Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

小麦抗低温逆境化控技术研究进展

陈翔, 胡雨喆, 陈甜甜, 代雯慈, 李胜男, 郭健鹏, 高赛, 王捧娜, 翁颖, 郑宝强, 李金才

陈翔, 胡雨喆, 陈甜甜, 代雯慈, 李胜男, 郭健鹏, 高赛, 王捧娜, 翁颖, 郑宝强, 李金才. 小麦抗低温逆境化控技术研究进展[J]. 植物营养与肥料学报, 2023, 29(8): 1543-1555. DOI: 10.11674/zwyf.2023083
引用本文: 陈翔, 胡雨喆, 陈甜甜, 代雯慈, 李胜男, 郭健鹏, 高赛, 王捧娜, 翁颖, 郑宝强, 李金才. 小麦抗低温逆境化控技术研究进展[J]. 植物营养与肥料学报, 2023, 29(8): 1543-1555. DOI: 10.11674/zwyf.2023083
CHEN Xiang, HU Yu-zhe, CHEN Tian-tian, DAI Wen-ci, LI Sheng-nan, GUO Jian-peng, GAO Sai, WANG Peng-na, WENG Ying, ZHENG Bao-qiang, LI Jin-cai. Progress of chemical regulation on wheat resistance to low temperature stress[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(8): 1543-1555. DOI: 10.11674/zwyf.2023083
Citation: CHEN Xiang, HU Yu-zhe, CHEN Tian-tian, DAI Wen-ci, LI Sheng-nan, GUO Jian-peng, GAO Sai, WANG Peng-na, WENG Ying, ZHENG Bao-qiang, LI Jin-cai. Progress of chemical regulation on wheat resistance to low temperature stress[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(8): 1543-1555. DOI: 10.11674/zwyf.2023083

小麦抗低温逆境化控技术研究进展

基金项目: 国家级大学生创新创业训练计划项目(202110364050);安徽省自然科学基金项目(2008085QC122);安徽省重大科技专项(202003b06020021);淮北市重大科技专项(HK2021013);“十四五”安徽省现代农业产业技术体系建设专项(340000222426000100009)。
详细信息
    作者简介:

    陈翔 E-mail: cxagricultural@163.com

    ;†共同第一作者 胡雨喆 E-mail: huyuzhe8028@163.com

    通讯作者:

    李金才 E-mail: ljc5122423@126.com

Progress of chemical regulation on wheat resistance to low temperature stress

  • 摘要:

    全球气候变化背景下,极端低温气候灾害事件频发重发已成为影响小麦生产高质高效发展的重要限制因素。为提高小麦的抗低温能力、保障全球粮食安全,前人开展了大量关于外源化控剂缓解小麦低温逆境胁迫的研究。本研究根据2000年1月1日至2022年12月31日公开发表的与小麦抗低温化控技术有关的文献,依据外源化控调控剂的作用机理,将其分为改善光合系统、诱导合成渗透调节物质、提高抗氧化酶活性、激素调节以及影响抗寒基因表达,共5大类,并总结了这5类作用机理相关的产品开发现状。今后应加强外源化控调控剂缓解低温逆境的机理研究,细化调控剂的施用时期、剂量范围及施用方法,不断优化化控产品生产工艺,以期充分发挥小麦化控抗低温技术在防灾减灾和提质增效中的作用。

    Abstract:

    Low temperature stress is a common limiting factor for high quality and high yield of wheat production, many researches have been carried out to alleviate the adverse impact by application of exogenous chemical agents. We searched the published literatures related to low-temperature chemical control in wheat from January 1 of 2000 to December 31 of 2022. According to the mechanism, the exogenous chemical agents regulate the low temperature tolerance of wheat through five paths, i.e. improving photosynthetic efficiency, inducing and synthesizing osmotic adjustment substances, increasing antioxidant enzyme activity, stimulating the synthesis of hormone and up-expressing of cold tolerance genes. We also focused on the progress in production of chemical agents corresponded to each category of the mechanism. In the future, more researches are needed for fully understand the mechanism of exogenous chemical control regulators, efficient application of chemical agents by suitable application period, dosage and method, and further optimize the research and procession technology of chemical agent production, aiming to achieve efficient prevention and mitigation of the adverse impact caused by low temperature on wheat production.

  • 随着全球人口数量的不断增加,预计到2050年人们对于口粮的需求将增长100%~110%[1]。全世界约33%的人口以小麦为主粮,小麦总产量虽以每年0.9%的速度增长,到2050年其总产量将增加38%,但仍远远低于2050年人们对口粮的需求[2]。据IPCC第六次会议报告,2100年全球地表温度预计将至少升高2.1℃[3]。全球气候变化背景下,西伯利亚高压、阻塞高压和极涡等大气环流异常导致极端低温事件频发[4],增加了农业生产的不稳定性。小麦的一生易遭受干旱、低温、渍水、高温等逆境胁迫,其中低温逆境已成为影响小麦生长发育和产量品质形成的重要农业气象灾害之一。低温逆境灾害给中国、美国、澳大利亚以及部分欧洲国家的小麦生产造成了极大的损失[510]。澳大利亚每年因低温灾害导致小麦减产造成的经济损失达1亿澳元[56]。1980—2020年中国小麦主产区发生近20次大规模低温灾害事件[7]。2021年寒潮天气造成江苏省小麦冻害面积达1.36×106 hm²,占该省播种总面积的56.68%,严重程度为20年来之最[11]。因此,低温逆境已经成为限制全球小麦生产高产高质高效发展的重要因素。

    化学调控技术(chemical regulation)是以应用提取的天然植物激素或者人工合成的化学物质等植物生长调节剂为手段,通过改变植物内源激素代谢平衡来调节其生长发育,使其朝着人们预期的方向和程度发生变化的技术。该技术的出现及其在农业生产中的大规模应用,为提高小麦抗低温能力进而防灾减灾与提质增效提供了一条有效途径。小麦抗低温化学调控剂可通过提高叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等抗氧化酶的活性和脯氨酸(Pro)、可溶性糖等渗透调节物质含量来增强细胞膜结构和功能的稳定性[1213],同时维持叶片保持较高的净光合速率(Pn)和呼吸稳态,进而提升小麦对低温逆境的耐受性[14]。本文根据2000年1月1日至2022年12月31日发表的文献,系统阐述小麦抗低温化学调控剂的种类和作用机理,分析当前抗低温化学调控剂产品研发现状,并对未来小麦抗低温化学调控技术的研究进行展望,以期为小麦生产的防灾减灾和提质增效提供参考。

    施用外源化控物质可提高小麦植株的抗低温能力,从而提高小麦生产的防灾减灾能力。根据小麦抗低温化学调控剂所起作用的成分性质,大致可分为无机盐类、有机化合物类、植物激素类、植物生长调节物质、复合型抗寒调节物质等5类(表1)。

    表  1  抗低温化学调控剂一览表
    Table  1.  List of anti-low temperature chemical regulators
    调控剂
    Regulator
    缩写
    Abbreviation
    调控剂
    Regulator
    缩写
    Abbreviation
    氯化钙 Calcium chloride CaCl2 吲哚乙酸 Indole acetic acid IAA
    硅酸钾 Potassium silicate K2Si2O5 细胞分裂素 Cytokinin CTK
    硅酸钠 Sodium silicate Na2SiO3·9H2O 玉米素核苷 Zeatin nucleotide ZR
    磷和钾 Phosphorus and potassium P and K 赤霉素 Gibberellin GA
    二氧化碳 Carbon dioxide CO2 脱落酸 Abscisic acid ABA
    硝普钠 Sodium nitroprusside SNP 2,4-表油菜素内酯 2,4-Epibrassinolide EBR
    镧离子 Lanthanum ion La3+ 油菜素内酯 Brassinolide BR
    磷酸二氢钾 Potassium phosphate monobasic KH2PO4 茉莉酸甲酯 Methyl jasmonate MeJA
    七钼酸铵 Ammonium heptamolybdate (NH4)6Mo7O24 褪黑素 Melatonin MT
    二甲亚砜 Dimethyl sulfoxide DMSO 水杨酸 Salicylic acid SA
    海藻糖 Trehalose 美洲星 New meizhouxing NMX
    脯氨酸 Proline Pro 防冻剂 Antifreeze
    氯化胆碱 Choline chloride CC 多效唑 Paclobutrazol PP333
    抗坏血酸 Ascorbic acid ASA 防寒剂 (蔗糖、有机硅)
    Anti-chilling agent (sucrose, organic Si)
    冠菌素 Coronatine COR 复配植物生长调节剂 (水杨酸、甜菜碱、硅酸钾)
    Compound plant growth regulator
    (salicylic acid, betaine, potassium silicate)
    6-苄氨基嘌呤 6-Benzyladenine 6-BA
    下载: 导出CSV 
    | 显示表格

    光合作用合成的有机物是小麦产量品质形成的物质基础,也是对低温逆境最敏感的生理生化过程之一,其影响方面包括叶绿体结构、叶绿素的合成与分解、Rubsico酶活性、碳同化相关酶基因的表达等[1522]。朱佳等[19]和范琼花等[20]研究发现低温胁迫前使用硅酸钾盐溶液预处理小麦幼苗可减少叶片叶绿素含量和Chla/b值的降幅,提高Rubisco酶活性从而改善小麦叶片的Pn。苏慧等[21]研究表明,小麦孕穗期低温(−2℃)胁迫前喷施15 mmol/L KH2PO4溶液,旗叶叶绿素含量与清水对照相比提高了14.8%,能有效降低低温对小麦叶片造成的危害。Venzhik等[22]研究指出,低温(4℃)胁迫下施用0.1 mmol/L 脱落酸(ABA)可以影响叶绿体基质密度和类囊体的颗粒数,从而保护植物细胞免受冷害和维持光合系统活性。Wang等[23]研究表明,低温胁迫下施用外源水杨酸(SA)能使小麦叶片Fv/Fm、ϕPS Ⅱ和Pn分别提升4.9%、5.9%和9.6%,从而提高小麦植株的抗冻能力。因此,化学调控技术主要通过缓解低温逆境对于小麦叶片叶绿体结构的破坏、促进叶绿素的合成等一系列生理生化过程,从而维持叶片较高的光合性能。涉及的外源物包括KH2PO4[21]、CaCl2[24]、(NH4)6Mo7O24 [25]、ABA[26]等(表2)。

    表  2  外源调控剂改善作物光合性能的作用机理及最佳施用浓度
    Table  2.  Mechanism and optimal concentration of exogenous regulators in improving photochemical efficiency
    外源调控剂
    Exogenous
    regulator
    作用机理
    Action
    mechanism
    最佳浓度
    Optimal
    concentration
    文献
    Reference
    硅酸钾
    K2Si2O5
    提高叶片Pn、气孔导度(Gs)、叶绿素含量,降低蒸腾效率,提高水利用效率
    Increase leaf Pn, Gs, and chlorophyll content, reduce transpiration efficiency,
    and enhance water use efficiency
    0.1, 1 mmol/L [1920]
    KH2PO4 提高旗叶叶绿素含量和叶片抗氧化能力,增加对穗部的物质供应
    Increase flag leaf chlorophyll content and leaf antioxidant capacity, increase material supply to spike
    15 mmol/L [21]
    CaCl2 提高Rubisco酶活性、Chla、Chlb与类胡萝卜素(Car.) 含量,促进光合强度
    Increase Rubisco enzyme activity, Chla, Chlb & Car. content and promote photosynthetic intensity
    40 mmol/L [24]
    (NH4)6Mo7O24 提高叶绿素a、b和胡萝卜素含量
    Increase Chla, Chlb and Carotene content
    0.15 mg/kg [25]
    脱落酸 ABA 增加叶绿素含量,提高叶绿素相对电子传递速率值、最大光化学效率,
    减少低温对小麦Fv/Fm的不利影响
    Increase chlorophyll content, enhance chlorophyll relative electron transfer rate, and maximum
    photochemical efficiency, and reduce adverse effects of low temperature on wheat Fv/Fm
    10−5 mol/L [26]
    褪黑素
    MT
    调节气孔导度和小麦的光合速率,有助于光合碳同化和膜稳定性
    Regulate stomatal conductance and photosynthetic rate in wheat and contributes to
    photosynthetic carbon assimilation and membrane stability
    1 mmol/L [27]
    新美洲星
    NMX
    提高叶片PnGs和胞间CO2浓度(Ci)、PSⅡ光化学效率、光化学淬灭系数、增加Fv/Fm
    改善光合性能
    Increase leaf PnGs, and intercellular CO2 concentrations, PS Ⅱ photochemical efficiency,
    photochemical quenching coefficient, increased Fv/Fm, and improved photosynthetic performance
    300倍稀释液
    300 times
    diluent
    10 mol/L
    [28]
    2,4-表油菜素内酯
    EBR
    增加叶绿素含量,缓解叶片衰老,延长其功能期
    Increase leaf chlorophyll content, mitigate leaf senescence and prolong functional period
    0.1 mg/L [29]
    抗坏血酸 ASA 提高叶片叶绿素含量,增加单位面积分蘖数
    Increases leaf chlorophyll content and tiller number per unit area
    50 mg/L [30]
    二甲亚砜 DMSO 促进小麦幼苗叶绿素的形成,提高根活力
    Promote chlorophyll synthesis, increase root vigor of wheat seedlings
    2~5 g/kg [31]
    防冻剂
    Antifreeze
    增加小麦叶绿素含量,促进光合作用,增强根系活力
    Increase chlorophyll content, promote photosynthesis efficiency, enhance root vigor
    1500 mL/hm2 [32]
    下载: 导出CSV 
    | 显示表格

