Replacing common urea with controlled-release fertilizer at the recommended rate increases the yield and nitrogen fertilizer productivity of sorghum
-
摘要:目的
高粱生产中氮肥施用不合理,氮肥利用效率低,研究适宜重庆地区高粱种植的控释氮肥减施比例,在减少氮肥用量的同时,确保高粱稳产高产,提高肥料利用效率。
方法田间定位试验于2021、2022年在重庆永川进行,供试高粱品种为晋渝糯3号和金糯粱1号。设置6个处理,分别为不施氮肥(CK);习惯尿素施肥量 (U,N 180 kg/hm2);尿素推荐施用量 (U1,减N 20%,N 144 kg/hm2);控释氮肥减施氮量 20% (C1,N 144 kg/hm2);控释氮肥减施氮量30% (C2,N 126 kg/hm2);控释氮肥减施氮量40% (C3,N 108 kg/hm2)。在高粱开花期和成熟期,调查干物质积累量和转运量,成熟期调查植株和籽粒氮素含量、生物量、产量及产量构成因素。
结果开花期和成熟期高粱干物质积累量均以C1和U1处理最高,C1处理成熟期干物质积累量又显著高于U1。C1处理叶片花前干物质转运量显著高于U。花后干物质积累量C1处理显著高于其他处理,U1和C2处理显著高于U处理。C1处理晋渝糯3号和金糯粱1号花后干物质积累量对籽粒的贡献率较U分别显著提高了11.54% 和12.41%。C1处理的高粱产量最高(晋渝糯3号6611 kg/hm2,金糯粱1号5690 kg/hm2),较其他施氮处理显著提高了5.40%~18.66%;其次为C2和U1处理,二者的产量均显著高于U和C3处理。各施氮处理的氮肥生理利用率(NPE)差异不显著;减氮处理间氮肥农学利用率(NAE)无显著差异,氮肥偏生产力(NPFP)差异显著,其NAE和NPFP均显著高于习惯施氮处理U;控释肥各减氮处理的NPFP显著高于普通氮肥推荐量处理U1。C1处理较U处理大幅提高了NAE、NPFP和氮肥利用率(NUE),晋渝糯3号分别提高了58.54%、39.61% 和59.28%,金糯粱1号分别提高了80.97%、48.30% 和63.08%;与U1处理相比,晋渝糯3号的NPFP、NUE分别提高了5.38% 和22.19%,金糯粱1号分别提高了5.82% 和4.42%。
结论推荐施氮量下,用控释肥替代普通氮肥增加了高粱开花期和成熟期干物质积累量,提高了叶片花前干物质转运量和花后干物质积累量及其对籽粒的贡献率,提升了高粱产量和氮肥利用效率,可作为西南地区高粱生产的推荐氮肥施用方式。
Abstract:ObjectivesWe studied the availability and suitable rate of replacing common urea with controlled-release fertilizer in sorghum production, to propose a reasonable and efficient fertilization method.
MethodsA field experiment was conducted in Yongchuan, Chongqing in 2021 and 2022, and the test sorghum varieties were Jinyunuo 3 and Jinnuoliang 1. Six treatments were set up, namely no nitrogen fertilizer (CK); ordinary urea at N rate 180 kg/hm2 (U), ordinary urea at N rate of 20% less than U (U1, recommended N rate); controlled-release nitrogen fertilizer at N rate of 20% less (C1, recommended N rate), 30% less (C2), and 40% less (C3) than U. The sorghum dry matter accumulation (DMA) at anthesis and mature stages, yield and its components at mature stage were investigated.
ResultsThe DMA of C1 and U1 at anthesis and mature stages were significantly higher than those of the other treatments, and the DMA of C1 was significantly higher than that of U1 at mature stage. The transport of leaf dry matter before anthesis of C1 treatment was significantly higher than that of U. The DAM after anthesis in C1 treatment was significantly higher than those in the other treatments, and those in U1 and C2 were significantly higher than that in U treatment as well. The contribution rates of DMA after anthesis to grain of C1 treatment were 11.54% and 12.41% higher than those of U for Jinyunuo 3 and Jinnuoliang 1, respectively. The yields of C1 treatment were the highest, 6611 kg/hm2 for Jinyunuo 3 and 5690 kg/hm2 for Jinnuoliang 1, which were significantly increased by 5.40%−18.66%, compared with the other nitrogen treatments. The yields of C2 and U1 treatments were second-highest, significantly higher than those of U and C3 treatments. All the treatments exhibited similar nitrogen physiological efficiency (NPE). The four N reduction treatments exhibited similar nitrogen agronomic efficiency (NAE), but distinct nitrogen partial factor productivity (NPFP). The NAE and NPFP of the four N reduction treatments were significantly higher than those of U treatment. The NPFP of the three controlled-release N treatments were significantly higher than that of U1 treatment. Compared with U treatment, C1 treatment significantly increased NAE, NPFP and NUE by 58.54%, 39.61% and 59.28% for Jinyunuo 3, and by 80.97%, 48.30% and 63.08% for Jinnuoliang 1. The NPFP and NUE of C1 treatment were 5.38% and 22.19% higher than those of U1 treatment for Jinyunuo 3, and 5.82% and 4.42% for Jinnuoliang 1.
ConclusionsAt the recommended N application rate, replacing common urea with controlled-release fertilizer could increase the dry matter accumulation at anthesis and mature stages, promote the transport of leaf dry matter before anthesis, enhance the dry matter accumulation after anthesis and its contribution to grain, thereby improve sorghum yield and nitrogen use efficiency significantly. Therefore, replacing common urea with controlled-release fertilizer at the recommended rate could be recommended as an efficient nitrogen fertilization method for sorghum production in southwest China.
-
高粱[Sorghum bicolor (L.) Moench]是世界上最重要的禾谷类作物之一,为C4作物,光合效率高,产量高、抗逆性强、适应性广,广泛应用于食用、饲料、酿造、生物质能源等领域[1−2],具有巨大的发展空间和产业优势[3]。氮素是影响作物产量的主要因子,施用氮肥也是作物高产的重要措施。但目前生产上为了追求高产,氮肥施用过量,导致氮肥利用率偏低、土壤理化性状差、养分失调、土壤肥力下降、环境污染等问题,已严重影响了我国农业的可持续发展[4−5]。控释氮肥作为一种新型氮肥,通过各种调控机制有效控制养分释放速率和时间,可以有效平衡养分释放和作物吸收,促进作物生育后期的氮素供应,促进植株氮素的吸收利用,从而提高氮素利用率,实现作物的高产与稳产[6−9]。控释氮肥可一次施用,具有简化生产环节、节本增收和减少环境污染的优势[10−11],同时还能减少施氮量,提高氮肥利用效率[12]。控释氮肥的施用契合了实际生产中施肥方式轻简、易操作的准则,对推动高粱生产、促进稳产增收有重要意义。
在保证作物产量稳定的前提下,减少氮肥投入量,降低环境污染,是当前生产面临的重要问题[13, 5]。有研究表明,适量减氮可促进小麦干物质和氮素积累,提高小麦的氮肥贡献率、氮肥偏生产力和氮肥农学效率,增加产量和生产经济效益[4, 14]。适当减少玉米生育前期氮素供应,增加生育中后期追氮量,可有效增加玉米籽粒产量,提高氮肥利用效率,减少氮素损失[15−16]。减氮施用控释肥可保持作物稳产或小幅增产,提高氮肥利用率[6, 17]。减氮30%条件下施用控释尿素可维持油菜籽产量和氮肥效率在较高水平[18]。控释肥与常规复合肥最小量配施促进小麦地上部干物质的积累,穗粒数、千粒重和产量最高[19]。减氮20%条件下施用控释尿素且一次性施用可以有效维持玉米产量[20],减量25% (180 kg/hm2)施用亦不降低玉米产量,还可有效提高植株氮素的转运效率,从而提高氮肥利用率[21]。在小麦−玉米轮作系统中,减氮20%条件下施用控释尿素与常量施氮下的籽粒产量基本相同,氮肥利用率提高4.7%~26.6%[22]。
目前,关于控释氮肥减氮施用在水稻、玉米和小麦等作物上的研究较多,但多集中于控释肥与普通尿素配施对作物产量、氮素吸收利用的影响等方面,而控释氮肥减氮单施的研究相对较少,高粱生产中应用控释氮肥是否具有减氮潜力的研究亦未见报道,因此,探索控释氮肥减氮施用对高粱产量、干物质积累与转运特性、氮肥利用效率的影响,对指导高粱绿色高效生产具有重要意义。为此,本研究通过2年田间定位试验,设置习惯施肥、减氮施用普通尿素和不同减氮比例施用控释肥,研究了不同氮肥施用条件对高粱农艺性状、植株干物质积累和转运、产量及其构成因素和氮肥利用效率的影响,探明控释氮肥减氮施用的最佳施用量及其作用机理,为控释氮肥在高粱上的合理施用提供理论依据。
1. 材料与方法
1.1 供试材料
供试品种为西南地区广泛种植的酿酒型杂交糯高粱‘晋渝糯3号’和‘金糯粱1号’,分别由重庆市农业科学院特色作物研究所和四川省农业科学院水稻高粱研究所提供。
供试普通氮肥为尿素(N 46%),四川泸天化股份有限公司生产;控释氮肥为树脂包膜尿素(N 44%,释放期90天),重庆石川泰安化工有限公司生产。
