The effects of deficit irrigation on the yield and nitrogen utilization of different spring wheat cultivars under drip irrigation in Xinjiang
-
摘要:目的
在水肥一体化条件下,研究不同生育期不同亏缺灌溉水平对春小麦产量和氮素利用的影响,为优化新疆春小麦水肥管理、提高小麦生产水肥效益提供技术支撑。
方法于2022、2023年在石河子大学农学院实验站进行了管栽试验和小区试验,灌溉方式为滴灌。采用裂区设计,主区为干旱敏感品种新春22号(XC22)和耐旱品种新春6号(XC6);副区为灌溉处理,设置全生育期充分灌溉对照[CK,土壤湿度为田间持水量(FC)的75%~80%];分蘖期轻度亏缺(T1,60%~65% FC)、中度亏缺(T2,45%~50% FC);拔节期轻度亏缺(J1,60%~65% FC)、中度亏缺(J2,45%~50% FC) 5个处理。调查了开花前后春小麦茎鞘、叶、穗及籽粒干物重、氮素含量,及成熟期小麦产量和产量构成因素;计算了花前氮素积累与转运、花后氮素吸收量及氮素利用率。
结果两品种小麦成熟期植株氮素积累量(166.15~238.87 kg/hm2)、成熟期营养器官氮素分配率、各器官花前氮素转运量(21.76~57.66 kg/hm2)及其贡献率(14.15%~31.66%)、植株花前氮素转运量(78.67~147.66 kg/hm2)及贡献率(51.58%~81.11%)均表现为T2、J2处理低于T1、J1,而T2、J2处理下籽粒氮素分配率、植株花后氮素吸收量及贡献率则高于T1、J1。亏缺灌溉处理下,品种XC6各器官氮素积累与分配、各器官花前氮素转运量及贡献率、产量及产量构成因素总体上高于干旱敏感品种XC22。与CK处理相比,T1处理下耐旱品种(XC6)成熟期植株氮素积累量显著提高了9.98%,茎鞘花前氮素转运量及贡献率分别提高了24.06%、18.91%,植株花前氮素转运量及贡献率分别显著提高了19.21%、12.53%,产量显著提高了12.17%,氮素利用率提高了2.25%,氮肥生产效率显著提高了12.16%,氮素收获指数提高了3.71%。而干旱敏感品种XC22的各项指标在4个亏缺灌溉处理下均低于CK。
结论在新疆灌溉绿洲农业区,分蘖期轻度亏缺灌溉(60%~65% FC)可显著提高耐旱型春小麦花前氮素的积累量和向籽粒的转运,提高氮素利用率和氮素收获指数,并有效提高产量,进而达到节水高产的效果;而干旱敏感型品种不适宜于任何时期的亏缺灌溉。
Abstract:ObjectivesExploring the response characteristics of spring wheat cultivars with different drought resistant capacities to deficit irrigation during the growth period, to provide technical support for optimizing water and fertilizer management of spring wheat in Xinjiang.
MethodsIn 2022 and 2023, pipe and field planting experiments, with the split zone design, were conducted at the Agricultural College Experimental Station of Shihezi University. The main factor was cultivar, including a drought sensitive cultivar Xinchun22 (XC22) and drought resistant cultivar Xinchun6 (XC6). The sub-factor was deficit irrigation period, including a full irrigation control (75%−80% of field water capacity) throughout the entire growth period (CK); a mild deficit irrigation (T1, 60%−65% FC), and a moderate deficit irrigation (T2, 45%−50% FC) during tillering stage, and mild and moderate deficit irrigation during jointing stage (J1, and J2), respectively. At initial and after flowering stage, plant samples were collected for the determination of dry matter and nitrogen content of various organs, and at maturing stage the yield and yield components were investigated. Then the pre-anthesis N accumulation and export, post-anthesis N accumulation, and nitrogen fertilizer use efficiency were calculated.
ResultsThe N accumulation (166.15−238.87 kg/hm2), vegetative organ N allocation rate, pre-anthesis N export (21.76−57.66 kg/hm2) and its contribution to grain (14.15%−31.66%), pre-anthesis total nitrogen export (78.67−147.66 kg/hm2) and contribution rate (51.58%−81.11%) of the two wheat cultivars were all lower in the T2 and J2 treatments than in T1 and J1, while the grain N allocation rate, post-flowering N absorption and contribution rate of plants were higher in the T2 and J2 treatments than in T1 and J1. Under deficit irrigation treatment T1 and J1, XC6 was recorded higher pre-anthesis N accumulation, export and contribution rate in various organs, and yield and yield components than XC22. For XC6, compared with CK, T1 treatment significantly increased the pre-anthesis N export and contribution rates by 24.06% and 18.91% in stems and sheaths, and by 19.21% and 12.53% in whole plants, thereby enhanced maturing plant N accumulation by 9.98% and yield by 12.17%, and elevated N use efficiency, fertilizer N production efficiency, and N harvest index by 2.25%, 12.16%, and 3.71%.
ConclusionsFor drought resistant spring wheat cultivar, mild deficit irrigation at tillering stage (60%−65% FC) is suitable for the accumulation and transportation of nitrogen at pre-anthesis stage, so could improve nitrogen absorption and nitrogen harvest index, and effectively increase yield, and achieve water-saving and high-yield effects. However, deficit irrigation is not suitable for the yield and nitrogen use efficiency of drought sensitive wheat cultivar, regardless drought stress period and intensity.
-
干旱条件下土壤相对湿度每降低10%,作物减产约5%[1]。新疆常年干旱少雨,年降水量少且不均匀,干旱缺水是限制新疆农业生产的主要因素[2]。春小麦是新疆最重要的粮食作物,其生产能力是保障区域粮食安全的关键。据统计,小麦生育前、中期干旱发生频率为30%~40%[3],尤其是北疆麦区生育前、中期干旱发生频率高达80%左右[4]。滴灌小麦是新疆小麦的主要种植模式,多年来滴灌技术已经广泛应用与发展,作物的产量和水肥利用潜力已得到充分挖掘[5]。因此,探究其氮素积累与转运、产量形成和氮素利用对生育期亏缺灌溉的响应,有助于理解其生长与胁迫响应间的平衡,通过挖掘滴灌小麦生物学增产潜力,进一步提高氮素利用率。研究结果为推动新疆小麦产业向绿色高效、可持续发展转型,保障新疆粮食安全与生态安全具有重要的现实意义。
