Effect of mixed basal application of controlled release urea and common urea on the nitrogen uptake, utilization and yield of winter wheat
-
摘要:目的
研究不同施氮量下控释尿素掺混普通尿素对土壤硝态氮含量、冬小麦氮素吸收利用和产量的影响,为陕西关中平原地区冬小麦的高效生产提供依据。
方法冬小麦田间试验于2020—2022年在陕西省咸阳市进行,供试控释肥(CRU)氮素释放期为90天。试验设置N 192和240 kg/hm2 两个施氮水平 (N1、N2),在两个施氮水平下设5个肥料处理,即100%普通尿素分两次施用(F1)为对照;控释尿素和普通尿素混合一次性基施,混合比例分别为30%+70% (F2)、50%+50% (F3)、70%+30% (F4)、100%控释尿素 (F5)。在冬小麦越冬、返青、拔节和开花期采集0—40 cm土层土壤样品,每10 cm为1个样品;成熟期采集0—200 cm土层土壤样品,40—200 cm土层每20 cm采集1个样品,测定土壤硝态氮含量。在冬小麦越冬、返青、拔节、开花以及成熟期取植株地上部样品,开花期分为穗、茎秆+叶鞘、叶片3个部分,成熟期分为籽粒、颖壳+穗轴、茎秆+叶鞘、叶片4个部分,称取干物质质量,测定氮素含量。于小麦成熟期测定产量。
结果越冬期0—20 cm土层硝态氮含量F2处理较高,返青期后则以F4和F5处理较高,且F4和F5处理成熟期80—200 cm土层的硝态氮含量显著低于其他掺混肥处理。相比其他处理,F4和F5处理显著增加穗数,进而显著提高产量。在F2和F3处理下,N2与N1水平小麦平均产量无显著差异;在F4和F5处理N2水平的小麦平均产量高于N1水平,净效益平均分别提高10.08%和6.41%,氮素利用效率无显著差异。相比F1处理,F4处理花前氮素向籽粒的转运量平均提高18.63%,籽粒氮素积累量平均提高16.96%。相关性分析表明,拔节期0—20 cm土层硝态氮含量与花前氮素向籽粒转运量呈显著正相关,开花期0—20 cm土层硝态氮含量与花前氮素转运量和花后氮素积累量呈显著正相关。
结论较高的开花期氮素积累量可增加营养器官氮素向籽粒的再分配量,实现冬小麦产量和氮素利用效率的同步提升。与分次施用普通尿素N 240 kg/hm2相比,采用控释期90天的树脂包膜尿素与普通尿素按70%∶30%掺混一次性基施,能显著提高冬小麦返青期至开花期的土壤硝态氮含量,减少成熟期80—200 cm土层土壤硝态氮含量,从而增加开花期总茎数及植株氮素积累量,显著提高成穗数、籽粒产量和氮素利用率。
Abstract:ObjectivesWe investigated the effect of the mixed application of controlled release urea (CRU) with common urea (CU) on the yield, relocation of accumulated N to grains, and soil nitrate contents at different stage of winter wheat, to serve the efficient production of winter wheat in Guanzhong Plain, Shaanxi Province.
MethodsA winter wheat field experiment was conducted in Xianyang, Shanxi Province from 2020 to 2022, the tested CRU is resin coated urea with N release period of 90 days. Two N application amounts 192 and 240 kg/hm2 were set up, and five mix ratio treatments were included under each N rate, as: CU control (as basal and topdressing fertilizer, F1), and basal application of CRU and CU in mix ratio of 30%+70% (F2), 50% +50% (F3), 70%+30% (F4), and 100%CRU (F5). At the main growth stages of winter wheat, 0−40 cm deep soil samples were collected with one sample every 10 cm, and at maturity stage, 0−200 cm soil samples were collected with one sample every 20 cm for the determination of nitrate concentration. At the overwintering, regreening, jointing, flowering, and maturing stages of wheat, wheat plants were sampled for the above ground biomass and N content analysis. The plant samples at flowering stage were divided into three parts (ear, stem and sheath, and leaves), and at maturing stage were divided into four parts (grains, glume + rachis, stem + sheath, leaves) for the measurement of N content. And the yield and yield components were investigated at maturing stage.
ResultsF2 treatment was recorded the highest NO3−-N in 0−20 cm soil layer before regreening stage; F4 and F5 treatment were recorded the lowest NO3−-N at regreening stage, and that in the 80−200 cm soil layer at maturing stage, while achieved significantly higher yield than the other treatments due to the higher number of spikes. F2 and F3 treatments achieved similar yields on average under both N2 and N1 rate. F4 and F5 treatments had higher yields under N2 rate than under N1 rate, thereby their net benefits under N2 increased by 10.08% and 6.41% than under N1 rate, and the N internal utilization efficiency were not changed significantly. Compared with F1, the relocation amount of pre-anthesis N accumulation to grain was averagely increased by 18.63%, and the grain N accumulation increased by16.96% in F4 treatment. The 0−20 cm soil NO3−-N at jointing stage was positively correlated with the relocation amount of pre-anthesis N accumulation to grain. There was a positive (P<0.05) correlation between 0−20 cm soil NO3−-N at anthesis stage and the N transport at pre-anthesis stage and N accumulation at post-anthesis stage.
ConclusionsProperly high N accumulation during anthesis stage is beneficial to the relocation of N from vegetative organs to grains, and the increase of winter wheat yield and N utilization efficiency as result. Complete basal application of N 240 kg/hm2 in ratio of 70% resin coated urea with 30% ordinary urea could maintain high nitrate concentration in 0−20 cm soil from regreening to anthesis stage of winter wheat, so promoting the total number of stems and spikelet, increasing the plant N accumulation during anthesis period, and leave low NO3−-N in 80−200 cm soil layer at harvest.
-
科学施肥是提高小麦产量和肥料利用效率的重要措施[1],普通尿素施入农田后,养分快速释放,相当一部分会以氨挥发、硝态氮淋溶等途径损失掉,这是造成氮肥利用效率低的主要因素。究其原因,主要与普通尿素养分释放与作物养分需求时空错位有关[2]。尿素一次基施并不能满足冬小麦全生育期所需养分,往往需要分次施用才能确保小麦产量。分次施肥不仅费时费工,而且肥效直接受土壤墒情的影响,因此,小麦生产上迫切需要简化高效的施肥方案[3−4]。控释氮肥的出现,为小麦简化髙效施肥方案提供了新的思路和途径。控释氮肥的肥效长且稳定,利于土壤氮素释放与作物氮素吸收同步,有潜力实现一次性施肥满足作物在整个生育阶段的氮素需求[5−7]。一次性基施控释氮肥,利于耕作层全层混合,可减少氮素流失,提高氮肥利用率,改善农田生态环境[8−9]。由于冬小麦在分蘖时期和拔节到开花期对氮素的需求较高,而控释氮肥的早期氮素释放速率过于缓慢[10],使得冬小麦在分蘖期间难以吸收充足的氮素[11−12]。因此控释氮肥与普通氮肥配施其氮素释放规律与冬小麦各生育期的氮素需求更加吻合,更有利于冬小麦的生长发育。前人研究表明,控释氮素与普通氮素配合施用,能调节冬小麦分蘖生长,促进冬前有效分蘖,增加有效穗数[13−14]。但由于不同地区土壤类型和气候条件不同,导致控释氮肥与普通氮肥最适掺混比例研究结果不一[15−16],并且目前控释氮肥与普通氮肥配施对冬小麦氮素吸收利用的调控机制尚不明确。本试验通过设置两个施氮水平,并在两个施氮水平下设置不同控释氮素比例,监测冬小麦各生育时期的土壤氮素供给与植株氮素积累和转运,探索控释掺混氮肥调控冬小麦氮素吸收利用的生理生态机制;结合不同处理下的产量和氮素利用效率,筛选出适宜关中地区冬小麦高产高效生产的施肥方案。
1. 材料与方法
1.1 试验地概况
试验于2020—2022年在陕西省咸阳市武功县武功镇凉马村吨良田试验场 (34°21′N,108°02′E) 进行,试验地海拔为443 m,年均降雨量为504.6 mm,年均气温为14.37°C。试验田前茬种植玉米,玉米收获后粉碎还田,种植模式为冬小麦–夏玉米轮作。2020—2022两年度冬小麦生长季的日平均降水量及日平均温度变化如图1所示,播种前0—20 cm土层土壤理化性质如表1所示。
表 1 播种前0—20 cm土层土壤理化性质Table 1. Physiochemical properties of 0−20 cm soil layer before sowing年度
Year有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N碱解氮 (mg/kg)