    小麦植株在低温胁迫下通过合成可溶性糖、可溶性蛋白和Pro等渗透调节物质来提高细胞液浓度从而降低渗透势[3334]。参与诱导合成渗透调节物质的外源化控剂种类较多[35],包括表油菜素内酯(EBR)[12]、SA[36]、Pro[37]、ABA[14,38]、海藻糖[39]、磷钾肥[40]等(表3)。Li等[41]研究表明,外源NO能诱导叶片果聚糖合成酶基因上调表达,进而影响果聚糖合成酶活性促进果聚糖积累来提高小麦抵抗低温能力。王梦雨等[46]报道施用外源壳寡糖可降低低温胁迫下苗期小麦叶片损伤面积和MDA含量的增幅,返青率可提高5%。刘丽杰等[12]发现,施用0.1 mg/L EBR可使低温胁迫下小麦幼苗中可溶性蛋白、可溶性糖、Pro含量分别显著提升11.2%、142%和457%。Zhang等[47]研究指出施用外源ABA显著提高了低温胁迫下小麦叶片中可溶性蛋白、可溶性糖和Pro含量。上述相关外源物质的施用可有效缓解低温胁迫对于小麦植株渗透调节物质积累的抑制,从而维持细胞结构的稳定性,提高植株的抗低温能力。

    表  3  诱导渗透调节类物质合成的外源物质施用方法
    Table  3.  Application method of exogenous substances inducing synthesis of osmoregulation substances
    外源物
    Exogenous substance
    使用方法
    Application method
    施用浓度
    Application concentration
    试验温度 (℃)
    Temperature
    文献
    Reference
    表油菜素内酯 EBR 叶面喷施 Foliar spraying 0.1 mg/L 4 [12]
    硅酸钾 K2Si2O5 水培 Hydroponics 1.0 mmol/L −5 [20]
    二甲亚砜 DMSO 浸种 Seeding soaking 2~5 g/kg 4 [31]
    水杨酸 SA 水培 Hydroponics 100 μmol/ L 4 [36]
    脯氨酸 Pro 叶面喷施 Foliar spraying 20 mmol/L −5 [37]
    脱落酸 ABA 根浸、叶面喷施
    Root soaking, foliar spraying
    10−7 mol/L 2~4 [38]
    海藻糖 Trehalose 浸种 Seeding soaking 10 mmol/ L 4 [39]
    磷钾 P and K 水培 Hydroponics P2O5 52 mg/L
    K2O 104 mg/L
    5 [40]
    硝普钠 SNP 水培 Hydroponics 0.125 mmol/L 4 [41]
    Na2SiO3·9H2O 浸种 Seeding soaking 1.0 mmol/L 0, 4 [4243]
    茉莉酸甲酯 MeJA 叶面喷施 Foliar spraying 1.0 mmol/ L 5 , 0 , −10 , −25 [44]
    冠菌素 COR 浇灌培养 Irrigating 1 μmol/L 4 [45]
    下载: 导出CSV 
    | 显示表格

    低温胁迫下小麦植株内会产生大量的活性氧(ROS),随着低温胁迫程度和胁迫持续时间的增加导致ROS清除剂含量和酶活性持续下降,氧化还原平衡被打破,ROS代谢失调,导致细胞膜脂过氧化最终产物丙二醛(MDA)的积累,导致细胞受损甚至死亡[48]。SOD、POD、CAT、ASA和GSH等物质构成了小麦体内的抗氧化防御体系,其活性的高低与小麦抗逆能力密切相关[4952]。荆恩恩等[53]研究发现,低温(−5℃)胁迫前小麦叶面喷施外源CC可增强SOD、POD和CAT活性,降低O¯2产生速率和MDA含量,有效减少膜脂过氧化对细胞的损伤。Yu等[54]研究表明,外源ABA可提高叶片和根茎中抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氧抗坏血酸还原酶(DHAR)和单脱氧抗坏血酸还原酶(MDHAR)活性水平,增强了小麦叶片和根部在−10℃和−20℃下的抗冻能力。丁美云等[55]研究发现,叶面喷施0.1 mg/L BR可使低温(−25℃)胁迫下小麦分蘖节SOD、CAT和POD活性分别提升41.3%、31.6%和14.1%,极大降低了低温冻害对于小麦细胞膜的损伤。因此,化学调控物质主要通过提高抗氧化酶活性,从而降低细胞内自由基含量和产生速率,减轻膜脂过氧化程度,维持细胞膜结构的完整性,进而增强小麦植株的抗低温能力。与诱导抗氧化酶活性有关的外源物质及其施用方式详见表4

    表  4  外源调节抗氧化酶活性类物质使用方法
    Table  4.  Application method of exogenous substances regulating antioxidant enzyme activities
    外源物
    Exogenous substance
    使用方法
    Application method
    施用浓度
    Application concentration
    试验温度 (℃)
    Temperature
    文献
    Reference
    表油菜素内酯 EBR 叶面喷施 Foliar spraying 0.1 mg/L 4 [12]
    硝普钠 SNP 浸种 Seeding soaking 50 μmol/L 4 [13]
    抗坏血酸 ASA 浸种 Seeding soaking 50 mg/L [30]
    Na2SiO3·9H2O 浇灌 Irrigating 1.0 mmol/L 0, 4 [43]
    氯化胆碱 CC 叶面喷施 Foliar spraying 500 mg/L −5 [53]
    (NH4)6Mo7O24 浸种 Seeding soaking 8 mmol/L 4 [56]
    多效唑 PP333 浸种 Seeding soaking 0.01 mg/L 3 [57]
    水杨酸 SA 叶面喷施 Foliar spraying 0.1 mmol/L 4 [58]
    镧离子 La3+ 水培 Hydroponics 20 mg/kg 0, 5, 10 [59]
    茉莉酸甲酯 MeJA 水培 Hydroponics 1 μmol/L 4 [60]
    CO2 激光辐射 Laser radiating 10600 nm
    (Wavelength)
    4 [13]
    注:“—”表示文献中未注明。
    Note: “—” indicates that it is not listed in the reference.
    下载: 导出CSV 
    | 显示表格

    内源激素是调节小麦生长发育和代谢的一类重要物质。低温胁迫会打破其原有的激素平衡,导致促进生长的激素减少、抑制生长的激素增加从而改变代谢途径。内源激素作为信号分子参与低温胁迫的调控,其中玉米素核苷(ZR)、GA和ABA在抵御低温过程中起着重要作用[6164]。Li等[65]研究表明,在低温(12℃)胁迫下施用5 μmol/L GA可提高种子呼吸速率和淀粉酶活性促进淀粉分解,提高种子发芽率、胚根和胚芽的重量及长度。齐付国等[66]研究指出,100 µmol/L MeJA进行叶面喷施幼苗,低温(4℃)胁迫下促进了小麦叶片内ABA的含量增加和ABA/GA值的提高,达到增强小麦抗寒性的作用。Zhang等[47]研究认为,施用外源10 μmol/L ABA增加小麦叶片内可溶性糖、Pro、GSH和ASA含量以及相关基因表达,降低MDA和H2O2水平,有效缓解小麦幼苗所受到的低温胁迫。王兴等[62]研究发现,施用10−6 mol/L 6-BA可促进低温(−10℃、−25℃)胁迫小麦叶片和分蘖节中ABA/GA的值,降低GA含量,提高小麦分蘖节的抗寒能力。化学调节物质可以增加低温逆境胁迫下小麦植株体内多种内源激素含量,促进平衡以及激素间的协同和拮抗作用调节动态平衡,从而提高小麦的抗冻能力(表5)。

    表  5  外源激素调节机理及施用浓度
    Table  5.  Mechanism and application concentrations of exogenous hormones
    外源激素
    Exogenous
    hormone
    作用机理
    Action mechanism
    施用浓度
    Application
    concentration
    文献
    Reference
    脱落酸 ABA 增加小麦叶片内可溶性糖、Pro、谷胱甘肽(GSH)和ASA含量以及相关基因表达
    Increase leaf soluble sugars, Pro, GSH and ASA content, and upregulate related gene expression
    10 μmol/L [47]
    吲哚乙酸 IAA 增加根系IAA含量
    Increase root IAA content
    [51]
    玉米素核苷 ZR 缓解低温胁迫对小麦植株的伤害
    Mitigate low-temperature injury to wheat plants
    [61]
    6-苄氨基嘌呤
    6-BA
    增加叶片和分蘖节中ABA/GA值,提高翌年返青率
    Increase ABA/GA ratio in leaves and tiller nodes, improve regreening rate next year
    10 μmol/L [63]
    赤霉素 GA 增加种子呼吸速率和淀粉酶活性,促进淀粉分解,提高了种子发芽率、
    萌发指数以及胚根和胚芽发育
    Increase seed breathing rate and amylase activity, promote starch decomposition,
    seed germination, germination index, and embryonic root and germ development
    5 μmol/L [65]
    茉莉酸甲酯
    MeJA
    提高小麦叶片内ABA含量以及ABA/GA值,维护激素平衡
    Increase leaf ABA content and ABA/GA ratio, maintain hormone balance
    100 µmol/L [66]
    水杨酸 SA 促进低温下种子萌发,提高叶片中可溶性糖积累
    Promote seed germination at low temperatures, and increase osmoregulatory accumulation in leaves
    0.005~0.100
    mmol/L
    [67]
    细胞分裂素 CTK 增加小麦幼苗抗寒能力 Increase cold tolerance of wheat seedlings [68]
    注:“—”表示文献中未注明。
    Note: “—” indicates that it is not listed in the reference.
    下载: 导出CSV 
    | 显示表格
    表  6  小麦抗低温化学调控剂专利名录及产品有效成分
    Table  6.  List of patent products and the effective components for low temperature resistance of wheat
    专利名称
    Patent name
    主要有效成分
    Main effective component
    公开年份
    Public year
    文献
    Reference
    一种小麦抗低温保护剂及使用方法
    A wheat anti-low temperature protective agent and the use method
    甜菜碱、蚯蚓活性酶植物多肽液、尿素、磷酸二氢钾、
    壳聚糖
    Betaine, plant peptide solution with earthworm active enzymes, urea, potassium dihydrogen phosphate, chitosan
    2022[72]
    一种提高小麦抗逆潜力和灾后恢复力制剂及应用
    A product to improve the resistance potential and post-disaster recovery of wheat and the use method
    复合氨基酸、氯化钙、5-氨基乙酰丙酸、芸苔素内脂
    Aminofusin, calcium chloride, 5-aminolevulinic acid, brassinolide
    2022[73]
    一种提高小麦春季抗寒性的复配剂、施用方法及其应用
    A formula agent for improving wheat tolerance to spring cold and the application method
    6-BA、壳寡糖、2, 4-表油菜素内酯、冠菌素
    6-Benzylaminopurine, chitosan oligosaccharide,
    2,4-epibrassinolide, coronatine
    2021[74]
    一种小麦抗低温诱导剂产品及使用方法
    A wheat anti-low temperature inducer and the use method
    蚯蚓活性酶植物多肽液、壳聚糖、尿素、磷酸二氢钾、
    茉莉酸甲酯
    Plant peptide solution with earthworm active enzymes, chitosan, urea, potassium dihydrogen phosphate, methyl jasmonate
    2021[75]
    一种用于小麦倒春寒的防寒剂
    An anti-chilling agent of late spring coldness in wheat
    蔗糖、有机硅
    Sucrose, silicone
    2020[76]
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and the application method
    蛋氨酸铜、松脂醇二葡萄糖苷、水杨酸、壳寡糖、氯化钙
    Copper methionine, pinoresinol diglucoside, salicylic acid, chitosan oligosaccharide, calcium chloride
    2020[77]
    一种呋喃并吡喃衍生物及其制备方法和在小麦田间防冻管理中的应用
    A furopyran derivative and its procession protocol, and application method preventing wheat from frost injury
    一种呋喃并吡喃衍生物
    A furopyran derivative
    2019[78]
    一种抵御小麦倒春寒的混合制剂及其制备和喷施方法
    Procession and foliar application method of a formula agent for wheat resistance to late spring coldness
    尿素、磷酸二氢钾、硫酸锌、胺鲜酯、康多酚
    Urea, potassium dihydrogen phosphate, zinc sulfate, diethyl aminoethyl hexanoate, kang polyphenol
    2019[79]
    一种适用于小麦的防冻剂及制备方法和应用
    Procession and application of an antifreeze agent for wheat
    硫酸铵、磷酸二氢钾、硫酸钾、乙二胺四乙酸锌、
    壳寡糖、脯氨酸、芸苔素、甘油
    Ammonium sulfate, potassium dihydrogen phosphate, potassium sulphate, ethylenediaminetetraacetic acid zinc, chitosan oligosaccharide, proline, brassinolide, glycerol
    2019[80]
    一种性激素在小麦孕穗期抗寒减灾方面的应用
    Application of a hormone for alleviating low temperature injury of wheat at booting stage
    孕酮
    Progesterone
    2018[81]
    一种小麦耐旱抗逆复合调节剂及其应用
    A compound regulator for drought and stress tolerance in wheat and its application
    甜菜碱、果聚糖、壳聚糖、油菜素内酯、硝普钠、
    黄腐酸、柠檬酸钛
    Betaine, fructosan, chitosan, brassinolide, sodium nitroprusside, fulvic acid, citric acid titanium
    2018[82]
    一种小麦抗病防冻农药组合物
    An anti-disease and anti-freeze pesticide composition for wheat
    已唑醇、氯化胆碱、香菇多糖
    Hexaconazole, choline chloride, lentinan
    2018[83]
    一种提高小麦抗冻能力的专用液体肥料
    A specific liquid fertilizer to improve the frost resistance of wheat
    醋酸铜、柠檬酸螯合锰、山梨酸钾、乙基麦芽酚、
    L-谷氨酸
    Cupric acetate monohydrate, citric acid chelated manganese, potassium sorbate, ethyl maltol, L-glutamic acid
    2017[84]
    防御小麦春季冻害的复合调节剂及方法
    Compound regulators for preventing spring frost damage in wheat and the use method
    水杨酸
    Salicylic acid
    2017[85]
    下载: 导出CSV 
    | 显示表格

