的用量均与1P处理一致。根箱试验采用先育苗,再分根移栽的方式。首先选取大小一致的饱满油菜种子,使用1% NaClO消毒后,置于超纯水表面的纱网上育苗,5天后剪去主根根尖,7天后选取两条侧根长度相同且长势一致的幼苗转移至分根塑料盒中,使用霍格兰(Hoagland)营养液培养12天,然后将油菜幼苗的两条侧根分别移栽至根箱隔板左右两侧土壤中培养。
1.3.2 田间试验
田间试验采用随机区组设计,共设置3个处理,分别为:1)不施磷,每行油菜的两侧均不施磷肥,记作0P/0P;2)局部供磷,每行油菜的一侧条施磷肥,另一侧不施磷肥,记作1P/0P;3)均匀供磷,每行油菜的两侧均条施磷肥,记作1P/1P。2019年10月采用穴播的方式播种。每个处理设置3个重复,每个重复种植6行,行距30 cm,每行5株,株距20 cm,行与行之间开沟,磷肥在沟中条施后覆土,施肥深度10 cm,其他肥料按照农民习惯撒施。使用尿素(含氮46%)、过磷酸钙(含P2O5 12%)、氯化钾(含K2O 60%)和硼砂(含B 11%)作为肥源,用量分别为N 180 kg/hm2、P2O5 90 kg/hm2、K2O 120 kg/hm2和B 15 kg/hm2,其中氮肥按照3∶1∶1的比例施用,即基肥施用108 kg/hm2,在幼苗期和蕾薹期各追施36 kg/hm2。
1.4 测定项目与方法
1.4.1 产量相关性状
成熟期取各处理有代表性的3株油菜,统计株高(油菜基部到主茎尖的高度)、分枝数(主茎分生且生长角果的分枝的数量)、角果数(主茎和分枝上含籽粒的角果的数量)、千粒重(使用500粒板称量2次得到的1000粒油菜种子重量),均取平均值,记为1个生物学重复,共3个生物学重复。
1.4.2 地上部生物量
成熟期取各处理有代表性的油菜3株,清洗后装入网袋悬挂风干。统计籽粒、秸秆、角果壳和根系的重量,取平均值,记为1个生物学重复,共3个生物学重复。
1.4.3 总磷测定
油菜各部位样品于80℃烘箱中烘至恒重,而后使用植物粉碎机将角果壳、秸秆和根系磨细,过0.45 mm筛,称取0.05 g磨好的样品转入消煮管,使用H2SO4–H2O2法消煮,将消煮液用钼锑抗试剂显色后通过酶标仪测定700 nm波长下的吸光值,计算油菜各部位的磷浓度。
1.5 数据分析
磷肥偏生产力(kg/kg)=施磷处理油菜籽粒产量/施磷量;磷肥农学效率(kg/kg)=(施磷处理油菜籽粒产量−不施磷处理油菜籽粒产量)/施磷量;地力贡献率(%)=不施磷处理油菜籽粒产量/施磷处理油菜籽粒产量×100。使用Microsoft Excel 2016处理数据,IBM SPSS statistics 18.0进行统计分析,用邓肯(Duncan)法检验不同磷肥处理测定指标在0.05水平的差异显著性,采用Graphpad Prism 8.3软件作图。
2. 结果与分析
2.1 局部供磷对不同甘蓝型油菜品种产量相关性状的影响
根箱试验同一处理,SG168的株高和角果数均高于ZS11 (表2)。ZS11的1P/1P处理的株高和角果数均显著高于1P/0P处理,而SG168的1P/1P和1P/0P处理之间株高、分枝数和角果数均无显著差异 (表2),表明根箱体系中,局部供磷对SG168的产量相关性状无显著影响。不同处理间株高和角果数存在显著差异,不同品种间株高、分枝数、角果数和千粒重均存在显著差异,但上述4个产量相关性状不受品种与处理交互作用的影响 (表2)。
表 2 根箱试验不同供磷处理两个甘蓝型油菜品种的产量相关性状Table 2. Yield related traits of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment品种
Cultivar处理
Treatment株高 (cm)
Plant height分枝数
Branch number per plant角果数
Pod number per plant千粒重 (g)
1000-seed weight中双11号
ZS110P/0P 119.5 b 7.7 b 194.3 c 4.86 a 1P/0P 129.0 b 8.7 ab 369.0 b 4.84 a 1P/1P 143.0 a 9.7 a 501.3 a 4.89 a 圣光168
SG1680P/0P 147.7 a 10.3 a 441.0 b 4.58 a 1P/0P 163.0 a 10.3 a 705.7 a 4.35 a 1P/1P 161.0 a 11.0 a 689.0 a 4.36 a 方差分析 ANOVA C *** ** *** *** T ** ns *** ns C×T ns ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). **—P<0.01; ***—P<0.001; ns—Not significant.田间试验中株高和分枝数同时受到田块、品种和处理3个因素以及田块与处理交互作用的显著影响(表3)。低磷田块,ZS11的1P/1P和1P/0P处理的株高和角果数均无显著差异,SG168的1P/1P和1P/0P处理之间的株高、分枝数均存在显著差异 (表3)。高磷田块,ZS11的1P/1P和1P/0P处理之间的株高、分枝数、角果数均存在显著差异,SG168的1P/1P和1P/0P处理之间的株高、分枝数、角果数和千粒重均无显著差异 (表3)。角果数在不同田块和不同处理间存在显著差异,并受到田块与处理交互作用的影响。不同田块、不同品种和不同处理间千粒重均具有显著差异(表3)。
表 3 田间试验不同供磷处理两个甘蓝型油菜品种的产量相关性状Table 3. Yield related traits of two Brassica napus cultivars under different phosphorus treatments in field experiment田块
Field品种
Cultivar处理
Treatment株高 (cm)
Plant height分枝数
Branch number
per plant角果数
Pod number
per plant千粒重 (g)
1000-seed weight低磷田块
LP field中双11号
ZS110P/0P 96.3 b 1.0 c 42.0 b 5.6 a 1P/0P 148.0 a 5.7 b 310.3 a 5.3 ab 1P/1P 160.7 a 7.0 a 319.0 a 4.8 b 圣光168
SG1680P/0P 116.3 c 2.7 c 72.0 c 5.4 a 1P/0P 157.3 b 6.3 b 268.3 b 4.8 ab 1P/1P 175.7 a 8.0 a 408.0 a 4.5 b 高磷田块
HP field中双11号
ZS110P/0P 159.3 b 6.3 b 339.0 b 5.4 a 1P/0P 163.0 b 6.7 b 335.3 b 4.5 b 1P/1P 176.0 a 8.3 a 446.3 a 4.7 b 圣光168
SG1680P/0P 182.0 a 8.0 a 433.3 a 4.8 a 1P/0P 184.7 a 7.3 a 360.3 a 4.4 b 1P/1P 188.7 a 9.0 a 457.7 a 4.5 ab 方差分析 ANOVA F *** *** *** ** C *** ** ns ** T *** *** *** *** F×C ns ns ns ns F×T *** *** *** ns C×T ns ns ns ns F×C×T ns ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著(P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.2.2 局部供磷对不同甘蓝型油菜品种产量和成熟期干物质积累的影响
根箱试验同一处理,SG168的平均单株籽粒重量高出ZS11达42%~127% ,其中1P/0P处理SG-168的平均单株籽粒重比ZS11高67.6% (表4)。与1P/1P处理比较,ZS11的1P/0P处理的单株籽粒重、单株角果壳干重、单株秸秆干重和单株根干重均显著降低,而SG168的1P/0P处理的单株籽粒重、单株秸秆干重和单株根干重均无显著差异 (表4),表明局部供磷并未对SG168的干物质积累产生显著影响。单株秸秆干重和单株根干重均存在显著的品种与处理间的交互作用 (表4)。
表 4 根箱试验不同供磷处理两个甘蓝型油菜品种的干物质积累 (g/plant)Table 4. Dry matter accumulation of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment品种
Cultivar处理
Treatment籽粒
Seed角果壳
Pod秸秆
Straw根系
Root中双11号
ZS110P/0P 27.95 c 22.03 c 23.93 c 7.31 b 1P/0P 49.10 b 41.10 b 42.96 b 12.54 b 1P/1P 62.12 a 58.91 a 59.06 a 21.05 a 圣光168
SG1680P/0P 63.44 b 58.83 c 66.43 a 18.42 a 1P/0P 82.31 a 71.01 ab 79.68 a 14.38 a 1P/1P 87.99 a 84.25 a 75.71 a 19.56 a 方差分析 ANOVA C *** *** *** ns T *** *** *** * C×T ns ns * * 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; ***—P<0.001; ns—Not significant.田间试验同一田块的同一处理,SG168的籽粒产量均高于ZS11,平均籽粒产量比ZS11高18.0%~86.7% (图1)。高磷和低磷田块,ZS11的籽粒产量均表现出1P/1P>1P/0P>0P/0P的趋势,不同处理SG168的籽粒产量在低磷田块的趋势与ZS11一致(图1A),但在高磷田块SG168的1P/0P与1P/1P处理的籽粒产量无显著差异 (图1B),这与根箱试验单株籽粒重的结果一致 (表4)。田间试验低磷和高磷田块中SG168的平均籽粒产量比ZS11分别高22.5%和37.9% (图1)。不同磷处理,两个品种各部位的干物质积累量均以1P/1P处理最高,其中,ZS11在低磷和高磷田块均表现出1P/1P>1P/0P>0P/0P的趋势,而SG168在高磷田块1P/0P与1P/1P处理的单株籽粒重和单株角果壳干重无显著差异 (表5)。单株秸秆重受到田块与品种、田块与处理、品种与处理以及田块、品种和处理间交互作用等的显著影响 (表5)。
