• ISSN 1008-505X
  • CN 11-3996/S

隔两年深松配合条旋耕显著提升冬小麦的氮素吸收利用效率和产量

王庆源, 于振文, 石玉, 张永丽, 张振

王庆源, 于振文, 石玉, 张永丽, 张振. 隔两年深松配合条旋耕显著提升冬小麦的氮素吸收利用效率和产量[J]. 植物营养与肥料学报, 2024, 30(5): 863-872. DOI: 10.11674/zwyf.2023542
引用本文: 王庆源, 于振文, 石玉, 张永丽, 张振. 隔两年深松配合条旋耕显著提升冬小麦的氮素吸收利用效率和产量[J]. 植物营养与肥料学报, 2024, 30(5): 863-872. DOI: 10.11674/zwyf.2023542
WANG Qing-yuan, YU Zhen-wen, SHI Yu, ZHANG Yong-li, ZHANG Zhen. Strip rotary tillage combining with every two-year subsoiling increases the nitrogen use efficiency and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 863-872. DOI: 10.11674/zwyf.2023542
Citation: WANG Qing-yuan, YU Zhen-wen, SHI Yu, ZHANG Yong-li, ZHANG Zhen. Strip rotary tillage combining with every two-year subsoiling increases the nitrogen use efficiency and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 863-872. DOI: 10.11674/zwyf.2023542

隔两年深松配合条旋耕显著提升冬小麦的氮素吸收利用效率和产量

基金项目: 国家自然科学基金项目(32172114);国家现代农业产业技术体系项目(CARS-03-18);泰山学者工程专项。
详细信息
    作者简介:

    王庆源 E-mail: wqy12342022@163.com

    通讯作者:

    石玉 E-mail: shiyu@sdau.edu.cn

Strip rotary tillage combining with every two-year subsoiling increases the nitrogen use efficiency and yield of winter wheat

  • 摘要:
    目的 

    探究耕作方式对小麦氮代谢和氮素利用效率的影响,为小麦高产高效生产提供理论依据。

    方法 

    长期定位试验位于山东省济宁市兖州区小孟镇,始于2007年,供试冬小麦品种为‘济麦22’。设置常年翻耕(PT)、常年旋耕(RT)、常年条旋耕(ST)和隔两年深松+条旋耕(STS) 4个处理。2023年在小麦开花期和成熟期采集植株样品,测定各器官含氮量。在开花后0~28天,每隔7天取一次样,测定旗叶硝酸还原酶(NR)、谷氨酰胺合成酶(GS)活性以及游离氨基酸和可溶性蛋白含量。于成熟期,调查产量及其构成因素,并计算氮素利用效率。

    结果 

    与PT、RT和ST处理相比,STS处理提高了小麦旗叶硝酸还原酶活性、谷氨酰胺合成酶活性、游离氨基酸与可溶性蛋白含量,增加了开花期植株各部位和成熟期籽粒的氮素积累量、花前氮素转运量和转运率以及花后氮素吸收量对籽粒的贡献率,提高了氮素吸收效率、籽粒氮素利用效率、氮素收获指数和氮肥偏生产力。其中,成熟期籽粒氮素积累量增加了8.53%~30.15%,籽粒氮分配比例增加了4.59%~14.06%,千粒重和产量分别提高了4.20%~9.96%和7.83%~18.39%,氮肥偏生产力提高了7.85%~18.40%。

    结论 

    隔两年深松+条旋耕(STS)的耕作方式可提高小麦氮代谢相关酶活性,增强氮素的吸收和同化能力,提高氮素利用效率,同时增加小麦籽粒产量。

    Abstract:
    Objectives 

    We studied the effects of tillage methods on the nitrogen metabolism, and uptake and utilization of winter wheat, aiming to choose optimum tillage technology for the high yield and high efficiency production of winter wheat.

    Methods 

    The investigation was based on the long-term tillage field experiment that started since 2007 and located in Jining City, Shandong Province. The wheat cultivar was Jimai 22, and the experiment was composed of four treatments, including perennial plowing tillage (PT), perennial rotary tillage (RT), perennial strip rotary tillage (ST) and strip rotary tillage with a two-year subsoiling interval (STS). In 2023, wheat plants were sampled at anthesis and maturity stages to determine the nitrogen content of various parts; flag leaves were labelled for measurement of nitrate reductase (NR) and glutamine synthetase (GS) activities, free amino acid and soluble protein contents in frequency of every 7 days from 0 to 28 days after anthesis; and the yield and main yield components were investigated at mature stage. The nitrogen use efficiencies were calculated at last.

    Results 

    Compared with PT, RT and ST treatments in the two years, STS increased the NR and GS activates, free amino acids and soluble protein contents, total nitrogen accumulation, the nitrogen translocation amount and rate before flowering, and the absorption and contribution rate of nitrogen to grain after anthesis, resulting in higher nitrogen absorption efficiency, grain nitrogen use efficiency, nitrogen harvest index and nitrogen partial factor productivity. Thereby, the grain nitrogen accumulation increased by 8.53%−30.15% and the distribution rate in grain was increased by 4.59%−14.06%, the 1000-kernel weight and yield were enhanced by 4.20%−9.96% and 7.83%−18.39%, and the nitrogen partial factor productivity was increased by 7.85%−18.40%.

    Conclusions 

    The combination of strip rotary tillage with every two years of subsoiling has showed satisfactory effect on increasing the nitrogen absorption, metabolism, and assimilation, so is recommended as the tillage technology for achieving high yield and efficiency production of winter wheat.

  • 耕地是国家粮食安全的基础,是粮食生产的主要载体。合理的耕作方式在改善耕层质量,保持土壤肥力,提高作物产量,减少土壤养分损失等方面发挥着重要作用[1]。黄淮海地区是我国的小麦主产区,对保障国家粮食安全至关重要。然而,该地区的连年旋耕导致耕层变浅,犁底层变硬,根系下扎受阻,制约了作物产量的提高[2];部分地块连年翻耕造成水分流失和经济效益降低[3]。因此,选择适宜的耕作方式对于提高该地区小麦产量和实现农业的可持续发展具有重要作用。