土壤水分是作物氮素吸收、转运以及同化的限制因子之一,对土壤中氮素转化与转运也有重要的影响[6]。小麦开花至成熟阶段是氮素吸收分配的关键时期,花后营养器官氮素的转运调控籽粒氮素的积累[7]。已有研究表明,在黄淮海麦区,分蘖期轻度干旱(60%~65%)提高了分蘖—拔节、拔节—开花阶段植株氮素积累量、花前氮素转运量及其对籽粒贡献率,而拔节期轻度干旱则有利于提高拔节—开花、开花—成熟阶段的氮素积累量、花后氮素积累量及其对籽粒氮贡献率,但降低了花前氮素转运量[8],拔节期和开花期灌水(75 mm),有利于提高产量及氮素利用率[9];在长江中下游麦区,分蘖后期—成熟期,轻度土壤干旱显著提高了千粒重、穗粒数、产量和收获指数,显著降低了穗数,重度土壤干旱显著降低了产量及其构成因子[10],越冬期(60 mm)+拔节期(60 mm)灌溉有利于提高穗数和产量[11]。郭曾辉等[12]研究发现,在西北麦区限水(60 mm)减氮可有效提高小麦产量、氮素收获指数、氮素利用率、氮肥农学效率和氮肥表观利用率,有利于维持氮素平衡。返青期中度干旱—复水,有利于提高小麦产量及水分利用效率,拔节期中度干旱—复水增加了穗粒数、千粒重和产量,重度干旱—复水显著降低了小麦产量和收获指数[13]。可见,水分亏缺对作物产生的影响与亏缺发生的时期、程度、时长等因素密切相关[14],干旱锻炼能够帮助作物形成抗旱记忆以应对随后的逆境[15−16]。
滴灌小麦对亏缺灌溉的响应受不同亏缺灌溉情景(时期、程度)的影响,进而影响氮素的积累与转运及产量形成。目前关于干旱胁迫对小麦氮素利用的影响已有较多研究[17−18],但在滴灌条件下,作物生育期亏缺灌溉对春小麦叶、茎鞘、穗和籽粒氮素积累、转运和利用的影响缺乏系统研究。因此,以具不同抗旱能力的两个滴灌春小麦品种为材料,研究分蘖期与拔节期轻度和中度亏缺灌溉对春小麦叶、茎鞘、穗和籽粒氮素积累与转运、产量形成及氮素利用的影响,探讨不同生育时期亏缺灌溉条件下春小麦的氮素利用规律,为新疆滴灌春小麦节水高产栽培技术的制定提供理论支撑。
1. 材料与方法
1.1 试验地概况
试验于2022、2023年4月至7月在新疆石河子市石河子大学农学院实验站(44°18′N, 85°59′E)进行。石河子多年平均温度为7.8℃;多年平均降雨量208 mm,多年平均蒸发量1660 mm,相对湿度在65%左右,生育期间气象参数如图1所示。供试土壤类型为灌溉灰漠土,供试0—60 cm土壤基本性状见表1。
表 1 供试0—60 cm土壤基本性状Table 1. Basic properties in 0−60 cm of test soil年份 Year 全氮 (g/kg)
Total N碱解氮 (mg/kg)
Alkali-hydrolyzable N速效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K有机质 (g/kg)
Organic matterpH 2022 1.30 55.71 15.96 132 18.40 7.7 2023 1.28 55.75 15.89 132 17.82 7.6 1.2 试验设计
试验采用裂区设计,品种为主区,供试材料为新春22号(XC22,水分敏感型)与新春6号(XC6,耐旱型);水分处理为副区,设置5个水分处理:全生育期正常灌溉(CK)、分蘖期轻度亏缺灌溉(T1)、分蘖期中度亏缺灌溉(T2)、拔节期轻度亏缺灌溉(J1)和拔节期中度亏缺灌溉(J2) (表2)。在小麦分蘖和拔节期开始控水,为保证轻度亏缺灌溉和中度亏缺灌溉时间相同,中度亏缺灌溉需要提前5天开始控制水量,直至土壤含水量达到相应水平,亏缺灌溉处理的时间为8天,然后进行灌水使其达到田间持水量的75%~80% 。管栽试验易于管理,减少误差,而田间小区试验更符合大田生产,故设置管栽与田间小区试验,两试验播种量保持一致,管栽试验选用未封底的PVC管,直径30 cm、管壁厚1 cm、管柱高60 cm,分别取出0—20、20—40和40—60 cm土层的土壤晾晒过筛并依次填入PVC管中,先填入40 cm深的土充分灌水使其自然沉实,完全沉实后再填入5 cm的表土用水沉实,按照管的面积施入基肥,最后盖上15 cm的表土填平,同时埋好PVC管周围土壤以恢复原状。田间小区验证试验用于产量测定,管栽试验用于小麦植株各器官全氮含量的测定,布置如图2所示。
表 2 不同处理春小麦分蘖期和拔节期灌溉量Table 2. Irrigation amount at tillering and jointing stages of spring wheat in each treatment处理
Treatment分蘖期
Tillering stage拔节期
Jointing stageCK 75%~80% FC 75%~80% FC T1 60%~65% FC 75%~80% FC T2 45%~50% FC 75%~80% FC J1 75%~80% FC 60%~65% FC J2 75%~80% FC 45%~50% FC 注:FC—最大田间持水量。灌水量45%~50%FC、60%~65%FC分别为中度、轻度亏缺灌溉,75%~80%FC为充分灌溉。
Note: FC—Maximum field water capacity. 45%−50%FC and 60%−65%FC treatments are medium and light deficit irrigation, and 75%−80%FC is sufficient irrigation.小区种植面积为12 m2 (3 m×4 m),生育期施氮255 kg/hm2,氮肥基追比3∶7,播前将120 kg/hm2的P2O5 (过磷酸钙,P2O5 12%)和30%的氮肥(尿素,N 46%)作基肥翻耕于土壤,70%的氮肥于分蘖期、拔节期、孕穗—扬花期、灌浆期按20∶40∶35∶5比例随滴灌水施入土壤,各小区间埋置防渗膜(60 cm),防止所施肥料侧渗。试验运用宽窄行(12.5+20+12.5+15 cm)、“1管4行”的方式种植。滴灌带管径16 mm,滴头间距30 cm,流量2.6 L/h,置于20 cm的宽行。两年播种量均为345 kg/hm2,分别于2022-04-01和2023-04-03播种,并于2022-07-04和2023-07-07收获,其他管理措施同大田生产。
采用Watermark电阻式水分张力感应器(model 200SS; Irrometer Co., River-side, USA)确定土壤含水量变化,在大田12.5 cm麦行中间,将Watermarker垂直埋于0—20 cm深度,并于小麦生育期每日20:00测定,各处理重复3次。试验前取0—20 cm土层土壤,测定其含水量并读取Watermarker数值,通过对数模型得到Watermarker和田间最大持水量的曲线图,小麦生育期间通过读取Watermarker数值来确定灌水量,其他时期灌水同大田生产。
1.3 测定指标与方法
1.3.1 氮素积累、分配与转运测定计算
在小麦进入开花期(50%植株进入开花期)时,选取同一天开花且长势一致的小麦植株进行挂牌标记。于分蘖期、拔节期、开花期和成熟期进行取样。每个处理分别取代表性的10株小麦,分蘖期和拔节期植株分为茎鞘、叶;开花期分为茎鞘、叶、穗;成熟期植株分为茎鞘、叶、穗轴+颖壳、籽粒,于105℃杀青30 min,80℃烘干至恒重后称重,样品粉碎过0.25 mm筛,采用凯氏定氮法[19]测定叶、茎鞘、穗和籽粒的全氮含量。成熟期,每个处理选取1 m2小麦进行收割并使其自然晾干,测定其产量及其构成因子(穗数、穗粒数和千粒重),重复3次。参照张法全等[20]的方法计算氮素积累量、氮素分配率和花前、花后氮素转运和贡献的相关参数。
各器官氮素积累量=各器官氮素含量×各器官干物质量;
各器官的氮素分配率=各器官氮素积累量/植株总含氮量;
花前营养器官氮素转运量=开花期营养器官氮素积累量−成熟期营养器官氮素积累量;
花前营养器官氮素转运率=花前营养器官氮素转运量/开花期营养器官氮素积累量;
花前营养器官氮素贡献率=花前营养器官氮素转运量/成熟期籽粒氮素积累量;
花后氮素吸收量=成熟期植株氮素积累量−花前氮素积累量;
花后氮素贡献率=花后氮素吸收量/成熟期籽粒氮素积累量;
籽粒氮素积累量=成熟期籽粒产量×成熟期籽粒含氮量;
1.3.2 氮素利用计算
结合1.3.1中氮素积累量计算氮素利用率、氮肥生产效率、氮收获指数,参考张法全等[20]的方法计算。
氮素利用率=成熟期籽粒产量/成熟期植株氮素积累量;
氮肥生产效率=籽粒产量/施氮量;
氮素收获指数=成熟期籽粒氮素积累量/成熟期植株氮素积累量;
1.4 数据处理
使用Microsoft Excel 2010、SPSS 26.0和Origin 2023软件进行数据处理、统计分析和图形制作,且利用One-way ANOVA、Two-way ANOVA和Duncan法进行方差分析和多重比较。
2. 结果与分析
2.1 亏缺灌溉下春小麦氮素积累与分配
2.1.1 亏缺灌溉下植株氮素积累
如图3所示,两年试验结果发现,两品种小麦成熟期氮素积累量(166.15~238.87 kg/hm2)随亏缺程度加重而降低,且分蘖期亏缺处理优于拔节期亏缺处理,T1植株氮素积累量比J1平均高4.95%,T2 植株氮素积累量比J2平均高7.19%。干旱敏感品种XC22成熟期CK处理的氮素积累量较T2、J2处理分别显著高24.78%、31.61%,T1处理的氮素积累量也显著高于T2、J2处理,分别高17.06%、23.47%,J1植株氮素积累量比J2高19.46%。耐旱品种XC6成熟期T1处理的氮素积累量较CK、T2和J2处理分别显著高9.98%、17.91%、28.19%,J1处理的氮素积累量显著高于T2和J2处理,J1植株氮素积累量比J2高20.54%。不同品种相比,各时期XC6植株氮素积累量高于XC22,其中T1处理下成熟期XC6植株氮素积累量比XC22显著高出16.44%。