图 1 田间试验不同供磷处理两个甘蓝型油菜品种的籽粒产量注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。柱上不同小写字母表示同一甘蓝型油菜品种不同处理之间差异显著 (P<0.05)。Figure 1. Seed yield of two Brassica napus cultivars under different phosphorus treatments in field experimentNote: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. Different lowercase letters above the bars indicate significant difference of the same Brassica napus cultivar among different treatments (P<0.05).表 5 田间试验不同供磷处理两个甘蓝型油菜品种的干物质积累 (g/plant)Table 5. Dry matter accumulation of two Brassica napus cultivars under different phosphorus treatments in field experiment田块
Field品种
Cultivar处理
Treatment籽粒
Seed角果壳
Pod秸秆
Straw根系
Root低磷田块
LP field中双11号
ZS110P/0P 2.39 b 3.4 b 3.22 b 0.90 b 1P/0P 22.04 a 24.67 a 26.33 a 7.54 a 1P/1P 26.41 a 27.33 a 33.55 a 12.26 a 圣光168
SG1680P/0P 4.94 c 6.56 c 5.89 c 1.40 c 1P/0P 22.38 b 25.00 b 25.22 b 7.10 b 1P/1P 36.96 a 39.11 a 42.89 a 13.99 a 高磷田块
HP field中双11号
ZS110P/0P 17.50 c 26.11 a 29.89 a 7.65 b 1P/0P 24.06 b 24.33 a 31.00 a 9.34 b 1P/1P 35.35 a 46.67 a 36.44 a 14.75 a 圣光168
SG1680P/0P 23.92 b 25.67 a 29.44 c 11.15 ab 1P/0P 39.68 a 50.00 a 50.33 b 9.37 b 1P/1P 44.84 a 39.00 a 62.11 a 16.03 a 方差分析 ANOVA F *** ** *** *** C *** ns *** ns T *** *** *** *** F×C ns ns ** ns F×T ns ns ** ** C×T ns ns ** ns F×C×T ns ns * ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.2.3 局部供磷对不同甘蓝型油菜品种成熟期各部位磷积累量的影响
根箱试验同一处理,SG168籽粒的磷积累量均显著高于ZS11。SG168的0P/0P、1P/0P和1P/1P处理地上部的磷积累量分别比ZS11 提高了131%、70%和35%。与1P/1P处理比较,1P/0P处理对ZS11和SG168的籽粒磷积累量无显著影响,但显著降低了两个品种角果壳、秸秆和根中的磷积累量 (表6),表明局部供磷能够将吸收的磷优先分配给籽粒。
表 6 根箱试验不同供磷处理两个甘蓝型油菜品种的磷积累量 (mg/plant)Table 6. Phosphorus accumulation of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment品种 Cultivar 处理 Treatment 籽粒 Seed 角果壳 Pod 秸秆 Straw 根系 Root 地上部 Shoot 中双11号
ZS110P/0P 91.75 b 4.44 b 4.65 b 1.36 b 100.84 c 1P/0P 271.47 a 35.02 b 11.43 b 4.51 b 317.91 b 1P/1P 386.56 a 102.37 a 38.25 a 34.86 a 527.18 a 圣光168
SG1680P/0P 192.32 b 28.10 b 10.66 b 4.30 b 231.09 c 1P/0P 486.96 a 32.42 b 19.21 b 6.43 b 538.59 b 1P/1P 574.82 a 89.65 a 48.17 a 17.62 a 712.63 a 方差分析 ANOVA C *** ns ns ns *** T *** *** *** *** *** C×T ns ns ns * ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; ***—P<0.001; ns—Not significant.田间试验同一田块的0P/0P和1P/1P处理,SG168的平均籽粒磷积累量和平均地上部磷积累量均高于ZS11。籽粒和地上部磷积累量均受到田块、品种和处理间交互作用的影响 (表7)。与根箱试验结果类似,田间试验的低磷田块,ZS11的1P/0P处理各部位磷积累量与1P/1P处理无显著差异,高磷田块SG168的1P/0P处理各部位磷积累量与1P/1P处理无显著差异,表明局部供磷对各部位磷积累量的影响与土壤本底磷含量和油菜品种有关 (表7)。
表 7 田间试验不同供磷处理两个甘蓝型油菜品种的磷积累量 (mg/plant)Table 7. Phosphorus accumulation of two Brassica napus cultivars under different phosphorus treatments in field experiment田块 Field 品种 Cultivar 处理 Treatment 籽粒 Seed 角果壳 Pod 秸秆 Straw 根系 Root 地上部 Shoot 低磷田块
LP field中双11号
ZS110P/0P 8.97 b 1.23 b 1.29 b 0.31 b 11.49 b 1P/0P 92.28 a 7.88 a 6.15 a 2.47 a 106.31 a 1P/1P 109.38 a 10.09 a 7.22 a 3.78 a 126.69 a 圣光168
SG1680P/0P 20.03 c 2.20 c 1.81 b 0.31 c 24.05 c 1P/0P 83.43 b 7.55 b 8.57 ab 1.62 b 99.55 b 1P/1P 178.38 a 11.81 a 16.55 a 4.33 a 206.74 a 高磷田块
HP field中双11号
ZS110P/0P 101.74 b 24.85 a 12.60 b 4.03 b 139.19 b 1P/0P 122.02 b 21.24 a 10.07 b 3.19 b 153.33 b 1P/1P 187.93 a 62.78 a 24.42 a 5.75 a 275.13 a 圣光168
SG1680P/0P 131.26 b 19.22 a 10.08 b 4.44 a 160.56 b 1P/0P 205.22 a 37.41 a 23.48 ab 3.25 a 266.11 a 1P/1P 242.85 a 38.86 a 31.23 a 7.41 a 312.98 a 方差分析 ANOVA F *** *** *** *** *** C *** ns * ns *** T *** ** *** *** *** F×C * ns ns ns ns F×T *** ns ns * ns C×T ns ns ns ns ns F×C×T * ns ns ns ** 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application;1P/0P—P side-dressing;1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.2.4 局部供磷对不同甘蓝型油菜品种磷利用效率的影响
根箱试验同一处理,SG168的磷肥偏生产力和地力贡献率均高于ZS11 (表8)。SG168的 1P/0P处理的磷肥偏生产力相较于1P/1P处理提高87%,地力贡献率提高6%。ZS11的1P/0P处理的磷肥偏生产力相较于1P/1P处理提高58%,地力贡献率提高26%。与1P/1P处理比较,1P/0P处理并不影响两个品种的磷肥农学效率。磷肥偏生产力受到品种与处理交互作用的影响,磷肥偏生产力和地力贡献率对局部供磷的响应存在品种之间的差异 (表8)。
表 8 根箱试验不同供磷处理两个甘蓝型油菜品种的磷肥利用效率Table 8. Phosphorus fertilizer use efficiency of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment品种
Cultivar处理
Treatment磷肥偏生产力 (kg/kg)
Partial factor productivity of P fertilizer磷肥农学效率 (kg/kg)