1.2 试验地概况
试验于2021—2022年在重庆市农业科学院渝西作物试验站(重庆市永川区卫星湖街道南华村) (29.52°N,107.64°E;海拔298 m)实施。试验地前作为油菜,供试土壤为紫色土,耕层土壤pH为5.7,有机质含量12.3 g/kg,全氮含量0.62 g/kg,速效氮、磷、钾含量分别为70.8、8.57、92.7 mg/kg。
1.3 试验设计
试验设6个处理,分别为不施氮肥(CK),习惯施肥 (U,普通氮肥N 180 kg/hm2),普通氮肥推荐施氮量 (U1,较U处理减N 20%),控释氮肥推荐施氮量 (C1,较U处理减N 20%);控释氮肥减施氮量30% (C2,较U处理减N 30%);控释氮肥减施氮量40% (C3,较U处理减N 40%),具体氮肥用量见表1。种植密度105000株/hm2,行长7 m,等行距种植,行距0.5 m,小区面积21 m2,3次重复,随机区组排列。试验用普通氮肥为尿素 (N 46%);磷肥为重过磷酸钙 (P2O5 46%),P2O5 用量75 kg/hm2;钾肥为氯化钾 (K2O 60%),K2O用量112.5 kg/hm2。U和U1处理的普通氮肥1/3于播种前基施,2/3于拔节期追施,控释氮肥与磷、钾肥一起均作为底肥于播种前一次性深施。其他管理按大田常规管理进行。
表 1 试验处理及氮肥用量Table 1. Experiment treatments and the rate of nitrogen fertilizer处理
Treatment氮肥
N fertilizer氮肥用量 (kg/hm2)
N rate减氮比例 (%)
N reduction ratioCK 不施氮肥 No N application 0 U 习惯施肥,施用普通尿素 N 180 kg/hm2 Ordinary urea N 180 kg/hm2 180 0 U1 推荐施氮量,尿素施用量较U减N 20%
Recommendation rate, urea at N rate 20% less than U144 20 C1 控释氮肥,施氮量同U1
Controlled-release nitrogen fertilizer (CRU) at N rate in U 1144 20 C2 控释氮肥,减施U处理氮量的30% CRU at N rate 30% less than U 126 30 C3 控释氮肥,减施U氮量的40% CRU at N rate 40% less than U 108 40 1.4 测定项目
1.4.1 农艺性状测定
成熟期每小区选取有代表性的植株3株,测定株高和茎粗。
1.4.2 干物质积累与转运测定
分别于高粱开花期和成熟期,在每小区选取有代表性的植株3株,按照叶片、茎鞘、穗3个器官进行分样,置于烘箱105℃杀青30 min,80℃烘至恒重,分别称取各部分质量,成熟期穗部烘干后脱粒,称取干重。
1.4.3 产量及其构成因素测定
成熟期去除边行,每小区高粱收获面积14 m2,按14%水分含量折算产量。成熟期每小区取样5穗晒干脱粒后,测定穗粒重和千粒重。
1.4.4 氮含量测定
将1.4.2中成熟期植株样品磨粉过筛后,采用凯氏定氮法测定植株全氮含量。
干物质生产和氮效率参照前人报道的方法[23−24]进行计算:
单株叶片(茎鞘)花前干物质转运量(g)=开花期叶片(茎鞘)干重−成熟期叶片(茎鞘)干重
单株叶片(茎鞘)花前干物质转运率(%)=单株叶片(茎鞘)花前干物质转运量/开花期叶片(茎鞘)干重×100
单株叶片(茎鞘)花前干物质转运量对籽粒的贡献率(%)=叶片(茎鞘)花前干物质转运量/成熟期籽粒干重×100
单株花后干物质积累量(g)=成熟期籽粒干重−(叶片+茎鞘)花前干物质转运量
单株花后干物质积累量对籽粒的贡献率(%)=单株花后干物质积累量/成熟期籽粒干重×100
收获指数(%)=经济产量/生物产量×100
氮肥生理利用率(N physiological efficiency, NPE,kg/kg)= (施氮区产量−不施氮区产量)/(施氮区地上部总吸氮量−不施氮区地上部总吸氮量)
氮肥农学利用率(N agronomic efficiency, NAE,kg/kg)= (施氮区产量−不施氮区产量)/施氮量
氮肥偏生产力(N partial factor productivity, NPFP,kg/kg)=施氮区产量/施氮量
氮肥利用率(N use efficiency, NUE, %)=(施氮区地上部总吸氮量−不施氮区地上部总吸氮量)/施氮量×100
采用Microsoft Excel 2010软件对数据进行处理和作图,采用DPS 19.05软件进行统计分析。
2. 结果与分析
2.1 不同施氮处理对高粱农艺性状的影响
由表2可知,年份、品种和施氮处理对高粱株高和茎粗均有极显著影响(P<0.01),但三者之间的交互作用不显著,年份和品种对茎粗有显著交互作用。随着氮肥施用量的减少,株高略有下降,晋渝糯3号在U处理下的株高最高,显著高于C2、C3处理;金糯粱1号在U处理下的株高最高,显著高于其他减氮处理,且减氮处理间差异不显著。施氮显著提高了高粱的茎粗,各施氮处理的茎粗均显著高于CK处理。晋渝糯3号C1、U1处理的茎粗较U处理2年平均分别提高了15.82% 和9.50%,C2、C3和U处理间的差异不显著。金糯粱1号C1、U1和C2处理的茎粗较U处理2年平均分别提高了19.73%、13.74% 和8.96%,C3和U处理间的差异不显著。
表 2 不同施氮处理高粱农艺性状Table 2. The agronomic traits of sorghum under different nitrogen fertilizer treatments年份 Year 品种 Cultivar 处理 Treatment 株高 Plant height (cm) 茎粗 Stem diameter (mm) 2021 晋渝糯3号
Jinyunuo 3CK 168.53±3.00 c 19.51±0.85 d U 180.73±3.07 a 21.87±0.57 c U1 176.50±3.22 ab 24.39±0.80 b C1 175.70±2.91 ab 25.74±0.56 a C2 174.77±2.77 b 23.16±0.68 c C3 173.93±1.88 b 22.91±0.68 c 金糯粱1号
Jinnuoliang 1CK 139.47±2.15 c 19.67±0.67 d U 155.00±2.72 a 21.39±0.77 c U1 146.80±2.75 b 24.58±0.88 ab C1 145.87±3.56 b 25.41±0.85 a C2 145.53±2.90 b 23.70±0.67 b C3 144.23±2.43 bc 22.32±0.51 c 2022 晋渝糯3号
Jinyunuo 3CK 170.43±2.42 c 18.78±0.56 e U 187.27±1.96 a 21.69±0.59 cd U1 182.83±2.65 a 23.31±0.80 b C1 177.57±3.55 b 24.71±0.57 a C2 175.17±2.24 bc 22.24±0.84 bc C3 174.47±2.40 bc 20.68±0.89 d 金糯粱1号
Jinnuoliang 1CK 143.10±2.52 c 17.42±0.77 e U 162.53±2.35 a 19.66±0.74 d U1 150.03±2.94 b 22.12±0.47 b C1 149.13±3.23 b 23.74±0.54 a C2 148.90±2.62 b 21.04±0.57 bc C3 148.17±1.79 b 20.41±0.69 cd 方差分析 Variance analysis 年份 Year (Y) ** ** 品种 Cultivar (C) ** ** 处理 Treatment (T) ** ** 年份×品种 Y×C ns * 年份×处理 Y×T ns ns 品种×处理 C×T ns ns 年份×品种×处理 Y×C×T ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著(P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.2.2 不同施氮处理对高粱地上部干物质积累和转运的影响
2.2.1 不同生育时期地上部干物质积累
施氮处理影响高粱开花期(F=19.852,P<0.01)和成熟期(F=128.09,P<0.01)干物质积累量(图1)。与CK处理相比,晋渝糯3号和金糯粱1号各施氮处理开花期干物质积累量2年平均分别提高了44.35%~63.92% 和48.00%~71.07%,成熟期分别提高了49.98%~77.89% 和53.26%~83.34%。与U处理相比,晋渝糯3号C1、U1和C2处理开花期干物质积累量2年平均分别提高了12.01%、7.87% 和3.93%,C3处理无显著差异;成熟期分别平均提高了15.21%、9.13% 和5.38%,C3处理显著降低了2.86%;C1较U1处理提高了5.57%。与U处理相比,金糯粱1号C1、U1、C2和C3处理开花期干物质积累量2年平均分别提高了15.59%、13.07%、7.92% 和6.56%,成熟期分别提高了19.63%、15.12%、9.96%和6.36%;C1处理较U1处理提高了3.92%。
图 1 不同施氮处理下高粱干物质积累量注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。柱上不同小写字母表示同一生育期处理间差异显著 (P<0.05)。Figure 1. The dry matter accumulation of sorghum under different nitrogen fertilizer treatmentsNote: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Different small letters above the bars indicate significant difference among treatments in the same growth stage at 0.05 level.2.2.2 高粱干物质转运
施氮处理对叶片和茎鞘花前干物质转运量、转运率和花前干物质转运量对籽粒的贡献率均有显著或极显著影响(表3)。与U处理相比,晋渝糯3号C1、U1处理的叶片花前干物质转运量2年平均分别提高了34.45% 和19.33%,金糯粱1号C1处理的叶片花前干物质转运量提高了36.00%。年份、品种和施氮处理对花后干物质积累量及其对籽粒的贡献率均有显著或极显著影响 (表3)。各施氮处理花后干物质积累量及其对籽粒的贡献率均显著高于CK处理。C1处理的花后干物质积累量最高,显著高于其他处理。与U处理相比,晋渝糯3号C1、U1和C2处理的花后干物质积累量2年平均分别提高了25.83%、13.31% 和10.11%,金糯粱1号C1、U1和C2处理的花后干物质积累量2年平均分别提高了35.20%、22.97% 和17.85%。晋渝糯3号和金糯粱1号C1处理花后干物质积累量对籽粒的贡献率较U处理分别提高了11.54% 和12.41%,U1、C2、C3和U处理间的差异不显著,C1、C2、C3和U1处理间差异不显著。
表 3 不同施氮处理下高粱花前干物质转运和花后干物质积累Table 3. The dry matter transportation before anthesis and accumulation after anthesis of sorghum under different nitrogen fertilizer treatments年份
Year品种
Cultivar处理Treatment 花前干物质转运 Dry matter transportation before anthesis 花后干物质积累
Dry matter accumulation after anthesis叶片转运量 (g/plant)
Amount from leaf叶片转运率 (%)
Efficiency
from leaf叶片贡献率 (%)
Contribution
from leaf茎鞘转运量 (g/plant)
Amount from
stem+sheath茎鞘转运率 (%)
Efficiency from
stem+sheath茎鞘贡献率 (%)
Contribution from
stem+sheath积累量 (g/plant)
Accumulation贡献率 (%)
Contribution2021 晋渝糯3号
