• ISSN 1008-505X
  • CN 11-3996/S
邓雅茹, 柳燕, 吴丽霞, 李方剑, 李铁梅, 王金祥. WRKY转录因子调控植物养分吸收利用及重金属解毒的研究进展[J]. 植物营养与肥料学报, 2023, 29(10): 1932-1943. DOI: 10.11674/zwyf.2023139
引用本文: 邓雅茹, 柳燕, 吴丽霞, 李方剑, 李铁梅, 王金祥. WRKY转录因子调控植物养分吸收利用及重金属解毒的研究进展[J]. 植物营养与肥料学报, 2023, 29(10): 1932-1943. DOI: 10.11674/zwyf.2023139
DENG Ya-ru, LIU Yan, WU Li-xia, LI Fang-jian, LI Tie-mei, WANG Jin-xiang. Functions of plant WRKY transcription factors in nutrient uptake and utilization as well as detoxification of heavy metals[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1932-1943. DOI: 10.11674/zwyf.2023139
Citation: DENG Ya-ru, LIU Yan, WU Li-xia, LI Fang-jian, LI Tie-mei, WANG Jin-xiang. Functions of plant WRKY transcription factors in nutrient uptake and utilization as well as detoxification of heavy metals[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(10): 1932-1943. DOI: 10.11674/zwyf.2023139

WRKY转录因子调控植物养分吸收利用及重金属解毒的研究进展

Functions of plant WRKY transcription factors in nutrient uptake and utilization as well as detoxification of heavy metals

  • 摘要: WRKY蛋白是植物特有的一类重要转录调控因子,它们通过与下游基因启动子上的W-box元件特异性结合诱导或抑制相关基因的表达,从而调控植物生长发育以及植物对生物和非生物胁迫的响应。植物WRKY基因组数目多,在拟南芥、大豆和水稻基因组中已经分别鉴定出74、182和109个,在植物对干旱、盐害、高温、养分匮乏和病原体感染等各种生物、非生物胁迫的响应过程中起关键作用。例如AtWRKY45AtWRKY75参与调控拟南芥应答低磷养分胁迫,GmWRKY142正向调控拟南芥对镉胁迫的耐受性。在植物面对逆境胁迫时,WRKY蛋白通过与养分相关基因启动子的W-box元件特异性结合,进而实现自我调节或交叉调节,激活或抑制下游基因的转录以应对各种逆境胁迫。众多WRKY下游靶基因也已被鉴定出来,例如PHT家族成员与磷营养相关;3个拟南芥WRKY基因和6个大豆WRKY基因参与调控植物对氮素的吸收利用;6个拟南芥WRKY基因、10个大豆WRKY基因和5个水稻WRKY基因调节植物应对低磷胁迫;2个拟南芥WRKY基因和6个大豆WRKY基因影响植物对钾的吸收利用;3个大豆WRKY基因参与调控植物对硫营养的吸收利用;1个拟南芥WRKY基因调控植物吸收利用硼;1个拟南芥WRKY基因和1个水稻WRKY基因参与植物对铁的吸收;7个拟南芥WRKY基因、1个大豆WRKY基因和1个水稻WRKY基因参与植物解镉毒;2个拟南芥WRKY基因、2个大豆WRKY基因和1个水稻WRKY基因帮助植物解铝毒。未来的研究重点是:1)挖掘新的调控养分吸收利用的WRKY转录因子及其靶基因;2)解析养分相关WRKY在翻译和翻译后层面的调控;3)明确表观遗传层面对养分相关WRKY的转录调控;4)揭示养分逆境条件下WRKY互作蛋白及其作用机制。

     

    Abstract: WRKY proteins are a group of important transcriptional regulators that are unique to plants. WRKY specifically bind with the W-box cis-elements in the promoters of downstream genes to induce or inhibit the transcription and expression of related genes, to regulate plant growth and development, as well as responses to biotic and abiotic stresses. The WRKY gene family is large in number, there are 74 identified WRKY genes 74 in Arabidopsis genome, 182 genes in soybean genome and 109 genes in rice genome, respectively. WRKY genes play pivotal roles in plant response to various biological and abiotic stresses such as drought, salinity, high temperature, nutrient deficiencies, and pathogen infection. Up to now, it has been proved that the AtWRKY45 and AtWRKY75 are involved in regulating the responses of Arabidopsis to low P stress, GmWRKY142 positively regulates the tolerance of Arabidopsis to Cd stress. When exposure to stress, the plant WRKY protein specifically binds to the W-box cis-element in the conserved region of the related gene promoter, thereby achieves self-regulation or cross regulation, then activates or inhibits the transcriptional expression of downstream genes in response to various stress conditions. Numerous downstream target genes have also been revealed consequently, such as the PHT family members related to P nutrition; three AtWRKY genes and six GmWRKY genes are involved in regulating plant nitrogen uptake and utilization; six AtWRKY genes, ten GmWRKY genes, and five OsWRKY genes regulate plant response to phosphorus deficiency; two AtWRKY genes and six GmWRKY genes affect plant potassium absorption and utilization; three GmWRKY genes are involved in regulating the absorption and utilization of sulfate; oneAtWRKY gene is involved in regulating the uptake and utilization of boron; one AtWRKY gene and one OsWRKY gene are involved in regulating plant iron absorption; seven AtWRKY genes, one GmWRKY gene, and one OsWRKY gene are involved in mitigating cadmium toxicity; two AtWRKY genes, two GmWRKY genes, and one OsWRKY gene participate in helping plants detoxify aluminum toxicity. The foci of future researches are: 1) mining new WRKY transcription factors that regulate nutrient uptake and utilization and the downstream genes; 2) decoding the regulation of nutrient-related WRKYs at the translation and post-translation level; 3) determining the transcription of nutrient-related WRKY at epigenetic level; 4) revealing the proteins that interact with WRKY and the underlying mechanisms under nutrient deficiency.

     

/

返回文章
返回