• ISSN 1008-505X
  • CN 11-3996/S
韩娅, 谢更新, 晏铭, 晏卓逸, 丁靖航, 熊鑫, 武丽萍. 调节粒径分布提高月壤种植潜力研究[J]. 植物营养与肥料学报, 2023, 29(10): 1863-1872. DOI: 10.11674/zwyf.2023085
引用本文: 韩娅, 谢更新, 晏铭, 晏卓逸, 丁靖航, 熊鑫, 武丽萍. 调节粒径分布提高月壤种植潜力研究[J]. 植物营养与肥料学报, 2023, 29(10): 1863-1872. DOI: 10.11674/zwyf.2023085
HAN Ya, XIE Geng-xin, YAN Ming, YAN Zhuo-yi, DING Jing-hang, XIONG Xin, WU Li-ping. Improving planting potential of lunar soil by adjusting grain size distribution[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1863-1872. DOI: 10.11674/zwyf.2023085
Citation: HAN Ya, XIE Geng-xin, YAN Ming, YAN Zhuo-yi, DING Jing-hang, XIONG Xin, WU Li-ping. Improving planting potential of lunar soil by adjusting grain size distribution[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1863-1872. DOI: 10.11674/zwyf.2023085

调节粒径分布提高月壤种植潜力研究

Improving planting potential of lunar soil by adjusting grain size distribution

  • 摘要:
    目的 月壤是月球岩石在遭受物理风化作用后形成的颗粒极细的碎屑物质,其保肥能力和透气性较差,且缺乏植物生长所需的有机养分及营养元素,并不是一种优质的栽培基质。通过研究月壤物理结构调整对月壤原位资源化利用的可行性,为太空农业种植提供有效手段。
    方法 本研究基于嫦娥五号(CE-5)取回的月壤样本组分数据,选用玄武岩制备模拟月壤。根据嫦娥5号和Apollo飞船的月壤样本粒径分布数据,在月壤粒径分布合理的范围内,分别添加质量百分数为10%、20%和30%的大粒径玄武岩颗粒(1000~500 μm),形成了3个模拟月壤M1、M2和M3,以CE-5真实月壤粒径分布的模拟月壤M0作为对照,向模拟月壤中加入氮、磷、钾营养元素,进行生菜种植试验和室内模拟淋溶试验。
    结果 随着大粒径颗粒占比的增加,模拟月壤容重从M0的1.85 g/cm3减小至M3的1.80 g/cm3,田间持水量下的通气孔隙度从7.62%上升至11.68%,M3的通气孔隙度达到M0的153.38%。室内模拟淋溶试验显示,随着大粒径颗粒占比的增加,淋溶液中的铵态氮、全氮和全磷均呈先下降后上升的趋势,即保肥效果随着大粒径颗粒占比的增加呈先上升后下降的趋势,以M2保肥性能最好,渗滤液中的铵态氮和全氮淋失量分别比M0低58.10%和21.67%。M2处理的生菜生长状况也相对最好,地上和地下部分干重分别高于M0 97.60%和39.20%。
    结论 通过向模拟月壤中添加大粒径颗粒来优化其粒径分布,可改善模拟月壤的物理结构特性,增大通气孔隙度,降低容重,提高其保肥能力及种植潜力,以M2模拟月壤的保肥效果及生菜生物量最佳,可以最大限度的实现月壤资源的原位化利用。

     

    Abstract:
    objectives Lunar soil is generated by the fine rock debris under physical weathering, the low aeration porosity and lack of organic matter make it unsuitable for planting. Improving the physical properties of lunar soil would provide a crucial tool to realize the In-Situ Resource Utilization (ISRU) of lunar soil for the space agriculture race.
    Methods Based on the composition data of lunar soil samples retrieved from the lunar probe Chang’e-5, basalt was used to prepare simulated lunar soil (M0). Referring the particle size distribution data of lunar soil samples from Chang’e-5 and Apollo, soil groups, M0, M1, M2 and M3 were prepared by adding 0, 10%, 20% and 30% (wt) of basalt particles (1000−500 μm in size). N, P, and K nutrients were added into the simulated soils to carry out lettuce planting and laboratory leaching experiments.
    Results With the increased addition of large size particles (M0, M1, M2, and M3), the bulk density of lunar soil decreased from 1.85 to 1.80 g/cm3, aerated porosity at field moisture capacity increased from 7.62% to 11.68%. With the increase of large particle proportion in the simulated soils, the NH4+, total N and total P in the leachate decreased first and then increased, in other words, the nutrient holding capacity increased first and then decreased. The lowest NH4+ andtotal N were determined in the leachate of M2, which were 58.10% and 21.67% lower than those in M0. In addition, the lettuce grew best in M2, the dry weight of above- and under-ground parts was 97.60% and 39.20% higher than those of M0, respectively.
    Conclusions Adding large-size particles to simulated lunar soil can improve its physical structure, increase aeration porosity, reduce bulk density, thus improve its fertilizer retention capacity and planting potential. The primary addion ratio of large particals is 20% for the in-situ use of lunar soil.

     

/

返回文章
返回