    氮代谢是小麦植株的基础代谢过程,也是小麦生长发育过程中源库关系形成的基础,对小麦产量具有重要意义[4]。硝酸还原酶(NR)和谷氨酰胺合成酶(GS)是氮代谢过程中的关键酶,在植物调节和氮同化中发挥着重要作用。有研究表明,免耕处理可以提高小麦拔节期叶片硝酸还原酶和谷氨酰胺合成酶活性,较旋耕分别提高8.36%和10.42%[5]。免耕覆盖相较于翻耕,可以促进旗叶硝酸还原酶活性升高,并在生育期内保持较高的活力,同时促进根系对土壤氮素的吸收和利用[6]。另有研究表明,耕作时间和方式对旗叶谷氨酰胺合成酶活性亦有显著的调控作用,麦收后45天深翻较深松显著提高谷氨酰胺合成酶活性[7]。同时,游离氨基酸和可溶性蛋白是氮代谢的重要产物。相较于翻耕和旋耕,深松处理显著提高游离氨基酸和可溶性蛋白含量,并在生育后期保持较高的水平[8]。此外,氮代谢过程显著影响植株对氮素的吸收和利用。黄明等[9]通过2年的耕作试验发现,与翻耕相比,深松可以显著增加小麦花前氮素转运量和花后氮素积累量。与旋耕相比,深耕能提升小麦的氮肥偏生产力和氮肥吸收效率,较旋耕分别提高4.48%和8.47%,籽粒产量提高5.60%[10]。与深翻相比,深松覆盖处理的单位面积穗数和千粒重分别提高14.1%和2.6%,产量增幅达14.2%[11]。在秸秆还田条件下免耕实现了单位面积穗数、穗粒数和千粒重的同步增加和协同发展,较翻耕增产18.6%~27.3%[12]。可见,耕作方式可以调节植株的氮代谢水平,以及氮素的吸收和同化,进而影响小麦的产量。前人的研究主要集中在短期或单一耕作方式对小麦氮代谢、氮素吸收利用和产量的影响。本团队前期研究表明,隔两年深松+条旋耕这种组合耕作方式,可以改善土壤质量和根系分布,提高籽粒灌浆中后期旗叶光合速率,促进籽粒灌浆,提高产量[1314]。然而,关于间隔两年深松+条旋耕对小麦植株氮代谢与氮素积累、分配和转运的影响研究尚少。因此,依托16年田间长期定位试验,探究隔两年深松+条旋耕方式对小麦植株氮代谢、氮素利用效率及产量的影响,为小麦的高产高效技术提供理论依据。

    田间定位试验始于2007年,在山东省济宁市兖州区小孟镇史家王子村试验站进行,该地为温带大陆性季风气候,年平均气温13.5℃,年均降水量703 mm。试验田土壤质地为壤土。本试验自2007年开始定位试验,2007和2022年小麦播前0—20 cm土层土壤养分含量见表1

    表  1  0—20 cm土层土壤养分含量
    Table  1.  Soil nutrient content of 0−20 cm layer
    年份
    Year
    耕作方式
    Tillage method
    有机质 (g/kg)
    Organic matter
    全氮 (g/kg)
    Total N
    碱解氮 (mg/kg)
    Available N
    速效磷 (mg/kg)
    Available P
    速效钾 (mg/kg)
    Available K
    2007 试验前 Initial 14.1 1.00 103.13 23.30 121.58
    2022 PT 14.23 1.08 109.23 39.56 125.35
    RT 14.35 1.09 110.51 39.75 126.63
    ST 14.96 1.15 113.37 42.33 129.94
    STS 15.83 1.22 121.74 46.23 133.42
    注: PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with every two-year subsoiling.
    下载: 导出CSV 
    | 显示表格

    小麦供试品种为‘济麦22’。田间试验设置4种耕作方式,分别为常年翻耕(PT)、常年旋耕(RT)、常年条旋耕(ST)、隔两年深松+条旋耕(STS) (深松从2007年开始,每隔两年深松一次)。不同耕作方式的作业程序如表2

    表  2  耕作施肥作业程序
    Table  2.  Operation procedure of tillage and fertilization
    耕作方式
    Tillage pattern
    作业程序
    Operation procedure
    常年翻耕
    Perennial plowing
    tillage (PT)
    前茬玉米秸秆全部粉碎还田 → 撒施底肥 → ILFQ330铧式犁翻耕一遍 (深度25 cm) → 旋耕机旋耕两遍 (深度15 cm) → 耙地两遍 → 筑埂打畦 → 播种机播种
    Smashing and returning all the maize straws to field → broadcasting basal fertilizer → ploughing once (25 cm in depth) with ILFQ330 share type plow → rotary tillage twice (15 cm in depth) → raking twice → ridge building → planter sowing
    常年旋耕
    Perennial rotary
    tillage (RT)
    前茬玉米秸秆全部粉碎还田 → 撒施底肥 → 旋耕机旋耕两遍 (深度15 cm) → 耙地两遍 → 筑埂打畦 → 播种机播种
    Returning maize straw to the field → broadcasting basal fertilizer → rotary tillage twice (15 cm in depth) → raking twice → ridge building → planter sowing
    常年条旋耕
    Perennial strip
    rotary tillage
    (ST)
    前茬玉米秸秆全部粉碎还田 → 2BMYF-10/5型多功能播种机一次性完成播种行旋耕 (深度15 cm),施底肥,起畦和播种作业 (2BMYF-10/5型多功能播种机设置小麦行距为18 cm+32 cm,其中播种行宽为18 cm,即旋耕面积约占总面积的36%)。
    Returning maize straw to the field → committing rotary tillage on sowing row (depth 15 cm), basal fertilization, ridge building and sowing at the same time using 2BMYF-10/5 multi-functional seeder. The rotary tillage area accounted for about 36% of the total area
    隔两年深松+
    条旋耕
    Strip rotary tillage
    with a two-year
    subsoiling interval
    (STS)
    前茬玉米秸秆全部粉碎还田 → ZS-180型振动深松机深松一遍 (深度38 cm) → 2BMYF-10/5型多功能播种机一次性完成播种行旋耕 (深度15 cm),施底肥,起畦和播种作业 (2BMYF-10/5型多功能播种机设置小麦行距为18 cm+32 cm,其中播种行宽为18 cm,即旋耕面积约占总面积的36%)
    Returning maize straw to the field → deep loosening once (depth 38 cm) using ZS-180 type vibration deep loosening machine → sowing row rotating tillage (depth 15 cm), basal fertilization, cardigan and sowing operations at the same time using 2BMYF-10/5 multi-functional seeder, the rotary tillage area accounted for about 36% of the total area
    下载: 导出CSV 
    | 显示表格

    小区面积为160 m2 (4 m×40 m),每个处理3次重复。小麦在播种前底肥用量为N 105 kg/hm2、P2O5 150 kg/hm2和K2O 150 kg/hm2,拔节期追施N 135 kg/hm2。选择硫酸钾、磷酸二铵和尿素作为本试验的钾、磷、氮肥。于2022年10月17日播种,三叶一心期定苗,留苗密度为270株/m2。2023年6月11日收获。其余管理措施同高产田。

    在小麦开花期和成熟期,于小区中随机选取30个小麦单茎,开花期将其分为茎、叶、穗三部分,成熟期分为茎、叶、穗轴+颖壳和籽粒四部分,烘干至恒重,通过凯氏定氮仪测定植株各部分含氮量。

    于开花后0—28天,每7天采集同天开花、长势一致的旗叶,测定硝酸还原酶、谷氨酰胺合成酶、游离氨基酸和可溶性蛋白的含量。

    硝酸还原酶活性测定:采用磺胺比色法[15]测定。将0.5 g旗叶鲜样分别置于5 mL 0.1 mo/L 磷酸缓冲溶液+5 mL蒸馏水和5 mL 0.1 mol/L 磷酸缓冲溶液+5 mL 0.2 mol/L KNO3中,真空抽气后,置于30℃保温箱中,避光保温30 min,分别取反应溶液 1 mL于试管中,加入磺胺试剂 2 mL 及α–萘胺2 mL混合摇匀,静置 30 min。用分光光度计于520 nm波长处进行比色。比色结果根据标准曲线计算NO2量,活性以μg/(g·h),FW表示。

