Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

施氮对我国甘薯产量及其构成因素影响的整合分析

纪洪亭, 赵韩伟, 曾燕楠, 程润东, 王士红, 王勇, 赵荷娟

纪洪亭, 赵韩伟, 曾燕楠, 程润东, 王士红, 王勇, 赵荷娟. 施氮对我国甘薯产量及其构成因素影响的整合分析[J]. 植物营养与肥料学报, 2024, 30(8): 1606-1620. DOI: 10.11674/zwyf.2024056
引用本文: 纪洪亭, 赵韩伟, 曾燕楠, 程润东, 王士红, 王勇, 赵荷娟. 施氮对我国甘薯产量及其构成因素影响的整合分析[J]. 植物营养与肥料学报, 2024, 30(8): 1606-1620. DOI: 10.11674/zwyf.2024056
JI Hong-ting, ZHAO Han-wei, ZENG Yan-nan, CHENG Run-dong, WANG Shi-hong, WANG Yong, ZHAO He-juan. Meta-analysis on the effect and influence factors of nitrogen application on tuber yield of sweet potato in China[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1606-1620. DOI: 10.11674/zwyf.2024056
Citation: JI Hong-ting, ZHAO Han-wei, ZENG Yan-nan, CHENG Run-dong, WANG Shi-hong, WANG Yong, ZHAO He-juan. Meta-analysis on the effect and influence factors of nitrogen application on tuber yield of sweet potato in China[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(8): 1606-1620. DOI: 10.11674/zwyf.2024056

施氮对我国甘薯产量及其构成因素影响的整合分析

基金项目: 江苏现代农业产业技术体系建设项目[JATS(2023)015]。
详细信息
    作者简介:

    纪洪亭 E-mail: jihongting2010@126.com

    通讯作者:

    曾燕楠 E-mail: 95580103@qq.com

    赵荷娟 E-mail: 1154622504@qq.com

Meta-analysis on the effect and influence factors of nitrogen application on tuber yield of sweet potato in China

  • 摘要:
    目的 

    在全国尺度上,定量评价施氮对甘薯产量及其构成因素的影响,明确影响施氮效应的因素,为我国甘薯生产中氮肥合理施用提供参考。

    方法 

    利用中国知网、万方、维普和Web of Science中英文数据库,以“甘薯”、“氮”、“氮肥”、“产量”、“单株结薯数”、“单薯重”为关键词进行检索,基于以下标准对文献进行筛选:试验在我国农田进行;试验包含不施氮肥对照和施用不同量氮肥处理,且对照与处理磷钾肥用量相同;每个处理至少有3次重复,共筛选到45篇文献。筛选后的文献中,包含产量数据288组,单株结薯数数据191组,单薯重数据145组。利用Meta分析方法,定量分析施氮对甘薯产量及其构成因素的影响;通过亚组分析,评价不同因素对施氮效应的影响。

    结果 

    与不施氮相比,施氮增加我国甘薯鲜薯单位面积产量1.7%、单薯重3.2%,降低单株结薯数1.2%。不同施氮量下,甘薯产量及其构成因素存在显著差异。随施氮量增加,鲜薯产量和单株结薯数增幅逐渐降低,增幅最大的施氮量均小于75 kg/hm2,单薯重呈先升高后下降的趋势,增幅最大的施氮量为75~150 kg/hm2。长江流域薯区和南方薯区鲜薯单产增幅高于北方薯区;北方薯区、长江流域薯区、南方薯区适宜施氮量分别为<75、75~150、75~150 kg/hm2。随对照组产量 (地力产量)的增加,施氮的鲜薯产量、单株结薯数增幅均呈下降趋势,而单薯重增幅呈增加趋势。对照组产量≤25 t/hm2时,适宜施氮量为75~150 kg/hm2,地力产量为25~35 t/hm2和>35 t/hm2时,适宜施氮量为<75 kg/hm2。施氮处理下鲜食型甘薯增产幅度低于淀粉型甘薯,鲜食型甘薯适宜施氮量为<75 kg/hm2,淀粉型为75~150 kg/hm2。施氮鲜薯产量增幅最高的施钾(K2O)量为150~225 kg/hm2,尽管该施钾量范围内施氮处理的单株结薯数显著下降6.3%,但单薯重显著增加14.9%,导致鲜薯产量增加10.5%;施磷 (P2O5)量为≤60 kg/hm2时,施氮处理的鲜薯产量、单株结薯数和单薯重增幅最高,分别为7.2%、4.9%和5.8%;氮、磷、钾适宜的配施比例为1∶0~0.8∶1~3。中性土壤(6.5<pH≤7.5)、低有效磷含量(≤10 mg/kg)、低速效氮含量(≤60 mg/kg)、中速效钾含量(50~100 mg/kg)或高有机质含量(>20 g/kg)的土壤条件下,施氮处理的鲜薯产量增幅最高。

    结论 

    施氮有助于提升我国甘薯产量,但施氮效果受区域、地力产量、磷钾肥施用量、土壤基础肥力、甘薯类型等因素影响。因此,在甘薯生产中,应充分考虑这些因素,制定适宜的施氮方案,以提高氮肥利用率和甘薯产量。

    Abstract:
    Objectives 

    The objective of the study was to clarify the effect of nitrogen (N) application on the tuber yield of sweetpotato and the influencing factors at the national scale, so as to provide references for nitrogen nutrient management in sweetpotato production.