Hydrolysable N速效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K2020—2021 15.0 0.97 64.1 10.4 220.2 2021—2022 16.1 0.93 54.5 20.7 231.5 1.2 试验设计
试验采用双因素完全随机区组设计,设置两个施氮水平,分别为192 kg/hm2 (N1,减氮20%) 和240 kg/hm2 (N2,传统施氮量)。在两种施氮量下设置5种肥料处理,普通尿素分次施用(F1,农户常规氮肥施用方案),30%控释尿素+70%普通尿素一次性基施 (F2),50%控释尿素+50%普通尿素一次性基施 (F3),70%控释尿素+30%普通尿素一次性基施 (F4),控释尿素一次性基施 (F5),不同处理施氮量如表2所示。其中F1处理的氮肥以基施∶追施为1∶1的比例在播种前和拔节期施入,其他处理氮肥均为播种前一次性基施。各处理磷钾施用量一致,均为120 kg/hm2,且均在播种前一次性基施。试验小区面积为20 m2 (4 m×5 m),重复3次。
表 2 不同处理施氮量(kg/hm2)Table 2. Nitrogen application rate of different treatments处理
Treatment控释氮肥 (CRU)
Controlled release urea尿素
Urea总施氮量
Total N inputN1F1 0.0 192.0 192.0 N1F2 57.6 134.4 192.0 N1F3 96.0 96.0 192.0 N1F4 134.4 57.6 192.0 N1F5 192.0 0.0 192.0 N2F1 0.0 240.0 240.0 N2F2 72.0 168.0 240.0 N2F3 120.0 120.0 240.0 N2F4 168.0 72.0 240.0 N2F5 240.0 0.0 240.0 供试小麦为强筋冬小麦品种‘西农20’。供试控释氮肥为树脂包膜控释尿素 (N 44%),控释期90天,由杨凌唯拓尔农业科技有限公司提供。其他供试化肥为尿素 (N 46.4%)、氯化钾 (K2O 60%)、重过磷酸钙 (P2O5 46%)。2020—2021年度冬小麦于10月26日播种,6月11日收获,全生育期有效降水量为165.8 mm,2021—2022年度冬小麦于10月17日播种,6月9日收获,全生育期有效降水量为134.5 mm。2020—2021年度在拔节期进行微喷补灌,用水量为36 mm;2021—2022年度在拔节期进行微喷补灌,用水量为40 mm,其他管理措施同一般高产田。
1.3 测定项目及方法
1.3.1 土壤硝态氮含量
在冬小麦越冬、返青、拔节和开花期采集0—40 cm土层土壤样品,成熟期采集0—200 cm土层土壤样品,前40 cm土层每10 cm采集1个样品,40—200 cm土层每20 cm采集1个样品。土样过筛后称取5 g土样,加入1.0 mol/L的氯化钾溶液50 mL,振荡30 min后过滤,采用德国Seal公司产的AA3型流动分析仪测定土壤的硝态氮含量。
1.3.2 产量构成因素
冬小麦成熟期,每个试验小区随机收获2 m2脱粒晒干,称重并测定含水率,再换算为含水率12.5%时的籽粒重量,计算单位面积产量。同时每试验小区随机调查1 m2穗数,计算单位面积穗数。每试验小区随机抽取30个穗调查每穗粒数。从测产中的籽粒样品中数1000粒调查千粒重。每处理重复3次。
1.3.3 经济效益
主要计算公式如下:
产值 (元/hm2) =产量 (kg/hm2)×单价 (元/kg)
经济效益 (元/hm2)=产值 (元/hm2)−肥料投入 (元/hm2)−其他投入 (元/hm2)
根据2020—2021年和2021—2022年小麦收购价格、肥料价格及其他支出 (包括种子、整地、农药、浇水和劳动成本等),计算产值和净收入,其中F1处理的其他支出包括追肥劳动投入成本。2021年小麦收购价格2.32 元/kg,重过磷酸钙价格2.7元/kg,尿素价格2.1元/kg,控释氮肥价格3.3元/kg,氯化钾价格2.4元/kg,F1处理的其他支出为3000元/hm2,其他处理为2500元/hm2;2022年小麦收购价格2.4元/kg,重过磷酸钙价格3元/kg,尿素价格2.8元/kg,控释氮肥价格4元/kg,氯化钾价格2.4元/kg,F1处理的其他支出为3700元/hm2,其他处理为3000元/hm2。
1.3.4 植株氮素积累与分配及氮肥利用效率计算
在冬小麦越冬、返青、拔节、开花以及成熟期取植株地上部样品,开花期按照穗、茎秆+叶鞘以及叶片进行分样,成熟期按籽粒、颖壳+穗轴、茎秆+叶鞘以及叶片进行分样,之后杀青并烘干至恒重,称取干物质质量。用微型植物粉碎机粉碎样品,过0.15 mm筛,氮含量用半微量凯氏定氮法测定[17]。
冬小麦对氮素的吸收积累分配利用相关指标计算公式如下:
氮素积累量 (TNA,kg/hm2)=氮含量×干物质积累量;
花前氮素转运量 (NRA,kg/hm2)=开花期营养器官氮素积累量−成熟期营养器官氮素积累量;
花前氮素转运效率 (NRR,%)=花前氮素转运量/开花期植株氮素积累量×100;
花前氮素对籽粒氮的贡献率 (NRCT,%)=花前氮素转运量/成熟期籽粒氮积累量×100;
花后氮素积累量 (NAG,kg/hm2)=成熟期籽粒氮积累量−花前氮素转运量;
花后氮素对籽粒氮的贡献率 (NACT,%)=花后氮素积累量/成熟期籽粒氮积累量×100;
氮素吸收效率 (NUpE,kg/kg)=植株氮素积累量/施氮量;
氮素利用效率 (NUtE,kg/kg)=籽粒产量/地上部氮素积累量;
氮肥偏生产力 (PFPN,kg/kg)=施氮处理产量/施氮量[18]。
1.4 数据分析
利用Microsoft Excel 2016和SPSS 16.0 (Duncan P<0.05)软件进行数据处理和统计分析,采用Origin2022软件作图。
2. 结果与分析
2.1 不同处理对土壤硝态氮含量的影响
2.1.1 不同处理土壤硝态氮含量生育期变化
如图2和图3所示,冬小麦整个生育期0—20 cm土层硝态氮含量表现为N2处理大于N1。两个施氮量下,越冬期0—20 cm土层硝态氮含量均以F2处理显著高于其他处理;返青期F1处理的0—30 cm土层硝态氮含量低于其他处理;在拔节期0—20 cm土层硝态氮含量以F4处理最大;开花期0—20 cm土层硝态氮含量表现为F4和F5处理高于其他处理,整体表现为F4、F5>F1>F3、F2;成熟期0—40 cm土层的硝态氮含量各处理间差异不显著。综合全生育期,CRU比例达70%的土壤硝态氮供给更加合理,最有利于冬小麦返青期到开花期的氮素供给。
图 2 2020—2021年不同处理冬小麦生育期内0—40 cm土层硝态氮含量动态变化注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。Figure 2. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2020−2021Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.图 3 2021—2022年不同处理小麦生育期内0—40 cm土层硝态氮含量动态变化注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。Figure 3. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2021−2022Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.2.1.2 成熟期0—200 cm土壤硝态氮积累量
图4显示,不同处理间的成熟期土壤0—200 cm的硝态氮含量变化主要表现在80—140 cm土层。在F4和F5处理下,N1与N2施氮量在80—200 cm土层的硝态氮含量无显著差异,而在F1和F2处理下,N2施氮量在80—200 cm土层的硝态氮含量显著高于N1施氮量。在不同控释氮素占比处理间,0—40 cm的硝态氮含量无显著差异;在40—80 cm土层中,F2和F3处理高于其他处理;在80—200 cm土层则为F2处理显著高于其他处理,整体表现为F2>F3、F1>F4、F5。结果表明,增加普通氮素的施用量,会增加土壤硝态氮向下淋溶损失,不利于冬小麦的吸收利用,而适当增加控释氮素的施用量,成熟期80—200 cm土层的硝态氮含量无显著差异。
图 4 2020—2022年冬小麦成熟期各处理0—200 cm土层硝态氮含量注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。Figure 4. Nitrate concentration in 0−200 cm soil layer of each treatment at mature stage of winter wheat from 2020−2022Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.2.2 不同处理对冬小麦氮素积累转运的影响
2.2.1 不同处理对冬小麦各生育时期氮素积累量的影响
图5显示,在冬小麦开花期和成熟期的氮素积累量表现为N2施氮量高于N1施氮量。在不同控释氮素占比处理间,在越冬期、返青期和拔节期,两种施氮条件下各掺混比例处理间差异不显著;在开花期和成熟期,2020—2021年度表现为F4和F5处理的氮素积累量显著高于其他处理,整体表现为F4、F5>F1>F2、F3,2021—2022年度则表现为F4处理显著高于其他处理。说明随着控释氮素占比的增加,冬小麦开花期和成熟期的氮素积累量逐渐增加,当控释氮素占比在70%时成熟期氮素积累量达到最大值。
图 5 不同处理对冬小麦各生育时期氮素积累量的影响注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。Figure 5. Effects of different treatments on nitrogen accumulation in winter wheat at different growth stagesNote: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).2.2.2 不同处理对冬小麦成熟期氮素在各器官中分配的影响
如表3所示,冬小麦成熟期籽粒氮素分配量和分配比例表现为N2施氮量显著高于N1施氮量。在不同控释氮素占比处理间,2020—2021年度籽粒氮素积累量表现为F4和F5处理显著高于其他处理,分配比例表现为F3、F4和F5处理显著高于其他处理,2021—2022年度籽粒氮素积累量则表现为F4处理显著高于其他处理,整体表现为F4>F5>F3、F1>F2,两年度籽粒氮素积累量F4相较F1处理平均提高16.96%;两年度叶片氮素积累量和分配比例为F1和F2处理显著高于其他处理。说明增加控释氮素占比,有利于营养器官氮素向籽粒转移,当控释氮素占比为70%时,能够提高籽粒氮素积累量和分配比例。
表 3 不同处理冬小麦成熟期氮素在各器官中的分配Table 3. Nitrogen distribution in various organs of winter wheat at maturing stage under different treatments年度
Year处理
Treatment氮积累量 N accumulation (kg/hm2) 分配比例 Distribution proportion (%) 籽粒
Grain茎秆+叶鞘
Stem and sheath叶片
Leaf颖壳+穗轴
Spike axis and glume籽粒
Grain茎秆+叶鞘
Stem and sheath叶片
Leaf颖壳+穗轴