P agromomic efficiency地力贡献率 (%)
Contribution rate of soil productivity中双11号
ZS110P/0P 1P/0P 43.65 a 18.80 a 57.15 a 1P/1P 27.61 b 15.19 a 45.21 b 圣光168
SG1680P/0P 1P/0P 73.16 a 16.77 a 77.17 a 1P/1P 39.11 b 10.91 a 72.73 a 方差分析 ANOVA C *** ns *** T *** * * C×T ** ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.田间试验的低磷和高磷田块中,局部供磷时SG168磷肥偏生产力分别高出ZS11 22.5%和37.9%,表明磷肥偏生产力对局部供磷的响应存在品种之间的差异(表9)。与1P/1P处理比较,1P/0P处理并不影响两个品种的磷肥农学效率,这与根箱试验结果一致。低磷田块局部供磷并不影响两个品种的磷肥偏生产力,而高磷田块两个品种1P/0P处理的磷肥偏生产力均显著高于1P/1P处理,表明磷肥偏生产力对局部供磷的响应受到土壤磷水平的影响 (表9)。
表 9 田间试验不同供磷处理两个甘蓝型油菜品种的磷肥利用效率Table 9. Phosphorus fertilizer use efficiency of two Brassica napus cultivars under different phosphorus treatments in field experiment田块
Field品种
Cultivar处理
Treatment磷肥偏生产力 (kg/kg)
Partial factor productivity of P fertilizer磷肥农学效率 (kg/kg)
P agromomic efficiency地力贡献率 (%)
Contribution rate of soil productivity低磷田块
LP field中双11号
ZS110P/0P 1P/0P 20.66 a 14.63 a 29.28 a 1P/1P 17.66 a 14.64 a 17.4 b 圣光168
SG1680P/0P 1P/0P 25.31 a 14.05 a 44.87 a 1P/1P 22.6 a 16.97 a 25.54 b 高磷田块
HP field中双11号
ZS110P/0P 1P/0P 39.9 a 10.32 a 75.11 a 1P/1P 25.41 b 10.62 a 58.21 b 圣光168
SG1680P/0P 1P/0P 55.01 a 14.2 a 74.71 a 1P/1P 29.98 b 9.57 a 68.26 a 方差分析 ANOVA F *** * *** C *** ns ** T *** ns *** F×C ns ns ns F×T *** ns ns C×T ns ns ns F×C×T ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.3. 讨论
3.1 局部供磷对油菜产量的影响
根箱试验0P/0P处理的甘蓝型油菜单株籽粒重 (表4) 均远高于田间试验的1P/1P处理 (表5),这与Yuan等[40]的研究结果相似,这可能与甘蓝型油菜的栽培模式、根箱的填土量和酸紫砂土的自身特性有关。根箱试验的栽培模式是甘蓝型油菜幼苗经营养液培养后分根,然后移栽到土壤中,而田间试验的栽培模式是直播,有研究指出,移栽油菜的产量显著高于直播油菜[41]。每个根箱的填土量为150 kg,尽管酸紫砂土本身的磷含量很低,但较大的填土量提高了整个根箱的磷总量,因此单株油菜土壤磷的容量因素大。此外,酸紫砂土固定磷的能力较弱[42],并且有利于油菜根系的深扎和养分的吸收,因此根箱试验各项指标与田间试验高磷田块的趋势相似。
田间试验中,与高磷田块0P/0P处理比较,低磷田块0P/0P处理的油菜植株矮小、分枝数和角果数少、生物量低(表3、表5),说明在没有磷肥投入的情况下,低磷田块土壤本身可供油菜利用的磷极少。Li等[36]研究结果表明,甘蓝型油菜局部供磷能够诱导供磷充足区域侧根的增加,并能增加磷缺乏区域根中磷的浓度。在低磷田块中,与1P/0P处理比较,1P/1P处理ZS11和SG168的籽粒产量显著增加(图1A),且两个甘蓝型油菜品种在1P/0P处理的地力贡献率均显著高于1P/1P处理 (表9),说明1P/0P处理提高了甘蓝型油菜对土壤中磷的吸收利用能力。低磷田块土壤中磷含量过低,1P/0P处理诱导根系从土壤中活化吸收的磷不足以在减施磷肥时满足油菜生长,且甘蓝型油菜对缺磷敏感[43],因此低磷田块需要施用足量的磷肥才能不减产。在根箱试验和田间试验高磷田块中,土壤环境中供磷相对充足,与1P/1P处理相比,1P/0P处理SG168的单株籽粒重和籽粒产量没有显著降低 (表4、图1B),这与前人[44−45]的研究结果类似,徐霞等[46]研究表明施磷能够提高作物产量,但产量和磷肥利用效率均会受土壤肥力水平的影响,本研究表明土壤本底速效磷含量会影响局部供磷的效果。
在根箱试验和田间试验高磷田块中,与SG168比较,ZS11的单株籽粒重和籽粒产量显著降低(表4、图1B),这表明除了土壤本身的磷含量外,油菜品种也会影响局部供磷的效果。不同试验同一处理,SG168株高、分枝数和单株籽粒重均大于ZS11 (表2、表3、表4、表5),表明SG168具有较高的产量潜力。根箱试验相同处理SG168的平均单株籽粒重比ZS11高42%~127% (表4),田间试验相同处理SG168的平均籽粒产量比ZS11高18.0%~86.7% (图1) ,这与前人的研究结果[38−39]类似,可能因为SG168是甘蓝型半冬性杂交油菜品种,而ZS11为甘蓝型半冬性常规油菜品种,SG168相比ZS11具有杂种优势。1P/0P处理,根箱试验SG168的平均单株籽粒重比ZS11高67.6% (表4),田间试验低磷和高磷田块中SG168的平均籽粒产量比ZS11分别高22.5%和37.9% (图1),且根箱和高磷田块的1P/0P处理SG168的籽粒、秸秆和根系的平均磷积累量均高于ZS11 (表6、表7),这表明SG168相较于ZS11更适应局部供磷的环境,原因可能为SG168吸收利用磷的能力更强。前人研究表明,不同基因型油菜对低磷的响应存在差异,与磷低效甘蓝型油菜品种相比,磷高效甘蓝型油菜品种的根系能够分泌更多的酸性磷酸酶[47],提高活化和吸收土壤中Ca-P和Al-P的能力[48],从而获得更多产量。在局部供磷条件下,相较于磷低效基因型,磷高效基因型的玉米、棉花、小白菜也能在供磷一侧增加更多根,分泌更多的酸性磷酸酶,以适应局部供磷的环境[25, 31−32]。此外,本研究根箱试验和田间试验的低磷田块,SG168的磷肥偏生产力和地力贡献率高于ZS11 (表8、表9),表明SG168磷利用效率也高于ZS11,具体机制还需进一步研究。
3.2 局部供磷实现油菜减磷增效
由于磷肥极易被土壤固定,一般情况下磷肥的当季利用率只有10%~20%[49]。连续过多的磷肥投入导致土壤磷库增加[50−52],并增加环境风险[4−6]。长江流域是我国最大的冬油菜种植区[33],目前长江中游的水旱轮作区土壤磷素盈余量已经达到施磷量的22%[8]。朱芸等[7]通过分析长江流域多年多点的农田养分数据,发现稻油轮作模式中土壤的周年磷盈余量维持在较高水平,其中土壤速效磷的均值达到16.1 mg/kg,这一数值接近本试验中高磷田块的17.63 mg/kg (表1)。减施磷肥是降低磷在农田土壤中过量积累的重要途径。油菜减磷增效需要在合理施用氮钾肥的基础上,综合考虑土壤肥力、施肥方式、作物品种、生长规律和各时期的需肥特性。前人研究表明,减施氮肥的同时减施20%的磷肥不会显著降低油菜的产量[44−45],在番茄[53−54]、玉米[55]、水稻和小麦[56]中也有减施磷肥但不减产的报道。局部供磷可以减少土壤中磷的固定[57−58],诱导油菜供磷一侧根系的生长[36],相较于均匀表施可使油菜增产2%~9%[59−60]。与ZS11比较,SG168具有高产稳产性,在高磷田块中,SG168 的1P/0P处理的平均籽粒产量相较于1P/1P处理没有显著降低,甚至高出ZS11的1P/1P处理的平均籽粒产量8.2% (图1B)。因此在长江流域速效磷含量较高的农田中,通过局部条施的供磷方式种植SG168,可以实现不影响油菜产量的同时,回收利用水稻季结束后盈余的磷,充分利用磷肥的后效,从而减少磷肥投入,降低耕作成本和环境污染,促进农业可持续发展。
4. 结论
局部供磷能够增强油菜对土壤中磷的吸收利用,提高地力贡献率和磷肥偏生产力。局部供磷对油菜磷素吸收利用和产量的影响与土壤本底磷水平和油菜品种相关。与均匀供磷相比,在低磷肥力田块,局部供磷会降低油菜籽粒产量,并减少籽粒磷积累量。而在高磷肥力田块,局部供磷会降低ZS11的产量和籽粒磷积累量,但对SG168的产量和籽粒磷积累量无显著影响。与ZS11比较,SG168吸收利用磷的能力更强,相同处理下SG168的株高、分枝数、产量和磷肥偏生产力均高于ZS11。在本研究高磷肥力土壤中,通过局部施磷的方式种植SG168,可以实现不减产的同时减少一半磷肥的施用。
-
图 1 田间试验不同供磷处理两个甘蓝型油菜品种的籽粒产量
注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。柱上不同小写字母表示同一甘蓝型油菜品种不同处理之间差异显著 (P<0.05)。
Figure 1. Seed yield of two Brassica napus cultivars under different phosphorus treatments in field experiment
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. Different lowercase letters above the bars indicate significant difference of the same Brassica napus cultivar among different treatments (P<0.05).