    旗叶谷氨酰胺合成酶活性的测定:按Wei等[16]的方法测定,取1 g旗叶鲜样,加入100 mmol/L、pH 7.6的Tris-HCl缓冲液冰浴研磨,在13000 r/min离心后,得到提取液,用于测定谷氨酰胺合成酶活性。当温度为25℃时,在 540 nm下比色,用其吸光值来表示谷氨酰胺合成酶活性。

    旗叶游离氨基酸和可溶性蛋白的测定:游离氨基酸通过水合茚三酮比色法测定,可溶性蛋白采用考马斯亮蓝G-250法[17]测定。

    参照王海琪等[18]和汝晨等[19]的方法,计算各器官氮素积累、运转及氮素利用效率。

    各器官氮素积累量(kg/hm2)=氮素含量(%)×干物质量

    花前氮素转移量(kg/hm2)=开花期营养器官氮素积累量−成熟期营养器官氮素积累量

    花前氮素转移率(%)=花前氮素转移量/开花期氮素积累量×100

    花前氮素对籽粒氮素的贡献率(%)=花前氮素转移量/成熟期籽粒氮素积累量×100

    花后氮素积累量(kg/hm2)=成熟期植株氮素积累量−开花期植株氮素积累量

    花后氮素对籽粒氮素的贡献率(%)=花后氮素积累量/成熟期籽粒氮素积累量×100

    氮素吸收效率(kg/kg)=成熟期植株地上部氮素积累量/施氮量

    籽粒氮素利用效率(kg/kg)=籽粒产量/成熟期植株地上部氮素积累量

    氮肥偏生产力(kg/kg)=籽粒产量/施氮量

    氮素收获指数(%)=籽粒氮素积累量/成熟期植株地上部氮素积累量×100

    小麦成熟后,划定长势均匀的区域3 m2,调查群体大小并计算单位面积穗数,风干后脱粒称重,测量千粒重,计算籽粒产量;在收获前每小区选取30个具有代表性的单茎,测量每穗粒数 [20]

    采用Excel 2016和SPSS 25软件进行统计分析。单因素方差分析和LSD法进行多重比较(P<0.05为差异显著),用Origin 2021软件作图。

    图1可知,小麦开花后0、7、21和28天,旗叶的硝酸还原酶和谷氨酰胺合成酶活性均表现为STS处理显著高于PT、RT和ST处理,RT和ST处理最低,二者无显著差异;开花后14天,旗叶谷氨酰胺合成酶活性表现为STS>PT>RT≈ST,STS处理较PT、RT和ST处理分别提高17.6%、50.2%和65.3%,而旗叶硝酸还原酶活性为STS处理显著高于其他处理。表明STS处理显著提高了开花后小麦旗叶的硝酸还原酶和谷氨酰胺合成酶活性,有利于同化硝酸盐转化为氮化合物,促进氨基酸的合成和转化,增加蛋白质的合成,为氮素的积累奠定基础。

    图  1  不同耕作方式下小麦旗叶硝酸还原酶和谷氨酰胺合成酶活性
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。柱上不同小写字母表示耕作方式间差异显著(P<0.05)。
    Figure  1.  Activities of nitrate reductase and glutamine synthetase in flag leaves of wheat as affected by tillage patterns
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters above the bars indicate significant difference among tillage patterns (P<0.05).

    图2可知,在开花后0、7、14和28天,STS处理的旗叶游离氨基酸和可溶性蛋白含量均显著高于PT、RT和ST处理,RT和ST处理无显著差异;在开花后21天,STS处理的旗叶游离氨基酸的含量显著高于其他处理,可溶性蛋白含量表现为STS处理显著高于其他处理,各处理间差异显著,且STS处理较PT、RT和ST处理分别提高11.85%、31.17%和47.99%。表明STS处理有利于提高旗叶的游离氨基酸和可溶性蛋白的含量,为籽粒蛋白质的合成奠定物质基础。

    图  2  不同耕作方式下小麦旗叶游离氨基酸和可溶性蛋白含量
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。柱上不同小写字母表示耕作方式间差异显著(P<0.05)。
    Figure  2.  Free amino acid and soluble protein contents in flag leaves of wheat as affected by tillage patterns
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters above the bars indicate significant difference among tillage patterns (P<0.05).

    表3可知,开花期地上部氮积累量为STS>PT>RT≈ST。开花期各器官的氮素积累量表现为叶最高,茎秆+叶鞘次之,穗轴+颖壳最低,且STS处理在各器官中的氮素积累量均高于其他处理,其中茎秆+叶鞘和穗轴+颖壳的氮素积累量均为STS处理显著高于PT、RT和ST处理。开花期各处理不同器官的氮素分配比例无显著差异。

    表  3  不同耕作方式下小麦开花期氮素的积累和分配
    Table  3.  Nitrogen accumulation and allocation at anthesis of wheat as affected by tillage patterns
    耕作方式
    Tillage
    pattern
    地上部氮积累量
    N accumulation
    in shoot (kg/hm2)
    氮积累量 N accumulation (kg/hm2)
    分配比例 Distribution rate (%)

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    PT 224.96 b 99.03 a 77.97 b 47.96 b 44.02 a 34.66 a 21.32 a
    RT 216.89 c 95.24 b 74.76 c 46.89 c 43.91 a 34.47 a 21.62 a
    ST 214.63 c 94.05 b 73.90 c 46.68 c 43.82 a 34.43 a 21.75 a
    STS 230.05 a 101.11 a 79.87 a 49.07 a 43.95 a 34.72 a 21.33 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表4可知,成熟期地上部氮积累量表现为STS>PT>RT≈ST,RT和ST之间没有显著差异。叶、茎秆+叶鞘与穗轴+颖壳的氮素积累量均为STS处理显著低于其他处理;STS处理在籽粒中积累的氮素最高,其次为PT,RT次之,ST最低,STS处理较PT、RT和ST处理分别提高了8.53%、25.64%和30.15%。STS处理在叶、茎秆+叶鞘与穗轴+颖壳中的氮素分配比例显著低于其他处理;而氮素在籽粒中的分配比例为STS处理显著高于其他处理,各处理间差异显著,且STS处理较PT、RT和ST处理分别提高4.59%、11.08%和14.06%。表明STS处理促进了氮素在籽粒中的分配,有利于籽粒氮素的积累。

    表  4  不同耕作方式下小麦成熟期氮素的积累和分配
    Table  4.  Nitrogen accumulation and allocation at maturity of wheat as affected by tillage patterns
    耕作方式
    Tillage
    pattern
    地上部氮积累量
    Shoot N accumulation
    (kg/hm2)
    氮积累量 N accumulation (kg/hm2) 分配比例 Distribution rate (%)