Spike axis and glume2020—2021 N1 F1 192.32 b 43.13 a 12.33 a 13.76 ab 73.53 c 16.49 a 4.72 b 5.26 b F2 180.45 c 37.05 c 13.78 a 15.11 a 73.24 c 15.04 b 5.59 a 6.14 a F3 200.53 b 32.38 d 8.49 c 11.43 c 79.32 a 12.81 c 3.36 c 4.52 c F4 218.98 a 36.67 c 8.33 c 12.10 bc 79.32 a 13.28 c 3.02 c 4.38 c F5 212.98 a 40.00 b 10.33 b 12.12 bc 77.32 b 14.52 b 3.76 c 4.40 c N2 F1 198.75 c 42.43 a 11.73 a 15.56 b 74.03 c 15.80 a 4.37 a 5.80 b F2 189.16 c 40.47 a 9.31 b 17.58 a 73.74 c 15.77 a 3.63 b 6.86 a F3 210.45 b 34.26 b 8.81 c 14.49 c 78.52 b 12.78 b 3.29 c 5.41 c F4 233.29 a 35.15 b 7.67 d 13.57 d 80.53 a 12.14 b 2.65 d 4.69 d F5 233.30 a 35.16 b 8.02 d 13.54 d 80.44 a 12.13 b 2.76 d 4.67 d 显著性检验 Significance test N ** NS ** ** ** ** ** ** F ** ** ** ** ** ** ** ** N×F NS ** ** NS ** ** ** NS 2021—2022 N1 F1 213.49 b 50.26 b 18.28 a 12.28 d 72.54 c 17.08 b 6.21 a 4.17 e F2 181.84 d 56.91 a 17.48 ab 20.12 a 65.80 e 20.59 a 6.32 a 7.28 a F3 203.61 c 51.53 b 19.05 a 19.70 a 69.28 d 17.53 b 6.48 a 6.70 b F4 239.00 a 44.00 c 16.00 bc 17.67 b 75.47a 13.89 d 5.05 b 5.58 c F5 218.57 b 44.37 c 15.59 c 14.41 c 74.61 b 15.14 c 5.32 b 4.92 d N2 F1 219.00 c 51.14 a 19.40 a 22.62 a 70.16 d 16.38 b 6.21 a 7.25 a F2 201.93 d 51.68 a 19.40 a 17.61 b 69.48 d 17.79 a 6.67 a 6.06 b F3 221.98 c 53.73 a 15.07 b 17.29 b 72.05 c 17.44 a 4.89 b 5.61 b F4 273.02 a 50.67 a 12.64 b 14.54 d 77.80 a 14.45 c 3.61 c 4.14 d F5 243.36 b 48.00 b 14.00 b 15.78 c 75.78 b 14.95 c 4.36 b 4.92 c 显著性检验 Significance test N ** * ** ** ** ** ** NS F ** ** ** ** ** ** ** ** N×F ** * ** ** ** * * ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments with the same N application rate (P<0.05). *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect.2.2.3 不同处理对冬小麦氮素再分配的影响
如表4所示,花前氮素转移量以及花前氮素转运效率表现为N2施氮量显著高于N1施氮量。在不同控释氮素占比处理下,2020—2021年度开花前氮素转运量表现为F4和F5处理显著高于其他处理;2021—2022年度则表现为F4处理显著高于其他处理,两年度花前氮素转移量F4相较F1处理平均提高18.63%;花后氮素积累量及其对籽粒氮的贡献率表现为各掺混比例处理间差异不显著。说明增加施氮量能够提高花前氮素转运量,增加控释氮素占比能够提高冬小麦花前氮素的转运量和转运效率。
表 4 不同处理下冬小麦氮素的再分配Table 4. Nitrogen relocation in winter wheat as affected by nitrogen fertilizer treatments处理
Treatment2020—2021 2021—2022 开花前 Pre-anthesis 开花后 Post-anthesis 开花前 Pre-anthesis 开花后 Post-anthesis 转运量
NRA
(kg/hm2)转运效率
NRR
(%)籽粒贡献率
NRCT
(%)积累量
NAG
(kg/hm2)贡献率
NACT
(%)转运量
NRA
(kg/hm2)转运效率
NRR
(%)籽粒贡献率
NRCT (%)积累量
NAG
(kg/hm2)贡献率
NACT
(%)N1 F1 136 b 66.4 b 70.9 abc 55.9 a 29.1 a 154.8 bc 65.7 b 72.5 a 58.7 ab 27.5 a F2 127 c 65.8 b 70.2 bc 53.7 a 29.8 a 132.5 d 58.4 d 72.9 a 49.3 b 27.1 a F3 140 b 72.9 a 70.0 c 60.2 a 30.0 a 150.4 c 62.5 c 73.9 a 53.2 b 26.1 a F4 158 a 73.5 a 72.4 ab 60.4 a 27.6 a 175.7 a 69.3 a 73.5 a 63.3 a 26.5 a F5 155 a 71.2 a 72.8 a 58.0 a 27.2 a 159.3 b 68.2 a 72.9 a 59.3 ab 27.1 a N2 F1 141 c 66.9 c 70.9 a 57.8 ab 29.1 a 162.4 c 63.6 d 74.2 a 56.6 b 25.8 a F2 134 c 66.6 c 71.0 a 54.8 b 29.0 a 148.3 d 62.6 d 73.5 a 53.6 b 26.5 a F3 151 b 72.4 b 71.9 a 59.1 ab 28.1 a 165.2 c 65.7 c 74.4 a 56.8 b 25.6 a F4 170 a 75.0 a 72.7 a 63.6 a 27.3 a 201.8 a 74.3 a 73.9 a 71.2 a 26.1 a F5 168 a 74.8 a 72.0 a 65.3 a 28.0 a 180.9 b 69.9 b 74.4 a 62.4 ab 25.6 a 显著性检验 Significance test N ** ** NS NS NS ** ** * NS * F ** ** NS * NS ** ** NS * NS N×F NS * NS NS NS * ** NS NS NS 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著(P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicate common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio 30%, 50%, 70%, and 100% CRU, respectively. NRA—Nitrogen relocation amount in vegetative organs; NRR—Nitrogen relocation rate in vegetative organs; NRCT—Total contribution rate of pre-anthesis N relocation to grain N accumulation; NAG—Nitrogen uptake amount after anthesis; NACT—Contribution rate of post-anthesis N accumulation to the grain N. Values followed by different lowercase letters in a column indicate significant difference among treatments in the same N application rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicate no significant effect.2.3 不同处理对冬小麦总茎数的影响
图6显示,在拔节期、开花期和成熟期的总茎数表现为N2施氮量高于N1施氮量。在不同控释氮素占比处理间,在越冬期各掺混比例处理间无显著差异,在返青期则表现为F3和F4处理高于其他处理;在拔节期表现为F4处理的总茎数达到最大;在开花和成熟期表现为在2020—2021年度F4和F5处理显著高于其他处理,在2021—2022年度表现为F4处理显著高于其他处理。说明普通氮素肥效发挥较快,占比高有利于增加冬小麦生育前期的总茎数;控释氮素肥效供应持久,占比高有利于改善生育中后期总茎数,保持较高的成熟期穗数,奠定高产基础。
图 6 不同处理冬小麦各生育时期总茎数注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。Figure 6. Total stem number of winter wheat at different growth stages under different treatmentsNote: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).2.4 不同处理对冬小麦产量和经济效益的影响
2.4.1 不同处理对冬小麦产量及其构成因素的影响
表5显示,在F4和F5处理下,N2施氮量的穗数以及籽粒产量高于N1施氮量,而在F2和F3处理下,N2和N1间差异较小。在不同控释氮素占比处理下,各掺混比例处理间穗粒数和千粒重无显著差异。2020—2021年度穗数和产量表现为F4和F5处理显著高于其他处理,F4和F5处理间差异较小;2021—2022年度,穗数和产量表现为F4处理显著高于其他处理。两年度N2F4相比N2F1处理产量平均提高17.54%。结果表明增加控释氮素占比能够通过提高冬小麦穗数来提高籽粒产量,且控释氮素占比在70%和100%时,增加施氮量能提高冬小麦的穗数和籽粒产量。
表 5 不同处理冬小麦产量及其构成因素Table 5. Yield and its components of winter wheat under different treatments处理
Treatment2020—2021 2021—2022 穗数
Number of spikes
(×104/hm2)穗粒数
Grains per
spike千粒重
1000-grain
weight (g)产量
Grain yield
(kg/hm2)穗数
Number of spikes
(×104/hm2)穗粒数
Grains per
spike千粒重
1000-grain weight
(g)产量
Grain yield
(kg/hm2)N1 F1 481 b 35.6 a 49.5 a 7795 b 553 bc 39.7 a 47.0 a 9006 b F2 469 b 36.9 a 48.8 a 7268 c 543 c 37.1 a 46.6 a 8514 c F3 475 b 36.6 a 49.4 a 7489 c 554 bc 39.1 a 46.5 a 9023 b F4 509 a 35.7 a 49.7 a 8514 a 600 a 39.8 a 47.1 a 9868 a F5 514 a 37.1 a 49.1 a 8395 a 569 b 39.8 a 48.5 a 9272 b N2 F1 505 b 37.9 a 49.8 b 7965 b 559 c 39.2 a 47.4 a 9108 c F2 473 c 34.1 ab 49.1ab 7272 c 546 c 37.6 a 47.7 a 8585 d F3 481 c 34.5 ab 50.1 ab 7432 c 553 c 39.4 a 46.5 a 9156 c F4 536 a 34.8 ab 50.6 a 8771a 639 a 39.9 a 46.0 a 11382 a F5 544 a 36.1 a 49.8 ab 8794 a 607 b 39.9 a 46.9 a 10052 b 显著性检验 Significance test N ** NS * * ** NS NS ** F ** NS NS ** ** NS NS ** N×F * NS NS NS ** NS NS ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著(P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea applied in base and topdressing, F2, F3, F4, and F5 indicate complete application of controlled release and common urea as base fertilizer, with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments of the same nitrogen application rate (P<0.05). *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicate no significant effect.2.4.2 不同处理对冬小麦经济效益的影响