表 1 根箱和田间试验供试土壤基本性状
Table 1 Physiochemical properties of soils used in the rhizotron and field experiments
试验地点
Experiment site土壤
SoilpH 有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N全磷 (g/kg)
Total P速效磷 (mg/kg)
Olsen-P速效钾 (mg/kg)
NH4OAc-K武汉
Wuhan酸紫砂土
Acid purplish sandy soil6.40 2.88 0.34 0.01 2.75 90.60 武穴–低磷田块
Wuxue-LP field砂壤土
Sandy loam soil6.38 35.60 0.95 0.57 8.65 147.40 武穴–高磷田块
Wuxue-HP field砂壤土
Sandy loam soil6.01 36.31 1.13 0.61 17.63 168.60 表 2 根箱试验不同供磷处理两个甘蓝型油菜品种的产量相关性状
Table 2 Yield related traits of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment
品种
Cultivar处理
Treatment株高 (cm)
Plant height分枝数
Branch number per plant角果数
Pod number per plant千粒重 (g)
1000-seed weight中双11号
ZS110P/0P 119.5 b 7.7 b 194.3 c 4.86 a 1P/0P 129.0 b 8.7 ab 369.0 b 4.84 a 1P/1P 143.0 a 9.7 a 501.3 a 4.89 a 圣光168
SG1680P/0P 147.7 a 10.3 a 441.0 b 4.58 a 1P/0P 163.0 a 10.3 a 705.7 a 4.35 a 1P/1P 161.0 a 11.0 a 689.0 a 4.36 a 方差分析 ANOVA C *** ** *** *** T ** ns *** ns C×T ns ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). **—P<0.01; ***—P<0.001; ns—Not significant.表 3 田间试验不同供磷处理两个甘蓝型油菜品种的产量相关性状
Table 3 Yield related traits of two Brassica napus cultivars under different phosphorus treatments in field experiment
田块
Field品种
Cultivar处理
Treatment株高 (cm)
Plant height分枝数
Branch number
per plant角果数
Pod number
per plant千粒重 (g)
1000-seed weight低磷田块
LP field中双11号
ZS110P/0P 96.3 b 1.0 c 42.0 b 5.6 a 1P/0P 148.0 a 5.7 b 310.3 a 5.3 ab 1P/1P 160.7 a 7.0 a 319.0 a 4.8 b 圣光168
SG1680P/0P 116.3 c 2.7 c 72.0 c 5.4 a 1P/0P 157.3 b 6.3 b 268.3 b 4.8 ab 1P/1P 175.7 a 8.0 a 408.0 a 4.5 b 高磷田块
HP field中双11号
ZS110P/0P 159.3 b 6.3 b 339.0 b 5.4 a 1P/0P 163.0 b 6.7 b 335.3 b 4.5 b 1P/1P 176.0 a 8.3 a 446.3 a 4.7 b 圣光168
SG1680P/0P 182.0 a 8.0 a 433.3 a 4.8 a 1P/0P 184.7 a 7.3 a 360.3 a 4.4 b 1P/1P 188.7 a 9.0 a 457.7 a 4.5 ab 方差分析 ANOVA F *** *** *** ** C *** ** ns ** T *** *** *** *** F×C ns ns ns ns F×T *** *** *** ns C×T ns ns ns ns F×C×T ns ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著(P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.表 4 根箱试验不同供磷处理两个甘蓝型油菜品种的干物质积累 (g/plant)
Table 4 Dry matter accumulation of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment
品种
Cultivar处理
Treatment籽粒
Seed角果壳
Pod秸秆
Straw根系
Root中双11号
ZS110P/0P 27.95 c 22.03 c 23.93 c 7.31 b 1P/0P 49.10 b 41.10 b 42.96 b 12.54 b 1P/1P 62.12 a 58.91 a 59.06 a 21.05 a 圣光168
SG1680P/0P 63.44 b 58.83 c 66.43 a 18.42 a 1P/0P 82.31 a 71.01 ab 79.68 a 14.38 a 1P/1P 87.99 a 84.25 a 75.71 a 19.56 a 方差分析 ANOVA C *** *** *** ns T *** *** *** * C×T ns ns * * 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; ***—P<0.001; ns—Not significant.表 5 田间试验不同供磷处理两个甘蓝型油菜品种的干物质积累 (g/plant)
Table 5 Dry matter accumulation of two Brassica napus cultivars under different phosphorus treatments in field experiment
田块
Field品种
Cultivar处理
Treatment籽粒
Seed角果壳
Pod秸秆
Straw根系
Root低磷田块
LP field中双11号
ZS110P/0P 2.39 b 3.4 b 3.22 b 0.90 b 1P/0P 22.04 a 24.67 a 26.33 a 7.54 a 1P/1P 26.41 a 27.33 a 33.55 a 12.26 a 圣光168
SG1680P/0P 4.94 c 6.56 c 5.89 c 1.40 c 1P/0P 22.38 b 25.00 b 25.22 b 7.10 b 1P/1P 36.96 a 39.11 a 42.89 a 13.99 a 高磷田块
HP field中双11号
ZS110P/0P 17.50 c 26.11 a 29.89 a 7.65 b 1P/0P 24.06 b 24.33 a 31.00 a 9.34 b 1P/1P 35.35 a 46.67 a 36.44 a 14.75 a 圣光168
SG1680P/0P 23.92 b 25.67 a 29.44 c 11.15 ab 1P/0P 39.68 a 50.00 a 50.33 b 9.37 b 1P/1P 44.84 a 39.00 a 62.11 a 16.03 a 方差分析 ANOVA F *** ** *** *** C *** ns *** ns T *** *** *** *** F×C ns ns ** ns F×T ns ns ** ** C×T ns ns ** ns F×C×T ns ns * ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.表 6 根箱试验不同供磷处理两个甘蓝型油菜品种的磷积累量 (mg/plant)
Table 6 Phosphorus accumulation of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment
品种 Cultivar 处理 Treatment 籽粒 Seed 角果壳 Pod 秸秆 Straw 根系 Root 地上部 Shoot 中双11号
ZS110P/0P 91.75 b 4.44 b 4.65 b 1.36 b 100.84 c 1P/0P 271.47 a 35.02 b 11.43 b 4.51 b 317.91 b 1P/1P 386.56 a 102.37 a 38.25 a 34.86 a 527.18 a 圣光168
SG1680P/0P 192.32 b 28.10 b 10.66 b 4.30 b 231.09 c 1P/0P 486.96 a 32.42 b 19.21 b 6.43 b 538.59 b 1P/1P 574.82 a 89.65 a 48.17 a 17.62 a 712.63 a 方差分析 ANOVA C *** ns ns ns *** T *** *** *** *** *** C×T ns ns ns * ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; ***—P<0.001; ns—Not significant.表 7 田间试验不同供磷处理两个甘蓝型油菜品种的磷积累量 (mg/plant)