图 3 亏缺灌溉时期对春小麦各生育期地上部氮素积累的影响注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。柱上不同小写字母表示同一生育期处理间差异显著(P<0.05)。Figure 3. Nitrogen accumulation in aboveground parts of spring wheat as affected by deficit irrigation periodNote: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters above the bars mean significant differences among treatments in the same growth stage (P<0.05).2.1.2 亏缺灌溉下植株各器官氮素分配
如图4所示,两年试验结果发现,T1处理下分蘖期干旱敏感品种XC22叶氮素分配率显著高于CK、T2处理,分别高出3.94%、2.98%,耐旱品种XC6叶氮素分配率T1显著高于CK、T2、J1、J2处理,依次高出4.15%、8.22%、3.77%、3.52%。J2处理下开花期干旱敏感型品种XC22茎鞘氮素分配率较CK处理显著降低了7.68%。J2处理下成熟期干旱敏感品种XC22籽粒氮素分配率依次比CK、T1、T2、J1处理显著高出15.09%、10.76%、3.51%、8.31%,耐旱品种XC6籽粒氮素分配率依次比CK、T1、T2、J1处理显著高出6.91%、10.21%、4.00%、7.27%。
图 4 亏缺灌溉下春小麦各器官氮素的分配(%)注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。柱中不同小写字母表示同一器官处理间差异显著(P<0.05)。Figure 4. Proportion of nitrogen allocation in various organs of spring wheat as affected by deficit irrigationNote: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters inside the bars mean significant differences among treatments of the same organ (P<0.05).2.2 亏缺灌溉下春小麦氮素转运
2.2.1 亏缺灌溉下植株各器官氮素转运
如表3所示,两年试验结果发现,灌溉处理对各器官花前氮素转运量(21.76~57.66 kg/hm2)、转运率及贡献率 (14.15%~31.66%)的影响达到显著水平,各器官花前氮素转运量及贡献率随亏缺程度的加重而降低,其中T1处理下XC22茎鞘花前氮素转运量及贡献率比T2分别高31.16%、20.77%,J1处理下茎鞘花前氮素转运量及贡献率比J2分别高45.16%、28.74%,T1处理下XC6茎鞘花前氮素转运量及贡献率比T2分别高47.00%、34.27%,J1处理下茎鞘花前氮素转运量及贡献率比J2分别高80.17%、61.02%。CK处理下春小麦XC22茎鞘花前氮素贡献率依次比T1、J1、T2、J2处理高22.53%、29.96%、47.98%、67.32%,叶花前氮素贡献率CK处理依次比T1、J1、T2、J2处理高16.66%、26.53%、44.53%、48.98%。T1处理下XC6茎鞘花前氮素贡献率分别比J1、CK、T2、J2处理高17.09%、18.91%、34.27%、88.53%,且T1处理下茎鞘花前氮素转运量比CK高24.06%,叶花前氮素贡献率T1分别比J1、CK、T2、J2处理高11.21%、11.44%、27.69%、43.98%。两品种小麦均表现出茎鞘花前氮素转运量及贡献率较叶、穗高,CK处理下XC22茎鞘花前氮素贡献率比叶、穗分别高44.85%、18.88%。T1处理下XC6茎鞘花前氮素贡献率比叶、穗分别高43.46%、15.57%。两品种相比,T1处理下XC6茎鞘花前氮素转运量及贡献率高于XC22,分别比XC22高34.61%、27.03%。品种和亏缺灌溉处理对各器官花前氮素转运量、转运率及茎鞘和叶花前氮素贡献率互作效应显著,T1处理下XC6可有效提高各营养器官花前氮素转运量及贡献率。
表 3 亏缺灌溉下春小麦各营养器官花前积累的氮素的转运及其对籽粒的贡献率Table 3. The translocation of pre-anthesis nitrogen accmulated in various organs and the contribution rate to wheat grains under deficit irrigation treatments年份
Year品种
Variety
(V)处理
Treatment
(N)转运量 (kg/hm2)
Transport amount转运率 (%)
Transport rate贡献率 (%)
Contribution to grain茎鞘
Stem sheath叶
Leaf穗
Spike茎鞘
Stem sheath叶
Leaf穗
Spike茎鞘
Stem sheath叶
Leaf穗
Spike2022 新春22号
XC22CK 46.14 a 31.69 a 33.97 a 69.08 b 76.88 d 62.71 d 31.28 a 21.49 a 23.03 a T1 33.44 b 25.22 b 30.71 b 67.74 b 79.58 c 65.66 cd 23.58 b 17.77 b 21.60 b T2 23.99 d 18.06 d 25.34 c 70.42 b 88.75 b 70.76 b 18.16 d 13.68 cd 19.18 c J1 29.27 c 21.58 c 30.60 b 65.01 c 80.80 c 67.84 bc 20.89 c 15.39 c 21.83 ab J2 23.86 d 17.24 d 25.84 c 76.93 a 92.39 a 80.89 a 17.89 d 12.93 d 19.37 c 新春6号
XC6CK 32.00 bc 29.42 b 35.21 b 51.97 b 77.98 c 65.63 b 22.64 bc 20.80 bc 24.89 a T1 46.62 a 34.23 a 38.64 a 58.31 a 76.03 d 64.17 c 31.52 a 23.19 a 26.18 a T2 28.37 c 26.05 c 29.89 c 51.65 b 82.82 b 65.75 b 20.76 c 19.08 cd 21.88 b J1 33.69 b 31.00 b 36.00 ab 52.86 b 77.96 c 64.76 c 23.52 b 21.64 ab 25.14 a J2 17.83 d 22.12 d 27.39 c 44.21 c 86.46 a 73.57 a 13.74 d 17.04 d 21.10 b 方差分析 ANOVA V ns * * * * * ns * * N * * * * * * * * * V×N * * * * * * * * ns 2023 新春22号
XC22CK 60.20 a 41.70 a 57.26 a 79.37 c 83.81 d 80.45 d 29.79 a 20.67 a 28.34 a T1 52.22 b 36.44 b 43.64 b 79.73 c 86.59 c 77.89 e 26.26 b 18.37 b 22.00 b T2 41.32 c 27.71 c 33.10 c 84.37 ab 88.12 b 85.77 b 23.11 c 15.49 c 18.52 d J1 51.41 b 35.23 b 41.39 b 83.52 b 88.07 b 81.30 c 26.10 b 17.93 b 21.04 c J2 31.72 d 26.27 c 32.41 c 84.96 a 89.84 a 87.20 a 18.61 d 15.37 c 18.99 d 新春6号
XC6CK 60.95 b 37.43 b 52.72 b 75.75 a 81.11 c 85.25 b 30.60 a 18.80 b 26.44 b T1 68.69 a 45.32 a 61.82 a 75.92 a 80.15 d 80.4 c 31.79 a 20.94 a 28.60 a T2 50.07 c 29.37 c 41.08 c 73.82 b 82.34 b 85.32 b 26.39 b 15.48 c 21.65 c J1 63.62 b 37.58 b 53.37 b 76.43 a 79.61 d 84.22 b 30.55 a 18.04 b 25.59 b J2 36.18 d 24.83 d 40.09 c 72.16 b 84.56 a 86.73 a 19.84 c 13.61 d 21.98 c 方差分析 ANOVA V * ns * * * * * ns * N * * * * * * * * * V×N * * * * * * * * * 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters after data within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively.2.2.2 亏缺灌溉下植株氮素转运
两年试验结果发现,随土壤水分亏缺程度加重,抑制了植株花前氮素转运量(78.67~147.66 kg/hm2)及贡献率(51.58%~81.11%),但促进了植株花后氮素吸收量和贡献率,且花前氮素转运量及贡献率高于花后氮素吸收量和贡献率,品种对植株花前氮素转运量及贡献率和花后氮素吸收量和贡献率存在显著影响(表4)。XC22在CK处理下花前氮素贡献率最高,分别比T1、T2、J1、J2处理高19.31%、42.98%、25.51%、49.86%,XC6在T1处理下花前氮素贡献率最高,分别比CK、T2、J1、J2处理高12.53%、29.52%、12.27%、51.17%,且T1处理下植株花前氮素转运量比CK高19.21%。在T1水平下,XC6花前氮素转运量及贡献率高于XC22,高出33.22%、25.19%,在J2水平下,XC22花后氮素吸收量及贡献率比XC6分别高2.17%、4.48%。亏缺灌溉和品种互作对小麦花前氮素转运量及贡献率和花后氮素吸收量和贡献率均有显著影响,T1处理下XC6在生长关键期能有效保证其具有较高的花前氮素转运量及贡献率。