如表6所示,在不同控释氮素占比处理间,2020—2021年度,两种施氮量下F4相比F5处理肥料投入平均单位面积减少7.36%,但F4和F5处理间产值和净效益差异不显著,净效益整体表现为F4、F5>F1>F2、F3;2021—2022年度,F4相比F5处理肥料投入平均单位面积减少6.27%,且F4处理的净效益和产值显著高于F5处理及其他处理;两年度N2F4、N2F5相比N1F4、N1F5处理净效益平均分别提高10.08%和6.41%。结果说明,适当增加控释氮素占比,能够提高冬小麦净效益,控释氮素占比在70%时,净效益达到最大。
表 6 不同处理下冬小麦产值和经济效益Table 6. The output value and economic benefit of winter wheat under different treatments处理
Treatment2020—2021 2021—2022 产值
Output
(yuan/hm2)肥料投入
Fertilizer cost
(yuan/hm2)其他
Others
(yuan/hm2)净效益
Benefit
(yuan/hm2)产值
Output
(yuan/hm2)肥料投入
Fertilizer cost
(yuan/hm2)其他
Other
(yuan/hm2)净效益
benefit
(yuan/hm2)N1 F1 17929.4 b 2053.3 3000 12876.1 b 21614.2 b 2541.2 3700 15373.0 bc F2 16716.8 c 2224.6 2500 11992.2 c 20434.4 c 2717.3 3000 14717.1 c F3 17225.1 c 2338.8 2500 12386.3 bc 21654.6 b 2834.7 3000 15819.9 b F4 19582.0 a 2453.0 2500 14629.0 a 23682.8 a 2952.0 3000 17730.8 a F5 19308.5 a 2624.4 2500 14184.2 a 22252.4 b 3128.1 3000 16124.3 b N2 F1 18319.6 b 2270.6 3000 13049.0 b 21858.3 c 2830.9 3700 15327.4 cd F2 16725.2 c 2484.7 2500 11740.5 c 20604.4 d 3051.0 3000 14553.4 d F3 17093.6 c 2627.5 2500 11966.1 c 21974.2 c 3197.7 3000 15776.5 c F4 20173.1 a 2770.2 2500 14902.8 a 27316.3 a 3344.4 3000 20972.0 a F5 20225.2 a 2984.4 2500 14740.8 a 24124.0 b 3564.4 3000 17559.5 b 显著性检验 Significance test N * * ** ** F ** ** ** ** N×F NS NS ** ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**分别表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicate common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio 30%, 50%, 70%, and 100% CRU, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments of the same nitrogen application rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect.2.5 不同处理对冬小麦氮素利用效率的影响
由表7可知,氮肥偏生产力和氮素吸收效率表现为N1施氮量显著高于N2施氮量;在不同控释氮素占比处理下,2020—2021年度,两种施氮量下氮素利用效率、氮素吸收效率和氮肥偏生产力表现为F4和F5处理显著高于其他处理;2021—2022年度,氮素利用效率在N1施氮量下表现为F4和F5处理最高,N2施氮量下F4处理显著高于其他处理,氮素吸收效率和氮肥偏生产力表现为F4处理显著高于其他处理。说明在两种施氮量下控释氮素占比为70%能够提高冬小麦的氮肥偏生产力和氮素吸收效率,N2F4相比N1F4处理在提高产量的同时,氮素利用效率两处理间无显著差异。
表 7 不同处理下冬小麦氮素利用效率Table 7. Nitrogen use efficiency of winter wheat under different treatments处理
Treatment2020—2021 2021—2022 氮素利用效率
NUtE
(kg/kg)氮素吸收效率
NUpE
(kg/kg)氮肥偏生产力
PFPN
(kg/kg)氮素利用效率
NUtE
(kg/kg)氮素吸收效率
NUpE
(kg/kg)氮肥偏生产力
PFPN
(kg/kg)N1 F1 29.81 b 1.36 b 40.60 b 30.60 b 1.53 b 46.91 b F2 29.50 b 1.28 c 37.86 c 30.81 b 1.44 c 44.35 c F3 29.62 b 1.32 bc 39.01 bc 30.70 b 1.53 b 46.99 b F4 30.84 a 1.44 a 44.34 a 31.16 ab 1.65 a 51.39 a F5 30.48 a 1.43 a 43.72 a 31.65 a 1.53 b 48.29 b N2 F1 29.67 b 1.12 b 33.19 b 29.18 c 1.30 bc 37.95 c F2 28.35 c 1.07 c 30.30 c 29.54 c 1.21 d 35.77 d F3 27.73 d 1.12 b 30.97 c 29.72 c 1.28 c 38.15 c F4 30.28 a 1.21 a 36.55 a 32.44 a 1.46 a 47.42 a F5 30.32 a 1.21 a 36.64 a 31.30 b 1.34 b 41.88 b 显著性校检验 Significance test N ** ** ** ** ** ** F ** ** ** ** ** ** N×F ** NS NS ** NS ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。NUtE—氮素利用效率;NUpE—氮素吸收效率;PFPN—氮肥偏生产力。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**分别表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. NUtE—Nitrogen utilization efficiency; NUpE—Nitrogen uptake efficiency; PFPN—Nitrogen fertilizer partial productivity. Values followed by different lowercase letters in a column indicate significant difference among treatments with the same nitrogen rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect.2.6 冬小麦氮素积累与转运和土壤硝态氮含量相关性分析
由图7可知,返青、拔节和开花期的0—20 cm土层硝态氮含量与成熟期地上部氮素积累量呈显著正相关,说明增加返青、拔节和开花期的土壤氮素供应均能提高冬小麦成熟期地上部氮素积累量;拔节和开花期0—20 cm土层硝态氮含量与花前氮素转运量、花前氮素对籽粒氮的贡献率呈极显著正相关;开花期0—20 cm土层硝态氮含量与花后氮素积累量呈极显著正相关,与花后氮素对籽粒氮的贡献率呈极显著负相关。说明增加拔节期的土壤氮素供应,能通过提高花前氮素转运量来增加籽粒氮素积累量;增加开花期的土壤氮素供应,能同时提高花前氮素转运量和花后氮素积累量,进而增加籽粒氮素积累量。
图 7 冬小麦氮素积累与转运和0—20 cm土层硝态氮含量相关性注: WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。NRA—花前氮素转运量;NRCT—开花前氮素对籽粒氮的贡献率;NAG—花后氮素积累量:NACT—花后氮素对籽粒氮的贡献率;NAM—成熟期氮素积累量;NS—穗数;GY—谷物产量;NUtE—氮素利用效率。*—P<0.05;**—P<0.01。Figure 7. Correlation between nitrogen accumulation and transport in winter wheat and nitrate content in 0−20 cm soil layerNote: WS—Wintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. NRA—Nitrogen relocation amount in vegetative organs; NRCT—Total contribution rate of pre-anthesis N relocation to grain N; NAG—Nitrogen uptake amount after anthesis; NACT—Contribution rate of post-anthesis N accumulation to grain N; NAM—Nitrogen accumulation at maturity; NS—Number of spikes; GY—Grain yield; NUtE—Nitrogen utilization efficiency. *—P<0.05; **—P<0.01.图8表明,花前和花后氮素对籽粒氮的贡献率与开花期的氮素积累量呈显著的二次方程关系,R2=0.92。当开花期的氮素积累量为267.8 kg/hm2时,花前氮素对籽粒氮的贡献率达到最大值,且花后氮素对籽粒氮的贡献率达到最小值。说明开花期的氮素积累量小于267.8 kg/hm2,增加开花期的氮素积累量会促进花前氮素对籽粒氮的贡献率,且抑制花后氮素对籽粒氮的贡献率。
图 8 花前、花后氮素对籽粒氮的贡献率和开花期氮素积累量间的拟合关系Figure 8. Fitting relationship between NRCT, NACT, and nitrogen accumulation at anthesis stageNote: NRCT—Total contribution rate of nitrogen remobilization pre-anthesis to grain nitrogen; NACT—Contribution rate of nitrogen accumulated post-anthesis to the grain nitrogen.3. 讨论
3.1 控释掺混肥对土壤氮素供应的影响