Jinyunuo 3CK 5.87±0.74 d 26.34±2.45 ab 16.54±1.89 a 9.70±0.87 c 15.60±0.93 a 27.40±2.86 a 19.88±1.71 d 56.06±4.19 d U 7.07±0.29 c 23.26±0.36 b 12.25±0.56 b 13.37±1.08 ab 14.63±0.87 ab 23.17±1.99 a 37.28±1.41 c 64.59±1.97 bc U1 8.93±0.51 ab 27.61±0.87 a 14.3±0.79 ab 10.67±0.75 c 10.58±0.78 cd 17.08±1.04 bc 42.81±0.84 b 68.60±1.62 ab C1 10.00±0.82 a 26.44±1.88 ab 15.0±1.34 ab 9.07±0.25 c 9.11±0.21 d 13.59±0.33 c 47.64±1.23 a 71.41±1.28 a C2 8.43±0.32 b 24.95±1.63 ab 13.62±0.82 b 11.37±2.45 bc 12.44±2.64 bc 18.31±3.72 b 42.19±1.70 b 68.08±3.09 ab C3 6.83±0.55 cd 23.86±1.93 ab 12.28±1.04 b 14.20±0.70 a 15.42±0.76 a 25.50±0.88 a 34.64±1.22 c 62.22±1.74 c 金糯粱1号
Jinnuoliang 1CK 4.33±0.60 c 20.70±2.38 a 13.76±2.59 a 9.70±0.78 a 17.63±1.56 a 30.58±0.92 a 17.65±1.43 d 55.66±1.84 c U 6.13±1.06 b 23.50±3.8 a 12.86±2.39 a 11.67±0.86 a 13.79±1.24 b 24.39±1.58 b 30.03±1.70 c 62.75±1.46 b U1 7.27±0.23 ab 22.53±0.92 a 13.33±0.62 a 10.47±1.76 a 11.32±1.72 bc 19.21±3.41 cd 36.82±2.38 b 67.46±3.57 ab C1 7.97±0.45 a 23.40±1.08 a 13.77±0.68 a 9.20±1.85 a 9.87±1.74 c 15.94±3.38 d 40.67±2.66 a 70.29±3.67 a C2 6.67±0.71 b 23.38±2.35 a 12.38±1.27 a 11.77±1.81 a 13.04±1.89b 21.84±3.27 bc 35.40±1.07 b 65.78±2.39 ab C3 6.47±0.91 b 21.96±2.90 a 12.98±1.68 a 11.80±0.75 a 13.22±0.69 b 23.72±2.04 b 31.54±1.50 c 63.30±1.84 b 2022 晋渝糯3号
Jinyunuo 3CK 6.30±0.36 d 28.35±1.75 a 18.89±0.89 a 8.97±0.23 d 15.20±0.28 a 26.89±0.18 a 18.08±0.65 e 54.22±1.03 e U 7.20±0.46 c 25.44±1.42 b 13.06±0.90 c 13.23±2.15 ab 14.30±1.99 a 23.99±3.81 ab 34.71±1.49 c 62.95±2.94 cd U1 8.10±0.36 b 25.26±0.91 bc 14.19±0.47 bc 10.20±1.18 cd 10.61±1.10 bc 17.86±1.85 cd 38.77±0.89 b 67.95±2.32 ab C1 9.20±0.30 a 24.75±0.22 bc 15.18±0.72 b 8.47±0.67 d 8.74±0.57 c 13.97±1.19 d 42.95±1.59 a 70.84±1.66 a C2 7.47±0.25 bc 23.05±0.63 c 13.34±0.29 c 11.40±0.85 bc 12.09±0.66 b 20.38±1.58 bc 37.09±1.01 b 66.28±1.46 bc C3 6.87±0.31 cd 23.92±0.28 bc 13.17±0.97 c 13.67±0.95 a 15.25±0.97 a 26.18±1.66 a 31.66±1.69 d 60.64±2.01 d 金糯粱1号
Jinnuoliang 1CK 4.67±0.38 d 20.36±1.17 b 17.25±0.64 a 7.77±0.42 d 16.04±0.79 a 28.85±3.32 a 14.61±1.77 d 53.90±3.17 d U 5.37±0.25 cd 21.24±0.71 ab 12.10±0.80 cd 12.00±1.37 ab 14.63±1.67 a 27.03±2.90 a 27.01±1.23 c 60.87±2.66 c U1 6.57±0.64 b 20.67±1.98 b 13.01±1.45 bc 10.63±0.35 bc 11.79±0.34 b 21.04±0.31 b 33.32±1.12 b 65.94±1.15 ab C1 7.67±0.25 a 22.93±0.55 a 14.45±0.67 b 8.97±0.96 cd 9.79±1.00 b 16.88±1.61 c 36.45±0.74 a 68.67±1.05 a C2 5.73±0.32 c 20.89±1.38 ab 11.39±0.74 d 12.83±1.83 a 14.38±1.80 a 25.44±3.19 a 31.82±0.79 b 63.18±2.49 bc C3 5.07±0.57 cd 17.94±1.58 c 10.73±1.00d 13.33±1.87 a 15.57±1.66 a 28.20±3.17 a 28.77±0.67 c 61.06±3.38 c 续表 3 Table 3 continued 年份
Year品种
Cultivar处理Treatment 花前干物质转运 Dry matter transportation before anthesis 花后干物质积累
Dry matter accumulation after anthesis叶片转运量 (g/plant)
Amount from leaf叶片转运率 (%)
Efficiency
from leaf叶片贡献率 (%)
Contribution
from leaf茎鞘转运量 (g/plant)
Amount from
stem+sheath茎鞘转运率 (%)
Efficiency from
stem+sheath茎鞘贡献率 (%)
Contribution from
stem+sheath积累量 (g/plant)
Accumulation贡献率 (%)
Contribution方差分析 Variance analysis 年份 Year (Y) ** ** ns ns ns * ** ** 品种 Cultivar (C) ** ** ** ns ns ** ** * 处理 Treatment (T) ** * ** ** ** ** ** ** 年份×品种 Y×C ns * ns ns ns ns ns ns 年份×处理 Y×T * ns ** ns ns ns ns ns 品种×处理 C×T ns ** ns ns ns ns ** ns 年份×品种×处理 Y×C×T ns ns ns ns ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.2.3 不同施氮处理对高粱产量及其构成因素的影响
由表4可知,年份、品种和施氮处理对高粱产量、穗粒重、千粒重和收获指数均有极显著影响(P<0.01),但三者的交互作用不显著。品种和施氮处理间的交互作用对产量、穗粒重和收获指数有极显著影响(P<0.01)。2021年高粱的产量高于2022年,但2年的产量随处理的变化趋势一致。各施氮处理的产量均显著高于CK处理,晋渝糯3号各施氮处理较CK增产幅度为67.06%~98.23%,金糯粱1号的增产幅度为75.33%~103.21%。两年产量的平均数据表明,C1处理的高粱产量最高,显著高于其他施氮处理;其次为U1和C2处理,二者的产量显著高于U和C3处理;C3与U处理间的产量差异不显著。晋渝糯3号在C1处理下的产量达6611 kg/hm2,较U1、C2、U和C3处理分别显著增产5.40%、9.33%、11.71% 和18.66%,U1处理比U和C3处理分别增产5.99% 和12.58%,C2处理比U和C3处理分别增产2.18% 和8.53%;金糯粱1号在C1处理下的产量达5690 kg/hm2,较U1、C2、C3和U处理分别增产5.81%、8.91%、15.90% 和18.62%,U1处理比U和C3处理分别增产12.11% 和9.54%,C2处理比U和C3处理分别增产8.92% 和6.42%。
表 4 不同施氮处理下高粱产量及产量构成Table 4. Grain yield and yield components of sorghum under different nitrogen fertilizer treatments年份
Year品种
Cultivar处理
Treatment产量 (kg/hm2)
Yield穗粒重 (g)
Grain weight per panicle千粒重 (g)
1000-grain weight收获指数 (%)
Harvest index2021 晋渝糯3号
Jinyunuo 3CK 3386±143 e 35.44±0.91 e 19.76±0.75 d 51.56±2.05 c U 6137±136 c 57.71±0.47 c 26.37±0.94 bc 57.02±1.25 ab U1 6494±173 b 62.41±0.70 b 27.73±0.97 ab 54.95±1.08 b C1 6838±176 a 66.70±0.53 a 29.06±1.21 a 56.39±0.30 ab C2 6263±142 bc 61.99±1.42 b 27.03±0.76 bc 58.89±2.65 a C3 5768±135 d 55.67±1.24 d 25.88±0.71 c 55.87±1.77 ab 金糯粱1号
Jinnuoliang 1CK 2876±200 d 31.69±1.64 e 18.71±0.71 c 51.20±3.41 ab U 4834±139 c 47.83±1.63 d 26.02±0.87 b 51.52±3.12 ab U1 5582±128 b 54.55±0.90 b 27.47±0.92 ab 51.08±0.78 ab C1 5876±125 a 57.84±0.99 a 28.35±1.04 a 52.68±0.85 ab C2 5370±126 b 53.84±0.71 b 26.85±0.72 ab 53.73±0.46 a C3 4950±135 c 49.80±1.09 c 26.64±1.02 b 49.61±1.40 b 2022 晋渝糯3号
Jinyunuo 3CK 3284±137 e 33.35±0.97 d 18.84±0.88 c 50.55±1.08 c U 5698±152 c 55.14±0.33 b 26.03±0.97 b 55.05±0.40 a U1 6051±159 b 57.07±0.66 b 27.42±0.85 ab 51.97±0.95 bc C1 6384±149 a 60.62±0.92 a 28.72±0.96 a 52.12±1.41 bc C2 5832±128 bc 55.96±0.69 b 26.85±0.70 b 51.92±0.87 bc C3 5375±204 d 52.20±1.52 c 25.88±1.11 b 53.41±1.79 ab 金糯粱1号
Jinnuoliang 1CK 2724±179 e 27.05±1.72 e 16.64±0.93 d 45.94±3.31 c U 4758±159 d 44.37±0.85 d 24.32±0.88 c 49.38±1.76 ab U1 5172±136 b 50.52±0.94 b 26.63±1.05 ab 48.22±0.60 bc C1 5503±164 a 53.08±0.98 a 27.81±1.31 a 48.99±1.21 ab C2 5078±128 bc 50.38±0.98 b 25.91±0.76 bc 51.38±0.82 a C3 4868±164 cd 47.17±1.50 c 25.07±0.85 bc 49.52±0.92 ab 方差分析 Variance analysis 年份 Year (Y) ** ** ** ** 品种 Cultivar (C) ** ** ** ** 处理 Treatment (T) ** ** ** ** 年份×品种 Y×C ns ns * ns 年份×处理 Y×T ns * ns ns 品种×处理 C×T ** ** ns ** 年份×品种×处理 Y×C×T ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.从产量构成因素看,各施氮处理间的穗粒重和千粒重差异显著,均显著高于CK,其中C1处理的穗粒重最高,显著高于其他施氮处理,晋渝糯3号和金糯粱1号C1处理的穗粒重较U、U1、C2、C3处理分别提高了12.82%、6.56%、7.93%、18.02% 和20.30%、5.56%、6.43%、14.37%;其次是U1和C2处理,二者的穗粒重差异不显著,但均显著高于C3处理。C1处理的千粒重最高,显著高于U、C2和C3处理,与U1间的差异不显著。晋渝糯3号和金糯粱1号C1处理的千粒重较U处理分别提高了10.27% 和11.56%。两年收获指数的平均数表明,各处理间的收获指数差异显著,各减氮处理间的收获指数差异不显著,晋渝糯3号除U1外的其他施氮处理均显著高于CK,金糯粱1号C2处理的收获指数显著高于CK。