表 4 亏缺灌溉对春小麦植株花前和花后氮素转运率和籽粒贡献率的影响Table 4. Transport and contribution rates of nitrogen accumulation pre- and post-anthesis of spring wheat under deficit irrigation treatments年份
Year品种
Cultivar
(V)处理
Treatment
(N)花前氮素转运量
Pre-anthesis N
transport amount
(kg/hm2)花前氮素转运率
Pre-anthesis N
transport rate
(%)花前氮素贡献率
Pre-anthesis contribution
of transported N
(%)花后氮素吸收量
Post-anthesis N
accumulation
(kg/hm2)花后氮素贡献率
Post-anthesis contribution
of transported N
(%)2022 新春22号
XC22CK 111.80 a 68.94 c 75.80 a 35.68 d 24.20 d T1 89.37 b 69.93 c 62.95 b 52.61 c 37.05 c T2 67.39 d 74.69 b 51.02 d 64.71 ab 48.98 a J1 81.45 c 69.72 c 58.11 c 58.73 bc 41.89 b J2 66.93 d 82.01 a 50.19 d 66.56 a 49.81 a 新春6号
XC6CK 96.63 b 63.17 b 68.32 b 44.88 bc 31.68 c T1 119.49 a 64.57 ab 80.89 a 28.26 d 19.11 d T2 84.31 c 63.95 ab 61.72 c 52.38 b 38.28 b J1 100.69 b 63.29 b 70.31 b 42.48 c 29.69 c J2 67.34 d 65.28 a 51.88 d 62.51 a 48.12 a 方差分析 ANOVA V * * * * * N * * * * * V×N * * * * * 2023 新春22号
XC22CK 159.16 a 80.89 d 78.80 a 42.70 d 21.20 d T1 132.31 b 80.87 d 66.63 b 66.27 c 33.37 c T2 102.13 c 85.81 b 57.11 c 76.54 ab 42.89 b J1 128.03 b 83.98 c 65.07 b 68.88 bc 34.93 c J2 90.41 c 87.14 a 52.97 d 80.36 a 47.03 a 新春6号
XC6CK 151.10 b 80.18 a 75.84 b 48.02 c 24.16 c T1 175.83 a 78.53 b 81.33 a 40.45 d 18.67 d T2 120.52 c 79.48 ab 63.53 c 69.22 b 36.47 b J1 154.58 b 79.76 a 74.18 b 53.86 c 25.82 c J2 101.10 d 80.41 a 55.43 d 81.29 a 44.57 a 方差分析 ANOVA V * * * * * N * * * * * V×N * * * * * 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、 ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters following values within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively.2.3 亏缺灌溉下产量和氮素利用
两年试验结果发现,亏缺灌溉对产量、产量构成因子、氮素利用率、氮肥生产效率和氮素收获指数均存在显著影响,品种对小麦穗数、千粒重、产量、氮肥生产效率和氮素收获指数具有显著影响(表5)。CK处理下春小麦XC22穗粒数分别比T1、J1、T2、J2处理高出2.26%、5.67%、23.48%、41.03%,千粒重CK处理分别比T1、J1、T2、J2处理高出2.13%、7.28%、24.65%、34.22%,产量CK分别比T1、J1、T2、J2处理高出6.95%、12.05%、38.75%、49.91%。而T1处理下春小麦XC6穗粒数分别比J1、CK、T2、J2处理高出8.24%、14.23%、22.97%、35.72%,千粒重T1分别比J1、CK、T2、J2处理高出5.24%、5.46%、16.16%、23.58%,产量T1分别比J1、CK、T2、J2处理高出6.85%、12.17%、24.32%、38.30%,且J2处理显著降低了穗数和产量,分别比CK处理低22.04%、23.30%。随着亏缺程度加重,氮素利用率、氮肥生产效率和氮素收获指数逐渐降低,CK处理下XC22氮素利用率比T1、T2、J1、J2处理分别高0.20%、10.72%、1.65%、13.71%,氮肥生产效率CK比T1、T2、J1、J2处理分别高6.97%、38.75%、12.05%、49.89%,氮素收获指数CK比T1、T2、J1、J2处理分别高1.62%、11.96%、2.91%、14.35%,T1处理XC6氮素利用率比J1、CK、T2、J2处理分别高0.49%、2.25%、5.60%、7.69%,氮肥生产效率T1比J1、CK、T2、J2处理分别高6.84%、12.16%、24.31%、38.31%,氮素收获指数T1比J1、CK、T2、J2处理分别高2.87%、3.71%、8.29%、10.76%。亏缺灌溉与品种对穗数、穗粒数、产量及氮肥生产效率存在显著互作效应,对氮素利用率和氮素收获指数无显著互作效应。
表 5 亏缺灌溉下滴灌春小麦产量和氮利用率Table 5. Yield and nitrogen utilization efficiency of spring wheat under deficit irrigation年份
Year品种
Variety
(V)处理
Treatment
(N)穗数
Spike number
(×104/hm2)穗粒数
Grain No.
per spike千粒重
1000-grain weight
(g)产量
Yield
(kg/hm2)氮素利用率
N use efficiency
(kg/kg)氮肥生产效率
N production efficiency
(kg/kg)氮收获指数
N harvest index
(%)2022 新春22号
XC22CK 434.07 ab 37.04 a 47.60 a 6983 a 35.29 a 27.38 a 76.06 a T1 427.21 ab 36.19 a 46.31 ab 6307 b 34.98 a 24.73 b 73.38 a T2 438.25 a 30.48 b 40.28 c 5007 d 32.33 b 19.63 d 68.39 c J1 418.25 b 35.67 a 44.44 b 6025 c 34.34 a 23.63 c 72.66 ab J2 382.78 c 27.77 c 38.64 c 4636 e 31.29 b 18.18 e 69.33 bc 新春6号
XC6CK 478.00 a 31.86 c 47.55 ab 6836 c 34.55 ab 26.81 c 76.6 abc T1 490.33 a 38.88 a 50.66 a 7597 a 35.62 a 29.79 a 79.89 a T2 398.75 b 36.38 ab 46.22 bc 6256 d 33.95 ab 24.53 d 72.96 c J1 456.57 a 34.56 b 47.61 ab 7140 b 35.45 a 28.00 b 77.83 ab J2 376.46 b 28.70 d 42.95 c 5562 e 33.59 b 21.81 e 74.79 bc 方差分析 ANOVA V * ns * * * * * N * * * * * * * V×N * * ns * ns * ns 2023 新春22号
XC22CK 446.12 ab 38.58 a 49.60 a 6916 a 28.97 a 27.12 a 69.56 a T1 425.14 b 37.76 a 48.86 ab 6687 b 29.15 a 26.22 b 69.92 a T2 360.93 c 30.76 c 37.70 c 5010 d 25.71 b 19.65 d 61.67 bc J1 471.25 a 35.89 b 46.16 b 6379 c 28.88 a 25.01 c 68.84 ab J2 370.21 c 25.85 d 33.78 d 4636 e 25.22 b 18.18 e 58.02 c 新春6号
XC6CK 445.03 b 36.79 b 48.22 a 6879 c 29.13 ab 26.98 c 69.83 ab T1 480.03 a 39.54 a 50.34 a 7787 a 29.49 a 30.54 a 71.97 a T2 391.66 c 27.39 c 40.73 b 6119 d 27.71 b 24.00 d 67.27 b J1 470.94 ab 37.89 ab 48.36 a 7259 b 29.34 a 28.47 b 69.79 ab J2 379.89 c 29.08 c 38.78 b 5562 e 26.87 c 21.81 e 62.32 c 方差分析 ANOVA V * ns * * ns * * N * * * * * * * V×N * * * * ns * ns 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、 ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters following values within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively.2.4 亏缺灌溉下产量形成重要参数相关性及主成分分析