Table 7 Phosphorus accumulation of two Brassica napus cultivars under different phosphorus treatments in field experiment
田块 Field 品种 Cultivar 处理 Treatment 籽粒 Seed 角果壳 Pod 秸秆 Straw 根系 Root 地上部 Shoot 低磷田块
LP field中双11号
ZS110P/0P 8.97 b 1.23 b 1.29 b 0.31 b 11.49 b 1P/0P 92.28 a 7.88 a 6.15 a 2.47 a 106.31 a 1P/1P 109.38 a 10.09 a 7.22 a 3.78 a 126.69 a 圣光168
SG1680P/0P 20.03 c 2.20 c 1.81 b 0.31 c 24.05 c 1P/0P 83.43 b 7.55 b 8.57 ab 1.62 b 99.55 b 1P/1P 178.38 a 11.81 a 16.55 a 4.33 a 206.74 a 高磷田块
HP field中双11号
ZS110P/0P 101.74 b 24.85 a 12.60 b 4.03 b 139.19 b 1P/0P 122.02 b 21.24 a 10.07 b 3.19 b 153.33 b 1P/1P 187.93 a 62.78 a 24.42 a 5.75 a 275.13 a 圣光168
SG1680P/0P 131.26 b 19.22 a 10.08 b 4.44 a 160.56 b 1P/0P 205.22 a 37.41 a 23.48 ab 3.25 a 266.11 a 1P/1P 242.85 a 38.86 a 31.23 a 7.41 a 312.98 a 方差分析 ANOVA F *** *** *** *** *** C *** ns * ns *** T *** ** *** *** *** F×C * ns ns ns ns F×T *** ns ns * ns C×T ns ns ns ns ns F×C×T * ns ns ns ** 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application;1P/0P—P side-dressing;1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.表 8 根箱试验不同供磷处理两个甘蓝型油菜品种的磷肥利用效率
Table 8 Phosphorus fertilizer use efficiency of two Brassica napus cultivars under different phosphorus treatments in rhizotron experiment
品种
Cultivar处理
Treatment磷肥偏生产力 (kg/kg)
Partial factor productivity of P fertilizer磷肥农学效率 (kg/kg)
P agromomic efficiency地力贡献率 (%)
Contribution rate of soil productivity中双11号
ZS110P/0P 1P/0P 43.65 a 18.80 a 57.15 a 1P/1P 27.61 b 15.19 a 45.21 b 圣光168
SG1680P/0P 1P/0P 73.16 a 16.77 a 77.17 a 1P/1P 39.11 b 10.91 a 72.73 a 方差分析 ANOVA C *** ns *** T *** * * C×T ** ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant.表 9 田间试验不同供磷处理两个甘蓝型油菜品种的磷肥利用效率
Table 9 Phosphorus fertilizer use efficiency of two Brassica napus cultivars under different phosphorus treatments in field experiment
田块
Field品种
Cultivar处理
Treatment磷肥偏生产力 (kg/kg)
Partial factor productivity of P fertilizer磷肥农学效率 (kg/kg)
P agromomic efficiency地力贡献率 (%)
Contribution rate of soil productivity低磷田块
LP field中双11号
ZS110P/0P 1P/0P 20.66 a 14.63 a 29.28 a 1P/1P 17.66 a 14.64 a 17.4 b 圣光168
SG1680P/0P 1P/0P 25.31 a 14.05 a 44.87 a 1P/1P 22.6 a 16.97 a 25.54 b 高磷田块
HP field中双11号
ZS110P/0P 1P/0P 39.9 a 10.32 a 75.11 a 1P/1P 25.41 b 10.62 a 58.21 b 圣光168
SG1680P/0P 1P/0P 55.01 a 14.2 a 74.71 a 1P/1P 29.98 b 9.57 a 68.26 a 方差分析 ANOVA F *** * *** C *** ns ** T *** ns *** F×C ns ns ns F×T *** ns ns C×T ns ns ns F×C×T ns ns ns 注:0P/0P—不施磷;1P/0P—局部供磷;1P/1P—均匀供磷。F—田块;C—品种;T—处理。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。*—P<0.05;**—P<0.01;***—P<0.001;ns—不显著。
Note: 0P/0P—No P application; 1P/0P—P side-dressing; 1P/1P—Homogenous P supply. F—Field; C—Cultivar; T—Treatment. Values followed by different lowercase letters in the same column mean significant difference among treatments (P<0.05). *—P<0.05; **—P<0.01; ***—P<0.001; ns—Not significant. -
[1] Shen J B, Yuan L X, Zhang J L, et al. Phosphorus dynamics: From soil to plant[J]. Plant Physiology, 2011, 156(3): 997−1005. DOI: 10.1104/pp.111.175232
[2] Jiao X Q, Lyu Y, Wu X B, et al. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China[J]. Journal of Experimental Botany, 2016, 67(17): 4935−4949. DOI: 10.1093/jxb/erw282
[3] Herrera-Estrella L, Lopez-Arredondo D. Phosphorus: The underrated element for feeding the world[J]. Trends in Plant Science, 2016, 21(6): 461−463. DOI: 10.1016/j.tplants.2016.04.010
[4] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: Nitrogen and phosphorus[J]. Science, 2009, 323: 1014−1015. DOI: 10.1126/science.1167755
[5] 鲁如坤. 土壤磷素水平和水体环境保护[J]. 磷肥与复肥, 2003, 18(1): 4−8. DOI: 10.3969/j.issn.1007-6220.2003.01.002 Lu R K. The phosphorus level of soil and environmental protection of water body[J]. Phosphate & Compound Fertilizer, 2003, 18(1): 4−8. DOI: 10.3969/j.issn.1007-6220.2003.01.002
[6] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915−924. DOI: 10.3321/j.issn:0564-3929.2008.05.018 Zhang F S, Wang J Q, Zhang W F, et al. Nutrient use efficiencies of major cereal crop in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915−924. DOI: 10.3321/j.issn:0564-3929.2008.05.018
[7] 朱芸, 廖世鹏, 刘煜, 等. 长江流域油–稻与麦–稻轮作体系周年养分收支差异[J]. 植物营养与肥料学报, 2019, 25(1): 64−73. DOI: 10.11674/zwyf.18031 Zhu Y, Liao S P, Liu Y, et al. Differences of annual nutrient budgets between rapeseed−rice and wheat−rice rotations in the Yangtze River Basin[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(1): 64−73. DOI: 10.11674/zwyf.18031