    部分抗低温调节物质是小麦在非生物胁迫下的天然积累物,适宜浓度下此类物质可以诱导小麦自身启动抵御低温相关蛋白所关联基因的表达。小麦在低温胁迫下会通过调控相关耐寒基因的表达来应对所处逆境[64,6970]。Al-Issawi等[56]研究发现,在低温(4℃)驯化下施用外源8 mmol/L (NH4)6Mo7O24溶液浸种,显著增加了植株中CBF14的转录物水平并激活COR基因。张奥深等[29]研究表明,施用 0.1 mg/L EBR可以显著提高小麦植株叶片抗逆相关基因TaSODTaPODTaCAT、P5CSWCS120的相对表达量,从而提高小麦的抗冻性。Zhang等[47] 研究认为低温胁迫下施用外源ABA,ASA-GSH合成相关酶的基因在一定时间内受到ABA的调控,使小麦叶片中ASA和GSH显著提高以及相关基因CBFII-5.2、WCS120、COR39Wrab17转录水平提高。赵欣等[71]研究指出,SA处理提高了小麦叶片和分蘖节中EMP途径关键酶 HxK、PFK、PK的活性及其相应基因TaHxKTaPFKTaPK的表达量,促进果糖与丙酮酸的积累与分解,提高小麦植株的抗低温能力。

    目前,小麦抗低温化学调控产品的开发应用逐渐受到人们的重视。截至2022年12月31日,涉及作物抗低温化学调控剂的国家发明专利共93件,其中小麦抗低温化学调控剂发明专利为27件,占29.03%,且专利公开年份均在2010年之后(图1)。这可能与近年来全球气候变暖导致极端低温气候事件出现的频率、强度和持续时间不断增加,已成为限制小麦稳产丰产与优质的重要因素有关,同时也表明小麦抗低温化学调控剂具有巨大的潜在市场价值。本研究归纳整理了近年来有关小麦抗低温化学调控产品的发明专利(表6)。

    图  1  2013—2022年抗低温化学调控剂国家发明专利数量
    Figure  1.  Number of national invention patents of chemical regulators for low temperature resistance during 2013−2022
    续表 6 Table 6 continued
    专利名称
    Patent name
    主要有效成分
    Main effective component
    公开年份
    Public year
    文献
    Reference
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and its application method
    氨基寡糖素、聚乙二醇、脂肪酶、乙基磺酸乙酯、
    海藻酸、青鲜素
    Amino-oligosaccharides, polyethylene glycol, lipase,
    diethyl sulfite, alginic acid, maleic hydrazide
    2017[86]
    小麦抗低温调节剂及其使用方法
    A regulator for low temperature resistance of wheat and the use method
    褪黑素、腐殖酸钾、α-萘乙酸、茉莉酸、油菜素内酯、
    细胞分裂素、抗冻剂、抗菌肽
    Melatonin, potassium humate, α-Naphthaleneacetic acid, jasmonic acid, brassinolide, cytokinin, antifreeze,
    antimicrobial peptide
    2017[87]
    一种提高小麦抗低温冷害的抗冷剂及其应用方法
    A cold-resistant agent for improving resistance to low-temperature damage of wheat and the application method
    磷酸氢二钠、磷酸二氢钾、甜菜碱、硝基腐殖酸铵、
    硝普钠、蔗糖、尿素
    Dibasic sodium phosphate, potassium dihydrogen
    phosphate, betaine, ammonium nitro-humate, sodium
    nitroprusside, sucrose, urea
    2017[88]
    小麦抗低温调节剂及其使用方法
    A regulator for wheat low-temperature resistance and the use method
    甜菜碱、壳寡糖、水杨酸、硅酸钾、蛋白多肽
    Betaine, chitosan oligosaccharide, salicylic acid,
    potassium silicate, protein polypeptides
    2017[89]
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and the application method
    双氧水、水杨酸
    Hydrogen peroxide, salicylic acid
    2016[90]
    提高小麦抗低温能力的调理剂
    A conditioning agent to improve wheat resistance to low temperatures
    6-BA、萘乙酸盐、甲哌鎓、乙烯利、磷酸二氢钾
    6-Benzylaminopurine, naphthalene acetate salt, mepiquat
    chloride, ethrel, potassium dihydrogen phosphate
    2016[91]
    一种小麦高光效抗逆境增产调节剂及其制备方法和应用
    An regulator for improving photosynthetic efficiency, stress resistance and yield of wheat, and its manufacture and application
    5-氨基乙酰丙酸、萘乙酸盐
    5-aminolevulinic acid, naphthalene acetate salt
    2016[92]
    一种提高冬小麦抗冻能力的方法
    A method to improve winter wheat resistant to frost
    四氢嘧啶及其衍生物
    Ectoine and its derivatives
    2015[93]
    一种小麦抗寒调节剂
    A regulator for cold resistance of wheat
    浒苔多糖、水杨酸、油菜素内酯、甜菜碱、亚精胺
    Enteromorpha prolifera polysaccharide, salicylic acid,
    brassinolide, betaine, spermidine
    2014[94]
    一种预防小麦低温冻害的专用烟雾剂及其制备方法
    A special fogging agent for preventing low-temperature damage of wheat and its manufacture method
    柴油、丙二醇、尿素、磷酸二氢钾、氯化钾
    Diesel oil, propylene glycol, urea, potassium dihydrogen
    phosphate, potassium chloride
    2013[95]
    小麦抗低温调节剂及其制备方法
    A wheat anti-low temperature regulator and its producing method
    氨基多糖、氯化胆碱、水杨酸或水杨酸钠、硅酸钾
    Aminopolysaccharide, choline chloride, salicylic acid or
    sodium salicylate, potassium silicate
    2013[96]
    下载: 导出CSV 
    | 显示表格

    根据作用机理,外源化学调控剂可分为改善光合系统、诱导合成渗透调节物质、诱导抗氧化酶活性、激素调节以及影响抗寒基因表达等共5大类。目前小麦生产对抗低温化学调控剂的需求不断增加,然而现有抗低温化学调控剂在生产中的推广应用效果并不理想,主要是因为生产成本较高,比如ABA、MeJA等由于价格昂贵,一般农户无法接受,难以大面积应用于农业生产。因此未来应重点开展以下几个方面的研究:

    1)加强外源化学调控剂缓解低温逆境的机理研究。因小麦品种抗性、生长环境和栽培措施的不同和差异化,化控剂作用机理有待进一步深化,如KH2PO4作为一种绿色无毒、高效的水溶性速效磷钾复合肥,因具有提高植株的抗低温能力而广泛应用于小麦生产中,但其提升小麦抗低温能力的生理与分子机制至今仍未明确。

    2)在明确化学调控剂作用机理的基础上,进一步研究明确小麦抗低温化学调控剂的施用时期、剂量范围及施用方法。在田间试验阶段要针对产品药效、毒理学、环境毒理和环境行为及残留代谢等进行完整的评价,同时可结合农事操作进一步调查其农学效应,比如产品的使用与小麦拔节肥或者生育中后期的“一喷三防”有机结合,尤其是与现代无人机的飞防结合,研发简便易操作的应用技术,将具有广阔的应用前景。

    3)加强产品的生产工艺研究与优化。降低小麦抗低温化学调控剂的生产成本,寻找价廉且抗低温逆境效果好的原材料来制备抗低温化学调控剂,同时对现有生产方法进行工艺优化,从而降低成本,实现规模化生产,将极大地提高我国小麦生产的防灾减灾能力。

  • 图  1   2013—2022年抗低温化学调控剂国家发明专利数量

    Figure  1.   Number of national invention patents of chemical regulators for low temperature resistance during 2013−2022

    表  1   抗低温化学调控剂一览表

    Table  1   List of anti-low temperature chemical regulators

    调控剂
    Regulator
    缩写
    Abbreviation
    调控剂
    Regulator
    缩写
    Abbreviation
    氯化钙 Calcium chloride CaCl2 吲哚乙酸 Indole acetic acid IAA
    硅酸钾 Potassium silicate K2Si2O5 细胞分裂素 Cytokinin CTK
    硅酸钠 Sodium silicate Na2SiO3·9H2O 玉米素核苷 Zeatin nucleotide ZR
    磷和钾 Phosphorus and potassium P and K 赤霉素 Gibberellin GA
    二氧化碳 Carbon dioxide CO2 脱落酸 Abscisic acid ABA
    硝普钠 Sodium nitroprusside SNP 2,4-表油菜素内酯 2,4-Epibrassinolide EBR
    镧离子 Lanthanum ion La3+ 油菜素内酯 Brassinolide BR
    磷酸二氢钾 Potassium phosphate monobasic KH2PO4 茉莉酸甲酯 Methyl jasmonate MeJA
    七钼酸铵 Ammonium heptamolybdate (NH4)6Mo7O24 褪黑素 Melatonin MT
    二甲亚砜 Dimethyl sulfoxide DMSO 水杨酸 Salicylic acid SA
    海藻糖 Trehalose 美洲星 New meizhouxing NMX
    脯氨酸 Proline Pro 防冻剂 Antifreeze
    氯化胆碱 Choline chloride CC 多效唑 Paclobutrazol PP333
    抗坏血酸 Ascorbic acid ASA 防寒剂 (蔗糖、有机硅)
    Anti-chilling agent (sucrose, organic Si)
    冠菌素 Coronatine COR 复配植物生长调节剂 (水杨酸、甜菜碱、硅酸钾)
    Compound plant growth regulator
    (salicylic acid, betaine, potassium silicate)
    6-苄氨基嘌呤 6-Benzyladenine 6-BA
    下载: 导出CSV

    表  2   外源调控剂改善作物光合性能的作用机理及最佳施用浓度

    Table  2   Mechanism and optimal concentration of exogenous regulators in improving photochemical efficiency

    外源调控剂
    Exogenous
    regulator
    作用机理
    Action
    mechanism
    最佳浓度
    Optimal
    concentration
    文献
    Reference
    硅酸钾
    K2Si2O5
    提高叶片Pn、气孔导度(Gs)、叶绿素含量,降低蒸腾效率,提高水利用效率
    Increase leaf Pn, Gs, and chlorophyll content, reduce transpiration efficiency,
    and enhance water use efficiency
    0.1, 1 mmol/L [1920]
    KH2PO4 提高旗叶叶绿素含量和叶片抗氧化能力,增加对穗部的物质供应
    Increase flag leaf chlorophyll content and leaf antioxidant capacity, increase material supply to spike
    15 mmol/L [21]
    CaCl2 提高Rubisco酶活性、Chla、Chlb与类胡萝卜素(Car.) 含量,促进光合强度
    Increase Rubisco enzyme activity, Chla, Chlb & Car. content and promote photosynthetic intensity
    40 mmol/L [24]
    (NH4)6Mo7O24 提高叶绿素a、b和胡萝卜素含量
    Increase Chla, Chlb and Carotene content
    0.15 mg/kg [25]
    脱落酸 ABA 增加叶绿素含量,提高叶绿素相对电子传递速率值、最大光化学效率,
    减少低温对小麦Fv/Fm的不利影响
    Increase chlorophyll content, enhance chlorophyll relative electron transfer rate, and maximum
    photochemical efficiency, and reduce adverse effects of low temperature on wheat Fv/Fm
    10−5 mol/L [26]
    褪黑素
    MT
    调节气孔导度和小麦的光合速率,有助于光合碳同化和膜稳定性
    Regulate stomatal conductance and photosynthetic rate in wheat and contributes to
    photosynthetic carbon assimilation and membrane stability
    1 mmol/L [27]
    新美洲星
    NMX
    提高叶片PnGs和胞间CO2浓度(Ci)、PSⅡ光化学效率、光化学淬灭系数、增加Fv/Fm
    改善光合性能
    Increase leaf PnGs, and intercellular CO2 concentrations, PS Ⅱ photochemical efficiency,
    photochemical quenching coefficient, increased Fv/Fm, and improved photosynthetic performance
    300倍稀释液
    300 times
    diluent
    10 mol/L
    [28]
    2,4-表油菜素内酯
    EBR
    增加叶绿素含量,缓解叶片衰老,延长其功能期
    Increase leaf chlorophyll content, mitigate leaf senescence and prolong functional period
    0.1 mg/L [29]
    抗坏血酸 ASA 提高叶片叶绿素含量,增加单位面积分蘖数
    Increases leaf chlorophyll content and tiller number per unit area
    50 mg/L [30]
    二甲亚砜 DMSO 促进小麦幼苗叶绿素的形成,提高根活力
    Promote chlorophyll synthesis, increase root vigor of wheat seedlings
    2~5 g/kg [31]
    防冻剂
    Antifreeze
    增加小麦叶绿素含量,促进光合作用,增强根系活力
    Increase chlorophyll content, promote photosynthesis efficiency, enhance root vigor
    1500 mL/hm2 [32]
    下载: 导出CSV