如图5所示, 产量(Y)与成熟期植株氮积累量(ANAM)、花前植株氮素转运量(NTF)、花前植株氮素贡献率(NCPP)、籽粒氮素积累量(GNA)、氮素利用率(NUE)、氮素收获指数(NHI)、千粒重(TGW)、穗数(SN)和穗粒数(SGN)存在显著正相关(r=0.34**~0.95**),与PPTR存在显著负相关(r=−0.38**)。GNA与ANAM、NTF、NCPP、NHI、TGW、SN和SGN具有显著正相关(r=0.41**~0.95**)。NTF和NCPP与ANAM、GNA、TGW、SN和SGN呈显著正相关(r=0.55**~0.97**)。
图 5 亏缺灌溉下产量形成重要参数的相关性热图和主成分分析图注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。Y—产量;ANAM—成熟期植株氮积累量;NTF—花前植株氮素转运量;PPTR—花前植株氮素转运率;NCPP—花前植株氮素贡献率;GNA—籽粒氮素积累量;NUE—氮素利用率;NHI—氮素收获指数;TGW—千粒重;SN—穗数;SGN—穗粒数。*—P<0.05;**—P<0.001。Figure 5. Correlation heat map and principal component analysis of important parameters for yield formation under deficit irrigationNote: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Y—Yield; ANAM—Plant N accumulation at mature stage; NTF—N transport amount from pre-anthesis accumulation; PPTR—N transport rate from pre-anthesis accumulation; NCPP—Contribution rate of transported N from pre-anthesis; GNA—Grain N accumulation; NUE—N physiological efficiency; NHI—Nitrogen harvest index; TGW—Thousand-grain weight; SN—Panicle number; SGN—Grain number per panicle. *—P<0.05; **—P<0.001.主成分分析进一步发现,主成分1和主成分2贡献率分别为85.2%、7.2%,累计贡献率达到92.4%,即2个主成分可以解释9个指标92.4%的信息。主成分1包括Y、ANAM、NTF、NCPP、PPTR、GNA、TGW、SN和SGN,主成分2包括NUE和NHI。与其他指标相比,Y与ANAM、GNA、NCPP、TGW、NTF之间夹角更小,说明在亏缺灌溉下ANAM、GNA、NCPP、TGW、NTF与Y的正相关性较高;此外,SN、NHI、SGN和NUE与Y夹角较小,说明这些指标与产量之间存在较为密切的联系,因此,ANAM、GNA、NCPP、TGW、NTF对产量的影响具有直接效应,SN、NHI、SGN和NUE在一定程度上可表征产量高低。
3. 讨论
3.1 亏缺灌溉对春小麦氮素积累与分配的影响
小麦的产量和品质很大程度上取决于氮素的积累与转运,而这一过程受到众多环境因素的影响,其中水分起着至关重要的作用[21−22]。适宜的水分供应可有效促进小麦氮素积累转运,进而提高籽粒蛋白质含量和产量[23]。XC22成熟期T1处理植株氮素积累量比T2高17.06%,J1植株氮素积累量比J2高19.46%,XC6成熟期T1处理植株氮素积累量比T2高17.91%,J1植株氮素积累量比J2高20.54%。刘恩科等[24]在华北麦区小麦植株氮素积累的研究中也发现了类似的规律,郑成岩等[25]也发现小麦生育前期和中期随着灌水量(0 ~180 mm)的增多,促进了氮素向营养器官的分配,但减少向籽粒分配。进一步分析发现,两品种小麦各营养器官氮素积累均表现为分蘖期亏缺高于拔节期亏缺处理,T1比J1平均高4.95%,T2比J2平均高7.19%,同时,2023年氮素积累与分配总体上高于2022年,这可能与小麦生育期间温度变化有关。因此,在亏缺灌溉处理下,分蘖期轻度水分亏缺有利于植株氮素积累与分配,但在此过程中,对于调控不同水分敏感型小麦各营养器官氮素积累的基因还需进一步研究。
3.2 亏缺灌溉对春小麦花前和花后氮素转运的影响
土壤水分调控小麦营养器官氮素的吸收和转运,影响着氮素的花前和花后转运[26−27]。在黄淮海麦区,各营养器官氮素转运及贡献率均表现为轻度干旱>中度干旱>重度干旱,且拔节和灌浆期轻度干旱(65%~70% FC),可有效促进营养器官氮素转运及贡献[24]。在本研究中,各器官氮素花前转运量及贡献率随着亏缺程度的增加而减少,T1处理下XC22茎鞘花前转运量及贡献率比T2分别高31.16%、20.77%,J1处理下茎鞘花前转运量及贡献率比J2高45.16%、28.74%,T1处理下XC6茎鞘花前转运量及贡献率比T2分别高47.00%、34.27%,J1处理下茎鞘花前转运量及贡献率比J2高80.17%、61.02%。崔亚坤等[8]研究结果显示,在长江中下游麦区,小麦分蘖期轻度干旱有利于提高植株花前氮素转运量及贡献率,而在拔节期轻度干旱有利于提高植株花后氮素积累量及其贡献率,干旱解除后,与氮代谢有关的酶活性增强,促进氮素积累量、转运量及其贡献率提升,提高产量,这与本试验研究结果类似。在本研究中,与其它处理相比,CK处理下XC22有利于提高植株花前氮素转运量及贡献率,J2处理下有利于提高植株花后氮素吸收量及贡献率;而对于XC6而言,T1处理可有效提高植株花前氮素转运量及贡献率,J2处理显著提高植株花后氮素贡献率;同时,T1处理下XC6植株花前氮素转运量及贡献率显著高于XC22,XC6更有利于植株花前氮素的转运。因此,在小麦高产栽培过程中,分蘖期轻度亏缺灌溉可有效提高耐旱型小麦花前氮素转运量及贡献率,拔节期中度亏缺灌溉能显著提高水分敏感型小麦花后氮素吸收量及贡献率,进而达到节水高产的效果,但亏缺灌溉对滴灌春小麦氮素转运的信号和酶学机制需进一步研究,通过挖掘生育期间的生理节水潜力推动滴灌春小麦的高效生产。
3.3 亏缺灌溉对春小麦产量及氮素利用的影响
作物生育期间适宜的水分供给调控作物产量形成和氮素利用率提高[28−29]。李萍等[30]研究发现,在黄淮海麦区,穗数、穗粒数和千粒重随着干旱程度和时间延长而降低,拔节后0—5 天重度干旱(45%~50% FC)显著降低了产量,而在拔节后0—10 天轻度干旱(65%~70% FC)和重度干旱(45%~50% FC)均显著降低产量及产量构成因子。本研究发现,XC22分蘖期和拔节期亏缺灌溉处理均使小麦千粒重、穗粒数和产量降低,其产量比CK低6.95%~49.91%。而XC6在T1处理下穗粒数和产量显著提高,比CK处理分别高14.23%、12.17%,J2处理则显著降低穗数和产量,分别比CK处理低22.04%、23.30%,说明拔节期亏缺灌溉不利于产量形成,同时基因型不同的小麦对亏缺灌溉的适应存在一定差异,耐旱型品种对亏缺灌溉的适应性较强。张雨新等[31]研究发现苗期—分蘖(65% FC)、拔节—孕穗(70% FC)、抽穗—开花(65% FC)和灌浆—成熟(60% FC)不同程度控水,显著提高了氮素利用率,而按照苗期—分蘖(70% FC)、拔节—孕穗(75% FC)、抽穗—开花(70% FC)和灌浆—成熟(65% FC)控制灌水,有利于提高氮素吸收效率、氮肥生产效率及氮素收获指数,这与本研究结果类似。两品种小麦植株氮素利用率、氮肥生产效率及氮素收获指数随亏缺程度的减轻而增大,T1、J1处理下籽粒氮素利用率、氮肥生产效率和氮素收获指数较T2、J2处理高。进一步分析可得,产量与ANAM、NTF、PPTR、NCPP、GNA、NUE、NHI、TGW、SN和SGN存在显著的相关性,这说明在相同水分亏缺处理下,小区试验和管栽试验各指标存在显著的相关性,管栽试验各指标变化规律在一定程度上可以反映小区试验各指标的变化规律。可见,分蘖期轻度亏缺灌溉有效提高了耐旱型小麦产量及氮素利用,但亏缺灌溉强度和持续时间对产量和氮素利用特征的影响还需进一步研究。
4. 结论
分蘖期和拔节期轻度亏缺灌溉可增加耐旱型小麦品种各器官氮素的积累和分配,促进花前氮素的转运及对籽粒的贡献,有助于提高产量和氮素利用,且分蘖期亏缺灌溉的增产提效优于拔节期。中度亏缺灌溉不利于氮素的积累分配和运转,降低了产量及氮素利用率。不论分蘖期还是拔节期,轻度、中度亏缺灌溉均不利于干旱敏感型小麦品种的正常生长,因此,干旱敏感型小麦品种不适用亏缺灌溉技术。
-
图 3 亏缺灌溉时期对春小麦各生育期地上部氮素积累的影响
注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。柱上不同小写字母表示同一生育期处理间差异显著(P<0.05)。
Figure 3. Nitrogen accumulation in aboveground parts of spring wheat as affected by deficit irrigation period
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters above the bars mean significant differences among treatments in the same growth stage (P<0.05).