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    籽粒
    Grain

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    籽粒
    Grain
    PT 288.34 b 13.81 b 47.46 c 13.49 b 213.57 b 4.79 b 16.46 c 4.68 b 74.07 b
    RT 264.54 c 15.03 a 50.62 b 14.42 a 184.48 c 5.68 a 19.13 b 5.45 a 69.74 c
    ST 262.19 c 14.97 a 54.67 a 14.47 a 178.08 d 5.71 a 20.85 a 5.52 a 67.92 d
    STS 299.19 a 12.65 c 42.97 d 11.79 c 231.78 a 4.23 c 14.36 d 3.94 c 77.47 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著 (P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表5可知,开花期STS处理的营养器官氮素积累量显著高于其他处理,RT和ST处理间无显著差异;成熟期为STS处理显著低于其他处理。花前营养器官储存氮素转运量和转运率表现为STS>PT>RT>ST,各处理间差异显著,STS处理的花前氮素转运量较PT、RT和ST分别提高 8.29%、18.86%、24.61%;转运率分别提高5.9%、12.06%和16.26%,而花前氮素的转运对籽粒的贡献率则相反。花后氮素的吸收量及其对籽粒的贡献率均为STS处理高于其他处理。表明STS处理提高了花前营养器官贮存氮素的转运量和花后氮素的吸收量,进而促进籽粒中氮素的积累。

    表  5  不同耕作方式下小麦开花后营养器官氮素转运
    Table  5.  Nitrogen transport of vegetative organs after anthesis of wheat as affected by tillage patterns
    耕作
    方式
    Tillage
    pattern
    营养器官氮素积累量
    N accumulation in vegetative organs
    花前贮存氮素
    N storage before anthesis
    花后氮素
    N after anthesis
    开花期
    Anthesis
    (kg/hm2)
    成熟期
    Maturity
    (kg/hm2)
    转运量
    Translocation
    amount
    (kg/hm2)
    转运率
    Translocation
    rate
    (%)
    对籽粒氮贡献率
    Contribution rate
    to grain N
    (%)
    吸收量
    Absorption
    amount
    (kg/hm2)
    对籽粒氮贡献率
    Contribution rate
    to grain N
    (%)
    PT 224.96 b 74.77 c 150.19 b 66.76 b 70.32 c 63.38 b 29.68 a
    RT 216.89 c 80.06 b 136.83 c 63.09 c 74.17 a 47.65 c 25.83 b
    ST 214.63 c 84.11 a 130.52 d 60.81 d 73.29 b 47.56 c 26.71 b
    STS 230.05 a 67.41 d 162.64 a 70.70 a 70.17 c 69.14 a 29.83 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV 
    | 显示表格

    表6可知,小麦单位面积穗数表现为STS与PT无显著差异,显著高于RT和ST处理,穗粒数各处理间无显著差异,STS处理的千粒重较PT、RT和ST处理分别提高4.20%、7.71%、9.96%,产量分别提高7.83%、15.30%和18.39%。STS处理的氮素吸收效率和籽粒氮利用效率均显著高于其他处理,较其他处理分别提高4.17%~14.68%和1.97%~3.93%,氮收获指数、氮肥偏生产力均表现为STS处理最大,其次为PT处理,RT处理次之,ST处理最小,且各处理间差异显著,氮肥偏生产力STS处理较PT、RT、ST处理增加7.85%~18.40%。表明隔两年深松耕作方式显著增加了穗数和千粒重,获得了最高的产量和氮素利用效率 。

    表  6  不同耕作方式下小麦产量和氮素利用效率
    Table  6.  Wheat yield and nitrogen use efficiency as affected by tillage patterns
    耕作
    方式
    Tillage
    pattern
    穗数
    Spikes
    (×104/hm2)
    穗粒数
    Kernel number
    per spike
    千粒重
    1000-kernel
    weight
    (g)
    产量
    Yield
    (kg/hm2)
    氮素吸收效率
    N uptake
    efficiency
    (kg/kg)
    籽粒氮利用效率
    Grain N use
    efficiency
    (kg/kg)
    氮收获指数
    N harvest index
    (%)
    氮肥偏生产力
    N partial factor
    productivity
    (kg/kg)
    PT 652.21 a 39.00 a 42.90 b 9324.97 b 1.20 b 32.34 c 74.07 b 38.85 b
    RT 620.24 b 39.60 a 41.50 c 8720.54 c 1.10 c 32.96 b 69.74 c 36.34 c
    ST 608.03 b 38.67 a 40.65 d 8492.67 d 1.09 c 32.39 c 67.92 d 35.39 d
    STS 668.12 a 40.63 a 44.70 a 10054.85 a 1.25 a 33.61 a 77.47 a 41.90 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV 
    | 显示表格

    合理的耕作方式有利于提高氮代谢酶活性,增强小麦对氮素的吸收和同化能力,提高氮素利用效率,进而促进产量的形成。硝酸还原酶和谷氨酰胺合成酶的活性反映了小麦氮素营养状况和氮素利用水平[21]。与秸秆不还田相比,秸秆还田处理在拔节期根系的硝酸还原酶与谷氨酰胺合成酶活性分别显著增加了34.8%和43.3%[22]。亦有研究发现,条旋耕相较于旋耕,提高了旗叶的谷氨酰胺合成酶和硝酸还原酶的活性,增加了氮素积累,提高花前营养器官储存氮素的转运,促进了氮素向籽粒的分配,使产量得到提高[5]。本研究中,隔两年深松+条旋耕处理开花后旗叶硝酸还原酶、谷氨酰胺合成酶活性均显著高于其他处理,这有利于小麦保持较长时间的氮素同化能力,为旗叶氮素代谢提供充足的底物。有研究表明,深松可提高根系对深层水分和养分的吸收,同时增加地上部的反应底物,促使小麦旗叶游离氨基酸和可溶性蛋白的含量高于旋耕和翻耕处理,并且其含量随籽粒灌浆呈先升后降的趋势[23]。在本研究中,旗叶游离氨基酸和可溶性蛋白含量也表现出先上升后下降的趋势,且隔两年深松+条旋耕处理显著高于PT、RT和ST处理,这提高了花后旗叶的氮代谢水平,增强了源叶氮素同化物的供应能力,促进了旗叶氮素积累和植株生长。可能是因为深松延缓了叶片的衰老,使硝酸还原酶和谷氨酰胺合成酶活性在灌浆中后期下降较慢,促进了氮代谢的运转,提高了游离氨基酸和可溶性蛋白等中间产物的含量,进而促进氮素在籽粒中的积累。