2.4 不同施氮处理对高粱氮肥利用效率的影响
各施氮处理对氮肥生理利用率(NPE)影响不显著,对氮肥农学利用率(NAE)、氮肥偏生产力(NPFP)和氮肥利用率(NUE)有极显著影响(P<0.01) (表5)。各减氮处理间的NAE差异不显著,但均显著高于U处理,晋渝糯3号和金糯粱1号U1、C1、C2、C3处理的NAE较U处理分别提高了42.16%、58.54%、50.00%、44.29%和61.36%、80.97%、73.49%、76.10%。各减氮处理间的NPFP差异显著,晋渝糯3号和金糯粱1号U1、C1、C2、C3处理的NPFP较U分别显著提高了32.48%、39.61%、45.95%、56.90% 和40.14%、48.30%、55.60%、70.59%;控释氮肥减氮处理C1、C2和C3的NPFP较U1处理分别显著提高了5.38%、10.17%、18.43% 和5.82%、11.03%、21.73%,三者之间差异显著;晋渝糯3号和金糯粱1号C1处理的NUE分别比U提高了59.28%和63.08%,分别比U1处理提高了22.19%和4.42%,控释肥各减氮处理间的差异不显著。
表 5 不同施氮处理下氮肥利用效率Table 5. Nitrogen fertilizer utilization efficiency under different nitrogen fertilizer treatments年份
Year品种
Cultivar处理
Treatment氮肥生理利用率
N physiological efficiency
(kg/kg)氮肥农学利用率
N agronomic efficiency
(kg/kg)氮肥偏生产力
N partial factor productivity
(kg/kg)氮肥利用率
N use efficiency
(%)2021 晋渝糯3号
Jinyunuo 3U 32.51±1.81 b 15.28±0.20 b 34.10±0.75 e 47.13±3.27 c U1 33.62±1.84 b 21.58±1.74 a 45.10±1.20 d 52.99±5.19 c C1 40.78±1.12 a 23.97±1.79 a 47.48±1.23 c 73.47±5.45 a C2 40.64±4.50 a 22.82±0.94 a 49.69±1.13 b 56.71±7.67 bc C3 34.39±2.88 b 22.05±2.26 a 53.41±1.25 a 64.07±1.30 b 金糯粱1号
Jinnuoliang 1U 26.62±6.34 a 10.88±1.88 b 26.86±0.77 e 41.45±4.08 b U1 29.52±2.53 a 18.79±0.56 a 38.76±0.89 d 63.87±3.88 a C1 30.91±5.22 a 20.84±2.16 a 40.81±0.87 c 67.94±4.84 a C2 30.76±6.10 a 19.80±2.58 a 42.62±1.00 b 65.28±9.04 a C3 29.10±3.82 a 19.21±1.51 a 45.84±1.25 a 66.50±6.79 a 2022 晋渝糯3号
Jinyunuo 3U 40.49±3.95 ab 13.42±1.58 b 31.66±0.84 d 33.12±2.12 c U1 37.56±4.89 ab 19.22±1.54 a 42.02±1.11 c 51.63±6.38 ab C1 42.32±5.37 a 21.53±1.91 a 44.33±1.04 b 54.37±11.19 ab C2 32.33±2.36 b 20.23±1.33 a 46.29±1.01 b 62.75±5.59 a C3 35.54±4.03 ab 19.36±3.05 a 49.77±1.89 a 47.18±9.86 bc 金糯粱1号
Jinnuoliang 1U 36.21±0.90 a 11.30±1.49 b 26.43±0.88 e 31.19±3.81 b U1 34.50±5.87 a 17.00±2.19 a 35.92±0.94 d 49.57±2.94 a C1 38.42±3.51 a 19.30±0.13 a 38.22±1.14 c 50.51±4.70 a C2 32.33±5.21 a 18.68±0.41 a 40.30±1.01 b 58.84±9.79 a C3 37.76±6.88 a 19.85±2.84 a 45.07±1.52 a 53.22±7.78 a 方差分析 Variance analysis 年份 Year (Y) ** ** ** ** 品种 Cultivar (C) ** ** ** ns 处理 Treatment (T) ns ** ** ** 年份×品种 Y×C * ns * ns 年份×处理 Y×T ns ns ns * 品种×处理 C×T ns ns ns ns 年份×品种×处理 Y×C×T ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.3. 讨论
3.1 减氮施用控释肥对高粱干物质积累和转运的影响
干物质的积累是作物产量形成的基础,其积累与经济产量密切相关,较高的干物质积累量有利于产量形成[25]。施氮能够显著提高作物干物质积累量,是促进增产的前提和保证[24, 26]。适宜的施氮量可显著促进植株地上部干物质积累量的增加,继而影响作物产量水平[27]。控释氮肥的释放可与作物需肥规律相匹配,增加作物产量[28]。施用控释氮肥较普通氮肥可提高玉米的干物质积累量[29]。减施氮肥20%并不会对植株干物质积累和转运造成显著不利影响[30]。本研究中开花期和成熟期的干物质积累量均以控释氮肥减氮20%处理最高,减氮20%和30%干物质积累量均显著高于普通氮肥习惯施肥。前人研究表明,控释肥减氮25%处理玉米地上部干物质积累量较农民习惯施肥增加了7.7%[21]。控释肥常量及减量25%可分别提高玉米成熟期干物质积累量10.43% 和5.87%[31]。减氮20%条件下,控释肥处理成熟期的干物质积累量显著高于普通氮肥处理,说明同等氮肥施用量下,施用控释氮肥的干物质积累量更高,表明施用控释肥有利于增加植株干物质积累,从而提高成熟期干物质积累量及产量[32−33],可能是由于与普通尿素相比,控释尿素的供氮优势更强,促进了植株的物质积累[34]。
普通尿素养分释放速率较快,作物生长后期容易出现缺氮现象,影响花后干物质积累[35],而控释肥的养分释放与作物吸收同步,满足了后期的养分需求,促进花后干物质的生产[36]。控释尿素较普通尿素促进了植株的物质向籽粒的转运[34],提高了糜子成熟期干物质向穗的转运,提高生育中后期干物质积累,减氮10%时较普通尿素处理提高1.37%~4.88%,减氮20%时差异不显著[37]。本研究中,控释氮肥减氮20%叶片花前干物质转运量显著高于普通氮肥习惯施肥;控释氮肥减氮20%虽然降低了花前茎干物质积累量对籽粒的贡献率,但其花后干物质积累量显著高于普通氮肥习惯施肥及其减氮20%处理,对籽粒的贡献率显著高于普通氮肥习惯施肥和减氮40%处理。普通氮肥减氮20%和控释肥减氮30%处理的花后干物质积累量与普通氮肥习惯施肥相比差异显著,与控释肥减氮40%处理差异不显著,这与孔丽婷等[4]的研究结果相似,适量减氮10%可促进小麦干物质积累、花后干物质生产及其对籽粒的贡献率。因此,施用控释氮肥能有效促进生育前期生物量的积累及生育后期干物质从营养体向籽粒的转移,从而获得较高的籽粒产量[29]。
3.2 减氮施用控释肥对高粱产量的影响
施用氮肥是实现玉米增产的重要途径,但过量施氮并不能显著提高产量,反而会导致氮肥利用效率降低[24]。施用氮肥可显著提高产量构成因素,进而提高产量,合理氮肥运筹是实现作物高产高效的重要栽培技术途径[38]。控释肥能显著提高玉米产量,控释尿素处理的糯玉米产量比普通尿素处理平均增加20.0%[34];施用等量树脂包膜控释肥和硫包膜控释肥比施用普通复合肥玉米分别显著增产13.15% 和14.15%[31]。前人研究结果表明,等氮量控释肥可比普通化肥获得更高的产量,那么适当减少控释肥的用量,可达到常量普通化肥下的产量水平。包膜氮肥在减氮20%条件下与农民习惯施氮量下尿素处理相比,仍能获得相近的产量,施用控释氮肥减量20%~30%,水稻不减产甚至增产[39−40]。树脂包膜控释肥和硫包膜控释肥减量25%时,玉米分别比普通复合肥处理增产9.69% 和10.04%[31]。本研究中控释氮肥减氮20%处理的高粱产量最高,显著高于其他施氮处理,这与李敏等[41]研究结果相似,控释尿素减施20%较普通尿素显著提高水稻产量,增幅达4.7%。本研究中控释肥减氮30%和普通氮肥减氮20%的产量显著高于普通氮肥习惯施肥,控释肥减氮40%时产量差异不显著;控释肥减氮30%的产量与普通氮肥减氮20%相比无显著差异,控释肥减氮40%产量显著降低,这与控释肥减氮30%和普通氮肥减氮20%处理的穗粒重较普通氮肥习惯施肥显著增加密切相关。本研究中,与普通氮肥处理相比,控释氮肥减氮20%处理,穗粒重和千粒重都显著增加,且其穗粒重显著高于普通氮肥习惯施肥及其他减氮处理,千粒重高于除普通氮肥减氮20%外的其他施氮处理。这与前人的研究相似,控释尿素减氮10%和20%能有效提高早、晚稻库容量,提高总颖花数及总实粒数,保证水稻稳产、高产[42]。控释氮肥减量10%~20%时糜子产量与普通尿素处理差异不显著,减氮30%~40%时显著降低产量3.19~5.23%[37]。
3.3 减氮施用控释肥对高粱氮肥利用效率的影响
一次性施用缓控释肥能够提高肥料利用率,改善作物生长后期的供肥能力,促进作物增产,并减少施肥次数,降低劳动成本[43−44]。与普通尿素相比,在等氮量情况下施用控释尿素水稻氮肥利用率提高10%以上,氮肥农学效率增加24.97%~54.02%[9],相同施氮量条件下控释肥处理的玉米氮素偏生产力、农学效率和氮素利用效率显著高于普通尿素或普通复合肥处理[29, 33, 45]。本研究中各施氮处理对氮肥生理利用率的影响不大,各减氮处理的氮肥农学利用率和氮肥偏生产力都显著高于普通氮肥,控释肥不同减氮处理的氮肥偏生产力较普通氮肥减氮20%都有不同程度提高,各减氮处理中控释肥减氮20%处理较普通氮肥习惯施肥显著提高了氮肥利用率,控释肥减氮处理间差异不显著,因此,综合来看,控释氮肥减量20%处理的氮肥农学利用率、氮肥偏生产力和氮肥利用率均显著高于普通氮肥习惯施肥处理,其氮肥偏生产力显著高于普通氮肥减量20%处理,这与前人的研究结果[46]一致。缓/控释肥减氮20%施用,早、晚稻氮肥吸收利用率、农学利用率和偏生产力均显著提高[40],缓释氮肥减氮23%一次性基施使早、晚稻氮肥偏生产力提高了24.37%[47]。因此,控释氮肥一次性减量基施,可以为全生育期提供充足的氮素营养,氮素释放缓慢而平稳,保证后期的氮素供应,提高氮素的利用效果,保证高粱稳产或增产[31]。
4. 结论
在推荐施氮量下,采用控释肥替代普通氮肥可增加高粱茎粗及开花期和成熟期干物质积累量,促进高粱植株生长和干物质向籽粒转移,提高叶片花前干物质运转量和花后干物质积累量及其对籽粒的贡献率,提升高粱产量和氮肥利用效率,为高粱生产减氮增效提供了途径,可作为西南地区高粱生产的推荐氮肥施用方式。
-
图 1 不同施氮处理下高粱干物质积累量
注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。柱上不同小写字母表示同一生育期处理间差异显著 (P<0.05)。
Figure 1. The dry matter accumulation of sorghum under different nitrogen fertilizer treatments
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Different small letters above the bars indicate significant difference among treatments in the same growth stage at 0.05 level.