图 4 亏缺灌溉下春小麦各器官氮素的分配(%)
注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。柱中不同小写字母表示同一器官处理间差异显著(P<0.05)。
Figure 4. Proportion of nitrogen allocation in various organs of spring wheat as affected by deficit irrigation
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters inside the bars mean significant differences among treatments of the same organ (P<0.05).
图 5 亏缺灌溉下产量形成重要参数的相关性热图和主成分分析图
注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。Y—产量;ANAM—成熟期植株氮积累量;NTF—花前植株氮素转运量;PPTR—花前植株氮素转运率;NCPP—花前植株氮素贡献率;GNA—籽粒氮素积累量;NUE—氮素利用率;NHI—氮素收获指数;TGW—千粒重;SN—穗数;SGN—穗粒数。*—P<0.05;**—P<0.001。
Figure 5. Correlation heat map and principal component analysis of important parameters for yield formation under deficit irrigation
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Y—Yield; ANAM—Plant N accumulation at mature stage; NTF—N transport amount from pre-anthesis accumulation; PPTR—N transport rate from pre-anthesis accumulation; NCPP—Contribution rate of transported N from pre-anthesis; GNA—Grain N accumulation; NUE—N physiological efficiency; NHI—Nitrogen harvest index; TGW—Thousand-grain weight; SN—Panicle number; SGN—Grain number per panicle. *—P<0.05; **—P<0.001.
表 1 供试0—60 cm土壤基本性状
Table 1 Basic properties in 0−60 cm of test soil
年份 Year 全氮 (g/kg)
Total N碱解氮 (mg/kg)
Alkali-hydrolyzable N速效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available K有机质 (g/kg)
Organic matterpH 2022 1.30 55.71 15.96 132 18.40 7.7 2023 1.28 55.75 15.89 132 17.82 7.6 表 2 不同处理春小麦分蘖期和拔节期灌溉量
Table 2 Irrigation amount at tillering and jointing stages of spring wheat in each treatment
处理
Treatment分蘖期
Tillering stage拔节期
Jointing stageCK 75%~80% FC 75%~80% FC T1 60%~65% FC 75%~80% FC T2 45%~50% FC 75%~80% FC J1 75%~80% FC 60%~65% FC J2 75%~80% FC 45%~50% FC 注:FC—最大田间持水量。灌水量45%~50%FC、60%~65%FC分别为中度、轻度亏缺灌溉,75%~80%FC为充分灌溉。
Note: FC—Maximum field water capacity. 45%−50%FC and 60%−65%FC treatments are medium and light deficit irrigation, and 75%−80%FC is sufficient irrigation.表 3 亏缺灌溉下春小麦各营养器官花前积累的氮素的转运及其对籽粒的贡献率
Table 3 The translocation of pre-anthesis nitrogen accmulated in various organs and the contribution rate to wheat grains under deficit irrigation treatments
年份
Year品种
Variety
(V)处理
Treatment
(N)转运量 (kg/hm2)
Transport amount转运率 (%)
Transport rate贡献率 (%)
Contribution to grain茎鞘
Stem sheath叶
Leaf穗
Spike茎鞘
Stem sheath叶
Leaf穗
Spike茎鞘
Stem sheath叶
Leaf穗
Spike2022 新春22号
XC22CK 46.14 a 31.69 a 33.97 a 69.08 b 76.88 d 62.71 d 31.28 a 21.49 a 23.03 a T1 33.44 b 25.22 b 30.71 b 67.74 b 79.58 c 65.66 cd 23.58 b 17.77 b 21.60 b T2 23.99 d 18.06 d 25.34 c 70.42 b 88.75 b 70.76 b 18.16 d 13.68 cd 19.18 c J1 29.27 c 21.58 c 30.60 b 65.01 c 80.80 c 67.84 bc 20.89 c 15.39 c 21.83 ab J2 23.86 d 17.24 d 25.84 c 76.93 a 92.39 a 80.89 a 17.89 d 12.93 d 19.37 c 新春6号
XC6CK 32.00 bc 29.42 b 35.21 b 51.97 b 77.98 c 65.63 b 22.64 bc 20.80 bc 24.89 a T1 46.62 a 34.23 a 38.64 a 58.31 a 76.03 d 64.17 c 31.52 a 23.19 a 26.18 a T2 28.37 c 26.05 c 29.89 c 51.65 b 82.82 b 65.75 b 20.76 c 19.08 cd 21.88 b J1 33.69 b 31.00 b 36.00 ab 52.86 b 77.96 c 64.76 c 23.52 b 21.64 ab 25.14 a J2 17.83 d 22.12 d 27.39 c 44.21 c 86.46 a 73.57 a 13.74 d 17.04 d 21.10 b 方差分析 ANOVA V ns * * * * * ns * * N * * * * * * * * * V×N * * * * * * * * ns 2023 新春22号
XC22CK 60.20 a 41.70 a 57.26 a 79.37 c 83.81 d 80.45 d 29.79 a 20.67 a 28.34 a T1 52.22 b 36.44 b 43.64 b 79.73 c 86.59 c 77.89 e 26.26 b 18.37 b 22.00 b T2 41.32 c 27.71 c 33.10 c 84.37 ab 88.12 b 85.77 b 23.11 c 15.49 c 18.52 d J1 51.41 b 35.23 b 41.39 b 83.52 b 88.07 b 81.30 c 26.10 b 17.93 b 21.04 c J2 31.72 d 26.27 c 32.41 c 84.96 a 89.84 a 87.20 a 18.61 d 15.37 c 18.99 d 新春6号
XC6CK 60.95 b 37.43 b 52.72 b 75.75 a 81.11 c 85.25 b 30.60 a 18.80 b 26.44 b T1 68.69 a 45.32 a 61.82 a 75.92 a 80.15 d 80.4 c 31.79 a 20.94 a 28.60 a T2 50.07 c 29.37 c 41.08 c 73.82 b 82.34 b 85.32 b 26.39 b 15.48 c 21.65 c J1 63.62 b 37.58 b 53.37 b 76.43 a 79.61 d 84.22 b 30.55 a 18.04 b 25.59 b J2 36.18 d 24.83 d 40.09 c 72.16 b 84.56 a 86.73 a 19.84 c 13.61 d 21.98 c 方差分析 ANOVA V * ns * * * * * ns * N * * * * * * * * * V×N * * * * * * * * * 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters after data within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively.表 4 亏缺灌溉对春小麦植株花前和花后氮素转运率和籽粒贡献率的影响
Table 4 Transport and contribution rates of nitrogen accumulation pre- and post-anthesis of spring wheat under deficit irrigation treatments
年份
Year品种
Cultivar
(V)处理
Treatment
(N)花前氮素转运量
Pre-anthesis N
transport amount
(kg/hm2)花前氮素转运率
Pre-anthesis N
transport rate
(%)花前氮素贡献率
Pre-anthesis contribution
of transported N
(%)花后氮素吸收量
Post-anthesis N
accumulation
(kg/hm2)花后氮素贡献率
Post-anthesis contribution
of transported N
(%)2022 新春22号
XC22CK 111.80 a 68.94 c 75.80 a 35.68 d 24.20 d T1 89.37 b 69.93 c 62.95 b 52.61 c 37.05 c T2 67.39 d 74.69 b 51.02 d 64.71 ab 48.98 a J1 81.45 c 69.72 c 58.11 c 58.73 bc 41.89 b J2 66.93 d 82.01 a 50.19 d 66.56 a 49.81 a 新春6号
XC6CK 96.63 b 63.17 b 68.32 b 44.88 bc 31.68 c T1 119.49 a 64.57 ab 80.89 a 28.26 d 19.11 d T2 84.31 c 63.95 ab 61.72 c 52.38 b 38.28 b J1 100.69 b 63.29 b 70.31 b 42.48 c 29.69 c J2 67.34 d 65.28 a 51.88 d 62.51 a 48.12 a 方差分析 ANOVA V * * * * * N * * * * * V×N * * * * * 2023 新春22号
XC22CK 159.16 a 80.89 d 78.80 a 42.70 d 21.20 d T1 132.31 b 80.87 d 66.63 b 66.27 c 33.37 c T2 102.13 c 85.81 b 57.11 c 76.54 ab 42.89 b J1 128.03 b 83.98 c 65.07 b 68.88 bc 34.93 c J2 90.41 c 87.14 a 52.97 d 80.36 a 47.03 a 新春6号
XC6CK 151.10 b 80.18 a 75.84 b 48.02 c 24.16 c T1 175.83 a 78.53 b 81.33 a 40.45 d 18.67 d T2 120.52 c 79.48 ab 63.53 c 69.22 b 36.47 b J1 154.58 b 79.76 a 74.18 b 53.86 c 25.82 c J2 101.10 d 80.41 a 55.43 d 81.29 a 44.57 a 方差分析 ANOVA V * * * * * N * * * * * V×N * * * * * 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、 ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters following values within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively.表 5 亏缺灌溉下滴灌春小麦产量和氮利用率
Table 5 Yield and nitrogen utilization efficiency of spring wheat under deficit irrigation
年份
Year品种
Variety
(V)处理
Treatment
(N)穗数
Spike number
(×104/hm2)穗粒数
Grain No.