施用控释氮肥能实现一次性基施满足作物整个生育期的氮素需求,进而提高籽粒产量和氮肥利用率[19]。本试验研究结果表明,控释氮素占比70%和100%处理相比全施普通氮素处理,其拔节期以及开花期土壤硝态氮含量处于较高水平,能为冬小麦生育后期提供较充足的土壤氮素供应。然而,由于控释氮肥其养分释放受土壤温度以及水分的影响,控释氮肥前期养分释放会过于缓慢,一次性基施会造成冬小麦生育前期的土壤养分供应不足问题[20]。前人在冬小麦生长季测定树脂包膜控释氮肥的田间实际释放曲线,结果表明在前40天的累计氮素释放量较低,且在返青期出现释放速率低谷,使得冬小麦在分蘖到越冬期和返青期难以吸收充足的养分[21]。本试验研究表明,控释氮素占比100%时相比其他处理,其越冬期的土壤硝态氮含量较低,不利于冬小麦生育前期的分蘖生长。控释氮素与普通氮素配施既能满足冬小麦越冬、返青期的氮素需求,又能在拔节、开花期提供较高的土壤氮素供应。本试验研究表明控释氮素占比为70%时,既能保证冬小麦生育前期的土壤硝态氮含量,也能显著提高拔节期以及开花期的硝态氮含量。前人研究表明水稻土条件下控释氮素占比40%时,其土壤硝态氮含量与脲酶活性在冬小麦拔节期到成熟期较高,为冬小麦生育后期较高的土壤氮素供应[16,22],其与本试验研究结果不一致,可能是由于土壤类型不同导致。说明在关中平原地区需提高控释氮素占比,保证冬小麦生育后期的土壤养分供应。
硝酸盐向深层淋溶是造成氮素利用效率低和环境污染的一个重要原因,因此需要注重土壤氮素供应与作物氮素吸收同步,减少土壤氮素挥发以及淋溶,进而实现增加冬小麦氮素吸收、产量和经济效益和保护生态环境的同步进行[23−24]。施用控释氮肥相比施普通氮肥增加冬小麦成熟期0—40 cm土层的硝态氮含量,且控释氮素占比为60%时能够降低60—100 cm土层硝态氮含量,减少氮素淋溶[15]。本试验研究表明,冬小麦成熟期0—40 cm土层的硝态氮含量在各掺混比例处理间并无明显差异,而80—200 cm土层的硝态氮含量则表现为控释氮素占比为70%和100%时显著低于其他掺混比例处理,且在控释氮素占比为70%和100%时增加施氮量80—200 cm土层的硝态氮含量并无显著增加,说明冬小麦在生育后期氮素需求较高,N2施氮量下控释氮素占比在70%和100%时,其冬小麦生育后期的土壤氮素释放与冬小麦氮素吸收更加吻合,从而在增加籽粒氮素积累量的同时降低硝态氮淋溶风险。
3.2 控释掺混肥对冬小麦氮素积累转运的影响
营养器官氮素向籽粒的转运量和花后氮素的吸收量是作物籽粒氮素含量的两个主要来源[25],前人研究表明在作物营养生长阶段增加氮素供应可以提高营养器官对氮素的吸收,促进氮素从营养器官向籽粒转运,在生殖生长阶段提高作物对氮素的吸收有利于提高花后同化氮素向籽粒的输入量,从而提高产量[26]。由于普通氮素肥效释放较快,一次性基施不能够满足作物生育后期对氮素的需求[27],而控释氮素在作物生长发育前期氮素释放速率较低,一次性基施会降低营养器官中的氮积累量,进而导致营养器官氮素向籽粒的转运量减少[28]。在本试验中,控释氮素占比70%处理不仅能够保证冬小麦返青和拔节期的土壤氮素供给,而且能显著提高开花期的土壤硝态氮含量。冬小麦氮素积累与转运和土壤硝态氮含量间相关性分析表明,返青期和拔节期的土壤硝态氮含量与冬小麦开花期的氮素积累量呈显著正相关,控释氮肥占比70%处理通过提高返青期和拔节期的土壤硝态氮含量显著提高了开花期的氮素积累量。返青、拔节和开花期的土壤硝态氮含量与成熟期地上部氮素积累量呈显著正相关,相比F4和F5处理,F1处理在返青、拔节和开花期的土壤氮素供应较低,不利于冬小麦的氮素积累。前人研究表明当开花期氮素积累量较高时,会促进营养器官氮素向籽粒的转运且抑制籽粒对花后氮素的吸收[29]。本试验结果表明,当开花期的氮素积累量为267.8 kg/hm2时,花前氮素对籽粒氮的贡献率达到最大,低于267.8 kg/hm2时,开花期的氮素积累量会促进花前氮素对籽粒氮的贡献率。控释氮素占比70%处理,通过增加冬小麦开花期的氮素积累量,显著提高开花前营养器官氮素向籽粒的转运量,从而提高成熟期籽粒氮素含量。开花后同化氮素向籽粒的输入量虽呈增加趋势,但花后同化氮素对籽粒氮的贡献率呈下降趋势。说明控释氮素占比70%处理虽在冬小麦生殖生长阶段能提供良好的土壤养分供应,但是,由于冬小麦在营养生长阶段积累了较多的氮素,籽粒氮素由营养器官中转运而来的量和比例仍然较大。
3.3 控释掺混肥对冬小麦产量、经济效益和氮素利用率的影响
氮肥合理运筹是提高作物产量的关键,氮肥的施用对冬小麦的生长至关重要[30],氮肥不同用量以及不同类型对作物的影响不一[31−32]。控释氮肥与普通氮肥配施,能在冬小麦氮素吸收关键时期提供充足的土壤氮素供应,为冬小麦高产奠定基础[33]。有研究表明水稻土条件下施氮量为150 kg/hm2控释氮素占比40%时,不同程度地改善了稻麦作物穗长,显著提高籽粒产量[16]。亦有研究表明施氮量为180 kg/hm2控释氮素占比60%条件下能促进冬小麦氮素吸收,通过增加冬小麦的穗粒数和千粒重来提高籽粒产量[15]。本试验研究表明控释氮素占比为70%和100%时,通过增加返青期之后的土壤氮素供给,提高了拔节期和开花期的群体数量,显著提升冬小麦成熟期穗数,进而提高产量。两年度F4和F5处理间穗数和籽粒产量变化不同,是由于第二年度冬小麦生育期内F4处理的土壤氮素供应高于F5处理,造成这一差异可能是由于两年度冬小麦生育期内积温以及降雨量不同导致。在陕西关中地区,增加施氮量,冬小麦穗数、穗粒数、千粒重以及籽粒产量呈现先增大后减小的趋势,施氮量为240 kg/hm2时获得较高的产量[34]。本试验发现,当控释氮素占比为30%和50%时,N1与N2相比产量无显著差异,但控释氮素占比为70%和100%时,N2施氮量的产量得到显著提高。说明适当提高控释氮素比例,能够进一步发挥氮肥投入的增产增效潜力,在一定程度上打破增氮不增产的瓶颈。
合理的施肥方式不仅能够保证作物生长发育所需养分供应,还可以减少氮的损失,提高氮肥利用率[35]。由于控释氮肥应用成本高于普通氮肥,通过控释氮肥与普通氮肥配施,可降低成本,进一步发挥控释氮肥的优势。前人研究表明控释氮肥配施普通氮肥,相比于全施普通氮肥在提高冬小麦产量的同时提高氮素利用率[36]。本试验结果进一步表明,两种施氮量下控释氮素占比70%时,在增加成熟期地上部的氮素积累量和籽粒产量的同时,氮素利用效率、氮素吸收效率和氮肥偏生产力亦显著提高。有研究表明在华北平原地区,施氮量为144 kg/hm2、控释氮肥占比75%处理与施氮量180 kg/hm2、全施普通氮肥处理相比,净效益无显著差异,但提高了冬小麦的氮素利用率[37]。在江淮平原地区控释氮肥用量为252 kg/hm2条件下,减氮10%和20%时冬小麦成熟期氮素积累量显著下降,氮素利用率差异不显著[38]。减氮处理造成的氮肥利用率变化结果不一,可能与土壤基础地力和氮肥类型有关。本试验结果表明,在关中平原地区,控释氮素占比为70%的条件下,施氮量240 kg/hm2相比减氮20%处理,氮素利用效率无显著下降,净效益平均提高10.08%,说明控释氮素占比在70%时能够促进冬小麦对氮素的高效利用,有利于实现冬小麦氮素利用效率和生产经济效益的同步提升。
4. 结论
小麦开花期较高的氮素积累量有利于增加花前营养器官贮存氮素向籽粒分配。将控释期为90天的树脂包膜尿素与普通尿素按70%和30%掺混后一次性基施,能显著提高冬小麦返青期至开花期的土壤硝态氮含量,有效提高拔节期和开花期的总茎数及开花期氮素积累量,显著提高成穗数和籽粒产量,且提高小麦生产净效益和氮素利用效率,推荐作为关中平原地区冬小麦高产高效生产的控释氮肥施用技术。
-
图 2 2020—2021年不同处理冬小麦生育期内0—40 cm土层硝态氮含量动态变化
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 2. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2020−2021
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 3 2021—2022年不同处理小麦生育期内0—40 cm土层硝态氮含量动态变化
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 3. Dynamics of nitrate concentration in 0−40 cm soil layer of each treatment across winter wheat season in 2021−2022
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 4 2020—2022年冬小麦成熟期各处理0—200 cm土层硝态氮含量
注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。
Figure 4. Nitrate concentration in 0−200 cm soil layer of each treatment at mature stage of winter wheat from 2020−2022
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively.
图 5 不同处理对冬小麦各生育时期氮素积累量的影响
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 5. Effects of different treatments on nitrogen accumulation in winter wheat at different growth stages
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).
图 6 不同处理冬小麦各生育时期总茎数
注:WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 6. Total stem number of winter wheat at different growth stages under different treatments
Note: WS—Overwintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Different lowercase letters on the bars indicate significant difference among treatments (P<0.05).
图 7 冬小麦氮素积累与转运和0—20 cm土层硝态氮含量相关性
注: WS—越冬期;RGS—返青期;JS—拔节期;AS—开花期;MS—成熟期。NRA—花前氮素转运量;NRCT—开花前氮素对籽粒氮的贡献率;NAG—花后氮素积累量:NACT—花后氮素对籽粒氮的贡献率;NAM—成熟期氮素积累量;NS—穗数;GY—谷物产量;NUtE—氮素利用效率。*—P<0.05;**—P<0.01。
Figure 7. Correlation between nitrogen accumulation and transport in winter wheat and nitrate content in 0−20 cm soil layer
Note: WS—Wintering stage; RGS—Regreening stage; JS—Jointing stage; AS—Anthesis stage; MS—Maturity stage. NRA—Nitrogen relocation amount in vegetative organs; NRCT—Total contribution rate of pre-anthesis N relocation to grain N; NAG—Nitrogen uptake amount after anthesis; NACT—Contribution rate of post-anthesis N accumulation to grain N; NAM—Nitrogen accumulation at maturity; NS—Number of spikes; GY—Grain yield; NUtE—Nitrogen utilization efficiency. *—P<0.05; **—P<0.01.
图 8 花前、花后氮素对籽粒氮的贡献率和开花期氮素积累量间的拟合关系
Figure 8. Fitting relationship between NRCT, NACT, and nitrogen accumulation at anthesis stage
Note: NRCT—Total contribution rate of nitrogen remobilization pre-anthesis to grain nitrogen; NACT—Contribution rate of nitrogen accumulated post-anthesis to the grain nitrogen.