    氮素的积累和利用对小麦的生长发挥着重要作用,并影响产量的形成[24]。有研究表明,籽粒产量与氮素积累量呈显著的正相关 [25]。与深旋耕(旋耕深度15~20 cm)相比,免耕处理可显著提高小麦氮素的积累量,较深旋耕处理提高9.9%,同时产量提高10.9%[26]。休闲期深松可促进开花前营养器官储存氮素向籽粒的转运,增加开花后氮素的积累,为提高籽粒氮素的积累量奠定基础 [27]。本试验表明,隔两年深松+条旋耕处理在开花期和成熟期籽粒中获得了最高的氮素积累量,可能是因为深松增强了旗叶的氮代谢能力,促进了植株对氮素的吸收。STS处理在成熟期各器官中具有较高的氮素分配量和分配比例,特别是分配在籽粒中的氮素显著高于其他处理,这有利于氮素向籽粒的积累和转运。STS处理具有最高的花前营养器官储存氮素的转运量和花后氮素的同化量,促使花后氮素对籽粒的贡献率高于其他处理,从而获得了最高的籽粒氮素积累量。究其原因是深松通过降低土壤容重和破除犁底层改善了土壤结构,改变了根系分布,促进深层土壤水分和氮素吸收,增强了氮代谢酶的活性,进一步提高氮素的同化能力,从而获得更高的籽粒产量和籽粒氮素积累量[2829]。此外,根系对氮素的吸收是氮高效的基础,合理的根冠比对于促进氮素的高效利用起着重要作用[28],然而关于耕作方式对于小麦植株地上部和根系的氮素利用和分配关系尚未明确,未来仍需进一步研究。

    耕作方式是协调小麦产量和氮素利用效率的重要措施。Zhao等[30]通过3年的耕作试验发现,与旋耕相比,翻耕的氮素吸收效率、氮肥农艺效率和氮素表观利用效率分别提高了5.8%、11.5%和17.8%,但与深松相比分别降低了6.7%、9.3%和12.4%。在秸秆还田条件下,轮耕(深耕30 cm/免耕)处理的氮肥偏生产力较免耕和深耕处理分别显著提高3.68%和 9.16%[31]。在本试验中,隔两年深松+条旋耕处理显著提高了氮素吸收效率、籽粒氮利用效率、氮收获指数以及氮肥偏生产力。另有研究发现,深旋松30 cm能够充分破除犁底层、深松活土,构建合理耕层结构,其通过提高小麦单位面积有效穗数,提升了产量,增产幅度达12.4%[32]。免耕覆盖增加了小麦单位面积穗数和千粒重,分别比翻耕高31%和10%,产量较翻耕增加41%[33]。在本研究中,通过定位16年,研究表明各处理间穗粒数没有显著差异,但隔两年深松+条旋耕处理显著提高了单位面积穗数和千粒重,籽粒产量较其他处理提高7.83%~18.39%。可能是深松减少了表层土壤的根系分布,促进了深层土壤的根系生长,增强了植株对土壤水分和养分的利用,延缓了衰老进程,提高了植株在生育中后期对氮素的吸收,促进了氮素向籽粒中的积累 [3435],获得了最高的籽粒产量和氮素利用效率。

    隔两年深松+条旋耕耕作方式有效提高了小麦籽粒灌浆期旗叶的氮代谢酶活性以及中间产物的含量,并在籽粒灌浆中后期保持较高的水平,增强了小麦氮素的吸收和同化能力,提高了花前营养器官储存氮素转运量和花后氮素的同化量,有利于花后氮素在籽粒中的积累,进而提高了氮素利用率,并通过提高千粒重,获得了最高的产量。因此,隔两年深松+条旋耕是本试验条件下小麦高产高效的最佳耕作方式。

  • 图  1   不同耕作方式下小麦旗叶硝酸还原酶和谷氨酰胺合成酶活性

    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。柱上不同小写字母表示耕作方式间差异显著(P<0.05)。

    Figure  1.   Activities of nitrate reductase and glutamine synthetase in flag leaves of wheat as affected by tillage patterns

    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters above the bars indicate significant difference among tillage patterns (P<0.05).

    图  2   不同耕作方式下小麦旗叶游离氨基酸和可溶性蛋白含量

    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。柱上不同小写字母表示耕作方式间差异显著(P<0.05)。

    Figure  2.   Free amino acid and soluble protein contents in flag leaves of wheat as affected by tillage patterns

    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters above the bars indicate significant difference among tillage patterns (P<0.05).

    表  1   0—20 cm土层土壤养分含量

    Table  1   Soil nutrient content of 0−20 cm layer

    年份
    Year
    耕作方式
    Tillage method
    有机质 (g/kg)
    Organic matter
    全氮 (g/kg)
    Total N
    碱解氮 (mg/kg)
    Available N
    速效磷 (mg/kg)
    Available P
    速效钾 (mg/kg)
    Available K
    2007 试验前 Initial 14.1 1.00 103.13 23.30 121.58
    2022 PT 14.23 1.08 109.23 39.56 125.35
    RT 14.35 1.09 110.51 39.75 126.63
    ST 14.96 1.15 113.37 42.33 129.94
    STS 15.83 1.22 121.74 46.23 133.42
    注: PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with every two-year subsoiling.
    下载: 导出CSV

    表  2   耕作施肥作业程序

    Table  2   Operation procedure of tillage and fertilization

    耕作方式
    Tillage pattern
    作业程序
    Operation procedure
    常年翻耕
    Perennial plowing
    tillage (PT)
    前茬玉米秸秆全部粉碎还田 → 撒施底肥 → ILFQ330铧式犁翻耕一遍 (深度25 cm) → 旋耕机旋耕两遍 (深度15 cm) → 耙地两遍 → 筑埂打畦 → 播种机播种
    Smashing and returning all the maize straws to field → broadcasting basal fertilizer → ploughing once (25 cm in depth) with ILFQ330 share type plow → rotary tillage twice (15 cm in depth) → raking twice → ridge building → planter sowing
    常年旋耕
    Perennial rotary
    tillage (RT)
    前茬玉米秸秆全部粉碎还田 → 撒施底肥 → 旋耕机旋耕两遍 (深度15 cm) → 耙地两遍 → 筑埂打畦 → 播种机播种
    Returning maize straw to the field → broadcasting basal fertilizer → rotary tillage twice (15 cm in depth) → raking twice → ridge building → planter sowing
    常年条旋耕
    Perennial strip
    rotary tillage
    (ST)
    前茬玉米秸秆全部粉碎还田 → 2BMYF-10/5型多功能播种机一次性完成播种行旋耕 (深度15 cm),施底肥,起畦和播种作业 (2BMYF-10/5型多功能播种机设置小麦行距为18 cm+32 cm,其中播种行宽为18 cm,即旋耕面积约占总面积的36%)。
    Returning maize straw to the field → committing rotary tillage on sowing row (depth 15 cm), basal fertilization, ridge building and sowing at the same time using 2BMYF-10/5 multi-functional seeder. The rotary tillage area accounted for about 36% of the total area
    隔两年深松+
    条旋耕
    Strip rotary tillage
    with a two-year
    subsoiling interval
    (STS)
    前茬玉米秸秆全部粉碎还田 → ZS-180型振动深松机深松一遍 (深度38 cm) → 2BMYF-10/5型多功能播种机一次性完成播种行旋耕 (深度15 cm),施底肥,起畦和播种作业 (2BMYF-10/5型多功能播种机设置小麦行距为18 cm+32 cm,其中播种行宽为18 cm,即旋耕面积约占总面积的36%)
    Returning maize straw to the field → deep loosening once (depth 38 cm) using ZS-180 type vibration deep loosening machine → sowing row rotating tillage (depth 15 cm), basal fertilization, cardigan and sowing operations at the same time using 2BMYF-10/5 multi-functional seeder, the rotary tillage area accounted for about 36% of the total area
    下载: 导出CSV