per spike千粒重
1000-grain weight
(g)产量
Yield
(kg/hm2)氮素利用率
N use efficiency
(kg/kg)氮肥生产效率
N production efficiency
(kg/kg)氮收获指数
N harvest index
(%)2022 新春22号
XC22CK 434.07 ab 37.04 a 47.60 a 6983 a 35.29 a 27.38 a 76.06 a T1 427.21 ab 36.19 a 46.31 ab 6307 b 34.98 a 24.73 b 73.38 a T2 438.25 a 30.48 b 40.28 c 5007 d 32.33 b 19.63 d 68.39 c J1 418.25 b 35.67 a 44.44 b 6025 c 34.34 a 23.63 c 72.66 ab J2 382.78 c 27.77 c 38.64 c 4636 e 31.29 b 18.18 e 69.33 bc 新春6号
XC6CK 478.00 a 31.86 c 47.55 ab 6836 c 34.55 ab 26.81 c 76.6 abc T1 490.33 a 38.88 a 50.66 a 7597 a 35.62 a 29.79 a 79.89 a T2 398.75 b 36.38 ab 46.22 bc 6256 d 33.95 ab 24.53 d 72.96 c J1 456.57 a 34.56 b 47.61 ab 7140 b 35.45 a 28.00 b 77.83 ab J2 376.46 b 28.70 d 42.95 c 5562 e 33.59 b 21.81 e 74.79 bc 方差分析 ANOVA V * ns * * * * * N * * * * * * * V×N * * ns * ns * ns 2023 新春22号
XC22CK 446.12 ab 38.58 a 49.60 a 6916 a 28.97 a 27.12 a 69.56 a T1 425.14 b 37.76 a 48.86 ab 6687 b 29.15 a 26.22 b 69.92 a T2 360.93 c 30.76 c 37.70 c 5010 d 25.71 b 19.65 d 61.67 bc J1 471.25 a 35.89 b 46.16 b 6379 c 28.88 a 25.01 c 68.84 ab J2 370.21 c 25.85 d 33.78 d 4636 e 25.22 b 18.18 e 58.02 c 新春6号
XC6CK 445.03 b 36.79 b 48.22 a 6879 c 29.13 ab 26.98 c 69.83 ab T1 480.03 a 39.54 a 50.34 a 7787 a 29.49 a 30.54 a 71.97 a T2 391.66 c 27.39 c 40.73 b 6119 d 27.71 b 24.00 d 67.27 b J1 470.94 ab 37.89 ab 48.36 a 7259 b 29.34 a 28.47 b 69.79 ab J2 379.89 c 29.08 c 38.78 b 5562 e 26.87 c 21.81 e 62.32 c 方差分析 ANOVA V * ns * * ns * * N * * * * * * * V×N * * * * ns * ns 注:CK—全生育期正常灌溉;T1—分蘖期轻度亏缺灌溉;T2—分蘖期中度亏缺灌溉;J1—拔节期轻度亏缺灌溉;J2—拔节期中度亏缺灌溉。同列数字后不同小写字母表示同一年同一品种处理间差异显著 (P<0.05),* 、 ns分别表示效应显著 (P<0.05)、不显著。
Note: CK—Full irrigation throughout the entire growth period; T1—Mild deficit in tillering stage; T2—Moderate deficit in tillering stage; J1—Mild deficit in jointing stage; J2—Moderate deficit in jointing stage. Different lowercase letters following values within the same column indicate significant difference among treatments of the same variety in the same year (P<0.05), * and ns indicate significant (P<0.05) and not significant effect, respectively. -
[1] Sha H M, Li Q, Sun X P, et al. Effects of warming and drought stress on winter wheat in Jiangsu Province, China[J]. Agronomy Journal, 2022, 114(4): 2056−2068. DOI: 10.1002/agj2.21010
[2] 王明杰. 新疆小麦生产发展现状及存在的问题分析[J]. 种子科技, 2023, 41(19): 142−144. Wang M J. Analysis of the current situation and problems of wheat production development in Xinjiang[J]. Seed Science & Technology, 2023, 41(19): 142−144.
[3] 方文松, 朱自玺, 刘荣花, 等. 河南省冬小麦干旱动态评估指标初探[A]. 中国气象学会2007年年会生态气象业务建设与农业气象灾害预警分会场论文集[C]. 北京: 中国气象学会, 2007. Fang W S, Zhu Z X, Liu R H, et al. Preliminary exploration of dynamic evaluation indicators for winter wheat drought in Henan Province[A]. Collection of Discussions on Ecological Meteorological Business Construction and Agricultural Meteorological Disaster Warning at the 2007 Annual Meeting of the Chinese Meteorological Society[C]. Beijing: Chinese Meteorological Society, 2007.
[4] 祁嘉郁, 巴特尔·巴克. 基于水分亏缺指数的北疆春小麦不同生育阶段干旱时空特征[J]. 干旱地区农业研究, 2021, 39(4): 171−178. Qi J Y, Bake·B T E. Temporal and spatial characteristics of drought in different growth stages of spring wheat in northern Xinjiang based on crop water deficit index[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 171−178.
[5] 康绍忠, 霍再林, 李万红. 旱区农业高效用水及生态环境效应研究现状与展望[J]. 中国科学基金, 2016, 30(3): 208−212. Kang S Z, Huo Z L, Li W H. High-efficient water use and eco-environmental impacts in agriculture in arid regions: Advance and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 208−212.
[6] Zhang S, Gho L, Han L, et al. The effects of N input level on N uptake, N remobilization and agronomic traits under deficit irrigation condition in winter wheat[J]. Turkish Journal of Field Crops, 2019, (1): 111−120.
[7] 张永丽, 于振文. 灌水量对小麦氮素吸收、分配、利用及产量与品质的影响[J]. 作物学报, 2008, 34(5): 870−878. DOI: 10.3724/SP.J.1006.2008.00870 Zhang Y L, Yu Z W. Effects of irrigation amount on nitrogen uptake, distribution, use, and grain yield and quality in wheat[J]. Acta Agronomica Sinica, 2008, 34(5): 870−878. DOI: 10.3724/SP.J.1006.2008.00870
[8] 崔亚坤, 王妮妮, 田中伟, 等. 分蘖和拔节期干旱对小麦植株氮素积累转运的影响[J]. 麦类作物学报, 2019, 39(3): 322−328. Cui Y K, Wang N N, Tian Z W, et al. Effect of water deficit during tillering and jointing stages on nitrogen accumulation and translocation in winter wheat[J]. Journal of Triticeae Crops, 2019, 39(3): 322−328.