表 1 播种前0—20 cm土层土壤理化性质
Table 1 Physiochemical properties of 0−20 cm soil layer before sowing
年度
Year有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N碱解氮 (mg/kg)
Hydrolysable N速效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K2020—2021 15.0 0.97 64.1 10.4 220.2 2021—2022 16.1 0.93 54.5 20.7 231.5 表 2 不同处理施氮量(kg/hm2)
Table 2 Nitrogen application rate of different treatments
处理
Treatment控释氮肥 (CRU)
Controlled release urea尿素
Urea总施氮量
Total N inputN1F1 0.0 192.0 192.0 N1F2 57.6 134.4 192.0 N1F3 96.0 96.0 192.0 N1F4 134.4 57.6 192.0 N1F5 192.0 0.0 192.0 N2F1 0.0 240.0 240.0 N2F2 72.0 168.0 240.0 N2F3 120.0 120.0 240.0 N2F4 168.0 72.0 240.0 N2F5 240.0 0.0 240.0 表 3 不同处理冬小麦成熟期氮素在各器官中的分配
Table 3 Nitrogen distribution in various organs of winter wheat at maturing stage under different treatments
年度
Year处理
Treatment氮积累量 N accumulation (kg/hm2) 分配比例 Distribution proportion (%) 籽粒
Grain茎秆+叶鞘
Stem and sheath叶片
Leaf颖壳+穗轴
Spike axis and glume籽粒
Grain茎秆+叶鞘
Stem and sheath叶片
Leaf颖壳+穗轴
Spike axis and glume2020—2021 N1 F1 192.32 b 43.13 a 12.33 a 13.76 ab 73.53 c 16.49 a 4.72 b 5.26 b F2 180.45 c 37.05 c 13.78 a 15.11 a 73.24 c 15.04 b 5.59 a 6.14 a F3 200.53 b 32.38 d 8.49 c 11.43 c 79.32 a 12.81 c 3.36 c 4.52 c F4 218.98 a 36.67 c 8.33 c 12.10 bc 79.32 a 13.28 c 3.02 c 4.38 c F5 212.98 a 40.00 b 10.33 b 12.12 bc 77.32 b 14.52 b 3.76 c 4.40 c N2 F1 198.75 c 42.43 a 11.73 a 15.56 b 74.03 c 15.80 a 4.37 a 5.80 b F2 189.16 c 40.47 a 9.31 b 17.58 a 73.74 c 15.77 a 3.63 b 6.86 a F3 210.45 b 34.26 b 8.81 c 14.49 c 78.52 b 12.78 b 3.29 c 5.41 c F4 233.29 a 35.15 b 7.67 d 13.57 d 80.53 a 12.14 b 2.65 d 4.69 d F5 233.30 a 35.16 b 8.02 d 13.54 d 80.44 a 12.13 b 2.76 d 4.67 d 显著性检验 Significance test N ** NS ** ** ** ** ** ** F ** ** ** ** ** ** ** ** N×F NS ** ** NS ** ** ** NS 2021—2022 N1 F1 213.49 b 50.26 b 18.28 a 12.28 d 72.54 c 17.08 b 6.21 a 4.17 e F2 181.84 d 56.91 a 17.48 ab 20.12 a 65.80 e 20.59 a 6.32 a 7.28 a F3 203.61 c 51.53 b 19.05 a 19.70 a 69.28 d 17.53 b 6.48 a 6.70 b F4 239.00 a 44.00 c 16.00 bc 17.67 b 75.47a 13.89 d 5.05 b 5.58 c F5 218.57 b 44.37 c 15.59 c 14.41 c 74.61 b 15.14 c 5.32 b 4.92 d N2 F1 219.00 c 51.14 a 19.40 a 22.62 a 70.16 d 16.38 b 6.21 a 7.25 a F2 201.93 d 51.68 a 19.40 a 17.61 b 69.48 d 17.79 a 6.67 a 6.06 b F3 221.98 c 53.73 a 15.07 b 17.29 b 72.05 c 17.44 a 4.89 b 5.61 b F4 273.02 a 50.67 a 12.64 b 14.54 d 77.80 a 14.45 c 3.61 c 4.14 d F5 243.36 b 48.00 b 14.00 b 15.78 c 75.78 b 14.95 c 4.36 b 4.92 c 显著性检验 Significance test N ** * ** ** ** ** ** NS F ** ** ** ** ** ** ** ** N×F ** * ** ** ** * * ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments with the same N application rate (P<0.05). *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect.表 4 不同处理下冬小麦氮素的再分配
Table 4 Nitrogen relocation in winter wheat as affected by nitrogen fertilizer treatments
处理
Treatment2020—2021 2021—2022 开花前 Pre-anthesis 开花后 Post-anthesis 开花前 Pre-anthesis 开花后 Post-anthesis 转运量
NRA
(kg/hm2)转运效率
NRR
(%)籽粒贡献率
NRCT
(%)积累量
NAG
(kg/hm2)贡献率
NACT
(%)转运量
NRA
(kg/hm2)转运效率
NRR
(%)籽粒贡献率
NRCT (%)积累量
NAG
(kg/hm2)贡献率
NACT
(%)N1 F1 136 b 66.4 b 70.9 abc 55.9 a 29.1 a 154.8 bc 65.7 b 72.5 a 58.7 ab 27.5 a F2 127 c 65.8 b 70.2 bc 53.7 a 29.8 a 132.5 d 58.4 d 72.9 a 49.3 b 27.1 a F3 140 b 72.9 a 70.0 c 60.2 a 30.0 a 150.4 c 62.5 c 73.9 a 53.2 b 26.1 a F4 158 a 73.5 a 72.4 ab 60.4 a 27.6 a 175.7 a 69.3 a 73.5 a 63.3 a 26.5 a F5 155 a 71.2 a 72.8 a 58.0 a 27.2 a 159.3 b 68.2 a 72.9 a 59.3 ab 27.1 a N2 F1 141 c 66.9 c 70.9 a 57.8 ab 29.1 a 162.4 c 63.6 d 74.2 a 56.6 b 25.8 a F2 134 c 66.6 c 71.0 a 54.8 b 29.0 a 148.3 d 62.6 d 73.5 a 53.6 b 26.5 a F3 151 b 72.4 b 71.9 a 59.1 ab 28.1 a 165.2 c 65.7 c 74.4 a 56.8 b 25.6 a F4 170 a 75.0 a 72.7 a 63.6 a 27.3 a 201.8 a 74.3 a 73.9 a 71.2 a 26.1 a F5 168 a 74.8 a 72.0 a 65.3 a 28.0 a 180.9 b 69.9 b 74.4 a 62.4 ab 25.6 a 显著性检验 Significance test N ** ** NS NS NS ** ** * NS * F ** ** NS * NS ** ** NS * NS N×F NS * NS NS NS * ** NS NS NS 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著(P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicate common urea as basal and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio 30%, 50%, 70%, and 100% CRU, respectively. NRA—Nitrogen relocation amount in vegetative organs; NRR—Nitrogen relocation rate in vegetative organs; NRCT—Total contribution rate of pre-anthesis N relocation to grain N accumulation; NAG—Nitrogen uptake amount after anthesis; NACT—Contribution rate of post-anthesis N accumulation to the grain N. Values followed by different lowercase letters in a column indicate significant difference among treatments in the same N application rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicate no significant effect.表 5 不同处理冬小麦产量及其构成因素
Table 5 Yield and its components of winter wheat under different treatments
处理
Treatment2020—2021 2021—2022 穗数
Number of spikes
(×104/hm2)穗粒数
Grains per
spike千粒重
1000-grain
weight (g)产量
Grain yield
(kg/hm2)穗数
Number of spikes
(×104/hm2)穗粒数
Grains per
spike千粒重
1000-grain weight
(g)产量
Grain yield
(kg/hm2)N1 F1 481 b 35.6 a 49.5 a 7795 b 553 bc 39.7 a 47.0 a 9006 b F2 469 b 36.9 a 48.8 a 7268 c 543 c 37.1 a 46.6 a 8514 c F3 475 b 36.6 a 49.4 a 7489 c 554 bc 39.1 a 46.5 a 9023 b F4 509 a 35.7 a 49.7 a 8514 a 600 a 39.8 a 47.1 a 9868 a F5 514 a 37.1 a 49.1 a 8395 a 569 b 39.8 a 48.5 a 9272 b N2 F1 505 b 37.9 a 49.8 b 7965 b 559 c 39.2 a 47.4 a 9108 c F2 473 c 34.1 ab 49.1ab 7272 c 546 c 37.6 a 47.7 a 8585 d F3 481 c 34.5 ab 50.1 ab 7432 c 553 c 39.4 a 46.5 a 9156 c F4 536 a 34.8 ab 50.6 a 8771a 639 a 39.9 a 46.0 a 11382 a F5 544 a 36.1 a 49.8 ab 8794 a 607 b 39.9 a 46.9 a 10052 b 显著性检验 Significance test N ** NS * * ** NS NS ** F ** NS NS ** ** NS NS ** N×F * NS NS NS ** NS NS ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著(P<0.05)。*、**表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea applied in base and topdressing, F2, F3, F4, and F5 indicate complete application of controlled release and common urea as base fertilizer, with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments of the same nitrogen application rate (P<0.05). *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicate no significant effect.表 6 不同处理下冬小麦产值和经济效益
Table 6 The output value and economic benefit of winter wheat under different treatments
处理
Treatment2020—2021 2021—2022 产值
Output
(yuan/hm2)肥料投入
Fertilizer cost
(yuan/hm2)其他
Others
(yuan/hm2)净效益
Benefit
(yuan/hm2)产值
Output
(yuan/hm2)肥料投入
Fertilizer cost
(yuan/hm2)其他
Other
(yuan/hm2)净效益
benefit