    表  3   不同耕作方式下小麦开花期氮素的积累和分配

    Table  3   Nitrogen accumulation and allocation at anthesis of wheat as affected by tillage patterns

    耕作方式
    Tillage
    pattern
    地上部氮积累量
    N accumulation
    in shoot (kg/hm2)
    氮积累量 N accumulation (kg/hm2)
    分配比例 Distribution rate (%)

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    PT 224.96 b 99.03 a 77.97 b 47.96 b 44.02 a 34.66 a 21.32 a
    RT 216.89 c 95.24 b 74.76 c 46.89 c 43.91 a 34.47 a 21.62 a
    ST 214.63 c 94.05 b 73.90 c 46.68 c 43.82 a 34.43 a 21.75 a
    STS 230.05 a 101.11 a 79.87 a 49.07 a 43.95 a 34.72 a 21.33 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV

    表  4   不同耕作方式下小麦成熟期氮素的积累和分配

    Table  4   Nitrogen accumulation and allocation at maturity of wheat as affected by tillage patterns

    耕作方式
    Tillage
    pattern
    地上部氮积累量
    Shoot N accumulation
    (kg/hm2)
    氮积累量 N accumulation (kg/hm2) 分配比例 Distribution rate (%)

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    籽粒
    Grain

    Leaf
    茎秆+叶鞘
    Stem + leaf sheath
    穗轴+颖壳
    Spike stalk+shell
    籽粒
    Grain
    PT 288.34 b 13.81 b 47.46 c 13.49 b 213.57 b 4.79 b 16.46 c 4.68 b 74.07 b
    RT 264.54 c 15.03 a 50.62 b 14.42 a 184.48 c 5.68 a 19.13 b 5.45 a 69.74 c
    ST 262.19 c 14.97 a 54.67 a 14.47 a 178.08 d 5.71 a 20.85 a 5.52 a 67.92 d
    STS 299.19 a 12.65 c 42.97 d 11.79 c 231.78 a 4.23 c 14.36 d 3.94 c 77.47 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著 (P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV

    表  5   不同耕作方式下小麦开花后营养器官氮素转运

    Table  5   Nitrogen transport of vegetative organs after anthesis of wheat as affected by tillage patterns

    耕作
    方式
    Tillage
    pattern
    营养器官氮素积累量
    N accumulation in vegetative organs
    花前贮存氮素
    N storage before anthesis
    花后氮素
    N after anthesis
    开花期
    Anthesis
    (kg/hm2)
    成熟期
    Maturity
    (kg/hm2)
    转运量
    Translocation
    amount
    (kg/hm2)
    转运率
    Translocation
    rate
    (%)
    对籽粒氮贡献率
    Contribution rate
    to grain N
    (%)
    吸收量
    Absorption
    amount
    (kg/hm2)
    对籽粒氮贡献率
    Contribution rate
    to grain N
    (%)
    PT 224.96 b 74.77 c 150.19 b 66.76 b 70.32 c 63.38 b 29.68 a
    RT 216.89 c 80.06 b 136.83 c 63.09 c 74.17 a 47.65 c 25.83 b
    ST 214.63 c 84.11 a 130.52 d 60.81 d 73.29 b 47.56 c 26.71 b
    STS 230.05 a 67.41 d 162.64 a 70.70 a 70.17 c 69.14 a 29.83 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV

    表  6   不同耕作方式下小麦产量和氮素利用效率

    Table  6   Wheat yield and nitrogen use efficiency as affected by tillage patterns

    耕作
    方式
    Tillage
    pattern
    穗数
    Spikes
    (×104/hm2)
    穗粒数
    Kernel number
    per spike
    千粒重
    1000-kernel
    weight
    (g)
    产量
    Yield
    (kg/hm2)
    氮素吸收效率
    N uptake
    efficiency
    (kg/kg)
    籽粒氮利用效率
    Grain N use
    efficiency
    (kg/kg)
    氮收获指数
    N harvest index
    (%)
    氮肥偏生产力
    N partial factor
    productivity
    (kg/kg)
    PT 652.21 a 39.00 a 42.90 b 9324.97 b 1.20 b 32.34 c 74.07 b 38.85 b
    RT 620.24 b 39.60 a 41.50 c 8720.54 c 1.10 c 32.96 b 69.74 c 36.34 c
    ST 608.03 b 38.67 a 40.65 d 8492.67 d 1.09 c 32.39 c 67.92 d 35.39 d
    STS 668.12 a 40.63 a 44.70 a 10054.85 a 1.25 a 33.61 a 77.47 a 41.90 a
    注:PT—常年翻耕;RT—常年旋耕;ST—常年条旋耕;STS—隔两年深松+条旋耕。同列数据后不同小写字母表示耕作方式间差异显著(P<0.05)。
    Note: PT—Perennial plowing tillage; RT—Perennial rotary tillage; ST—Perennial strip rotary tillage; STS—Strip rotary tillage with a two-year subsoiling interval. Different lowercase letters after data in the same column indicate significant difference among tillage patterns (P<0.05).
    下载: 导出CSV
  • [1]

    Zhang Y J, Wang S L, Wang H, et al. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maize rotations[J]. Agricultural and Forest Meteorology, 2018, 263: 107−117. DOI: 10.1016/j.agrformet.2018.08.012

    [2] 强小嫚, 张凯, 米兆荣, 等. 黄淮海平原地区深松和灌水次数对冬小麦―夏玉米节水增产的影响[J]. 中国农业科学, 2019, 52(3): 491−502. DOI: 10.3864/j.issn.0578-1752.2019.03.009

    Qiang X M, Zhang K, Mi Z R, et al. Effects of subsoiling and irrigation frequency on water saving and yield increasing of winter wheat and summer maize in the Huang-Huai-Hai Plain[J]. Scientia Agricultura Sinica, 2019, 52(3): 491−502. DOI: 10.3864/j.issn.0578-1752.2019.03.009

    [3] 吴金芝, 黄明, 李友军, 等. 耕作方式和氮肥用量对旱地小麦产量、水分利用效率和种植效益的影响[J]. 水土保持学报, 2021, 35(5): 264−271.

    Wu J Z, Huang M, Li Y J, et al. Effects of tillage practices and nitrogen rates on grain yield, water use efficiency and planting profit in winter wheat in dryland[J]. Journal of Soil and Water Conservation, 2021, 35(5): 264−271.