    表  3   诱导渗透调节类物质合成的外源物质施用方法

    Table  3   Application method of exogenous substances inducing synthesis of osmoregulation substances

    外源物
    Exogenous substance
    使用方法
    Application method
    施用浓度
    Application concentration
    试验温度 (℃)
    Temperature
    文献
    Reference
    表油菜素内酯 EBR 叶面喷施 Foliar spraying 0.1 mg/L 4 [12]
    硅酸钾 K2Si2O5 水培 Hydroponics 1.0 mmol/L −5 [20]
    二甲亚砜 DMSO 浸种 Seeding soaking 2~5 g/kg 4 [31]
    水杨酸 SA 水培 Hydroponics 100 μmol/ L 4 [36]
    脯氨酸 Pro 叶面喷施 Foliar spraying 20 mmol/L −5 [37]
    脱落酸 ABA 根浸、叶面喷施
    Root soaking, foliar spraying
    10−7 mol/L 2~4 [38]
    海藻糖 Trehalose 浸种 Seeding soaking 10 mmol/ L 4 [39]
    磷钾 P and K 水培 Hydroponics P2O5 52 mg/L
    K2O 104 mg/L
    5 [40]
    硝普钠 SNP 水培 Hydroponics 0.125 mmol/L 4 [41]
    Na2SiO3·9H2O 浸种 Seeding soaking 1.0 mmol/L 0, 4 [4243]
    茉莉酸甲酯 MeJA 叶面喷施 Foliar spraying 1.0 mmol/ L 5 , 0 , −10 , −25 [44]
    冠菌素 COR 浇灌培养 Irrigating 1 μmol/L 4 [45]
    下载: 导出CSV

    表  4   外源调节抗氧化酶活性类物质使用方法

    Table  4   Application method of exogenous substances regulating antioxidant enzyme activities

    外源物
    Exogenous substance
    使用方法
    Application method
    施用浓度
    Application concentration
    试验温度 (℃)
    Temperature
    文献
    Reference
    表油菜素内酯 EBR 叶面喷施 Foliar spraying 0.1 mg/L 4 [12]
    硝普钠 SNP 浸种 Seeding soaking 50 μmol/L 4 [13]
    抗坏血酸 ASA 浸种 Seeding soaking 50 mg/L [30]
    Na2SiO3·9H2O 浇灌 Irrigating 1.0 mmol/L 0, 4 [43]
    氯化胆碱 CC 叶面喷施 Foliar spraying 500 mg/L −5 [53]
    (NH4)6Mo7O24 浸种 Seeding soaking 8 mmol/L 4 [56]
    多效唑 PP333 浸种 Seeding soaking 0.01 mg/L 3 [57]
    水杨酸 SA 叶面喷施 Foliar spraying 0.1 mmol/L 4 [58]
    镧离子 La3+ 水培 Hydroponics 20 mg/kg 0, 5, 10 [59]
    茉莉酸甲酯 MeJA 水培 Hydroponics 1 μmol/L 4 [60]
    CO2 激光辐射 Laser radiating 10600 nm
    (Wavelength)
    4 [13]
    注:“—”表示文献中未注明。
    Note: “—” indicates that it is not listed in the reference.
    下载: 导出CSV

    表  5   外源激素调节机理及施用浓度

    Table  5   Mechanism and application concentrations of exogenous hormones

    外源激素
    Exogenous
    hormone
    作用机理
    Action mechanism
    施用浓度
    Application
    concentration
    文献
    Reference
    脱落酸 ABA 增加小麦叶片内可溶性糖、Pro、谷胱甘肽(GSH)和ASA含量以及相关基因表达
    Increase leaf soluble sugars, Pro, GSH and ASA content, and upregulate related gene expression
    10 μmol/L [47]
    吲哚乙酸 IAA 增加根系IAA含量
    Increase root IAA content
    [51]
    玉米素核苷 ZR 缓解低温胁迫对小麦植株的伤害
    Mitigate low-temperature injury to wheat plants
    [61]
    6-苄氨基嘌呤
    6-BA
    增加叶片和分蘖节中ABA/GA值,提高翌年返青率
    Increase ABA/GA ratio in leaves and tiller nodes, improve regreening rate next year
    10 μmol/L [63]
    赤霉素 GA 增加种子呼吸速率和淀粉酶活性,促进淀粉分解,提高了种子发芽率、
    萌发指数以及胚根和胚芽发育
    Increase seed breathing rate and amylase activity, promote starch decomposition,
    seed germination, germination index, and embryonic root and germ development
    5 μmol/L [65]
    茉莉酸甲酯
    MeJA
    提高小麦叶片内ABA含量以及ABA/GA值,维护激素平衡
    Increase leaf ABA content and ABA/GA ratio, maintain hormone balance
    100 µmol/L [66]
    水杨酸 SA 促进低温下种子萌发,提高叶片中可溶性糖积累
    Promote seed germination at low temperatures, and increase osmoregulatory accumulation in leaves
    0.005~0.100
    mmol/L
    [67]
    细胞分裂素 CTK 增加小麦幼苗抗寒能力 Increase cold tolerance of wheat seedlings [68]
    注:“—”表示文献中未注明。
    Note: “—” indicates that it is not listed in the reference.
    下载: 导出CSV

    表  6   小麦抗低温化学调控剂专利名录及产品有效成分

    Table  6   List of patent products and the effective components for low temperature resistance of wheat

    专利名称
    Patent name
    主要有效成分
    Main effective component
    公开年份
    Public year
    文献
    Reference
    一种小麦抗低温保护剂及使用方法
    A wheat anti-low temperature protective agent and the use method
    甜菜碱、蚯蚓活性酶植物多肽液、尿素、磷酸二氢钾、
    壳聚糖
    Betaine, plant peptide solution with earthworm active enzymes, urea, potassium dihydrogen phosphate, chitosan
    2022[72]
    一种提高小麦抗逆潜力和灾后恢复力制剂及应用
    A product to improve the resistance potential and post-disaster recovery of wheat and the use method
    复合氨基酸、氯化钙、5-氨基乙酰丙酸、芸苔素内脂
    Aminofusin, calcium chloride, 5-aminolevulinic acid, brassinolide
    2022[73]
    一种提高小麦春季抗寒性的复配剂、施用方法及其应用
    A formula agent for improving wheat tolerance to spring cold and the application method
    6-BA、壳寡糖、2, 4-表油菜素内酯、冠菌素
    6-Benzylaminopurine, chitosan oligosaccharide,
    2,4-epibrassinolide, coronatine
    2021[74]
    一种小麦抗低温诱导剂产品及使用方法
    A wheat anti-low temperature inducer and the use method
    蚯蚓活性酶植物多肽液、壳聚糖、尿素、磷酸二氢钾、
    茉莉酸甲酯
    Plant peptide solution with earthworm active enzymes, chitosan, urea, potassium dihydrogen phosphate, methyl jasmonate
    2021[75]
    一种用于小麦倒春寒的防寒剂
    An anti-chilling agent of late spring coldness in wheat
    蔗糖、有机硅
    Sucrose, silicone
    2020[76]
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and the application method
    蛋氨酸铜、松脂醇二葡萄糖苷、水杨酸、壳寡糖、氯化钙
    Copper methionine, pinoresinol diglucoside, salicylic acid, chitosan oligosaccharide, calcium chloride
    2020[77]
    一种呋喃并吡喃衍生物及其制备方法和在小麦田间防冻管理中的应用
    A furopyran derivative and its procession protocol, and application method preventing wheat from frost injury
    一种呋喃并吡喃衍生物
    A furopyran derivative
    2019[78]
    一种抵御小麦倒春寒的混合制剂及其制备和喷施方法
    Procession and foliar application method of a formula agent for wheat resistance to late spring coldness
    尿素、磷酸二氢钾、硫酸锌、胺鲜酯、康多酚
    Urea, potassium dihydrogen phosphate, zinc sulfate, diethyl aminoethyl hexanoate, kang polyphenol
    2019[79]
    一种适用于小麦的防冻剂及制备方法和应用
    Procession and application of an antifreeze agent for wheat
    硫酸铵、磷酸二氢钾、硫酸钾、乙二胺四乙酸锌、
    壳寡糖、脯氨酸、芸苔素、甘油
    Ammonium sulfate, potassium dihydrogen phosphate, potassium sulphate, ethylenediaminetetraacetic acid zinc, chitosan oligosaccharide, proline, brassinolide, glycerol
    2019[80]
    一种性激素在小麦孕穗期抗寒减灾方面的应用
    Application of a hormone for alleviating low temperature injury of wheat at booting stage
    孕酮
    Progesterone
    2018[81]
    一种小麦耐旱抗逆复合调节剂及其应用
    A compound regulator for drought and stress tolerance in wheat and its application
    甜菜碱、果聚糖、壳聚糖、油菜素内酯、硝普钠、
    黄腐酸、柠檬酸钛
    Betaine, fructosan, chitosan, brassinolide, sodium nitroprusside, fulvic acid, citric acid titanium
    2018[82]
    一种小麦抗病防冻农药组合物
    An anti-disease and anti-freeze pesticide composition for wheat
    已唑醇、氯化胆碱、香菇多糖
    Hexaconazole, choline chloride, lentinan
    2018[83]
    一种提高小麦抗冻能力的专用液体肥料
    A specific liquid fertilizer to improve the frost resistance of wheat
    醋酸铜、柠檬酸螯合锰、山梨酸钾、乙基麦芽酚、
    L-谷氨酸
    Cupric acetate monohydrate, citric acid chelated manganese, potassium sorbate, ethyl maltol, L-glutamic acid
    2017[84]
    防御小麦春季冻害的复合调节剂及方法
    Compound regulators for preventing spring frost damage in wheat and the use method
    水杨酸
    Salicylic acid
    2017[85]
    下载: 导出CSV
    续表 6 Table 6 continued
    专利名称
    Patent name
    主要有效成分
    Main effective component
    公开年份
    Public year
    文献
    Reference
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and its application method
    氨基寡糖素、聚乙二醇、脂肪酶、乙基磺酸乙酯、
    海藻酸、青鲜素
    Amino-oligosaccharides, polyethylene glycol, lipase,
    diethyl sulfite, alginic acid, maleic hydrazide
    2017[86]
    小麦抗低温调节剂及其使用方法
    A regulator for low temperature resistance of wheat and the use method
    褪黑素、腐殖酸钾、α-萘乙酸、茉莉酸、油菜素内酯、
    细胞分裂素、抗冻剂、抗菌肽
    Melatonin, potassium humate, α-Naphthaleneacetic acid, jasmonic acid, brassinolide, cytokinin, antifreeze,
    antimicrobial peptide
    2017[87]
    一种提高小麦抗低温冷害的抗冷剂及其应用方法
    A cold-resistant agent for improving resistance to low-temperature damage of wheat and the application method
    磷酸氢二钠、磷酸二氢钾、甜菜碱、硝基腐殖酸铵、
    硝普钠、蔗糖、尿素
    Dibasic sodium phosphate, potassium dihydrogen
    phosphate, betaine, ammonium nitro-humate, sodium
    nitroprusside, sucrose, urea
    2017[88]
    小麦抗低温调节剂及其使用方法
    A regulator for wheat low-temperature resistance and the use method
    甜菜碱、壳寡糖、水杨酸、硅酸钾、蛋白多肽
    Betaine, chitosan oligosaccharide, salicylic acid,
    potassium silicate, protein polypeptides
    2017[89]
    一种小麦抗寒诱导剂及其施用方法
    A wheat cold resistance inducer and the application method
    双氧水、水杨酸
    Hydrogen peroxide, salicylic acid
    2016[90]
    提高小麦抗低温能力的调理剂
    A conditioning agent to improve wheat resistance to low temperatures
    6-BA、萘乙酸盐、甲哌鎓、乙烯利、磷酸二氢钾
    6-Benzylaminopurine, naphthalene acetate salt, mepiquat
    chloride, ethrel, potassium dihydrogen phosphate
    2016[91]
    一种小麦高光效抗逆境增产调节剂及其制备方法和应用
    An regulator for improving photosynthetic efficiency, stress resistance and yield of wheat, and its manufacture and application
    5-氨基乙酰丙酸、萘乙酸盐
    5-aminolevulinic acid, naphthalene acetate salt
    2016[92]
    一种提高冬小麦抗冻能力的方法
    A method to improve winter wheat resistant to frost
    四氢嘧啶及其衍生物
    Ectoine and its derivatives
    2015[93]
    一种小麦抗寒调节剂
    A regulator for cold resistance of wheat
    浒苔多糖、水杨酸、油菜素内酯、甜菜碱、亚精胺
    Enteromorpha prolifera polysaccharide, salicylic acid,
    brassinolide, betaine, spermidine
    2014[94]
    一种预防小麦低温冻害的专用烟雾剂及其制备方法
    A special fogging agent for preventing low-temperature damage of wheat and its manufacture method
    柴油、丙二醇、尿素、磷酸二氢钾、氯化钾
    Diesel oil, propylene glycol, urea, potassium dihydrogen
    phosphate, potassium chloride
    2013[95]
    小麦抗低温调节剂及其制备方法
    A wheat anti-low temperature regulator and its producing method
    氨基多糖、氯化胆碱、水杨酸或水杨酸钠、硅酸钾
    Aminopolysaccharide, choline chloride, salicylic acid or
    sodium salicylate, potassium silicate
    2013[96]
    下载: 导出CSV
  • [1]

    Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50): 20260–20264.