[8] 都江雪, 韩天富, 曲潇林, 等. 中国主要粮食作物磷肥偏生产力时空演变特征及驱动因素[J]. 植物营养与肥料学报, 2022, 28(2): 191−204. Du J X, Han T F, Qu X L, et al. Spatial-temporal evolution characteristics and driving factors of partial phosphorus productivity in major grain crops in China[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(2): 191−204.
[9] 闫金垚, 郭丽璇, 王昆昆, 等. 长江流域稻−油轮作区土壤磷库现状及环境风险分析[J]. 土壤学报, 2023, 60: 247−257. Yan J Y, Guo L X, Wang K K, et al. Status of soil phosphorus pool and environmental risk assessment in rice-oilseed rape rotation area in the Yangtze River Basin[J]. Acta Pedologica Sinica, 2021, 60: 247−257.
[10] 安迪, 杨令, 王冠达, 等. 磷在土壤中的固定机制和磷肥的高效利用[J]. 化工进展, 2013, 32(8): 1967−1973. An D, Yang L, Wang G D, et al. Mechanisms of phosphorus fixation in soils and efficient utilization of phosphate fertilizer[J]. Chemical Industry and Engineering Progress, 2013, 32(8): 1967−1973.
[11] 江尚焘, 王火焰, 周健民, 等. 磷肥施用方式及类型对冬小麦产量和磷素吸收的影响[J]. 应用生态学报, 2016, 27(5): 1503−1510. DOI: 10.13287/j.1001-9332.201605.034 Jiang S T, Wang H Y, Zhou J M, et al. Effects of phosphorus fertilizer application methods and types on the yield and phosphorus uptake of winter wheat[J]. Chinese Journal of Applied Ecology, 2016, 27(5): 1503−1510. DOI: 10.13287/j.1001-9332.201605.034
[12] 王火焰, 周健民. 根区施肥—提高肥料养分利用率和减少面源污染的关键和必需措施[J]. 土壤, 2013, 45(5): 785−790. Wang H Y, Zhou J M. Root-zone fertilization—a key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland[J]. Soils, 2013, 45(5): 785−790.
[13] Lynch J P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops[J]. Plant Physiology, 2011, 156(3): 1041−1049. DOI: 10.1104/pp.111.175414
[14] Wang X, Feng J J, White P J, et al. Heterogeneous phosphate supply influences maize lateral root proliferation by regulating auxin redistribution[J]. Annals of Botany, 2020, 125(1): 119−130. DOI: 10.1093/aob/mcz154
[15] 李亚林. 甘蓝型油菜响应局部供磷的生理和分子机制研究[D]. 湖北武汉: 华中农业大学博士学位论文, 2022. Li Y L. Physiological and molecular mechanisms of Brassica napus in response to local phosphorus supply[D]. Wuhan, Hubei: PhD Dissertation of Huazhong Agricultural University, 2022.
[16] Liu Q, Zhou G Q, Xu F, et al. The involvement of auxin in root architecture plasticity in Arabidopsis induced by heterogeneous phosphorus availability[J]. Biologia Plantarum, 2013, 57(4): 739−748. DOI: 10.1007/s10535-013-0327-z
[17] He Y, Liao H, Yan X L. Localized supply of phosphorus induces root morphological and architectural changes of rice in split and stratified soil cultures[J]. Plant and Soil, 2003, 248(1−2): 247−256.
[18] Gao W, Blaser S R G A, Schlüter S, et al. Effect of localised phosphorus application on root growth and soil nutrient dynamics in situ–comparison of maize ( Zea mays) and faba bean ( Vicia faba) at the seedling stage[J]. Plant and Soil, 2019, 441: 469−483. DOI: 10.1007/s11104-019-04138-2
[19] 王昕, 唐宏亮, 申建波. 玉米根系对土壤氮、磷空间异质性分布的响应[J]. 植物营养与肥料学报, 2013, 19(5): 1058−1064. DOI: 10.11674/zwyf.2013.0504 Wang X, Tang H L, Shen J B. Root responses of maize to spatial heterogenous nitrogen and phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(5): 1058−1064. DOI: 10.11674/zwyf.2013.0504
[20] 朱祝军, 孙羲. 局部供磷对玉米根系生长、磷吸收速率的影响[J]. 植物生理学报, 1993, 19(3): 221−228. Zhu Z J, Sun X. Effects of localized supply of phosphate on root growth and phosphate uptake rate in maize[J]. Physiology and Molecular Biology of Plants, 1993, 19(3): 221−228.
[21] Sun H G, Zhang F S, Li L, et al. The morphological changes of wheat genotypes as affected by the levels of localized phosphate supply[J]. Plant and Soil, 2002, 245: 233−238. DOI: 10.1023/A:1020472608609
[22] Drew M C. Comparison of the effects of a localised supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley[J]. New Phytologist, 1975, 75: 479−490. DOI: 10.1111/j.1469-8137.1975.tb01409.x
[23] Shen J B, Li H G, Neumann G, et al. Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system[J]. Plant Science, 2005, 168(3): 837−845. DOI: 10.1016/j.plantsci.2004.10.017
[24] 林雅茹, 唐宏亮, 申建波. 野生大豆根系形态对局部磷供应的响应及其对磷吸收的贡献[J]. 植物营养与肥料学报, 2013, 19(1): 158−165. Lin Y R, Tang H L, Shen J B. Effect of localized phosphorus supply on root morphological traits and their contribution to phosphorus uptake in wild soybean[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 158−165.