表 1 试验处理及氮肥用量
Table 1 Experiment treatments and the rate of nitrogen fertilizer
处理
Treatment氮肥
N fertilizer氮肥用量 (kg/hm2)
N rate减氮比例 (%)
N reduction ratioCK 不施氮肥 No N application 0 U 习惯施肥,施用普通尿素 N 180 kg/hm2 Ordinary urea N 180 kg/hm2 180 0 U1 推荐施氮量,尿素施用量较U减N 20%
Recommendation rate, urea at N rate 20% less than U144 20 C1 控释氮肥,施氮量同U1
Controlled-release nitrogen fertilizer (CRU) at N rate in U 1144 20 C2 控释氮肥,减施U处理氮量的30% CRU at N rate 30% less than U 126 30 C3 控释氮肥,减施U氮量的40% CRU at N rate 40% less than U 108 40 表 2 不同施氮处理高粱农艺性状
Table 2 The agronomic traits of sorghum under different nitrogen fertilizer treatments
年份 Year 品种 Cultivar 处理 Treatment 株高 Plant height (cm) 茎粗 Stem diameter (mm) 2021 晋渝糯3号
Jinyunuo 3CK 168.53±3.00 c 19.51±0.85 d U 180.73±3.07 a 21.87±0.57 c U1 176.50±3.22 ab 24.39±0.80 b C1 175.70±2.91 ab 25.74±0.56 a C2 174.77±2.77 b 23.16±0.68 c C3 173.93±1.88 b 22.91±0.68 c 金糯粱1号
Jinnuoliang 1CK 139.47±2.15 c 19.67±0.67 d U 155.00±2.72 a 21.39±0.77 c U1 146.80±2.75 b 24.58±0.88 ab C1 145.87±3.56 b 25.41±0.85 a C2 145.53±2.90 b 23.70±0.67 b C3 144.23±2.43 bc 22.32±0.51 c 2022 晋渝糯3号
Jinyunuo 3CK 170.43±2.42 c 18.78±0.56 e U 187.27±1.96 a 21.69±0.59 cd U1 182.83±2.65 a 23.31±0.80 b C1 177.57±3.55 b 24.71±0.57 a C2 175.17±2.24 bc 22.24±0.84 bc C3 174.47±2.40 bc 20.68±0.89 d 金糯粱1号
Jinnuoliang 1CK 143.10±2.52 c 17.42±0.77 e U 162.53±2.35 a 19.66±0.74 d U1 150.03±2.94 b 22.12±0.47 b C1 149.13±3.23 b 23.74±0.54 a C2 148.90±2.62 b 21.04±0.57 bc C3 148.17±1.79 b 20.41±0.69 cd 方差分析 Variance analysis 年份 Year (Y) ** ** 品种 Cultivar (C) ** ** 处理 Treatment (T) ** ** 年份×品种 Y×C ns * 年份×处理 Y×T ns ns 品种×处理 C×T ns ns 年份×品种×处理 Y×C×T ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著(P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.表 3 不同施氮处理下高粱花前干物质转运和花后干物质积累
Table 3 The dry matter transportation before anthesis and accumulation after anthesis of sorghum under different nitrogen fertilizer treatments
年份
Year品种
Cultivar处理Treatment 花前干物质转运 Dry matter transportation before anthesis 花后干物质积累
Dry matter accumulation after anthesis叶片转运量 (g/plant)
Amount from leaf叶片转运率 (%)
Efficiency
from leaf叶片贡献率 (%)
Contribution
from leaf茎鞘转运量 (g/plant)
Amount from
stem+sheath茎鞘转运率 (%)
Efficiency from
stem+sheath茎鞘贡献率 (%)
Contribution from
stem+sheath积累量 (g/plant)
Accumulation贡献率 (%)
Contribution2021 晋渝糯3号
Jinyunuo 3CK 5.87±0.74 d 26.34±2.45 ab 16.54±1.89 a 9.70±0.87 c 15.60±0.93 a 27.40±2.86 a 19.88±1.71 d 56.06±4.19 d U 7.07±0.29 c 23.26±0.36 b 12.25±0.56 b 13.37±1.08 ab 14.63±0.87 ab 23.17±1.99 a 37.28±1.41 c 64.59±1.97 bc U1 8.93±0.51 ab 27.61±0.87 a 14.3±0.79 ab 10.67±0.75 c 10.58±0.78 cd 17.08±1.04 bc 42.81±0.84 b 68.60±1.62 ab C1 10.00±0.82 a 26.44±1.88 ab 15.0±1.34 ab 9.07±0.25 c 9.11±0.21 d 13.59±0.33 c 47.64±1.23 a 71.41±1.28 a C2 8.43±0.32 b 24.95±1.63 ab 13.62±0.82 b 11.37±2.45 bc 12.44±2.64 bc 18.31±3.72 b 42.19±1.70 b 68.08±3.09 ab C3 6.83±0.55 cd 23.86±1.93 ab 12.28±1.04 b 14.20±0.70 a 15.42±0.76 a 25.50±0.88 a 34.64±1.22 c 62.22±1.74 c 金糯粱1号
Jinnuoliang 1CK 4.33±0.60 c 20.70±2.38 a 13.76±2.59 a 9.70±0.78 a 17.63±1.56 a 30.58±0.92 a 17.65±1.43 d 55.66±1.84 c U 6.13±1.06 b 23.50±3.8 a 12.86±2.39 a 11.67±0.86 a 13.79±1.24 b 24.39±1.58 b 30.03±1.70 c 62.75±1.46 b U1 7.27±0.23 ab 22.53±0.92 a 13.33±0.62 a 10.47±1.76 a 11.32±1.72 bc 19.21±3.41 cd 36.82±2.38 b 67.46±3.57 ab C1 7.97±0.45 a 23.40±1.08 a 13.77±0.68 a 9.20±1.85 a 9.87±1.74 c 15.94±3.38 d 40.67±2.66 a 70.29±3.67 a C2 6.67±0.71 b 23.38±2.35 a 12.38±1.27 a 11.77±1.81 a 13.04±1.89b 21.84±3.27 bc 35.40±1.07 b 65.78±2.39 ab C3 6.47±0.91 b 21.96±2.90 a 12.98±1.68 a 11.80±0.75 a 13.22±0.69 b 23.72±2.04 b 31.54±1.50 c 63.30±1.84 b 2022 晋渝糯3号
Jinyunuo 3CK 6.30±0.36 d 28.35±1.75 a 18.89±0.89 a 8.97±0.23 d 15.20±0.28 a 26.89±0.18 a 18.08±0.65 e 54.22±1.03 e U 7.20±0.46 c 25.44±1.42 b 13.06±0.90 c 13.23±2.15 ab 14.30±1.99 a 23.99±3.81 ab 34.71±1.49 c 62.95±2.94 cd U1 8.10±0.36 b 25.26±0.91 bc 14.19±0.47 bc 10.20±1.18 cd 10.61±1.10 bc 17.86±1.85 cd 38.77±0.89 b 67.95±2.32 ab C1 9.20±0.30 a 24.75±0.22 bc 15.18±0.72 b 8.47±0.67 d 8.74±0.57 c 13.97±1.19 d 42.95±1.59 a 70.84±1.66 a C2 7.47±0.25 bc 23.05±0.63 c 13.34±0.29 c 11.40±0.85 bc 12.09±0.66 b 20.38±1.58 bc 37.09±1.01 b 66.28±1.46 bc C3 6.87±0.31 cd 23.92±0.28 bc 13.17±0.97 c 13.67±0.95 a 15.25±0.97 a 26.18±1.66 a 31.66±1.69 d 60.64±2.01 d 金糯粱1号
Jinnuoliang 1CK 4.67±0.38 d 20.36±1.17 b 17.25±0.64 a 7.77±0.42 d 16.04±0.79 a 28.85±3.32 a 14.61±1.77 d 53.90±3.17 d U 5.37±0.25 cd 21.24±0.71 ab 12.10±0.80 cd 12.00±1.37 ab 14.63±1.67 a 27.03±2.90 a 27.01±1.23 c 60.87±2.66 c U1 6.57±0.64 b 20.67±1.98 b 13.01±1.45 bc 10.63±0.35 bc 11.79±0.34 b 21.04±0.31 b 33.32±1.12 b 65.94±1.15 ab C1 7.67±0.25 a 22.93±0.55 a 14.45±0.67 b 8.97±0.96 cd 9.79±1.00 b 16.88±1.61 c 36.45±0.74 a 68.67±1.05 a C2 5.73±0.32 c 20.89±1.38 ab 11.39±0.74 d 12.83±1.83 a 14.38±1.80 a 25.44±3.19 a 31.82±0.79 b 63.18±2.49 bc C3 5.07±0.57 cd 17.94±1.58 c 10.73±1.00d 13.33±1.87 a 15.57±1.66 a 28.20±3.17 a 28.77±0.67 c 61.06±3.38 c 续表 3 Table 3 continued 年份
Year品种
Cultivar处理Treatment 花前干物质转运 Dry matter transportation before anthesis 花后干物质积累
Dry matter accumulation after anthesis叶片转运量 (g/plant)
Amount from leaf叶片转运率 (%)
Efficiency
from leaf叶片贡献率 (%)
Contribution
from leaf茎鞘转运量 (g/plant)
Amount from
stem+sheath茎鞘转运率 (%)
Efficiency from
stem+sheath茎鞘贡献率 (%)
Contribution from
stem+sheath积累量 (g/plant)
Accumulation贡献率 (%)
Contribution方差分析 Variance analysis 年份 Year (Y) ** ** ns ns ns * ** ** 品种 Cultivar (C) ** ** ** ns ns ** ** * 处理 Treatment (T) ** * ** ** ** ** ** ** 年份×品种 Y×C ns * ns ns ns ns ns ns 年份×处理 Y×T * ns ** ns ns ns ns ns 品种×处理 C×T ns ** ns ns ns ns ** ns 年份×品种×处理 Y×C×T ns ns ns ns ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.表 4 不同施氮处理下高粱产量及产量构成
Table 4 Grain yield and yield components of sorghum under different nitrogen fertilizer treatments
年份
Year品种
Cultivar处理
Treatment产量 (kg/hm2)
Yield穗粒重 (g)