    [4] 付帅, 刘晓明, 马阳, 等. 氮素形态对强筋和中筋小麦产量和品质的影响[J]. 植物营养与肥料学报, 2022, 28(1): 83−93. DOI: 10.11674/zwyf.2021311

    Fu S, Liu X M, Ma Y, et al. Effects of nitrogen supply forms on the quality and yield of strong and medium gluten wheat cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 83−93. DOI: 10.11674/zwyf.2021311

    [5] 杨迪迪, 徐东忆, 陈立, 等. 耕播方式与减氮对扬辐麦13氮素吸收利用的影响[J]. 麦类作物学报, 2022, 42(12): 1509−1517.

    Yang D D, Xu D Y, Chen L, et al. Effect of reduced nitrogen application on nitrogen uptake and utilization of Yangfumai 13 under different tillage and sowing methods[J]. Journal of Triticeae Crops, 2022, 42(12): 1509−1517.

    [6] 马林, 孟凡德, 石书兵, 等. 不同耕作方式对小麦硝酸还原酶活性和旗叶衰老指标的影响[J]. 新疆农业大学学报, 2007, 30(3): 23−27. DOI: 10.3969/j.issn.1007-8614.2007.03.006

    Ma L, Meng F D, Shi S B, et al. Effect of different tillage on flag leaf senescence index and nitrate reductase activity of spring wheat[J]. Journal of Xinjiang Agricultural University, 2007, 30(3): 23−27. DOI: 10.3969/j.issn.1007-8614.2007.03.006

    [7] 赵红梅, 高志强, 赵维峰, 等. 休闲期耕作对旱地小麦籽粒蛋白质形成及其相关酶活性的影响[J]. 麦类作物学报, 2013, 33(2): 331−338. DOI: 10.7606/j.issn.1009-1041.2013.02.21

    Zhao H M, Gao Z Q, Zhao W F, et al. Effect of tillage in fallow period on grain protein and its related enzyme activity in dryland wheat[J]. Journal of Triticeae Crops, 2013, 33(2): 331−338. DOI: 10.7606/j.issn.1009-1041.2013.02.21

    [8] 王静, 王小纯, 熊淑萍, 等. 耕作方式对砂姜黑土小麦氮代谢及氮素利用效率的影响[J]. 麦类作物学报, 2014, 34(8): 1111−1117. DOI: 10.7606/j.issn.1009-1041.2014.08.14

    Wang J, Wang X C, Xiong S P, et al. Effects of different tillage methods on nitrogen metabolism and nitrogen utilization efficiency of wheat grown in lime concretion black soil region[J]. Journal of Triticum Crops, 2014, 34(8): 1111−1117. DOI: 10.7606/j.issn.1009-1041.2014.08.14

    [9] 黄明, 吴金芝, 李友军, 等. 耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J]. 中国农业科学, 2021, 54(24): 5206−5219. DOI: 10.3864/j.issn.0578-1752.2021.24.004

    Huang M, Wu J Z, Li Y J, et al. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland[J]. Scientia Agricultura Sinica, 2021, 54(24): 5206−5219. DOI: 10.3864/j.issn.0578-1752.2021.24.004

    [10] 梅晶晶, 周苏玫, 徐凤丹, 等. 小麦根蘖发育和产量对耕作和追氮方式以及施氮量的响应[J]. 植物营养与肥料学报, 2020, 26(6): 1069−1080. DOI: 10.11674/zwyf.19374

    Mei J J, Zhou S M, Xu F D, et al. Response of root and tiller development and yield of wheat to tillage and nitrogen topdressing patterns and nitrogen application rates[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1069−1080. DOI: 10.11674/zwyf.19374

    [11] 赵雯馨, 黄明, 李友军, 等. 夏闲季不同耕作方式对豫西旱地小麦旗叶生理特性和产量的影响[J]. 干旱地区农业研究, 2023, 41(5): 175−185. DOI: 10.7606/j.issn.1000-7601.2023.05.19

    Zhao W X, Huang M, Li Y J, et al. Effects of different tillage practices on physiological characteristics in flag leaves and grain yield of wheat during the summer fallow season in dryland of Western Henan[J]. Agricultural Research in the Arid Area, 2023, 41(5): 175−185. DOI: 10.7606/j.issn.1000-7601.2023.05.19

    [12]

    Yin W, Fan Z L, Hu F L, et al. No-tillage with straw mulching boosts wheat grain yield by improving the eco-physiological characteristics in arid regions[J]. Journal of Integrative Agriculture, 2023, 22(11): 3416−3429. DOI: 10.1016/j.jia.2023.02.041

    [13]

    He J N, Shi Y, Zhao J Y, Yu Z W. Strip rotary tillage with subsoiling increases winter wheat yield by alleviating leaf senescence and increasing grain filling[J]. The Crop Journal, 2020, 8(2): 327−340. DOI: 10.1016/j.cj.2019.08.007

    [14]

    He J N, Shi Y, Yu Z W. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China[J]. Soil and Tillage Research, 2019, 187: 182−193. DOI: 10.1016/j.still.2018.12.011

    [15] 桂润飞, 王在满, 潘圣刚, 等. 香稻分蘖期减氮侧深施液体肥对产量和氮素利用的影响[J]. 中国农业科学, 2022, 55(8): 1529−1545. DOI: 10.3864/j.issn.0578-1752.2022.08.005

    Gui R F, Wang Z M, Pan S G, et al. Effects of nitrogen-reducing side deep application of liquid fertilizer at tillering stage on yield and nitrogen utilization of fragrant rice[J]. Scientia Agricultura Sinica, 2022, 55(8): 1529−1545. DOI: 10.3864/j.issn.0578-1752.2022.08.005

    [16]

    Wei Y H, Wang X C, Zhang Z Y, et al. Nitrogen regulating the expression and localization of four glutamine synthetase isoforms in wheat (Triticum aestivum L. )[J]. International Journal of Molecular Sciences, 2020, 21(17): 6299. DOI: 10.3390/ijms21176299

    [17] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.

    Li H S, Sun Q, Zhao S J, et al. Principles and techniques of plant physiological and biochemical experiments[M]. Beijing: High Education Press, 2000.

    [18] 王海琪, 黄艺华, 蒋桂英, 等. 氮肥基追比例对滴灌春小麦氮代谢及氮肥利用率的影响[J]. 水土保持学报, 2022, 36(1): 297−306.

    Wang H Q, Huang Y H, Jiang G Y, et al. Effects of base topdressing ratio of nitrogen fertilizer on nitrogen metabolism and use efficiency of spring wheat under drip irrigation[J]. Journal of Soil and Water Conservation, 2022, 36(1): 297−306.