[25] 冯琳, 顾惠敏, 叶祖鹏, 等. 不同基因型棉花根系对局部供磷的响应特征[J]. 植物营养与肥料学报, 2018, 24(5): 1303−1312. DOI: 10.11674/zwyf.17488 Feng L, Gu H M, Ye Z P, et al. Root response of different cotton genotypes to local phosphorus supply[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1303−1312. DOI: 10.11674/zwyf.17488
[26] 车美美, 袁依馨, 赵一童, 等. 局部供磷条件下苹果幼苗根系形态的适应性变化及其对磷素的吸收[J]. 中国果树, 2019, (5): 16−19. Che M M, Yuan Y X, Zhao Y T, et al. Root configuration and phosphorus utilization response of apple seedlings to local phosphorus supply[J]. China Fruits, 2019, (5): 16−19.
[27] 吴文景, 梅辉坚, 许静静, 等. 供磷水平及方式对杉木幼苗根系生长和磷利用效率的影响[J]. 生态学报, 2020, 40(6): 2010−2018. Wu W J, Mei H J, Xu J J, et al. Effects of phosphorus supply levels and methods on root growth and phosphorus use efficiency of Chinese fir seedling[J]. Acta Ecologica Sinica, 2020, 40(6): 2010−2018.
[28] Ma Q H, Chen L, Du M Y, et al. Localized and moderate phosphorus application improves plant growth and phosphorus accumulation in Rosa multiflora Thunb. ex Murr. via efficient root system development[J]. Forests, 2020, 11(5): 570. DOI: 10.3390/f11050570
[29] Li H B, Ma Q H, Li H G, et al. Root morphological responses to localized nutrient supply differ among crop species with contrasting root traits[J]. Plant and Soil, 2014, 376(1): 151−163.
[30] 庞欣, 李春俭, 张福锁. 部分根系供磷对小麦幼苗生长及同化物分配的影响[J]. 作物学报, 2000, 26(6): 719−724. Pang X, Li C J, Zhang F S. Effect of partial-root supply of P nutrient on the growth and assimilate distribution of wheat seedlings[J]. Acta Agronomica Sinica, 2000, 26(6): 719−724.
[31] 陈哲, 伊霞, 陈范骏, 等. 玉米根系对局部氮磷供应响应的基因型差异[J]. 植物营养与肥料学报, 2017, 23(1): 83−90. Chen Z, Yi X, Chen F J, et al. Differential response of maize roots to heterogeneous local nitrogen and phosphorus supply and genotypic differences[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 83−90.
[32] Gao W, Zhang D S, Tang X Y, et al. Localized phosphorus promotes nutrient productivity of Brassica chinensis genotype with strong root morphological plasticity[J]. Scientia Horticulturae, 2023, 310: 111779. DOI: 10.1016/j.scienta.2022.111779
[33] 殷艳, 廖星, 余波, 等. 我国油菜生产区域布局演变和成因分析[J]. 中国油料作物学报, 2010, 32(1): 147−151. Yin Y, Liao X, Yu B, et al. Regional distribution evolvement and development tendency of Chinese rapeseed production[J]. Chinese Journal of Oil Crop Sciences, 2010, 32(1): 147−151.
[34] 刘成, 冯中朝, 肖唐华, 等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报, 2019, 41(4): 485−489. Liu C, Feng Z C, Xiao T H, et al. Development, potential and adaptation of Chinese rapeseed industry[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485−489.
[35] 李利霞, 陈碧云, 闫贵欣, 等. 中国油菜种质资源研究利用策略与进展[J]. 植物遗传资源学报, 2020, 21(1): 1−19. DOI: 10.13430/j.cnki.jpgr.20200109005 Li L X, Chen B Y, Yan G X, et al. Proposed strategies and current progress of research and utilization of oilseed rape germplasm in China[J]. Journal of Plant Genetic Resources, 2020, 21(1): 1−19. DOI: 10.13430/j.cnki.jpgr.20200109005
[36] Li Y L, Yang X Y, Liu H J, et al. Local and systemic responses conferring adaptation of Brassica napus roots to low phosphorus conditions[J]. Journal of Experimental Botany, 2022, 73(14): 4753−4777. DOI: 10.1093/jxb/erac177
[37] Zhang B B, Wang Y J, Liu H J, et al. Effect of cultivars and nature–based solutions for the reduction of phosphate fertilizer usage on oilseed rape[J]. Field Crops Research, 2023, 293: 108851. DOI: 10.1016/j.fcr.2023.108851
[38] 张兵兵, 王雅洁, 刘海疆, 等. 油菜磷肥增效的基因型与生理调控技术[J]. 磷肥与复肥, 2021, 36(2): 33−36. DOI: 10.3969/j.issn.1007-6220.2021.02.013 Zhang B B, Wang Y J, Liu H J, et al. Genotypes and physiological regulation techniques for improving the phosphate fertilizer efficiency in Brassica napus[J]. Phosphate & Compound Fertilizer, 2021, 36(2): 33−36. DOI: 10.3969/j.issn.1007-6220.2021.02.013
[39] 王雅洁, 张兵兵, 袁盼, 等. 黄棕壤和酸紫砂土施用不同磷肥对油菜产量的影响[J]. 中国油料作物学报, 2022, 44(1): 147−157. Wang Y J, Zhang B B, Yuan P, et al. Effects of different phosphate fertilizer on Brassica napus cultivars grown with yellow-brown earth and acid purplish sandy soil[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(1): 147−157.
[40] Yuan P, Ding G D, Cai H M, et al. A novel Brassica-rhizotron system to unravel the dynamic changes in root system architecture of oilseed rape under phosphorus deficiency[J]. Annals of Botany, 2016, 118(2): 173−184. DOI: 10.1093/aob/mcw083
[41] 鲁剑巍, 任涛, 丛日环, 等. 我国油菜施肥状况及施肥技术研究展望[J]. 中国油料作物学报, 2018, 40(5): 712−720. DOI: 10.7505/j.issn.1007-9084.2018.05.014 Lu J W, Ren T, Cong R H, et al. Prospects of research on fertilization status and technology of rapeseed in China[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 712−720. DOI: 10.7505/j.issn.1007-9084.2018.05.014
[42] 吕珊兰, 杨熙仁, 康新茸. 土壤对磷的吸附与解吸及需磷量探讨[J]. 植物营养与肥料学报, 1995, 1(3): 29−35. DOI: 10.3321/j.issn:1008-505X.1995.03.004 Lü S L, Yang X R, Kang X R. Study on the adsorption and desorption of phosphorus in soils and phosphorus requirement[J]. Journal of Plant Nutrition and Fertilizers, 1995, 1(3): 29−35. DOI: 10.3321/j.issn:1008-505X.1995.03.004
[43] Hu Y F, Ye X S, Shi L, et al. Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply[J]. Journal of Plant Nutrition, 2010, 33(6): 889−901. DOI: 10.1080/01904161003658239
[44] 段然, 汤月丰, 文炯, 等. 减量施肥对湖垸旱地作物产量及氮磷径流损失的影响[J]. 中国生态农业学报, 2013, 21(5): 536−543. DOI: 10.3724/SP.J.1011.2013.00536 Duan R, Tang Y F, Wen J, et al. Effect of reducing fertilizer application on crop yield and nitrogen and phosphorus loss in runoff from embankment upland in Dongting Lake Region[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 536−543. DOI: 10.3724/SP.J.1011.2013.00536
[45] 张琼, 尹凌洁, 苏柠, 等. 氮磷减量对棉花—油菜轮作系统作物产量及氮磷流失的影响[J]. 农业现代化研究, 2022, 43(5): 921−931. Zhang Q, Yin L J, Su N, et al. Effects of reducing nitrogen and phosphorus application on crop yield and nitrogen and phosphorus loss of cotton-rapeseed rotation system[J]. Research of Agricultural Modernization, 2022, 43(5): 921−931.