Grain weight per panicle千粒重 (g)
1000-grain weight收获指数 (%)
Harvest index2021 晋渝糯3号
Jinyunuo 3CK 3386±143 e 35.44±0.91 e 19.76±0.75 d 51.56±2.05 c U 6137±136 c 57.71±0.47 c 26.37±0.94 bc 57.02±1.25 ab U1 6494±173 b 62.41±0.70 b 27.73±0.97 ab 54.95±1.08 b C1 6838±176 a 66.70±0.53 a 29.06±1.21 a 56.39±0.30 ab C2 6263±142 bc 61.99±1.42 b 27.03±0.76 bc 58.89±2.65 a C3 5768±135 d 55.67±1.24 d 25.88±0.71 c 55.87±1.77 ab 金糯粱1号
Jinnuoliang 1CK 2876±200 d 31.69±1.64 e 18.71±0.71 c 51.20±3.41 ab U 4834±139 c 47.83±1.63 d 26.02±0.87 b 51.52±3.12 ab U1 5582±128 b 54.55±0.90 b 27.47±0.92 ab 51.08±0.78 ab C1 5876±125 a 57.84±0.99 a 28.35±1.04 a 52.68±0.85 ab C2 5370±126 b 53.84±0.71 b 26.85±0.72 ab 53.73±0.46 a C3 4950±135 c 49.80±1.09 c 26.64±1.02 b 49.61±1.40 b 2022 晋渝糯3号
Jinyunuo 3CK 3284±137 e 33.35±0.97 d 18.84±0.88 c 50.55±1.08 c U 5698±152 c 55.14±0.33 b 26.03±0.97 b 55.05±0.40 a U1 6051±159 b 57.07±0.66 b 27.42±0.85 ab 51.97±0.95 bc C1 6384±149 a 60.62±0.92 a 28.72±0.96 a 52.12±1.41 bc C2 5832±128 bc 55.96±0.69 b 26.85±0.70 b 51.92±0.87 bc C3 5375±204 d 52.20±1.52 c 25.88±1.11 b 53.41±1.79 ab 金糯粱1号
Jinnuoliang 1CK 2724±179 e 27.05±1.72 e 16.64±0.93 d 45.94±3.31 c U 4758±159 d 44.37±0.85 d 24.32±0.88 c 49.38±1.76 ab U1 5172±136 b 50.52±0.94 b 26.63±1.05 ab 48.22±0.60 bc C1 5503±164 a 53.08±0.98 a 27.81±1.31 a 48.99±1.21 ab C2 5078±128 bc 50.38±0.98 b 25.91±0.76 bc 51.38±0.82 a C3 4868±164 cd 47.17±1.50 c 25.07±0.85 bc 49.52±0.92 ab 方差分析 Variance analysis 年份 Year (Y) ** ** ** ** 品种 Cultivar (C) ** ** ** ** 处理 Treatment (T) ** ** ** ** 年份×品种 Y×C ns ns * ns 年份×处理 Y×T ns * ns ns 品种×处理 C×T ** ** ns ** 年份×品种×处理 Y×C×T ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively.表 5 不同施氮处理下氮肥利用效率
Table 5 Nitrogen fertilizer utilization efficiency under different nitrogen fertilizer treatments
年份
Year品种
Cultivar处理
Treatment氮肥生理利用率
N physiological efficiency
(kg/kg)氮肥农学利用率
N agronomic efficiency
(kg/kg)氮肥偏生产力
N partial factor productivity
(kg/kg)氮肥利用率
N use efficiency
(%)2021 晋渝糯3号
Jinyunuo 3U 32.51±1.81 b 15.28±0.20 b 34.10±0.75 e 47.13±3.27 c U1 33.62±1.84 b 21.58±1.74 a 45.10±1.20 d 52.99±5.19 c C1 40.78±1.12 a 23.97±1.79 a 47.48±1.23 c 73.47±5.45 a C2 40.64±4.50 a 22.82±0.94 a 49.69±1.13 b 56.71±7.67 bc C3 34.39±2.88 b 22.05±2.26 a 53.41±1.25 a 64.07±1.30 b 金糯粱1号
Jinnuoliang 1U 26.62±6.34 a 10.88±1.88 b 26.86±0.77 e 41.45±4.08 b U1 29.52±2.53 a 18.79±0.56 a 38.76±0.89 d 63.87±3.88 a C1 30.91±5.22 a 20.84±2.16 a 40.81±0.87 c 67.94±4.84 a C2 30.76±6.10 a 19.80±2.58 a 42.62±1.00 b 65.28±9.04 a C3 29.10±3.82 a 19.21±1.51 a 45.84±1.25 a 66.50±6.79 a 2022 晋渝糯3号
Jinyunuo 3U 40.49±3.95 ab 13.42±1.58 b 31.66±0.84 d 33.12±2.12 c U1 37.56±4.89 ab 19.22±1.54 a 42.02±1.11 c 51.63±6.38 ab C1 42.32±5.37 a 21.53±1.91 a 44.33±1.04 b 54.37±11.19 ab C2 32.33±2.36 b 20.23±1.33 a 46.29±1.01 b 62.75±5.59 a C3 35.54±4.03 ab 19.36±3.05 a 49.77±1.89 a 47.18±9.86 bc 金糯粱1号
Jinnuoliang 1U 36.21±0.90 a 11.30±1.49 b 26.43±0.88 e 31.19±3.81 b U1 34.50±5.87 a 17.00±2.19 a 35.92±0.94 d 49.57±2.94 a C1 38.42±3.51 a 19.30±0.13 a 38.22±1.14 c 50.51±4.70 a C2 32.33±5.21 a 18.68±0.41 a 40.30±1.01 b 58.84±9.79 a C3 37.76±6.88 a 19.85±2.84 a 45.07±1.52 a 53.22±7.78 a 方差分析 Variance analysis 年份 Year (Y) ** ** ** ** 品种 Cultivar (C) ** ** ** ns 处理 Treatment (T) ns ** ** ** 年份×品种 Y×C * ns * ns 年份×处理 Y×T ns ns ns * 品种×处理 C×T ns ns ns ns 年份×品种×处理 Y×C×T ns ns ns ns 注:CK—不施氮肥;U—习惯施肥;U1—普通氮肥减氮 20%;C1—控释氮肥减氮 20%;C2—控释氮肥减氮 30%;C3—控释氮肥减氮 40%。表中数据为平均数±标准偏差,同列数据后不同小写字母表示处理间差异显著 (P<0.05),方差分析结果中,ns和*、**分别表示变量效应不显著和达到0.05、0.01显著水平。
Note: CK—No nitrogen fertilizer; U—Ordinary urea; U1—Ordinary urea at N rate of 20% less than U; C1—Controlled-release nitrogen fertilizer at N rate of 20% less than U; C2—Controlled-release nitrogen fertilizer at N rate of 30% less than U; C3—Controlled-release nitrogen fertilizer at N rate of 40% less than U. Values are mean±SD. Different lowercase letters after data in the same column indicate significant difference among treatments at 0.05 level. In the ANOVA, ns, *, and ** indicate the variable effect is not significant, significant at 0.05, and 0.01 levels, respectively. -
[1] 李春宏, 狄佳春, 颜伟, 等. 江苏省高粱种质资源的收集及多样性分析[J]. 植物资源遗传学报, 2020, 21(5): 1175−1185. Li C H, Di J C, Yan W, et al. Collection and diversity analysis of sorghum germplasm resource in Jiangsu Province[J]. Journal of Plant Genetic Resources, 2020, 21(5): 1175−1185.
[2] 王劲松, 焦晓燕, 丁玉川, 等. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应[J]. 作物学报, 2015, 41(8): 1269−1278. DOI: 10.3724/SP.J.1006.2015.01269 Wang J S, Jiao X Y, Ding Y C, et al. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium[J]. Acta Agronomica Sinica, 2015, 41(8): 1269−1278. DOI: 10.3724/SP.J.1006.2015.01269
[3] 卢庆善, 邹剑秋, 朱凯, 张志鹏. 试论我国高粱产业发展: 一论全国高粱生产优区[J]. 杂粮作物, 2009, 29(2): 78−80. Lu Q S, Zou J Q, Zhu K, Zhang Z P. The development of sorghum industry in China: Discussion on the advantageous regions of sorghum production in China[J]. Rain Fed Crops, 2009, 29(2): 78−80.
[4] 孔丽婷, 蒋桂英, 杨灵威. 减量施氮对滴灌春小麦干物质和氮素积累转运特征的影响[J]. 麦类作物学报, 2021, 41(3): 317−327. DOI: 10.7606/j.issn.1009-1041.2021.03.08 Kong L T, Jiang G Y, Yang L W. Effect of reduced nitrogen application on dry matter and nitrogen accumulation and transportation characteristics of spring wheat under drip irrigation[J]. Journal of Triticeae Crops, 2021, 41(3): 317−327. DOI: 10.7606/j.issn.1009-1041.2021.03.08
[5] 朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259−273. DOI: 10.11674/zwyf.2013.0201 Zhu Z L, Jin J Y. Fertilizer use and food security in China[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(2): 259−273. DOI: 10.11674/zwyf.2013.0201
[6] 徐杰, 王锡玖, 薛艳芳, 等. 缓控释氮肥减施对冬小麦产量和氮素利用效率的影响[J]. 山东农业科学, 2021, 53(9): 68−74. Xu J, Wang X J, Xue Y F, et al. Effects of decreasing amounts of controlled-release nitrogen fertilizer on yield and nitrogen use efficiency of winter wheat[J]. Shandong Agricultural Sciences, 2021, 53(9): 68−74.