    [2]

    Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050[J]. PLoS ONE, 2013, 8(6): e66428. DOI: 10.1371/journal.pone.0066428

    [3] 马占云, 任佳雪, 陈海涛, 等. IPCC第一工作组评估报告分析及建议[J]. 环境科学研究, 2022, 35(11): 2550–2558. Ma Z Y, Ren J X, Chen H T, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 2550–2558.

    Ma Z Y, Ren J X, Chen H T, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 25502558.

    [4] 李艳, 王嘉禾, 王式功. 极涡、阻塞高压和西伯利亚高压在极端低温事件中的组合性异常特征[J]. 兰州大学学报(自然科学版), 2019, 55(1): 51–63. Li Y, Wang J H, Wang S G. The integrated circulation anomalies of polar vortex, blocking and the Siberian high over the extreme low-temperature events[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(1): 51–63.

    Li Y, Wang J H, Wang S G. The integrated circulation anomalies of polar vortex, blocking and the Siberian high over the extreme low-temperature events[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(1): 5163.

    [5]

    Holman J D, Schlegel A J, Thompson C R, et al. Influence of precipitation, temperature and 56 years on winter wheat yields in western Kansas[J]. Crop Management, 2011, 10(1): 1–10.

    [6]

    Boer R, Campbell L C, Fletcher D J. Characteristics of frost in a major wheat-growing region of Australia[J]. Australian Journal of Agricultural Research, 1993, 44(8): 1731–1743. DOI: 10.1071/AR9931731

    [7] 张乐乐, 陈翔, 柯媛媛, 等. 冬小麦抗倒春寒性能鉴定方法和指标的比较[J]. 中国农业气象, 2021, 42(2): 146–157. Zhang L L, Chen X, Ke Y Y, et al. An inclusive comparison of identification methods and indices of winter wheat tolerance against late spring coldness [J]. Chinese Journal of Agrometeorology, 2021, 42(2): 146–157. DOI: 10.3969/j.issn.1000-6362.2021.02.006

    Zhang L L, Chen X, Ke Y Y, et al. An inclusive comparison of identification methods and indices of winter wheat tolerance against late spring coldness [J]. Chinese Journal of Agrometeorology, 2021, 42(2): 146157. DOI: 10.3969/j.issn.1000-6362.2021.02.006

    [8] 赵虹, 王西成, 胡卫国, 等. 黄淮南片麦区小麦品种利用现状及建议[J]. 河南农业科学, 2016, 45(8): 18−24, 38. Zhao H, Wang X C, Hu W G, et al. Status and suggestion of wheat variety utilization in southern Huang-Huai wheat region[J]. Journal of Henan Agricultural Sciences, 2016, 45(8): 18–24, 38.

    Zhao H, Wang X C, Hu W G, et al. Status and suggestion of wheat variety utilization in southern Huang-Huai wheat region[J]. Journal of Henan Agricultural Sciences, 2016, 45(8): 1824, 38.

    [9] 高艳, 唐建卫, 殷贵鸿, 等. 倒春寒发生时期和次数对冬小麦产量性状的影响[J]. 麦类作物学报, 2015, 35(5): 687–692. Gao Y, Tang J W, Yin G H, et al. Effect of different periods and frequency of late spring coldness on winter wheat yield related traits[J]. Journal of Triticeae Crops, 2015, 35(5): 687–692. DOI: 10.7606/j.issn.1009-1041.2015.05.17

    Gao Y, Tang J W, Yin G H, et al. Effect of different periods and frequency of late spring coldness on winter wheat yield related traits[J]. Journal of Triticeae Crops, 2015, 35(5): 687692. DOI: 10.7606/j.issn.1009-1041.2015.05.17

    [10] 钱永兰, 王建林, 郑昌玲, 等. 近50年华北地区冬小麦低温灾害的时空演变特征[J]. 生态学杂志, 2014, 33(12): 3245–3253. Qian Y L, Wang J L, Zheng C L, et al. Spatial-temporal change of low temperature disaster of winter wheat in North China in last 50 years[J]. Chinese Journal of Ecology, 2014, 33(12): 3245–3253.

    Qian Y L, Wang J L, Zheng C L, et al. Spatial-temporal change of low temperature disaster of winter wheat in North China in last 50 years[J]. Chinese Journal of Ecology, 2014, 33(12): 32453253.

    [11] 王永军, 李海军, 李丽丽, 等. 江苏淮北地区小麦冻害症状、发生原因及防治对策[J]. 大麦与谷类科学, 2021, 38(3): 8–12. Wang Y J, Li H J, Li L L, et al. Symptoms, causes, and control strategies of wheat freeze injury in Huaibei area of Jiangsu Province[J]. Barley and Cereal Sciences, 2021, 38(3): 8–12.

    Wang Y J, Li H J, Li L L, et al. Symptoms, causes, and control strategies of wheat freeze injury in Huaibei area of Jiangsu Province[J]. Barley and Cereal Sciences, 2021, 38(3): 812.

    [12] 刘丽杰, 丁美云, 刘晓娜, 等. 外源表油菜素内酯对小麦幼苗抗冷性的诱导效应[J]. 分子植物育种, 2020, 18(20): 6815−6821. Liu L J, Ding M Y, Liu X N, et al. Induction effect of exogenous epibrassinolide on cold resistance of wheat seedlings[J]. Molecular Plant Breeding, 2020, 18(20): 6815−6821.

    Liu L J, Ding M Y, Liu X N, et al. Induction effect of exogenous epibrassinolide on cold resistance of wheat seedlings[J]. Molecular Plant Breeding, 2020, 18(20): 68156821.

    [13] 蒙钟文, 张静, 陈怡平. CO2激光与外源NO对低温胁迫小麦的防护效应[J]. 中国生态农业学报, 2014, 22(5): 566–570. Meng Z W, Zhang J, Chen Y P. Enhancing effects of laser and exogenous nitric oxide on chilling tolerance of wheat seedling[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5): 566–570.

    Meng Z W, Zhang J, Chen Y P. Enhancing effects of laser and exogenous nitric oxide on chilling tolerance of wheat seedling[J]. Chinese Journal of Eco-Agriculture, 2014, 22(5): 566570.

    [14] 刘丽杰, 苍晶, 李怀伟, 等. 外源ABA对冬小麦越冬期呼吸代谢关键酶与糖代谢的影响[J]. 麦类作物学报, 2013, 33(1): 65–72. Liu L J, Cang J, Li H W, et al. Effects of exogenous abscisic acid on key enzymes of respiratory metabolism and sugar metabolism of winter wheat in the wintering period[J]. Journal of Triticeae Crops, 2013, 33(1): 65–72. DOI: 10.7606/j.issn.1009-1041.2013.01.012

    Liu L J, Cang J, Li H W, et al. Effects of exogenous abscisic acid on key enzymes of respiratory metabolism and sugar metabolism of winter wheat in the wintering period[J]. Journal of Triticeae Crops, 2013, 33(1): 6572. DOI: 10.7606/j.issn.1009-1041.2013.01.012

    [15] 岳俊芹, 张素瑜, 李向东, 等. 低温胁迫对小麦叶绿素荧光参数及产量的响应[J]. 麦类作物学报, 2021, 41(1): 105–110. Yue J Q, Zhang S Y, Li X D, et al. Effect of low temperature stress on chlorophyll fluorescence parameters and yield of wheat[J]. Journal of Triticeae Crops, 2021, 41(1): 105–110. DOI: 10.7606/j.issn.1009-1041.2021.01.13

    Yue J Q, Zhang S Y, Li X D, et al. Effect of low temperature stress on chlorophyll fluorescence parameters and yield of wheat[J]. Journal of Triticeae Crops, 2021, 41(1): 105110. DOI: 10.7606/j.issn.1009-1041.2021.01.13

    [16] 葛君, 刘震. 低温胁迫对拔节期小麦光合色素、光合参数及叶绿素荧光特性的影响[J]. 山西农业科学, 2021, 49(11): 1253–1256. Ge J, Liu Z. Effects of low temperature stress on photosynthetic pigments, photosynthetic parameters and chlorophyll fluorescence characteristics of wheat at jointing stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(11): 1253–1256. DOI: 10.3969/j.issn.1002-2481.2021.11.01

    Ge J, Liu Z. Effects of low temperature stress on photosynthetic pigments, photosynthetic parameters and chlorophyll fluorescence characteristics of wheat at jointing stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(11): 12531256. DOI: 10.3969/j.issn.1002-2481.2021.11.01

    [17] 刘蕾蕾, 纪洪亭, 刘兵, 等. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响[J]. 中国农业科学, 2018, 51(23): 4434–4448. Liu L L, Ji H T, Liu B, et al. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll fluorescence characteristics in wheat leaf[J]. Scientia Agricultura Sinica, 2018, 51(23): 4434–4448. DOI: 10.3864/j.issn.0578-1752.2018.23.004

    Liu L L, Ji H T, Liu B, et al. Effects of jointing and booting low temperature treatments on photosynthetic and chlorophyll fluorescence characteristics in wheat leaf[J]. Scientia Agricultura Sinica, 2018, 51(23): 44344448. DOI: 10.3864/j.issn.0578-1752.2018.23.004

    [18] 王秀田, 卢秋巍, 苍晶, 等. 低温驯化对冬小麦叶绿素荧光特性及抗氧化酶活性的影响[J]. 植物生理学报, 2016, 52(12): 1959–1969. Wang X T, Lu Q W, Cang J, et al. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat[J]. Plant Physiology Journal, 2016, 52(12): 1959–1969.

    Wang X T, Lu Q W, Cang J, et al. Effects of cold acclimation on chlorophyll fluorescence characteristics and antioxidant enzyme activity in winter wheat[J]. Plant Physiology Journal, 2016, 52(12): 19591969.

    [19] 朱佳, 梁永超, 丁燕芳, 等. 硅对低温胁迫下冬小麦幼苗光合作用及相关生理特性的影响[J]. 中国农业科学, 2006, 39(9): 1780–1788. Zhu J, Liang Y C, Ding Y F, et al. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress[J]. Scientia Agricultura Sinica, 2006, 39(9): 1780–1788. DOI: 10.3321/j.issn:0578-1752.2006.09.008

    Zhu J, Liang Y C, Ding Y F, et al. Effect of silicon on photosynthesis and its related physiological parameters in two winter wheat cultivars under cold stress[J]. Scientia Agricultura Sinica, 2006, 39(9): 17801788. DOI: 10.3321/j.issn:0578-1752.2006.09.008

    [20] 范琼花, 孙万春, 李兆君, 等. 硅对短期低温胁迫小麦叶片光合作用及其主要相关酶的影响[J]. 植物营养与肥料学报, 2009, 15(3): 544–550. Fan Q H, Sun W C, Li Z J, et al. Effects of silicon on photosynthesis and its major relevant enzyme activities in wheat leaves under short-term cold stress[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(3): 544–550. DOI: 10.3321/j.issn:1008-505X.2009.03.008

    Fan Q H, Sun W C, Li Z J, et al. Effects of silicon on photosynthesis and its major relevant enzyme activities in wheat leaves under short-term cold stress[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(3): 544550. DOI: 10.3321/j.issn:1008-505X.2009.03.008

    [21] 苏慧, 李金鹏, 胡燕美, 等. 喷施KH2PO4对孕穗期低温胁迫下小麦叶片抗氧化特性与幼穗冻害的影响[J]. 麦类作物学报, 2021, 41(5): 585–593. Su H, Li J P, Hu Y M, et al. Effect of spraying KH2PO4 on leaf physiological characteristics and freezing damage of young spike of cold stress at wheat booting stage[J]. Journal of Triticeae Crops, 2021, 41(5): 585–593. DOI: 10.7606/j.issn.1009-1041.2021.05.09

    Su H, Li J P, Hu Y M, et al. Effect of spraying KH2PO4 on leaf physiological characteristics and freezing damage of young spike of cold stress at wheat booting stage[J]. Journal of Triticeae Crops, 2021, 41(5): 585593. DOI: 10.7606/j.issn.1009-1041.2021.05.09

    [22]

    Venzhik Y, Talanova V, Titov A. The effect of abscisic acid on cold tolerance and chloroplasts ultrastructure in wheat under optimal and cold stress conditions[J]. Acta Physiologiae Plantarum, 2016, 38(3): 63. DOI: 10.1007/s11738-016-2082-1

    [23]

    Wang W L, Wang X, Huang M, et al. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid[J]. Journal of Plant Growth Regulation, 2021, 40(2): 811–823. DOI: 10.1007/s00344-020-10144-x

    [24] 由继红, 陆静梅, 杨文杰. 钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响[J]. 作物学报, 2002, 28(5): 693–696. You J H, Lu J M, Yang W J. Effects of Ca2+ on photosynthesis and related physiological indexes of wheat seedlings under low temperature stress[J]. Acta Agronomica Sinica, 2002, 28(5): 693–696. DOI: 10.3321/j.issn:0496-3490.2002.05.021

    You J H, Lu J M, Yang W J. Effects of Ca2+ on photosynthesis and related physiological indexes of wheat seedlings under low temperature stress[J]. Acta Agronomica Sinica, 2002, 28(5): 693696. DOI: 10.3321/j.issn:0496-3490.2002.05.021

    [25]

    Wu S W, Wei S Q, Hu C X, et al. Molybdenum-induced alteration of fatty acids of thylakoid membranes contributed to low temperature tolerance in wheat[J]. Acta Physiologiae Plantarum, 2017, 39(10): 237. DOI: 10.1007/s11738-017-2534-2

    [26] 王秀田. 低温驯化及ABA对冬小麦叶绿素荧光特性和抗氧化酶活性的影响[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2017. Wang X T. Effects of cold acclimation and ABA on chlorophyll fluorescence and antioxidant enzyme activities of winter wheat[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2017.