(yuan/hm2)N1 F1 17929.4 b 2053.3 3000 12876.1 b 21614.2 b 2541.2 3700 15373.0 bc F2 16716.8 c 2224.6 2500 11992.2 c 20434.4 c 2717.3 3000 14717.1 c F3 17225.1 c 2338.8 2500 12386.3 bc 21654.6 b 2834.7 3000 15819.9 b F4 19582.0 a 2453.0 2500 14629.0 a 23682.8 a 2952.0 3000 17730.8 a F5 19308.5 a 2624.4 2500 14184.2 a 22252.4 b 3128.1 3000 16124.3 b N2 F1 18319.6 b 2270.6 3000 13049.0 b 21858.3 c 2830.9 3700 15327.4 cd F2 16725.2 c 2484.7 2500 11740.5 c 20604.4 d 3051.0 3000 14553.4 d F3 17093.6 c 2627.5 2500 11966.1 c 21974.2 c 3197.7 3000 15776.5 c F4 20173.1 a 2770.2 2500 14902.8 a 27316.3 a 3344.4 3000 20972.0 a F5 20225.2 a 2984.4 2500 14740.8 a 24124.0 b 3564.4 3000 17559.5 b 显著性检验 Significance test N * * ** ** F ** ** ** ** N×F NS NS ** ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**分别表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicate common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio 30%, 50%, 70%, and 100% CRU, respectively. Values followed by different lowercase letters in a column indicate significant difference among treatments of the same nitrogen application rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect.表 7 不同处理下冬小麦氮素利用效率
Table 7 Nitrogen use efficiency of winter wheat under different treatments
处理
Treatment2020—2021 2021—2022 氮素利用效率
NUtE
(kg/kg)氮素吸收效率
NUpE
(kg/kg)氮肥偏生产力
PFPN
(kg/kg)氮素利用效率
NUtE
(kg/kg)氮素吸收效率
NUpE
(kg/kg)氮肥偏生产力
PFPN
(kg/kg)N1 F1 29.81 b 1.36 b 40.60 b 30.60 b 1.53 b 46.91 b F2 29.50 b 1.28 c 37.86 c 30.81 b 1.44 c 44.35 c F3 29.62 b 1.32 bc 39.01 bc 30.70 b 1.53 b 46.99 b F4 30.84 a 1.44 a 44.34 a 31.16 ab 1.65 a 51.39 a F5 30.48 a 1.43 a 43.72 a 31.65 a 1.53 b 48.29 b N2 F1 29.67 b 1.12 b 33.19 b 29.18 c 1.30 bc 37.95 c F2 28.35 c 1.07 c 30.30 c 29.54 c 1.21 d 35.77 d F3 27.73 d 1.12 b 30.97 c 29.72 c 1.28 c 38.15 c F4 30.28 a 1.21 a 36.55 a 32.44 a 1.46 a 47.42 a F5 30.32 a 1.21 a 36.64 a 31.30 b 1.34 b 41.88 b 显著性校检验 Significance test N ** ** ** ** ** ** F ** ** ** ** ** ** N×F ** NS NS ** NS ** 注:N1和N2分别表示施氮量为 192和240 kg/hm2;F1处理为普通尿素分两次施用,F2、F3、F4、F5处理为控释尿素和普通尿素混合一次性基施,其中控释肥氮素比例依次为30%、50%、70%、100%。NUtE—氮素利用效率;NUpE—氮素吸收效率;PFPN—氮肥偏生产力。同列数据后不同小写字母表示同一施氮量不同掺混比例处理间差异显著 (P<0.05)。*、**分别表示变量效应达到0.05、0.01显著水平,NS—效应不显著。
Note: N1 and N2 indicate N application rate of 192 and 240 kg/hm2; F1 indicates common urea as base and topdressing fertilizer, F2, F3, F4, and F5 indicate complete basal application of controlled release and common urea with the controlled release urea N ratio of 30%, 50%, 70%, and 100%, respectively. NUtE—Nitrogen utilization efficiency; NUpE—Nitrogen uptake efficiency; PFPN—Nitrogen fertilizer partial productivity. Values followed by different lowercase letters in a column indicate significant difference among treatments with the same nitrogen rate (P<0.05). * and ** indicate the variable effect at 0.05, and 0.01 significant levels, and NS indicates no significant effect. -
[1] 魏猛, 张爱君, 诸葛玉平, 等. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响[J]. 植物营养与肥料学报, 2017, 23(2): 304−312. Wei M, Zhang A J, Zhuge Y P, et al. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 304−312.
[2] Bortoletto-Santos R, Cavigelli M A, Montes S E, et al. Oil-based polyurethane-coated urea reduces nitrous oxide emissions in a corn field in a Maryland loamy sand soil[J]. Journal of Cleaner Production, 2020, 249: 119329. DOI: 10.1016/j.jclepro.2019.119329
[3] 谢方平, 刘敏章, 杨米米, 等. 袋装缓控释肥有序排肥装置设计[J]. 农业工程学报, 2019, 35(16): 40−49. Xie F P, Liu M Z, Yang M M, et al. Design of ordered fertilizer device for bagged slow-release fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(16): 40−49.
[4] 侯朋福, 薛利祥, 袁文胜, 等. 缓控释肥深施对黏性土壤麦田氮素去向的影响[J]. 环境科学, 2023, 44(1): 473−481. Hou P F, Xue L X, Yuan W S, et al. Effect of deep fertilization with slow/controlled release fertilizer on N fate in clayey soil wheat field[J]. Environmental Science, 2023, 44(1): 473−481.
[5] 张明伟, 马泉, 陈京都, 等. 缓控释肥在冬小麦上的应用研究进展及展望[J]. 江苏农业科学, 2022, 50(2): 15−21. Zhang M W, Ma Q, Chen J D, et al. Research progress and prospect of slow and controlled release fertilizer application in winter wheat[J]. Jiangsu Agricultural Sciences, 2022, 50(2): 15−21.
[6] 刘苹, 李庆凯, 林海涛, 等. 不同缓控释肥对小麦产量、氮素吸收及氮肥利用率的影响[J]. 山东农业科学, 2020, 52(2): 70−74. Liu P, Li Q K, Lin H T, et al. Effects of different slow-and controlled-release fertilizers on wheat yield, nitrogen uptake and use efficiency[J]. Shandong Agricultural Sciences, 2020, 52(2): 70−74.
[7] 王兴刚, 吕少瑜, 冯晨, 等. 包膜型多功能缓/控释肥料的研究现状及进展[J]. 高分子通报, 2016, (7): 9−22. Wang X G, Lü S Y, Feng C, et al. Research status and progress of coated multifunctional slow/controlled release fertilizer[J]. Chinese Polymer Bulletin, 2016, (7): 9−22.
[8] 郑文魁, 李成亮, 窦兴霞, 等. 不同包膜类型控释氮肥对小麦产量及土壤生化性质的影响[J]. 水土保持学报, 2016, 30(2): 162−167. Zheng W K, Li C L, Dou X X, et al. Effects of different types of controlled release urea on wheat yield and biochemical properties of soil[J]. Journal of Soil and Water Conservation, 2016, 30(2): 162−167.
[9] 郑沛, 宋付朋, 马富亮. 硫膜与树脂膜控释尿素对小麦不同生育时期土壤氮素的调控及其产量效应[J]. 水土保持学报, 2014, 28(4): 122−127. Zheng P, Song F P, Ma F L. Influence of controlled release urea coated by sulfur and polymer on soil nitrogen in different growth stages of wheat[J]. Journal of Soil and Water Conservation, 2014, 28(4): 122−127.
[10] 吴振宇, 周子军, 杨阳, 等. 新型缓释尿素的缓释特性及其在土壤中转化研究[J]. 中国农学通报, 2018, 34(6): 84−90. Wu Z Y, Zhou Z J, Yang Y, et al. Release characteristics of a new slow-release urea fertilizer and its transformation in soil[J]. Chinese Agricultural Science Bulletin, 2018, 34(6): 84−90.
[11] Giroto A S, Guimares G G F, Ribeiro C. A novel, simple route to produce urea: Urea-formaldehyde composites for controlled release of fertilizers[J]. Journal of Polymers and the Environment, 2018, 26(6): 2448−2458. DOI: 10.1007/s10924-017-1141-z
[12] 马泉, 唐紫妍, 王梦尧, 等. 树脂包膜缓释肥与尿素配施对稻茬冬小麦产量、氮肥利用率与效益的影响[J]. 麦类作物学报, 2019, 39(10): 1202−1210. Ma Q, Tang Z Y, Wang M Y, et al. Effect of resin coated slow release fertilizer combined with urea on yield, nitrogen use efficiency and economic benefits of winter wheat following rice[J]. Journal of Triticeae Crops, 2019, 39(10): 1202−1210.
[13] 杨金宇, 李援农, 王凯瑜, 等. 控释氮肥与普通尿素配施比例和方法对冬小麦灌浆特性的影响[J]. 植物营养与肥料学报, 2020, 26(3): 442−452. Yang J Y, Li Y N, Wang K Y, et al. Effects of blending ratio and application method of controlled-release nitrogen fertilizer and common urea on grain-filling properties of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 442−452.
[14] 常凤, 王海标, 陶静静, 等. 减氮配施控释尿素对冬小麦产量及氮肥效率的影响[J]. 中国农学通报, 2018, 34(25): 1−6. Chang F, Wang H B, Tao J J, et al. Combined application of controlled-release urea and conventional urea under reduced N rate affect yield and N utilization efficiency of winter wheat[J]. Chinese Agricultural Science Bulletin, 2018, 34(25): 1−6.
[15] 张晨阳, 张富仓, 郭金金, 刘翔. 缓释氮肥与尿素掺施比例对冬小麦产量及氮素吸收利用的影响[J]. 植物营养与肥料学报, 2020, 26(4): 669−680. Zhang C Y, Zhang F C, Guo J J, Liu X. Effects of blending ratios of slow-release nitrogen fertilizer and urea on yield and nitrogen uptake of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 669−680.
[16] 张敬昇, 李冰, 王昌全, 等. 控释氮肥与尿素掺混比例对作物中后期土壤供氮能力和稻麦产量的影响[J]. 植物营养与肥料学报, 2017, 23(1): 110−118. Zhang J S, Li B, Wang C Q, et al. Effects of the blending ratio of controlled release nitrogen fertilizer and urea on soil nitrogen supply in the mid-late growing stage and yield of wheat and rice[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 110−118.