[7] 王艳, 王小波, 王小晶, 等. 包膜缓释肥料(CSFs)增产机理与氮肥利用率示踪研究[J]. 水土保持学报, 2006, 20(5): 109−111. DOI: 10.3321/j.issn:1009-2242.2006.05.027 Wang Y, Wang X B, Wang X J, et al. Research on increase yield mechanisms of coated slow-release fertilizers and N utilization ratio by tracing[J]. Journal of Soil and Water Conservation, 2006, 20(5): 109−111. DOI: 10.3321/j.issn:1009-2242.2006.05.027
[8] 陈贤友, 吴良欢, 李金先, 应金耀. 新型包膜控释尿素对水稻产量与氮肥利用率的影响[J]. 浙江农业学报, 2010, 22(6): 829−833. DOI: 10.3969/j.issn.1004-1524.2010.06.024 Chen X Y, Wu L H, Li J X, Ying J Y. Effects of new controlled-release coated urea on rice grain yield and nitrogen use efficiency[J]. Acta Agriculturae Zhejiangensis, 2010, 22(6): 829−833. DOI: 10.3969/j.issn.1004-1524.2010.06.024
[9] 陈琨, 秦鱼生, 喻华, 等. 控释氮肥对一季中稻产量及氮肥利用率的影响[J]. 西南农业学报, 2018, 31(3): 507−512. DOI: 10.16213/j.cnki.scjas.2018.3.014 Chen K, Qin Y S, Yu H, et al. Effects of controlled-release urea on yield of one season middle rice and nitrogen use efficiency[J]. Southwest China Journal of Agricultural Sciences, 2018, 31(3): 507−512. DOI: 10.16213/j.cnki.scjas.2018.3.014
[10] 胡娟, 吴景贵, 孙继梅, 吕东波. 氮肥减量与缓控肥配施对土壤供氮特征及玉米产量的影响[J]. 水土保持学报, 2015, 29(4): 116−120, 194. Hu J, Wu J G, Xun J M, Lü D B. Effects of reduced nitrogen fertilization and its combined application with slow and controlled release fertilizers on soil nitrogen characteristics and yield of maize[J]. Journal of Soil and Water Conservation, 2015, 29(4): 116−120, 194.
[11] 鲁艳红, 聂军, 廖育林, 等. 不同控释氮肥减量施用对双季水稻产量和氮素利用的影响[J]. 水土保持学报, 2016, 30(2): 155−161, 174. DOI: 10.13870/j.cnki.stbcxb.2016.02.028 Lu Y H, Nie J, Liao Y L, et al. Effects of application reduction of controlled-release nitrogen fertilizer on yield of double cropping rice and nitrogen nutrient uptake[J]. Journal of Soil and Water Conservation, 2016, 30(2): 155−161, 174. DOI: 10.13870/j.cnki.stbcxb.2016.02.028
[12] 冯爱青, 张民, 李成亮, 杨越超. 控释氮肥对土壤酶活性与土壤养分利用的影响[J]. 水土保持学报, 2014, 28(3): 177−184. DOI: 10.13870/j.cnki.stbcxb.2014.03.033 Feng A Q, Zhang M, Li C L, Yang Y C. Effects of controlled release nitrogen fertilizer on soil enzyme activities and soil nutrient utilization[J]. Journal of Soil and Water Conservation, 2014, 28(3): 177−184. DOI: 10.13870/j.cnki.stbcxb.2014.03.033
[13] 卢秉林, 车宗贤, 张久东, 等. 氮肥减量下长期间作毛叶苕子根茬还田对玉米产量及氮肥利用率的影响[J]. 中国农业科学, 2022, 55(12): 2384−2397. DOI: 10.3864/j.issn.0578-1752.2022.12.010 Lu B L, Che Z X, Zhang J D, et al. Effects of long-term intercropping of maize with hairy vetch root returning to field on crop yield and nitrogen use efficiency under nitrogen fertilizer reduction[J]. Scientia Agricultura Sinica, 2022, 55(12): 2384−2397. DOI: 10.3864/j.issn.0578-1752.2022.12.010
[14] 李亚静, 郭振清, 杨敏, 等. 施氮量对强筋小麦氮素积累和氮肥农学利用效率的影响[J]. 麦类作物学报, 2020, 40(3): 343−350. DOI: 10.7606/j.issn.1009-1041.2020.03.11 Li Y J, Guo Z Q, Yang M, et al. Effect of nitrogen rate on nitrogen accumulation and agronomic efficiency in strong gluten wheat[J]. Journal of Triticeae Crops, 2020, 40(3): 343−350. DOI: 10.7606/j.issn.1009-1041.2020.03.11
[15] 刘兆辉, 薄录吉, 李彦, 等. 氮肥减量施用技术及其对作物产量和生态环境的影响综述[J]. 中国土壤与肥料, 2016, (4): 1−8. DOI: 10.11838/sfsc.20160401 Liu Z H, Bo L J, Li Y, et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: A review[J]. Soil and Fertilizer Sciences in China, 2016, (4): 1−8. DOI: 10.11838/sfsc.20160401
[16] 张鹏飞, 张翼飞, 王玉凤, 等. 膜下滴灌氮肥分期追施量对玉米氮效率及土壤氮素平衡的影响[J]. 植物营养与肥料学报, 2018, 24(4): 915−926. DOI: 10.11674/zwyf.18013 Zhang P F, Zhang Y F, Wang Y F, et al. Effects of nitrogen topdressing amount at various stages on nitrogen efficiency of maize and soil nitrogen balance under mulched drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 915−926. DOI: 10.11674/zwyf.18013
[17] Xu X P , He P , Wei J L, et al. Use of controlled-release urea to improve yield, nitrogen utilization, and economic return and reduce nitrogen loss in wheat-maize crop rotations[J]. Agronomy, 2021, 11(4): 723.
[18] 张智, 乔艳, 刘东海, 等. 氮肥减施对油菜产量、氮素吸收与利用的影响[J]. 中国土壤与肥料, 2020, (2): 140−145, 183. DOI: 10.11838/sfsc.1673-6257.19185 Zhang Z, Qiao Y, Liu D H, et al. Effects of reducing nitrogen application on yield, nitrogen absorption and utilization of oilseed rape[J]. Soil and Fertilizer Sciences in China, 2020, (2): 140−145, 183. DOI: 10.11838/sfsc.1673-6257.19185
[19] Li G Q, Yang J T, Yan L Y, Shi Y. The effects of controlled release fertilizer and conventional complex fertilizer on the dry matter accumulation and the yield in winter wheat[J]. Research Journal of Applied Sciences, Engineering and Technology, 2013, 5(9): 2724−2728. DOI: 10.19026/rjaset.5.4797
[20] 杨清夏, 龙光强, 吴开贤, 等. 控释尿素一次性施用的玉米减氮增效研究[J]. 西北农业学报, 2022, 31(1): 34−43. DOI: 10.7606/j.issn.1004-1389.2022.01.005 Yang Q X, Long G Q, Wu K X, et al. Study on reducing N fertilizer and increasing nutrient use efficiency of maize with one-time application of controlled-release urea[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 34−43. DOI: 10.7606/j.issn.1004-1389.2022.01.005
[21] 尹彩侠, 李前, 孔丽丽, 等. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响[J]. 中国农业科学, 2018, 51(20): 3941−3950. DOI: 10.3864/j.issn.0578-1752.2018.20.012 Yin C X, Li Q, Kong L L, et al. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize[J]. Scientia Agricultura Sinica, 2018, 51(20): 3941−3950. DOI: 10.3864/j.issn.0578-1752.2018.20.012
[22] Fan Z, Chen J X, Zhai S, et al. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application[J]. Journal of Soil Science and Plant Nutrition, 2021, 21: 1103−1111. DOI: 10.1007/s42729-021-00425-z
[23] 周瑜, 李泽碧, 张亚勤, 等. 主季种植密度和施氮量对高粱再生产量的影响[J]. 中国农业大学学报, 2021, 26(8): 43−53. DOI: 10.11841/j.issn.1007-4333.2021.08.05 Zhou Y, Li Z B, Zhang Y Q, et al. Effects of planting density and nitrogen rate in main season on ratooning yield sorghum[J]. Journal of China Agricultural University, 2021, 26(8): 43−53. DOI: 10.11841/j.issn.1007-4333.2021.08.05
[24] 高英波, 张慧, 刘开昌, 等. 优化氮素与品种匹配可协同提高盐碱地夏玉米产量和氮肥利用率[J]. 中国农业科学, 2020, 53(21): 4388−4398. DOI: 10.3864/j.issn.0578-1752.2020.21.008 Gao Y B, Zhang H, Liu K C, et al. The coordination of nitrogen optimization with matched variety could enhance maize grain yield and nitrogen use efficiency of summer maize in saline land[J]. Scientia Agricultura Sinica, 2020, 53(21): 4388−4398. DOI: 10.3864/j.issn.0578-1752.2020.21.008
[25] 张银锁, 宇振荣, Driessen P M. 环境条件和栽培管理对夏玉米干物质积累、分配及转移的试验研究[J]. 作物学报, 2002, 28(1): 104−109. DOI: 10.3321/j.issn:0496-3490.2002.01.021 Zhang Y S, Yu Z R, Driessen P M. Expermental study of assimilate production, partitioning and translocation among plant organs in summer maize ( Zea mays) under various environmental and managing conditions[J]. Acta Agronomica Sinica, 2002, 28(1): 104−109. DOI: 10.3321/j.issn:0496-3490.2002.01.021
[26] 宋桂云, 徐寿军, 范富, 等. 氮肥对不同穗型水稻产量及干物质积累与分配的影响[J]. 浙江农业学报, 2014, 26(6): 1590−1595. DOI: 10.3969/j.issn.1004-1524.2014.06.33 Song G Y, Xu S J, Fan F, et al. Influence of nitrogen fertilizer on grain yield, dry matter accumulation and distribution of rice varieties with different panicle types[J]. Acta Agriculturae Zhejiangensis, 2014, 26(6): 1590−1595. DOI: 10.3969/j.issn.1004-1524.2014.06.33
[27] 高杰, 李青风, 汪灿, 等. 提高糯高粱干物质和氮素积累、转运及利用效率的适宜密度和施氮量[J]. 植物营养与肥料学报, 2022, 28(12): 2252−2262. DOI: 10.11674/zwyf.2022207 Gao J, Li Q F, Wang C, et al. Optimum plant density and nitrogen level for the efficient accumulation and transportation of dry matter and nitrogen in waxy sorghum[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2252−2262. DOI: 10.11674/zwyf.2022207
[28] 关瑞, 张民, 诸葛玉平, 等. 控释氮肥一次性基施提高谷子产量和氮素利用率[J]. 植物营养与肥料学报, 2019, 25(4): 639−646. DOI: 10.11674/zwyf.18110 Guan R, Zhang M, Zhuge Y P, et al. Single basal application of controlled release nitrogen fertilizer improve yield and nitrogen use efficiency of foxtail millet[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 639−646. DOI: 10.11674/zwyf.18110
[29] 尹彩侠, 刘宏伟, 孔丽丽, 等. 控释氮肥对春玉米干物质积累、氮素吸收及产量的影响[J]. 玉米科学, 2014, 22(6): 108−113. Yin C X, Liu H W, Kong L L, et al. Effect of controlled-release nitrogen fertilizer on dry matter accumulation, nitrogen absorption and yield of spring maize[J], Journal of Maize Sciences, 2014, 22(6): 108−113.