    Wang X T. Effects of cold acclimation and ABA on chlorophyll fluorescence and antioxidant enzyme activities of winter wheat[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2017.

    [27]

    Sun L Y, Li X N, Wang Z S, et al. Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat[J]. Molecules, 2018, 23(5): 1091. DOI: 10.3390/molecules23051091

    [28] 汪强, 黄正来, 张文静, 等. 新美洲星和6-BA对低温胁迫下稻茬小麦光合和产量的影响[J]. 麦类作物学报, 2015, 35(9): 1269–1274. Wang Q, Huang Z L, Zhang W J, et al. Effect of spraying 6-BA and new meizhouxing on photosynthesis and yield of wheat after rice under low temperature stress[J]. Journal of Triticeae Crops, 2015, 35(9): 1269–1274. DOI: 10.7606/j.issn.1009-1041.2015.09.14

    Wang Q, Huang Z L, Zhang W J, et al. Effect of spraying 6-BA and new meizhouxing on photosynthesis and yield of wheat after rice under low temperature stress[J]. Journal of Triticeae Crops, 2015, 35(9): 12691274. DOI: 10.7606/j.issn.1009-1041.2015.09.14

    [29] 张奥深, 雍晓宇, 韩巧霞, 等. 外施2, 4-表油菜素内酯缓解冬小麦拔节期冻害胁迫效应[J]. 华北农学报, 2022, 37(2): 78–83. Zhang A S, Yong X Y, Han Q X, et al. Alleviating effect of external application of 2, 4-epbrassinolide on freezing stress in winter wheat at jointing stage[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 78–83.

    Zhang A S, Yong X Y, Han Q X, et al. Alleviating effect of external application of 2, 4-epbrassinolide on freezing stress in winter wheat at jointing stage[J]. Acta Agriculturae Boreali-Sinica, 2022, 37(2): 7883.

    [30]

    Tariq S, Sadia L, Hamad K, et al. Ascorbic acid priming enhances seed germination and seedling growth of winter wheat under low temperature due to late sowing in Pakistan[J]. Agronomy-Basel, 2019, 9(11): 757. DOI: 10.3390/agronomy9110757

    [31] 宗学凤, 张建奎, 李帮秀, 等. 二甲亚砜对小麦幼苗抗冷性的影响研究[J]. 中国生态农业学报, 2006, 14(3): 108–110. Zong X F, Zhang J K, Li B X, et al. Effects of DMSO on the cold-resistance of wheat seedlings[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 108–110.

    Zong X F, Zhang J K, Li B X, et al. Effects of DMSO on the cold-resistance of wheat seedlings[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 108110.

    [32] 顾大路, 杨文飞, 文廷刚, 等. 冻害胁迫下防冻剂处理对小麦生理特征和产量的影响[J]. 江苏农业学报, 2016, 32(3): 490–496. Gu D L, Yang W F, Wen T G, et al. Effect of antifreeze on the physiological characteristics and yield of freezing-stressed wheat[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 490–496.

    Gu D L, Yang W F, Wen T G, et al. Effect of antifreeze on the physiological characteristics and yield of freezing-stressed wheat[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 490496.

    [33]

    Zeng Y, Yu J, Cang J, et al. Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat ( Triticum aestivum) at low temperatures[J]. Bioscience, Biotechnology and Biochemistry, 2011, 75(4): 681–687. DOI: 10.1271/bbb.100813

    [34] 李春燕, 徐雯, 刘立伟, 等. 药隔至开花期低温对小麦产量和生理特性的影响[J]. 麦类作物学报, 2016, 36(1): 77–85. Li C Y, Xu W, Liu L W, et al. Effect of short-time low temperature from anther connective stage to anthesis on wheat yield and physiological characteristics[J]. Journal of Triticeae Crops, 2016, 36(1): 77–85. DOI: 10.7606/j.issn.1009-1041.2016.01.11

    Li C Y, Xu W, Liu L W, et al. Effect of short-time low temperature from anther connective stage to anthesis on wheat yield and physiological characteristics[J]. Journal of Triticeae Crops, 2016, 36(1): 7785. DOI: 10.7606/j.issn.1009-1041.2016.01.11

    [35] 陈翔, 林涛, 林非非, 等. 黄淮麦区小麦倒春寒危害机理及防控措施研究进展[J]. 麦类作物学报, 2020, 40(2): 243–250. Chen X, Lin T, Lin F F, et al. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai regions[J]. Journal of Triticeae Crops, 2020, 40(2): 243–250.

    Chen X, Lin T, Lin F F, et al. Research progress on damage mechanism and prevention and control measures of late spring coldness of wheat in Huanghuai regions[J]. Journal of Triticeae Crops, 2020, 40(2): 243250.

    [36]

    Ignatenko A, Talanova V, Repkina N, et al. Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation[J]. Acta Physiologiae Plantarum, 2019, 41(6): 80. DOI: 10.1007/s11738-019-2872-3

    [37] 雍晓宇, 张奥深, 韩巧霞, 等. 外源施用脯氨酸缓解拔节期冬小麦冻害效应分析[J/OL]. 分子植物育种: 1–9[2023-02-22]. DOI: 46.1068.S.20210826.1147.006. Yong X Y, Zhang A S, Han Q X, et al. Effect of exogenous proline application on alleviating freezing injury of winter wheat at jointing stage[J/OL]. Molecular Plant Breeding: 1–9[2023-02-22]. DOI: 46.1068.S.20210826.1147.006.

    Yong X Y, Zhang A S, Han Q X, et al. Effect of exogenous proline application on alleviating freezing injury of winter wheat at jointing stage[J/OL]. Molecular Plant Breeding: 1–9[2023-02-22]. DOI: 46.1068.S.20210826.1147.006.

    [38] 于晶, 张林, 苍晶, 等. 外源ABA对寒地冬小麦东农冬麦1号幼苗生长及抗冷性的影响[J]. 麦类作物学报, 2008, 28(5): 883–887. Yu J, Zhang L, Cang J, et al. Effects of exogenous ABA on cold resistance and tender seedlings growth of winter wheat DongnongDongmai 1 in cold area[J]. Journal of Triticeae Crops, 2008, 28(5): 883–887.

    Yu J, Zhang L, Cang J, et al. Effects of exogenous ABA on cold resistance and tender seedlings growth of winter wheat DongnongDongmai 1 in cold area[J]. Journal of Triticeae Crops, 2008, 28(5): 883887.

    [39] 谢冬微, 王晓楠, 付连双, 等. 外源海藻糖对冬小麦低温下胚芽长及幼苗抗寒性的影响[J]. 麦类作物学报, 2015, 35(2): 215–223. Xie D W, Wang X N, Fu L S, et al. Effect of exogenous trehalose on germ length and seedling freeze resistance of winter wheat under cold stress[J]. Journal of Triticeae Crops, 2015, 35(2): 215–223. DOI: 10.7606/j.issn.1009-1041.2015.02.010

    Xie D W, Wang X N, Fu L S, et al. Effect of exogenous trehalose on germ length and seedling freeze resistance of winter wheat under cold stress[J]. Journal of Triticeae Crops, 2015, 35(2): 215223. DOI: 10.7606/j.issn.1009-1041.2015.02.010

    [40] 王贺正, 陈明灿, 贺文闯, 等. 磷钾对小麦幼苗抗寒性的影响[J]. 麦类作物学报, 2009, 29(1): 141–145. Wang H Z, Chen M C, He W C, et al. Effect of phosphorus and potassium on cold resistance of wheat seedling[J]. Journal of Triticeae Crops, 2009, 29(1): 141–145.

    Wang H Z, Chen M C, He W C, et al. Effect of phosphorus and potassium on cold resistance of wheat seedling[J]. Journal of Triticeae Crops, 2009, 29(1): 141145.

    [41]

    Li C X, Li T T, Zhang D J, et al. Exogenous nitric oxide effect on fructan accumulation and FBEs expression in chilling-sensitive and chilling-resistant wheat[J]. Environmental and Experimental Botany, 2013, 86: 2–8. DOI: 10.1016/j.envexpbot.2011.12.032

    [42] 赵培培, 赵长江, 于立河, 等. 低温下硅对春小麦种子萌发及抗氧化和渗透调节系统的影响[J]. 麦类作物学报, 2014, 34(6): 823–831. Zhao P P, Zhao C J, Yu L H, et al. Effect of silicon on seed germination, anti-oxidation and osmotic adjustment of spring wheat under low temperature conditions[J]. Journal of Triticeae Crops, 2014, 34(6): 823–831. DOI: 10.7606/j.issn.1009-1041.2014.06.15

    Zhao P P, Zhao C J, Yu L H, et al. Effect of silicon on seed germination, anti-oxidation and osmotic adjustment of spring wheat under low temperature conditions[J]. Journal of Triticeae Crops, 2014, 34(6): 823–831. DOI: 10.7606/j.issn.1009-1041.2014.06.15

    [43] 赵培培, 于立河, 赵长江. 低温下硅对春小麦幼苗生长及生理特性的影响[J]. 黑龙江八一农垦大学学报, 2015, 27(1): 15–21, 36. Zhao P P, Yu L H, Zhao C J. Effects of silicon on growth and physiological parameters of spring wheat seedlings under low temperature conditions[J]. Journal of Heilongjiang Bayi Agricultural University, 2015, 27(1): 15–21, 36. DOI: 10.3969/j.issn.1002-2090.2015.01.004

    Zhao P P, Yu L H, Zhao C J. Effects of silicon on growth and physiological parameters of spring wheat seedlings under low temperature conditions[J]. Journal of Heilongjiang Bayi Agricultural University, 2015, 27(1): 1521, 36. DOI: 10.3969/j.issn.1002-2090.2015.01.004

    [44] 赵虎, 樊晓培, 罗力力, 等. MeJA对低温胁迫下冬小麦抗寒生理及关键基因表达量的影响[J]. 麦类作物学报, 2019, 39(4): 407–414. Zhao H, Fan X P, Luo L L, et al. Effect of MeJA on the cold tolerance physiology and key gene expression in winter wheat under low temperature stress[J]. Journal of Triticeae Crops, 2019, 39(4): 407–414.

    Zhao H, Fan X P, Luo L L, et al. Effect of MeJA on the cold tolerance physiology and key gene expression in winter wheat under low temperature stress[J]. Journal of Triticeae Crops, 2019, 39(4): 407414.

    [45] 齐付国, 李建民, 段留生, 等. 冠菌素对小麦几个抗寒生理指标的影响[J]. 麦类作物学报, 2006, 26(6): 149–153. Qi F G, Li J M, Duan L S, et al. Effects of coronatine on chilling-resistant physiological indexes of different wheat varieties[J]. Journal of Triticeae Crops, 2006, 26(6): 149–153. DOI: 10.3969/j.issn.1009-1041.2006.06.032

    Qi F G, Li J M, Duan L S, et al. Effects of coronatine on chilling-resistant physiological indexes of different wheat varieties[J]. Journal of Triticeae Crops, 2006, 26(6): 149153. DOI: 10.3969/j.issn.1009-1041.2006.06.032

    [46] 王梦雨, 王文霞, 赵小明, 等. 壳寡糖对低温胁迫下小麦幼苗的保护作用及相关代谢产物的影响[J]. 麦类作物学报, 2016, 36(5): 653–658. Wang M Y, Wang W X, Zhao X M, et al. Effect of chitooligosaccharide on reducing cryoinjury and improving metabolite of winter wheat seedlings under low temperature stress[J]. Journal of Triticeae Crops, 2016, 36(5): 653–658. DOI: 10.7606/j.issn.1009-1041.2016.05.17

    Wang M Y, Wang W X, Zhao X M, et al. Effect of chitooligosaccharide on reducing cryoinjury and improving metabolite of winter wheat seedlings under low temperature stress[J]. Journal of Triticeae Crops, 2016, 36(5): 653658. DOI: 10.7606/j.issn.1009-1041.2016.05.17

    [47]

    Zhang N, Li L J, Zhang L R, et al. Abscisic acid enhances tolerance to spring freeze stress and regulates the expression of ascorbate–glutathione biosynthesis-related genes and stress-responsive genes in common wheat[J]. Molecular Breeding, 2020, 40(11): 108. DOI: 10.1007/s11032-020-01187-9

    [48]

    Gilroy S, Suzuki N, Miller G, et al. A tidal wave of signals: Calcium and ROS at the forefront of rapid systemic signaling[J]. Trends in Plant Science, 2014, 19(10): 623–630. DOI: 10.1016/j.tplants.2014.06.013

    [49] 柯媛媛, 陈翔, 倪芊芊, 等. 低温逆境胁迫下小麦ROS代谢及调控机制研究进展[J]. 大麦与谷类科学, 2021, 38(1): 1–6. Ke Y Y, Chen X, Ni Q Q, et al. Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress[J]. Barley and Cereal Sciences, 2021, 38(1): 1–6.