[46] 徐霞, 赵亚南, 黄玉芳, 等. 不同地力水平下的小麦施肥效应[J]. 中国农业科学, 2018, 51(21): 4076−4086. DOI: 10.3864/j.issn.0578-1752.2018.21.007 Xu X, Zhao Y N, Huang Y F, et al. Fertilization effect of wheat under different soil fertilities[J]. Scientia Agricultura Sinica, 2018, 51(21): 4076−4086. DOI: 10.3864/j.issn.0578-1752.2018.21.007
[47] 王文华, 周鑫斌, 周永祥, 等. 不同磷效率油菜根际土壤磷活化机理研究[J]. 植物营养与肥料学报, 2011, 17(6): 1379−1387. DOI: 10.11674/zwyf.2011.1014 Wang W H, Zhou X B, Zhou Y X, et al. The mechanism of rhizosphere phosphorus activation of two rape genotypes ( Brassica napus L.) with different P efficiencies[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1379−1387. DOI: 10.11674/zwyf.2011.1014
[48] 梁宏玲, 石磊, 徐芳森, 等. 甘蓝型油菜不同磷效率基因型对土壤难溶性磷吸收利用的差异[J]. 中国油料作物学报, 2007, 29(3): 297−301. Liang H L, Shi L, Xu F S, et al. The difference in uptake and utilization of soil insoluble phosphorous for various P efficient genotypes in Brassica napus[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(3): 297−301.
[49] 程明芳, 何萍, 金继运. 我国主要作物磷肥利用率的研究进展[J]. 作物杂志, 2010, (1): 12−14. DOI: 10.3969/j.issn.1001-7283.2010.01.004 Cheng M F, He P, Jin J Y. Advance of phosphate recovery rate in Chinese main crops[J]. Crops, 2010, (1): 12−14. DOI: 10.3969/j.issn.1001-7283.2010.01.004
[50] Li H, Huang G, Meng Q, et al. Integrated soil and plant phosphorus management for crop and environment in China. A review[J]. Plant and Soil, 2011, 349(1-2): 157−167. DOI: 10.1007/s11104-011-0909-5
[51] 李书田, 刘晓永, 何萍. 当前我国农业生产中的养分需求分析[J]. 植物营养与肥料学报, 2017, 23(6): 1416−1432. DOI: 10.11674/zwyf.17393 Li S T, Liu X Y, He P. Analyses on nutrient requirements in current agriculture production in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1416−1432. DOI: 10.11674/zwyf.17393
[52] 冀宏杰, 张怀志, 张维理, 等. 我国农田磷养分平衡研究进展[J]. 中国生态农业学报, 2015, 23(1): 1−8. DOI: 10.13930/j.cnki.cjea.141045 Ji H J, Zhang H Z, Zhang W L, et al. Research progress on cropland phosphorus balance in China[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 1−8. DOI: 10.13930/j.cnki.cjea.141045
[53] 赵伟, 杨圆圆, 蒋丽媛, 等. 减施磷肥提高设施番茄氮磷钾生理效率并减少土壤速效磷累积[J]. 植物营养与肥料学报, 2019, 25(10): 1710−1718. DOI: 10.11674/zwyf.18427 Zhao W, Yang Y Y, Jiang L Y, et al. Reducing conventional phosphorus input increase physiological efficiencies of absorbed nitrogen, phosphorus and potassium in greenhouse tomato and decrease soil available phosphorus accumulation[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1710−1718. DOI: 10.11674/zwyf.18427
[54] 李若楠, 武雪萍, 张彦才, 等. 减量施磷对温室菜地土壤磷素积累、迁移与利用的影响[J]. 中国农业科学, 2017, 50(20): 3944−3952. DOI: 10.3864/j.issn.0578-1752.2017.20.010 Li R N, Wu X P, Zhang Y C, et al. Effects of reduced phosphorus fertilization on soil phosphorus accumulation, leaching and utilization in greenhouse vegetable production[J]. Scientia Agricultura Sinica, 2017, 50(20): 3944−3952. DOI: 10.3864/j.issn.0578-1752.2017.20.010
[55] 李海叶, 黄少欣, 朱东宇, 等. 云南中、低供磷能力土壤玉米最佳施磷量研究[J]. 植物营养与肥料学报, 2022, 28(6): 1039−1046. Li H Y, Huang S X, Zhu D Y, et al. Optimizing phosphate fertilization in relation to phosphorus supply capacity of soils in Yunnan maize producing areas[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1039−1046.
[56] 张鑫尧, 张敏, 朱远芃, 等. 巢湖流域磷肥减量施用对稻麦轮作体系作物产量和品质的影响[J]. 中国农业科学, 2022, 55(19): 3791−3806. DOI: 10.3864/j.issn.0578-1752.2022.19.009 Zhang X Y, Zhang M, Zhu Y P, et al. Effects of reduced phosphorus application on crop yield and grain nutritional quality in the rice-wheat rotation system in Chaohu Lake Basin[J]. Scientia Agricultura Sinica, 2022, 55(19): 3791−3806. DOI: 10.3864/j.issn.0578-1752.2022.19.009
[57] Ma Q, Wang X, Li H, et al. Localized application of NH4+-N plus P enhances zinc and iron accumulation in maize via modifying root traits and rhizosphere processes[J]. Field Crops Research, 2014, 164: 107−116. DOI: 10.1016/j.fcr.2014.05.017
[58] Jing J, Zhang F, Rengel Z, et al. Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake[J]. Field Crops Research, 2012, 133: 176−185. DOI: 10.1016/j.fcr.2012.04.009
[59] 杨泽鹏, 陈红琳, 陈尚洪, 等. 耕作与施肥方式对油菜产量和养分吸收利用的影响[J]. 中国土壤与肥料, 2021, (5): 176−184. DOI: 10.11838/sfsc.1673-6257.20382 Yang Z P, Chen H L, Chen S H, et al. Effects of tillage and fertilization methods on the yield and nutrient utilizations of rapeseed[J]. Soil and Fertilizer Sciences in China, 2021, (5): 176−184. DOI: 10.11838/sfsc.1673-6257.20382
[60] 杨泽鹏, 门胜男, 刘定辉, 等. 耕作与施肥方式对成都平原冬油菜产量、干物质积累和品质的影响[J]. 中国土壤与肥料, 2022, (4): 140−147. Yang Z P, Men S N, Liu D H, et al. Effects of soil tillage and fertilization on yield, dry matter accumulation and quality of winter rapeseed ( Brassica napus L. ) in Chengdu Plain[J]. Soil and Fertilizer Sciences in China, 2022, (4): 140−147.
-
期刊类型引用(0)
其他类型引用(1)