[30] 张美微, 屈俊峰, 张盼盼, 等. 减施氮肥对不同密度夏玉米产量和干物质积累特性的影响[J]. 玉米科学, 2021, 29(5): 145−150. DOI: 10.13597/j.cnki.maize.science.20210519 Zhang M W, Qu J F, Zhang P P, et al. Effect of nitrogen fertilizer reduction on yield and dry matter accumulation in different planting densities of summer maize[J]. Journal of Maize Sciences, 2021, 29(5): 145−150. DOI: 10.13597/j.cnki.maize.science.20210519
[31] 赵斌, 董树亭, 张吉旺, 刘鹏. 控释肥对夏玉米产量和氮素积累与分配的影响[J]. 作物学报, 2010, 36(10): 1760−1768. Zhao B, Dong S T, Zhang J W, Liu P. Effects of controlled-release fertilizer on yield and nitrogen accumulation and distribution in summer maize[J]. Acta Agronomica Sinica, 2010, 36(10): 1760−1768.
[32] 王友平, 李宗新, 张书良, 等. 不同类型玉米控释肥的应用效果研究[J]. 山东农业科学, 2014, 46(10): 83−87. DOI: 10.3969/j.issn.1001-4942.2014.10.022 Wang Y P, Li Z X, Zhang S L, et al. Study on application effect of different types of controlled-release fertilizer on maize[J]. Shandong Agricultural Sciences, 2014, 46(10): 83−87. DOI: 10.3969/j.issn.1001-4942.2014.10.022
[33] 易镇邪, 王璞, 张红芳, 等. 氮肥类型与施用量对华北平原夏玉米源库关系的影响[J]. 植物营养与肥料学报, 2006, 12(3): 294−300. DOI: 10.3321/j.issn:1008-505X.2006.03.002 Yi Z X, Wang P, Zhang H F, et al. Effects of type and application rate of nitrogen fertilizer on source-sink relationship in summer maize in North China Plain[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(3): 294−300. DOI: 10.3321/j.issn:1008-505X.2006.03.002
[34] 高雪健, 李广浩, 陆卫平, 陆大雷. 控释尿素与普通尿素配施对糯玉米产量和氮素吸收利用的影响[J]. 植物营养与肥料学报, 2022, 28(9): 1614−1625. DOI: 10.11674/zwyf.2021673 Gao X J, Li G H, Lu W P, Lu D L. Effects of mixing controlled-release and normal urea on yield, nitrogen absorption and utilization in waxy maize[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1614−1625. DOI: 10.11674/zwyf.2021673
[35] 曹金华, 张书芬, 朱家成, 等. 控释氮肥不同运筹方式对油菜生长发育及产量的调控效应[J]. 华北农学报, 2018, 33(3): 210−217. DOI: 10.7668/hbnxb.2018.03.031 Cao J H, Zhang S F, Zhu J C, et al. Effects of controlled release nitrogen fertilizer management mode on growth, development, yield of rapeseed hybrids[J]. Acta Agriculturae Boreali-sinica, 2018, 33(3): 210−217. DOI: 10.7668/hbnxb.2018.03.031
[36] 邢晓鸣, 李小春, 丁艳锋, 等. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响[J]. 中国农业科学, 2015, 48(24): 4892−4902. DOI: 10.3864/j.issn.0578-1752.2015.24.004 Xing X M, Li X C, Ding Y F, et al. Effects of types of controlled released nitrogen and fertilization modes on yield and dry mass production[J]. Scientia Agricultura Sinica, 2015, 48(24): 4892−4902. DOI: 10.3864/j.issn.0578-1752.2015.24.004
[37] 王英, 刘景辉, 武俊英, 等. 控释氮肥减量对糜子干物质积累、光合特性及产量的影响[J]. 灌溉排水学报, 2023, 42(6): 10−18. DOI: 10.13522/j.cnki.ggps.2022664 Wang Y, Liu J H, Wu J Y, et al. Effects of reduced nitrogen fertilization via controlled release on dry matter accumulation, photosynthetic traits and yield of proso millet[J]. Journal of Irrigation and Drainage, 2023, 42(6): 10−18. DOI: 10.13522/j.cnki.ggps.2022664
[38] 梁晓红, 刘静, 曹雄. 施氮量对酿造高粱产量和氮素利用率的影响[J]. 华北农学报, 2017, 32(2): 179−184. DOI: 10.7668/hbnxb.2017.02.027 Liang X H, Liu J, Cao X. Effects of nitrogen application rate on yield of brewing sorghum and nitrogen use efficiency[J]. Acta Agriculturae Boreali-sinica, 2017, 32(2): 179−184. DOI: 10.7668/hbnxb.2017.02.027
[39] 田昌, 周旋, 刘强, 等. 控释尿素减施对双季稻田氮素渗漏淋失的影响[J]. 应用生态学报, 2018, 29(10): 3267−3274. DOI: 10.13287/j.1001-9332.201810.029 Tian C, Zhou X, Liu Q, et al. Effects of the reduction of controlled-release urea application on nitrogen leaching in double cropping paddy field[J]. Chinese Journal of Applied Ecology, 2018, 29(10): 3267−3274. DOI: 10.13287/j.1001-9332.201810.029
[40] 侯红乾, 黄永兰, 冀建华, 等. 缓/控释肥对双季稻产量和氮素利用率的影响[J]. 中国水稻科学, 2016, 30(4): 389−396. Hou H Q, Huang Y L, Ji J H, et al. Effects of controlled-release fertilizer application on double cropping rice yield and nitrogen use efficiency[J]. Chinese Journal of Rice Science, 2016, 30(4): 389−396.
[41] 李敏, 郑仁兵, 韩上, 等. 控释尿素减量施用的水稻产量效应研究[J]. 安徽农业科学, 2017, 45(22): 83−84,100. DOI: 10.3969/j.issn.0517-6611.2017.22.025 Li M, Zheng R B, Han S, et al. Effects of application reduction of controlled-release urea on yield of rice[J]. Journal of Anhui Agricultural Sciences, 2017, 45(22): 83−84,100. DOI: 10.3969/j.issn.0517-6611.2017.22.025
[42] 黄思怡, 周旋, 田昌, 等. 控释尿素减施对双季稻光合特性和经济效益的影响[J]. 土壤, 2020, 52(4): 736−742. DOI: 10.13758/j.cnki.tr.2020.04.012 Huang S Y, Zhou X, Tian C, et al. Effects of reducing controlled-release urea application on photosynthetic characteristics and economic benefit of double-rice cropping system[J]. Soils, 2020, 52(4): 736−742. DOI: 10.13758/j.cnki.tr.2020.04.012
[43] 刘仲阳, 崔秀敏, 史桂芳, 等. 不同类型控释氮肥对冬小麦群体结构、产量和氮效率的影响[J]. 山东农业科学, 2022, 54(5): 104−109. Liu Z Y, Cui X M, Shi G F, et al. Effects of different types of controlled-release N fertilizers on population structure, yield and nitrogen efficiency of winter wheat[J]. Shandong Agricultural Sciences, 2022, 54(5): 104−109.
[44] Sun Y, Mi W H, Su L J, et al. Controlled-release fertilizer enhances rice grain yield and N recovery efficiency in continuous non-flooding plastic film mulching cultivation system[J]. Field Crops Research, 2019, 231: 122−129. DOI: 10.1016/j.fcr.2018.11.013
[45] Zhao B, Dong S T, Zhang J W, Liu P. Effects of controlled-release fertilization nitrogen use efficiency in summer maize[J]. PLoS ONE, 2013, 8: e70569. DOI: 10.1371/journal.pone.0070569
[46] 卞文新, 马晓晓, 孙东旭. 包膜氮肥一次性减量施用对冬小麦产量和氮素利用的影响[J]. 植物营养与肥料学报, 2022, 28(10): 1840−1851. DOI: 10.11674/zwyf.2021689 Bian W X, Ma X X, Sun D X, et al. Effects of coated nitrogen fertilizer under one-time reduced application on yield and nitrogen use efficiency of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(10): 1840−1851. DOI: 10.11674/zwyf.2021689
[47] 黄巧义, 张木, 黄旭, 等. 聚脲甲醛缓释氮肥一次性基施在双季稻上的应用效果[J]. 中国农业科学, 2018, 51(20): 3996−4006. DOI: 10.3864/j.issn.0578-1752.2018.20.017 Huang Q Y, Zhang M, Huang X, et al. Effect of one-off application of poly urea-formaldehyde fertilizer under reduced N rate on double cropping rice[J]. Scientia Agricultura Sinica, 2018, 51(20): 3996−4006. DOI: 10.3864/j.issn.0578-1752.2018.20.017
-
期刊类型引用(1)
1. 梁晓红,曹雄,张瑞栋,黄敏佳,刘静,南怀林,王颂宇. 不同类型缓控释尿素一次性基施对高粱产量、氮素利用的影响. 河南农业科学. 2024(09): 28-36 . 百度学术
其他类型引用(12)