    Ke Y Y, Chen X, Ni Q Q, et al. Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress[J]. Barley and Cereal Sciences, 2021, 38(1): 16.

    [50] 葛君, 姜晓君, 任德超, 等. 低温胁迫对拔节期小麦抗氧化系统及光合能力的影响[J]. 天津农业科学, 2021, 27(9): 5–9. Ge J, Jiang X J, Ren D C, et al. Effects of low temperature stress on antioxidant system and photosynthetic capacity of wheat at jointing stage[J]. Tianjin Agricultural Sciences, 2021, 27(9): 5–9. DOI: 10.3969/j.issn.1006-6500.2021.09.002

    Ge J, Jiang X J, Ren D C, et al. Effects of low temperature stress on antioxidant system and photosynthetic capacity of wheat at jointing stage[J]. Tianjin Agricultural Sciences, 2021, 27(9): 59. DOI: 10.3969/j.issn.1006-6500.2021.09.002

    [51] 张文静, 刘亮, 黄正来, 等. 低温胁迫对稻茬小麦根系抗氧化酶活性及内源激素含量的影响[J]. 麦类作物学报, 2016, 36(4): 501–506. Zhang W J, Liu L, Huang Z L, et al. Effect of low temperature on antioxidative enzymes activity and endogenous hormone content in wheat root of rice-wheat rotation [J]. Journal of Triticeae Crops, 2016, 36(4): 501–506. DOI: 10.7606/j.issn.1009-1041.2016.04.16

    Zhang W J, Liu L, Huang Z L, et al. Effect of low temperature on antioxidative enzymes activity and endogenous hormone content in wheat root of rice-wheat rotation [J]. Journal of Triticeae Crops, 2016, 36(4): 501506. DOI: 10.7606/j.issn.1009-1041.2016.04.16

    [52] 刘艳阳, 李俊周, 陈磊, 等. 低温胁迫对小麦叶片细胞膜脂质过氧化产物及相关酶活性的影响[J]. 麦类作物学报, 2006, 26(4): 70–73. Liu Y Y, Li J Z, Chen L, et al. Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves [J]. Journal of Triticeae Crops, 2006, 26(4): 70–73. DOI: 10.3969/j.issn.1009-1041.2006.04.017

    Liu Y Y, Li J Z, Chen L, et al. Effect of low temperature stress on peroxidation product of membrane lipids and activity of related enzymes in wheat seedling leaves [J]. Journal of Triticeae Crops, 2006, 26(4): 7073. DOI: 10.3969/j.issn.1009-1041.2006.04.017

    [53] 荆恩恩, 高翔, 李宗震, 等. 氯化胆碱对小麦幼苗耐低温能力的生理调控效应[J]. 麦类作物学报, 2018, 38(6): 748–755. Jing E E, Gao X, Li Z Z, et al. Physiological regulation of choline chloride on tolerance of wheat seedling to low temperature[J]. Journal of Triticeae Crops, 2018, 38(6): 748–755. DOI: 10.7606/j.issn.1009-1041.2018.06.16

    Jing E E, Gao X, Li Z Z, et al. Physiological regulation of choline chloride on tolerance of wheat seedling to low temperature[J]. Journal of Triticeae Crops, 2018, 38(6): 748755. DOI: 10.7606/j.issn.1009-1041.2018.06.16

    [54]

    Yu J, Cang J, Lu Q W, et al. ABA enhanced cold tolerance of wheat 'dn1' via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8): 1780403.

    [55] 丁美云, 刘丽杰, 于梦迪, 等. 油菜素内酯对寒地冬小麦越冬期生理代谢的影响[J]. 麦类作物学报, 2022, 42(7): 864–871. Ding M Y, Liu L J, Yu M D, et al. Effect of brassinolide on physiological metabolism of winter wheat in cold area[J]. Journal of Triticeae Crops, 2022, 42(7): 864–871.

    Ding M Y, Liu L J, Yu M D, et al. Effect of brassinolide on physiological metabolism of winter wheat in cold area[J]. Journal of Triticeae Crops, 2022, 42(7): 864871.

    [56]

    Al-Issawi M, Rihan H Z, Woldie W A, et al. Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat[J]. Plant Physiology and Biochemistry, 2013, 63: 77–81. DOI: 10.1016/j.plaphy.2012.11.010

    [57] 徐秋曼, 陈宏. 多效唑提高小麦幼苗抗低温能力的机理初探[J]. 天津师范大学学报(自然科学版), 2006, 26(1): 25–27. Xu Q M, Chen H. Study on the mechanism of improvement cool proof of wheat seedlings treated with PP333[J]. Journal of Tianjin Normal University (Natural Science Edition), 2006, 26(1): 25–27.

    Xu Q M, Chen H. Study on the mechanism of improvement cool proof of wheat seedlings treated with PP333[J]. Journal of Tianjin Normal University (Natural Science Edition), 2006, 26(1): 2527.

    [58] 齐付国, 陈明灿, 王秀云. 水杨酸对小麦幼苗抗寒性的影响[J]. 安徽农业科学, 2008, 36(14): 5732–5733. Qi F G, Chen M C, Wang X Y. Influence of salicylic acid (SA) on cold resistance of wheat seedling[J]. Journal of Anhui Agricultural Sciences, 2008, 36(14): 5732–5733. DOI: 10.3969/j.issn.0517-6611.2008.14.020

    Qi F G, Chen M C, Wang X Y. Influence of salicylic acid (SA) on cold resistance of wheat seedling[J]. Journal of Anhui Agricultural Sciences, 2008, 36(14): 57325733. DOI: 10.3969/j.issn.0517-6611.2008.14.020

    [59] 顾华杰, 叶亚新, 金琎, 等. La3+对低温胁迫冬小麦幼苗抗氧化酶活性的影响[J]. 安徽农业科学, 2009, 37(21): 9914–9916, 9960. Gu H J, Ye Y X, Jin J, et al. Effects of La3+ on the antioxidase activity in winter wheat seedlings under low-temperature stress[J]. Journal of Anhui Agricultural Sciences, 2009, 37(21): 9914–9916, 9960. DOI: 10.3969/j.issn.0517-6611.2009.21.037

    Gu H J, Ye Y X, Jin J, et al. Effects of La3+ on the antioxidase activity in winter wheat seedlings under low-temperature stress[J]. Journal of Anhui Agricultural Sciences, 2009, 37(21): 99149916, 9960. DOI: 10.3969/j.issn.0517-6611.2009.21.037

    [60]

    Talanova V V, Titov A F, Repkina N S, et al. Effect of methyl jasmonate on the expression of WCS genes and the activity of antioxidant enzymes at wheat cold adaptation[J]. Doklady Biochemistry and Biophysics, 2018, 482(1): 238–241. DOI: 10.1134/S1607672918050022

    [61] 李春燕, 徐雯, 刘立伟, 等. 低温条件下拔节期小麦叶片内源激素含量和抗氧化酶活性的变化[J]. 应用生态学报, 2015, 26(7): 2015–2022. Li C Y, Xu W, Liu L W, et al. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2015–2022.

    Li C Y, Xu W, Liu L W, et al. Changes of endogenous hormone contents and antioxidative enzyme activities in wheat leaves under low temperature stress at jointing stage[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 20152022.

    [62] 王兴, 于晶, 杨阳, 等. 低温条件下不同抗寒性冬小麦内源激素的变化[J]. 麦类作物学报, 2009, 29(5): 827–831. Wang X, Yu J, Yang Y, et al. Changes of endogenous hormones of winter wheat varieties with different cold-resistances under low temperature[J]. Journal of Triticeae Crops, 2009, 29(5): 827–831.

    Wang X, Yu J, Yang Y, et al. Changes of endogenous hormones of winter wheat varieties with different cold-resistances under low temperature[J]. Journal of Triticeae Crops, 2009, 29(5): 827831.

    [63] 王兴. 外源激素调控冬小麦抗寒性的研究[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2010. Wang X. The research of mechanism of exogenous hormones in regulating winter wheat cold tolerance[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2010.

    Wang X. The research of mechanism of exogenous hormones in regulating winter wheat cold tolerance[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2010.

    [64] 方宇辉, 韩留鹏, 华夏, 等. 小麦抗寒性研究进展[J]. 河南农业科学, 2022, 51(4): 1–10. Fang Y H, Han L P, Hua X, et al. Research progress on cold resistance of wheat[J]. Journal of Henan Agricultural Sciences, 2022, 51(4): 1–10.

    Fang Y H, Han L P, Hua X, et al. Research progress on cold resistance of wheat[J]. Journal of Henan Agricultural Sciences, 2022, 51(4): 110.

    [65]

    Li X N, Jiang H D, Liu F L, et al. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin[J]. Plant Growth Regulation, 2013, 71(1): 31−40. DOI: 10.1007/s10725-013-9805-8

    [66] 齐付国, 王红亮, 柳兴丞. 低温胁迫下MeJA对小麦幼苗内源激素含量的影响[J]. 植物生理学通讯, 2010, 46(11): 1155–1158. Qi F G, Wang H L, Liu X C. Effect of MeJA on contents of endogenous hormones in wheat seedling under cold stress[J]. Plant Physiology Journal, 2010, 46(11): 1155–1158.

    Qi F G, Wang H L, Liu X C. Effect of MeJA on contents of endogenous hormones in wheat seedling under cold stress[J]. Plant Physiology Journal, 2010, 46(11): 11551158.

    [67] 刘晓娜, 刘丽杰, 丁美云, 等. 植物激素水杨酸调控小麦抗寒性研究进展[J]. 高师理科学刊, 2020, 40(4): 74–77. Liu X N, Liu L J, Ding M Y, et al. Research progress of plant hormone salicylic acid regulating cold resistance of wheat[J]. Journal of Science of Teachers′ College and University, 2020, 40(4): 74–77. DOI: 10.3969/j.issn.1007-9831.2020.04.016

    Liu X N, Liu L J, Ding M Y, et al. Research progress of plant hormone salicylic acid regulating cold resistance of wheat[J]. Journal of Science of Teachers′ College and University, 2020, 40(4): 7477. DOI: 10.3969/j.issn.1007-9831.2020.04.016

    [68] 赵春江, 康书江, 王纪华, 等. 植物内源激素与不同基因型小麦抗寒性关系的研究[J]. 华北农学报, 2000, 15(3): 51–54. Zhao C J, Kang S J, Wang J H, et al. Study on relations between plant endogenous hormones and cold resistance in wheat[J]. Acta Agriculturae Boreali-Sinica, 2000, 15(3): 51–54. DOI: 10.3321/j.issn:1000-7091.2000.03.011

    Zhao C J, Kang S J, Wang J H, et al. Study on relations between plant endogenous hormones and cold resistance in wheat[J]. Acta Agriculturae Boreali-Sinica, 2000, 15(3): 5154. DOI: 10.3321/j.issn:1000-7091.2000.03.011

    [69] 姚永伟, 韩巧霞, 张奥深, 等. 不同冬小麦品种拔节期抗冻性差异及相关基因表达分析[J]. 麦类作物学报, 2020, 40(12): 1455–1460. Yao Y W, Han Q X, Zhang A S, et al. Difference analysis of frost resistance of different winter wheat varieties at jointing stage[J]. Journal of Triticeae Crops, 2020, 40(12): 1455–1460. DOI: 10.7606/j.issn.1009-1041.2020.12.07

    Yao Y W, Han Q X, Zhang A S, et al. Difference analysis of frost resistance of different winter wheat varieties at jointing stage[J]. Journal of Triticeae Crops, 2020, 40(12): 14551460. DOI: 10.7606/j.issn.1009-1041.2020.12.07

    [70]

    Zhang S J, Song G Q, Gao J, et al. Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat[J]. Journal of Biotechnology, 2014, 189: 48–57. DOI: 10.1016/j.jbiotec.2014.08.032

    [71] 赵欣, 孟德义, 苍晶, 等. 外源SA对低温胁迫下冬小麦糖酵解代谢的影响[J]. 麦类作物学报, 2022, 42(8): 1031–1038. Zhao X, Meng D Y, Cang J, et al. Effect of exogenous SA on glycolytic metabolism of winter wheat ( Triticum aestivum L.) under low temperature stress[J]. Journal of Triticeae Crops, 2022, 42(8): 1031–1038. DOI: 10.7606/j.issn.1009-1041.2022.08.13

    Zhao X, Meng D Y, Cang J, et al. Effect of exogenous SA on glycolytic metabolism of winter wheat (Triticum aestivum L.) under low temperature stress[J]. Journal of Triticeae Crops, 2022, 42(8): 10311038. DOI: 10.7606/j.issn.1009-1041.2022.08.13

    [72] 王笑, 梁志妍, 蔡剑, 等. 一种小麦抗低温保护剂产品及使用方法[P]. 中国专利: CN113940362A, 2022-01-18. Wang X, Liang Z Y, Cai J, et al. A wheat anti-low temperature protective agent product and the use of the method[P]. China Patent: CN113940362A, 2022-01-18.

    Wang X, Liang Z Y, Cai J, et al. A wheat anti-low temperature protective agent product and the use of the method[P]. China Patent: CN113940362A, 2022-01-18.