[17] 陈金, 唐玉海, 尹燕枰, 等. 秸秆还田条件下适量施氮对冬小麦氮素利用及产量的影响[J]. 作物学报, 2015, 41(1): 160−167. DOI: 10.3724/SP.J.1006.2015.00160 Chen J, Tang Y H, Yin Y P, et al. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat[J]. Acta Agronomica Sinica, 2015, 41(1): 160−167. DOI: 10.3724/SP.J.1006.2015.00160
[18] 王培如, 钟融, 孙敏, 等. 不同降水年型施氮量对冬小麦水氮资源利用效率的调控[J]. 植物营养与肥料学报, 2022, 28(8): 1430−1443. Wang P R, Zhong R, Sun M, et al. Nitrogen application rates at rainfall gradients regulate water and nitrogen use efficiency in dryland winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1430−1443.
[19] Azeem B, Kushaari K, Man Z B, et al. Review on materials & methods to produce controlled release coated urea fertilizer[J]. Journal of Controlled Release, 2014, 181: 11−21. DOI: 10.1016/j.jconrel.2014.02.020
[20] 刘俊松, 吴雅萍, 左思杰, 熊梦琪. 控释肥养分释放机理及其影响因素研究进展[J]. 湖北大学学报(自然科学版), 2020, 42(4): 464−470. Liu J S, Wu Y P, Zuo S J, Xiong M Q. Research advances on nutrients release mechanisms and influencing factors in controlled release fertilizers[J]. Journal of Hubei University (Natural Science), 2020, 42(4): 464−470.
[21] 刘轶. 控释肥氮释放对小麦玉米产量及氮素利用率的影响[D]. 山东泰安: 山东农业大学硕士学位论文, 2016. Liu Y. Effects of nitrogen release from controlled release fertilizer on yield and nitrogen use efficiency of wheat and maize[D]. Taian, Shandong: MS Thesis of Shandong Agricultural University, 2016.
[22] 张敬昇, 李冰, 王昌全, 等. 不同控氮比掺混肥对土壤无机氮与脲酶及冬小麦产量的影响[J]. 干旱地区农业研究, 2016, 34(4): 159−164. Zhang J S, Li B, Wang C Q, et al. Effects of bulk blend fertilizers with different controlled nitrogen ratios on the soil inorganic nitrogen, urease and winter wheat yield[J]. Agricultural Research in the Arid Areas, 2016, 34(4): 159−164.
[23] Cui Z L, Zhang F S, Chen X P, et al. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context[J]. Field Crops Research, 2010, 116: 140−146. DOI: 10.1016/j.fcr.2009.12.004
[24] Malhi S S, Grant C A, Johnston A M, Gill K S. Nitrogen fertilization management for no-till cereal production in the Canadian great plains: A review[J]. Soil and Tillage Research, 2001, 60(3): 101−122.
[25] Ciampitti I A, Vyn T J. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages[J]. Field Crops Research, 2010, 121(1): 2−18.
[26] Chen Y L, Xiao C X, Wu D L, et al. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency[J]. European Journal of Agronomy, 2015, 62: 79−89. DOI: 10.1016/j.eja.2014.09.008
[27] Ning P, Fritschi F B, Li C J. Temporal dynamics of post-silking nitrogen fluxes and their effects on grain yield in maize under low to high nitrogen inputs[J]. Field Crops Research, 2017, 204: 249−259. DOI: 10.1016/j.fcr.2017.01.022
[28] Hu H Y, Ning T Y, Li Z J, et al. Coupling effects of urea types and subsoiling on nitrogen–water use and yield of different varieties of maize in northern China[J]. Field Crops Research, 2013, 142: 85−94. DOI: 10.1016/j.fcr.2012.12.001
[29] Wu B J, Shang Y Q, Wang S, et al. Response of nitrogen redistribution to irrigation at jointing in winter wheat[J]. Agronomy Journal, 2020, 113(1): 381−396.
[30] Zheng W K, Zhang M, Liu Z G, et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system[J]. Field Crops Research, 2016, 197: 52−62. DOI: 10.1016/j.fcr.2016.08.004
[31] 姜右锦, 袁俊吉, 丁维新, 等. 控释尿素对黄河故道沙性潮土N2O排放的影响[J]. 环境科学, 2020, 41(7): 3402−3409. Jiang Y J, Yuan J J, Ding W X, et al. Effects of controlled-release urea application on N2O emission in maize-cultivated sandy loam soil[J]. Environmental Science, 2020, 41(7): 3402−3409.
[32] 李援农, 张利, 谷晓博, 等. 缓释氮肥减施对夏玉米产量与氮肥利用效率的影响[J]. 农业机械学报, 2021, 52(6): 285−294. Li Y N, Zhang L, Gu X B, et al. Effect of reduced application of slow release nitrogen fertilizer on yield and nitrogen utilization efficiency of summer maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(6): 285−294.
[33] 何杰, 张敬昇, 王昌全, 等. 包膜控释氮肥配施尿素对冬小麦产量与氮素积累及利用的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(3): 34−42. He J, Zhang J S, Wang C Q, et al. Effects of coated controlled-release nitrogen fertilizer combined with urea on yield, nitrogen accumulation and utilization of wheat[J]. Journal of Northwest A & F University (Natural Science Edition), 2018, 46(3): 34−42 .
[34] 师筝, 高斯曼, 李彤, 等. 施氮量对不同叶绿素含量小麦生长、产量和品质的影响[J]. 麦类作物学报, 2021, 41(9): 1134−1142. Shi Z, Gao S M, Li T, et al. Effect of nitrogen application rate on growth yield and quality of wheat with different chlorophyll content[J]. Journal of Triticeae Crops, 2021, 41(9): 1134−1142.
[35] Jug D, Đurđević B, Birkás M, et al. Effect of conservation tillage on crop productivity and nitrogen use efficiency[J]. Soil and Tillage Research, 2019, 194: 104327. DOI: 10.1016/j.still.2019.104327
[36] 梁靖越, 张敬昇, 王昌全, 等. 控释尿素对小麦籽粒产量和氮素利用率的影响[J]. 核农学报, 2018, 32(1): 157−164. Liang J Y, Zhang J S, Wang C Q, et al. Effects of controlled release urea on grain yield and nitrogen use efficiency in wheat[J]. Acta Agriculturae Nucleatae Sinica, 2018, 32(1): 157−164.
[37] Fan Z, Chen J X, Zhai S, et al. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1103−1111. DOI: 10.1007/s42729-021-00425-z
[38] 邓先亮, 屠晓, 李军, 等. 缓控释肥一次性基施对小麦产量及其形成的影响[J]. 中国土壤与肥料, 2019, (3): 87−93. Deng X L, Tu X, Li J, et al. Effect of complete basal application of slow and controlled release fertilizer on wheat yield and its formation[J]. Soil and Fertilizer Sciences in China, 2019, (3): 87−93.
-
期刊类型引用(11)
1. 安晓康,盛海彦,王生,赵凤宏,才让东周. 外源氮对湟水流域春小麦氮素吸收利用和土壤无机氮的影响. 西北农业学报. 2025(02): 191-199 . 百度学术
2. 张帅,张硕,王劲松,董二伟,刘秋霞,白文斌,王媛,蔡霞,黄晓磊,焦晓燕. 基于叶面积指数的高粱、玉米临界氮浓度稀释曲线模型构建与比较研究. 中国农业大学学报. 2025(06): 57-69 . 百度学术
3. 韩锐锋,任荣魁,董向阳,胡泽彬,郭方君,方甜甜,马文豪,张书红. 不同类型肥料施用深度和施用量对冬小麦生长发育的影响. 河南农业科学. 2025(02): 30-39 . 百度学术
4. 凤晓岗,马飞,王浩,卓大龙,杨兵,宋贺,王德好,车钊. 不同类型尿素配施对小麦花后氮代谢和产量的影响. 麦类作物学报. 2025(05): 652-661 . 百度学术
5. 刘红杰,任德超,张素瑜,朱培培,葛君,赵敬领,何勋. 不同施肥模式对冬小麦产量和土壤养分的影响. 江苏农业科学. 2025(08): 225-233 . 百度学术
6. 曹兵,高玮,李洪杰,杜梦扬,王学霞,陈延华,倪小会,赵萌,谷佳林,董淑祺,李子双. 控释掺混肥对小麦–玉米轮作体系产量、氮肥利用效率及氨挥发的影响. 植物营养与肥料学报. 2024(05): 873-885 . 本站查看
7. 索炎炎,张翔,司贤宗,李亮,吴士文,徐凤丹,程培军,李倩,闫萌. 施钼对花生氮代谢关键酶活性、氮素利用及产量的影响. 中国油料作物学报. 2024(03): 595-603 . 百度学术
8. 耿若鑫,黑泽文,油伦成,舒昱霖,汪洋,李升东,曲明山,石颜通,张凯烨,毕香君,田培雨,赵富林,张卫峰,陈永亮. 华北小麦施用脲铵氮肥实现轻简施肥的可行性及技术措施. 植物营养与肥料学报. 2024(06): 1103-1117 . 本站查看
9. 杨红竹,黄艳艳,冀春花,刘海林,林清火,茶正早,罗微. 控释尿素与普通尿素配施对橡胶树叶片和胶乳养分及产量的影响. 热带作物学报. 2024(09): 1868-1876 . 百度学术
10. 杨红竹,黄艳艳,刘海林,林清火,茶正早,罗微. 控释掺混肥料一次性基施对热带地区水稻产量及氮肥利用效率的影响. 福建农业学报. 2024(07): 766-774 . 百度学术
11. 申朝阳,高林广,周浩露,罗新宇,黄英惠,高小丽. 普通尿素与控释尿素配施对谷子产量及氮素利用的影响. 干旱地区农业研究. 2024(05): 63-70 . 百度学术
其他类型引用(10)