    [19] 汝晨, 胡笑涛, 吕梦薇, 等. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55(17): 3303−3320. DOI: 10.3864/j.issn.0578-1752.2022.17.004

    Ru C, Hu X T, Lü M W, et al. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis[J]. Scientia Agricultura Sinica, 2022, 55(17): 3303−3320. DOI: 10.3864/j.issn.0578-1752.2022.17.004

    [20] 华一帆, 秦际远, 王洁, 等. 播种方式与缓控释氮肥一次性基施对冬小麦干物质积累转运和产量的影响[J]. 植物营养与肥料学报, 2022, 28(12): 2185−2200. DOI: 10.11674/zwyf.2022175

    Hua Y F, Qin J Y, Wang J, et al. Effects of sowing pattern and one-time application of controlled-release fertilizer on dry matter accumulation, remobilization, and yield of winter wheat[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2185−2200. DOI: 10.11674/zwyf.2022175

    [21] 崔亚坤, 王妮妮, 田中伟, 等. 分蘖和拔节期干旱对小麦植株氮素积累转运的影响[J]. 麦类作物学报, 2019, 39(3): 322−328. DOI: 10.7606/j.issn.1009-1041.2019.03.10

    Cui Y K, Wang N N, Tian Z W, et al. Effect of water deficit during tillering and jointing stages on nitrogen accumulation and translocation in winter wheat[J]. Journal of Triticeae Crops, 2019, 39(3): 322−328. DOI: 10.7606/j.issn.1009-1041.2019.03.10

    [22] 冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响[J]. 作物学报, 2019, 45(8): 1250−1259.

    Feng J H, Huang J F, Liu T Q, et al. Effects of tillage and straw returning methods on N2O emission from paddy fields, nitrogen uptake of rice plant and grain yield[J]. Acta Agronomica Sinica, 2019, 45(8): 1250−1259.

    [23] 熊淑萍, 王静, 王小纯, 等. 耕作方式及施氮量对砂姜黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响[J]. 植物生态学报, 2014, 38(7): 767−775.

    Xiong S P, Wang J, Wang X C, et al. Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region[J]. Chinese Journal of Plant Ecology, 2014, 38(7): 767−775.

    [24]

    Guo J J, Fan J L, Xiang Y Z, et al. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize[J]. Agricultural Water Management, 2022, 261: 107389. DOI: 10.1016/j.agwat.2021.107389

    [25] 刘璐, 王朝辉, 刁超朋, 等. 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系[J]. 植物营养与肥料学报, 2018, 24(3): 599−608. DOI: 10.11674/zwyf.17168

    Liu L, Wang Z H, Diao C P, et al. Grain yields of different wheat cultivars and their relations to dry matter and NPK requirements in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 599−608. DOI: 10.11674/zwyf.17168

    [26] 李朝苏, 李明, 吴晓丽, 等. 耕作播种方式对稻茬小麦生长和养分吸收利用的影响[J]. 应用生态学报, 2020, 31(5): 1435−1442.

    Li C S, Li M, Wu X L, et al. Effects of tillage and sowing practices on plant growth, soil nutrient uptake and utilization of wheat after rice[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1435−1442.

    [27]

    Wang X Z, Fu Z L, Zhang Q K, Huang Y X. Short-term subsoiling effects with different wing mounting heights before winter wheat on soil properties and wheat growth in Northwest China[J]. Soil and Tillage Research, 2021, 213: 105151. DOI: 10.1016/j.still.2021.105151

    [28]

    Lv G H, Han W, Wang H B, et al. Effect of subsoiling on tillers, root density and nitrogen use efficiency of winter wheat in loessal soil[J]. Plant, Soil and Environment, 2019, 65(9): 456−462. DOI: 10.17221/311/2019-PSE

    [29] 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析[J]. 中国农业科学, 2016, 49(12): 2267−2279. DOI: 10.3864/j.issn.0578-1752.2016.12.003

    Xiong S P, Wu K Y, Wang X C, et al. Analysis of root absorption characteristics and nitrogen utilization of wheat genotypes with different N efficiency[J]. Scientia Agricultura Sinica, 2016, 49(12): 2267−2279. DOI: 10.3864/j.issn.0578-1752.2016.12.003

    [30]

    Zhao K N, Wang H T, Wu J Z, et al. One-off irrigation improves water and nitrogen use efficiency and productivity of wheat as mediated by nitrogen rate and tillage in drought-prone areas[J]. Field Crops Research, 2023, 295: 108898. DOI: 10.1016/j.fcr.2023.108898

    [31] 关小康, 王静丽, 刘影, 等. 轮耕秸秆还田促进冬小麦干物质积累提高水氮利用效率[J]. 水土保持学报, 2018, 32(3): 280−288.

    Guan X K, Wang J L, Liu Y, et al. Rotational tillage with straw returning increased dry matter accumulation and utilization efficiency of water and nitrogen in winter wheat[J]. Journal of Soil and Water Conservation, 2018, 32(3): 280−288.

    [32] 翟振, 李玉义, 张莉, 等. 短期深旋松对黄淮海沙姜黑土耕层结构及小麦生长的影响[J]. 应用生态学报, 2017, 28(4): 1211−1218.

    Zhai Z, Li Y Y, Zhang L, et al. Effects of short-term deep vertically rotary tillage on topsoil structure of lime concretion black soil and wheat growth in Huang-Huai-Hai Plain, China[J]. Chinese Journal of Applied Ecology, 2017, 28(4): 1211−1218.

    [33] 王健波, 严昌荣, 刘恩科, 等. 长期免耕覆盖对旱地冬小麦旗叶光合特性及干物质积累与转运的影响[J]. 植物营养与肥料学报, 2015, 21(2): 296−305. DOI: 10.11674/zwyf.2015.0203

    Wang J B, Yan C R, Liu E K, et al. Effects of long-term no-tillage with straw mulch on photosynthetic characteristics of flag leaues and dry matter accumulation and translocation of winter wheat in dryland[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(2): 296−305. DOI: 10.11674/zwyf.2015.0203

    [34]

    Sun X F, Ding Z S, Wang X B, et al. Subsoiling practices change root distribution and increase post-anthesis dry matter accumulation and yield in summer maize[J]. PLoS ONE, 2017, 12(4): e0174952. DOI: 10.1371/journal.pone.0174952

    [35] 孙敏, 白冬, 高志强, 等. 休闲期耕作对旱地麦田土壤水分与小麦植株氮素吸收、利用的影响[J]. 水土保持学报, 2014, 28(1): 203−208. DOI: 10.3969/j.issn.1009-2242.2014.01.039

    Sun M, Bai D, Gao Z Q, et al. Effects of tillage in fallow period on soil water and nitrogen absorption and utilization of dryland wheat[J]. Journal of Soil and Water Conservation, 2014, 28(1): 203−208. DOI: 10.3969/j.issn.1009-2242.2014.01.039

  • 期刊类型引用(1)

    1. 姜沛沛,郭锦花,肖慧淑,彭彦珉,张军,田文仲,吕军杰,吴金芝,王贺正,付国占,黄明,李友军. 轮耕模式对旱地玉-麦两熟体系作物产量和品质的影响. 草业学报. 2025(06): 181-192 . 百度学术

    其他类型引用(0)

图(2)  /  表(6)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  64
  • PDF下载量:  136
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-12-17
  • 录用日期:  2024-02-19
  • 网络出版日期:  2024-05-15
  • 刊出日期:  2024-04-30

目录

/

返回文章
返回