    [73] 席凯鹏, 杨娜, 王珂, 等. 一种提高小麦抗逆潜力和灾后恢复力的制剂及应用[P]. 中国专利: CN113951262A, 2022-01-21. Xi K P, Yang N, Wang K, et al. A product to improve the resistance potential and post-disaster recovery of wheat and the use method[P]. China Patent: CN113951262A, 2022-01-21.

    Xi K P, Yang N, Wang K, et al. A product to improve the resistance potential and post-disaster recovery of wheat and the use method[P]. China Patent: CN113951262A, 2022-01-21.

    [74] 张文静, 杨丽, 李凌雨, 等. 一种提高小麦春季抗寒性的复配剂、施用方法及其应用[P]. 中国专利: CN113678838A, 2021-11-23. Zhang W J, Yang L, Li L Y, et al.A formula agent for improving wheat tolerance to spring cold and the application method [P]. China Patent: CN113678838A, 2021-11-23.

    Zhang W J, Yang L, Li L Y, et al.A formula agent for improving wheat tolerance to spring cold and the application method [P]. China Patent: CN113678838A, 2021-11-23.

    [75] 王笑, 梁志妍, 蔡剑, 等. 一种小麦抗低温诱导剂产品及使用方法[P]. 中国专利: CN113812408A, 2021-12-21. Wang X, Liang Z Y, Cai J, et al. A wheat anti-low temperature inducer and the use method[P]. China Patent: CN113812408A, 2021-12-21.

    Wang X, Liang Z Y, Cai J, et al. A wheat anti-low temperature inducer and the use method[P]. China Patent: CN113812408A, 2021-12-21.

    [76] 李军, 朱凯丽, 刘锦涛, 等. 一种用于小麦倒春寒的防寒剂[P]. 中国专利: CN110973155A, 2020-04-10. Li J, Zhu K L, Liu J T, et al. An anti-chilling agent of late spring coldness in wheat[P]. China Patent: CN110973155A, 2020-04-10.

    Li J, Zhu K L, Liu J T, et al. An anti-chilling agent of late spring coldness in wheat[P]. China Patent: CN110973155A, 2020-04-10.

    [77] 李娜娜, 蒲艳艳, 丁汉凤, 等. 一种小麦抗寒诱导剂及其施用方法[P]. 中国专利: CN111011394A, 2020-04-17. Li N N, Pu Y Y, Ding H F, et al. A wheat cold resistance inducer and the application method[P]. China Patent: CN111011394A, 2020-04-17.

    Li N N, Pu Y Y, Ding H F, et al. A wheat cold resistance inducer and the application method[P]. China Patent: CN111011394A, 2020-04-17.

    [78] 金敏, 李文倩, 骆永丽, 等. 一种呋喃并吡喃衍生物及其制备方法和在小麦田间防冻管理中的应用[P]. 中国专利: CN109251208A, 2019-01-22. Jin M, Li W Q, Luo Y L, et al. A furopyran derivative and its procession protocol, and application method preventing wheat from frost injury[P]. China Patent: CN109251208A, 2019-01-22.

    Jin M, Li W Q, Luo Y L, et al. A furopyran derivative and its procession protocol, and application method preventing wheat from frost injury[P]. China Patent: CN109251208A, 2019-01-22.

    [79] 张书良, 张洪勇, 刘彩云, 等. 一种抵御小麦倒春寒的混合制剂及其制备和喷施方法[P]. 中国专利: CN109180344A, 2019-01-11. Zhang S L, Zhang H Y, Liu C Y, et al. Procession and foliar application method of a formula agent for wheat resistance to late spring coldness[P]. China Patent: CN109180344A, 2019-01-11.

    Zhang S L, Zhang H Y, Liu C Y, et al. Procession and foliar application method of a formula agent for wheat resistance to late spring coldness[P]. China Patent: CN109180344A, 2019-01-11.

    [80] 郑苍松, 董合林, 阎俊, 等. 一种适用于小麦的防冻剂及制备方法和应用[P]. 中国专利: CN109369271A, 2019-02-22. Zheng C S, Dong H L, Yan J, et al. Procession and application of an antifreeze agent for wheat[P]. China Patent: CN109369271A, 2019-02-22.

    Zheng C S, Dong H L, Yan J, et al. Procession and application of an antifreeze agent for wheat[P]. China Patent: CN109369271A, 2019-02-22.

    [81] 张文静, 黄正来, 米璐, 等. 一种性激素在小麦孕穗期抗寒减灾方面的应用[P]. 中国专利: CN107771831A, 2018-03-09. Zhang W J, Huang Z L, Mi L, et al. Application of a hormone for alleviating low temperature injury of wheat at booting stage[P]. China Patent: CN107771831A, 2018-03-09.

    Zhang W J, Huang Z L, Mi L, et al. Application of a hormone for alleviating low temperature injury of wheat at booting stage[P]. China Patent: CN107771831A, 2018-03-09.

    [82] 马琳, 马兴群, 韩强, 等. 一种小麦耐旱抗逆复合调节剂及其应用[P]. 中国专利: CN108849984A, 2018-11-23. Ma L, Ma X Q, Han Q, et al. A compound regulator for drought and stress tolerance in wheat and its application[P]. China Patent: CN108849984A, 2018-11-23.

    Ma L, Ma X Q, Han Q, et al. A compound regulator for drought and stress tolerance in wheat and its application[P]. China Patent: CN108849984A, 2018-11-23.

    [83] 王红艳, 于颀, 王开运, 等. 一种小麦抗病防冻农药组合物[P]. 中国专利: CN108432771A, 2018-08-24. Wang H Y, Yu Q, Wang K Y, et al. An anti-disease and anti-freeze pesticide composition for wheat[P]. China Patent: CN108432771A, 2018-08-24.

    Wang H Y, Yu Q, Wang K Y, et al. An anti-disease and anti-freeze pesticide composition for wheat[P]. China Patent: CN108432771A, 2018-08-24.

    [84] 范成珍, 张卫国, 张宗玮. 一种提高小麦抗冻能力的专用液体肥料[P]. 中国专利: CN106831177A, 2017-06-13. Fan C Z, Zhang W G, Zhang Z W. A specific liquid fertilizer to improve the frost resistance of wheat[P]. China Patent: CN106831177A, 2017-06-13.

    Fan C Z, Zhang W G, Zhang Z W. A specific liquid fertilizer to improve the frost resistance of wheat[P]. China Patent: CN106831177A, 2017-06-13.

    [85] 康国章, 王永华, 李鸽子, 等. 防御小麦春季冻害的复合调节剂及方法[P]. 中国专利: CN107232200A, 2017-10-10. Kang G G, Wang Y H, Li G Z, et al. Compound regulators for preventing spring frost damage in wheat and the use method[P]. China Patent: CN107232200A, 2017-10-10.

    Kang G G, Wang Y H, Li G Z, et al. Compound regulators for preventing spring frost damage in wheat and the use method[P]. China Patent: CN107232200A, 2017-10-10.

    [86] 巴青松, 李桂萍, 张兰兰, 等. 一种小麦抗寒诱导剂及其施用方法[P]. 中国专利: CN107242250A, 2017-10-13. Ba Q S, Li G P, Zhang L L, et al. A wheat cold resistance inducer and its application method[P]. China Patent: CN107242250A, 2017-10-13.

    Ba Q S, Li G P, Zhang L L, et al. A wheat cold resistance inducer and its application method[P]. China Patent: CN107242250A, 2017-10-13.

    [87] 李健. 小麦抗低温调节剂及其使用方法[P]. 中国专利: CN107347917A, 2017-11-17. Li J. A regulator for low temperature resistance of wheat and the use method[P]. China Patent: CN107347917A, 2017-11-17.

    Li J. A regulator for low temperature resistance of wheat and the use method[P]. China Patent: CN107347917A, 2017-11-17.

    [88] 李华伟, 王法宏, 孔令安, 等. 一种提高小麦抗低温冷害的抗冷制剂及其应用方法[P]. 中国专利: CN107173392A, 2017-09-19. Li H W, Wang F H, Kong L A, et al. A cold-resistant agent for improving resistance to low-temperature damage of wheat and the application method[P]. China Patent: CN107173392A, 2017-09-19.

    Li H W, Wang F H, Kong L A, et al. A cold-resistant agent for improving resistance to low-temperature damage of wheat and the application method[P]. China Patent: CN107173392A, 2017-09-19.

    [89] 孙琦. 小麦抗低温调节剂及其使用方法[P]. 中国专利: CN107183050A, 2017-09-22. Sun Q. A regulator for wheat low-temperature resistance and the use method[P]. China Patent: CN107183050A, 2017-09-22.

    Sun Q. A regulator for wheat low-temperature resistance and the use method[P]. China Patent: CN107183050A, 2017-09-22.

    [90] 方保停, 李向东, 邵运辉, 等. 一种小麦抗寒诱导剂及其施用方法[P]. 中国专利: CN105494424A, 2016-04-20. Fang B T, Li X D, Shao Y H, et al. A wheat cold resistance inducer and the application method[P]. China Patent: CN105494424A, 2016-04-20.

    Fang B T, Li X D, Shao Y H, et al. A wheat cold resistance inducer and the application method[P]. China Patent: CN105494424A, 2016-04-20.

    [91] 王伟中, 顾大路, 孙爱侠, 等. 提高小麦抗低温能力的调理剂[P]. 中国专利: CN105767001A, 2016-07-20. Wang W Z, Gu D L, Sun A X, et al. A conditioning agent to improve wheat resistance to low temperatures[P]. China Patent: CN105767001A, 2016-07-20.

    Wang W Z, Gu D L, Sun A X, et al. A conditioning agent to improve wheat resistance to low temperatures[P]. China Patent: CN105767001A, 2016-07-20.

    [92] 董志强. 一种小麦高光效抗逆境增产调节剂及其制备方法和应用[P]. 中国专利: CN105230621A, 2016-01-13. Dong Z Q. An regulator for improving photosynthetic efficiency, stress resistance and yield of wheat, and its manufacture and application[P]. China Patent: CN105230621A, 2016-01-13.

    Dong Z Q. An regulator for improving photosynthetic efficiency, stress resistance and yield of wheat, and its manufacture and application[P]. China Patent: CN105230621A, 2016-01-13.

    [93] 朱道辰, 陈焱, 洪好, 等. 一种提高冬小麦抗冻能力的方法[P]. 中国专利: CN104542030A, 2015-04-29. Zhu D C, Chen Y, Hong H, et al. A method to improve winter wheat resistant to frost[P]. China Patent: CN104542030A, 2015-04-29.

    Zhu D C, Chen Y, Hong H, et al. A method to improve winter wheat resistant to frost[P]. China Patent: CN104542030A, 2015-04-29.

    [94] 李鹏程, 邹平, 刘松, 等. 一种小麦抗寒调节剂[P]. 中国专利: CN104012534A, 2014-09-03. Li P C, Zhou P, Liu S, et al. A regulator for cold resistance of wheat[P]. China Patent: CN104012534A, 2014-09-03.

    Li P C, Zhou P, Liu S, et al. A regulator for cold resistance of wheat[P]. China Patent: CN104012534A, 2014-09-03.

    [95] 潘月敏, 李秀丽, 乔玉强, 等. 一种预防小麦低温冻害的专用烟雾剂及其制备方法[P]. 中国专利: CN103408378A, 2013-11-27. Pan Y M, Li X L, Qiao Y Q, et al. A special fogging agent for preventing low-temperature damage of wheat and its manufacture method[P]. China Patent: CN103408378A, 2013-11-27.

    Pan Y M, Li X L, Qiao Y Q, et al. A special fogging agent for preventing low-temperature damage of wheat and its manufacture method[P]. China Patent: CN103408378A, 2013-11-27.

    [96] 吴传万, 杜小凤, 王伟中, 等. 小麦抗低温调节剂及其制备方法[P]. 中国专利: CN103202315A, 2013-07-17. Wu C W, Du X F, Wang W Z, et al. A wheat anti-low temperature regulator and its producing method[P]. China Patent: CN103202315A, 2013-07-17.

    Wu C W, Du X F, Wang W Z, et al. A wheat anti-low temperature regulator and its producing method[P]. China Patent: CN103202315A, 2013-07-17.

  • 期刊类型引用(4)

    1. 杜思垚,盛倩男,赵剑,方娅婷,胡行珍,朱俊,任涛,鲁剑巍. 冻害下养分管理措施对稻田油菜和小麦产量的影响. 植物营养与肥料学报. 2025(03): 496-507 . 本站查看
    2. 陈小姝,邹晓霞,李美君,司彤,赵跃,宋兆锋,孙日丹,高华援,王丽. 种衣剂处理对低温胁迫下花生种子萌发及幼苗生长和生理特性的影响. 花生学报. 2024(01): 26-33 . 百度学术
    3. 鲍新跃,陈红敏,王伟伟,唐益苗,房兆峰,马锦绣,汪德州,左静红,姚占军. 小麦TaCOBL-5基因克隆及表达分析. 中国农业科技导报. 2024(06): 11-21 . 百度学术
    4. 杜杰,苏福丽,夏清,智慧,王文霞. 谷子苗期对低温胁迫的生理生化响应. 作物杂志. 2024(03): 180-185 . 百度学术

    其他类型引用(2)

图(1)  /  表(7)
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  547
  • PDF下载量:  123
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-03-01
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-08-13
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回