[9] Liu W X, Wang J R, Wang C Y, et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in north China plain[J]. Frontiers in Plant Science, 2018, 9: 1798. DOI: 10.3389/fpls.2018.01798
[10] 张伟杨, 钱希旸, 李银银, 等. 土壤干旱对小麦生理性状和产量的影响[J]. 麦类作物学报, 2016, 36(4): 491−500. Zhang W Y, Qian X Y, Li Y Y, et al. Effect of soil drought on the physiological traits and grain yield of wheat[J]. Journal of Triticeae Crops, 2016, 36(4): 491−500.
[11] 雒文鹤, 师祖姣, 王旭敏, 等. 节水减氮对土壤硝态氮分布和冬小麦水氮利用效率的影响[J]. 作物学报, 2020, 46(6): 924−936. DOI: 10.3724/SP.J.1006.2020.91060 Luo W H, Shi Z J, Wang X M, et al. Effects of water saving and nitrogen reduction on soil nitrate nitrogen distribution, water and nitrogen use efficiencies of winter wheat[J]. Acta Agronomica Sinica, 2020, 46(6): 924−936. DOI: 10.3724/SP.J.1006.2020.91060
[12] 郭曾辉, 刘朋召, 雒文鹤, 等. 限水减氮对关中平原冬小麦氮素利用和氮素表观平衡的影响[J]. 应用生态学报, 2021, 32(12): 4359−4369. Guo Z H, Liu P Z, Luo W H, et al. Effects of water limiting and nitrogen reduction on nitrogen use and apparent balance of winter wheat in the Guanzhong Plain, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4359−4369.
[13] 倪胜利, 李兴茂, 王亚翠, 任根深. 旱后复水对冬小麦生长发育及水分利用效率的影响[J]. 灌溉排水学报, 2018, 37(11): 20−25. Ni S L, Li X M, Wang Y C, Ren G S. Physiological development and water use efficiency of winter wheat after re-watering following drought stresses at different growth stages[J]. Journal of Irrigation and Drainage, 2018, 37(11): 20−25.
[14] Victoria G D, Jean-Louis D, François G. Water deficit and nitrogen nutrition of crops. A review[J]. Agronomy for Sustainable Development, 2010, 30: 529−544. DOI: 10.1051/agro/2009059
[15] Yang H K, Hu W M, Zhao J R, et al. Genetic improvement combined with seed ethephon priming improved grain yield and drought resistance of wheat exposed to soil water deficit at tillering stage[J]. Plant Growth Regulation, 2021, 95: 399−419. DOI: 10.1007/s10725-021-00749-x
[16] Liu S, Li X, Larsen D H, et al. Drought priming at vegetative growth stage enhances nitrogen-use efficiency under post-anthesis drought and heat stress in wheat[J]. Journal of Agronomy and Crop Science, 2017, 203(1): 29−40. DOI: 10.1111/jac.12190
[17] Lamaoui M, Jemo M, Datla R, Bekkaoui F. Heat and drought stresses in crops and approaches for their mitigation[J]. Frontiers in Chemistry, 2018, 6: 26. DOI: 10.3389/fchem.2018.00026
[18] Plett D C, Kosala R, Melino V J, et al. The intersection of nitrogen nutrition and water use in plants: New paths toward improved crop productivity[J]. Journal of Experimental Botany, 2020, 71(15): 4452−4468. DOI: 10.1093/jxb/eraa049
[19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agrochemical analysis[M]. Beijing: China Agricultural Press, 2000.
[20] 张法全, 王小燕, 于振文, 等. 公顷产10000 kg小麦氮素和干物质积累与分配特性[J]. 作物学报, 2009, 35(6): 1086−1096. DOI: 10.3724/SP.J.1006.2009.01086 Zhang F Q, Wang X Y, Yu Z W, et al. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare[J]. Acta Agronomica Sinica, 2009, 35(6): 1086−1096. DOI: 10.3724/SP.J.1006.2009.01086
[21] Dimkpa C O, Andrews J, Sanabria J, et al. Interactive effects of drought, organic fertilizer, and zinc oxide nanoscale and bulk particles on wheat performance and grain nutrient accumulation[J]. Science of the Total Environment, 2020, 722: 137808.
[22] Xu Z Z, Yu Z W, Wang D. Nitrogen translocation in wheat plants under soil water deficit[J]. Plant and Soil, 2006, 280: 291−303. DOI: 10.1007/s11104-005-3276-2
[23] Zheng X J , Yu Z W, Zhang Y L, Shi Y. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain[J]. Scientific Reports, 2020, 10(1): 3305 .
[24] 刘恩科, 梅旭荣, 龚道枝, 等. 不同生育时期干旱对冬小麦氮素吸收与利用的影响[J]. 植物生态学报, 2010, 34(5): 555−562. Liu E K, Mei X R, Gong D Z, et al. Effects of drought on N absorption and utilization in winter wheat at different developmental stages[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 555−562.
[25] 郑成岩, 于振文, 王西芝, 武同华. 灌水量和时期对高产小麦氮素积累、分配和转运及土壤硝态氮含量的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1324−1332. Zheng C Y, Yu Z W, Wang X Z, Wu T H. Effects of irrigation amount and stage on nitrogen accumulation, distribution, translocation and soil NO3−-N content in high-yield wheat[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1324−1332.
[26] 段文学, 张永丽, 石玉, 于振文. 测墒补灌对不同小麦品种耗水特性和氮素分配与转运的影响[J]. 植物营养与肥料学报, 2011, 17(6): 1309−1317. Duan W X, Zhang Y L, Shi Y, Yu Z W. Effects of soil-moisture monitoring supplemental irrigation on water consumption characteristics and nitrogen accumulation and translocation in different wheat cultivars[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(6): 1309−1317.
[27] Xu Z Z, Yu Z W, Wang D, Zhang Y L. Nitrogen accumulation and translocation for winter wheat under different irrigation regimes[J]. Journal of Agronomy and Crop Science, 2005, 191(6): 439−449. DOI: 10.1111/j.1439-037X.2005.00178.x
[28] Vijay S R, Narayan S N, Seema B, et al. Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region[J]. Agricultural Water Management, 2017, 187: 232−245. DOI: 10.1016/j.agwat.2017.03.031
[29] Zhang Z, Zhang Y L, Shi Y, Yu Z W. Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation[J]. Scientific Reports, 2020, 10(1): 20310 . DOI: 10.1038/s41598-020-75388-9
[30] 李萍, 尚云秋, 林祥, 等. 拔节期阶段性干旱对小麦茎蘖成穗与结实的影响[J]. 中国农业科学, 2020, 53(20): 4137−4151. Li P, Shang Y Q, Lin X, et al. Effects of drought stress during jointing stage on spike formation and seed setting of main stem and tillers of winter wheat[J]. Scientia Agricultura Sinica, 2020, 53(20): 4137−4151.
[31] 张雨新, 张富仓, 邹海洋, 等. 生育期水分调控对甘肃河西地区滴灌春小麦氮素吸收和利用的影响[J]. 植物营养与肥料学报, 2017, 23(3): 597−605. Zhang Y X, Zhang F C, Zou H Y, et al. Effects of soil water regulation at different growing stages on nitrogen uptake and utilization of spring wheat in the Hexi Region, Gansu Province[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 597−605.
-
期刊类型引用(3)
1. 王文选,刘明池,陈婕,梁浩,谢龙,季延海. 不同鲜食番茄品种对水分亏缺响应差异的综合分析. 北方园艺. 2025(08): 25-34 . 百度学术
2. 李艳翠,李福强,周波. 不同生育期亏缺灌溉对蒙古黄芪光合特性、产量与品质的影响. 浙江农业学报. 2025(04): 779-789 . 百度学术
3. 张超,郑恩楠,顾鹤南,赵小勇. 不同灌溉方式和施氮量对水稻光合特性、农艺性状及氮素利用的影响. 吉林农业大学学报. 2024(06): 945-955 . 百度学术
其他类型引用(0)