    Methods 

    The published litterateurs were collected in China National Knowledge Infrastructure, Wanfang Data, China Science and Technology Journal Database, and Web of Science, using key words “sweet potato”, “N”, “nitrogen fertilizer”, “yield”, “tuber number per plant”, and “single tuber weight”. The literatures were screened using the criteria as: field experiment in China; containing no N control and N fertilization treatment, and all the control and treatments were applied with the same amount of phosphorous (P) and potassium (K) fertilizer; and each treatment had at least three replicates. A total of 45 literatures were obtained, containing 288 groups of yield data,191 groups of tuber number per plant, and 145 groups of single tuber weight. Meta-analysis was used to quantitatively analyze the effect of N application on the tuber yield, yield components, and the influencing factors.

    Results 

    N application increased the fresh tuber yield and single tuber weight of sweetpotato by 1.7% and 3.2%, respectively, but reduced the number of tubers per plant (NTP) by 1.2%. N application rate caused significant differences in fresh tuber yield and yield components, generally showing a decreased fresh tuber yield and NTP increment with the increasing of N application rate, and the peak increments were all recorded at N application rate <75 kg/hm2. The single tuber weight showed a trend of first increasing and then decreasing, with the highest appeared at N application rate of 75−150 kg/hm2. The increasing rates of fresh tuber yield were higher in the Yangtze River Basin region and the southern regions than in the northern regions. The suitable N application rates for the northern, Yangtze River Basin, and southern regions were <75 kg/hm2, 75−150 kg/hm2, and 75−150 kg/hm2, respectively. The levels of tuber yield in the controls negatively impacted the increasing rates of N fertilizer on fresh tuber yield and NTPs. The suitable N application rate was 75−150 kg/hm2 under control yield level of ≤25 t/hm2, and <75 kg/hm2 under control yield level of 25−35 t/hm2 and>35 t/hm2. The yield response of fresh sweetpotato to N application was lower than that of starch sweetpotato, and the suitable N application rates for fresh and starch sweet potatoes were <75 kg/hm2 and 75−150 kg/hm2, respectively. The high increment on yield (10.5%) and single tuber weight (14.9%) by N fertilizer were recorded at K2O application rate 150−225 kg/hm2, although the NTP was significantly decreased by 6.3%. And the peak increment of fresh tuber yield, NTP, and single tuber weight by N fertilizer were 7.2%, 4.9%, and 5.8%, respectively, under P2O5 application rate ≤60 kg/hm2. The appropriate combination application ratio of N, P2O5, and K2O was 1∶0−0.8∶1−3. In the soils with 6.5<pH≤7.5, low available P (≤ 10 mg/kg), low available N (≤60 mg/kg), medium available K (50−100 mg/kg), or high soil organic matter (>20 g/kg), N application produced the highest fresh tuber yield increases, compared with the no N application controls.

    Conclusions 

    The effect of N application on the fresh tuber yield of sweetpotato is assured but varied in China, depending on the regions, the levels of tuber yield in the control, P, K application rates, the soil basic fertility, and the cultivar type of sweet potatoes. Therefore, N management should be made accordingly across China.

  • 甘薯是世界上重要的粮食作物、饲料作物和工业原料作物[1]。中国是世界上最大的甘薯生产国,2022年中国甘薯种植面积为2.2×106 hm2,总产量为4.7×107 t,分别占世界甘薯种植面积和总产量的29.8%和54.2%[2]。氮素是甘薯生长发育必需的大量元素。施氮能促进甘薯叶生长,扩大光合作用面积,增加光合能力;氮肥不足,茎叶生长慢,叶面积小,叶色淡,导致生长不良,而氮施用过量,茎叶旺长,导致结薯不良。甘薯具有高产稳产、耐瘠薄的特性,因此生产上多数种植户忽视了氮肥的合理施用。一方面,种植户对氮肥施用重视不足导致施氮量过少;另一方面,为获得高产,种植户过度依赖化肥而导致施氮量过多,施氮量过高不仅限制了甘薯产量提升,而且导致氮素损失,降低氮肥利用率,污染环境[3]。因此,明确施氮对甘薯产量及其构成因素的影响,阐明影响甘薯施氮增产效应的因素,对我国甘薯生产中氮肥合理施用具有指导意义。

    目前,针对施氮对我国甘薯产量的影响已有大量报道,然而关于施氮对甘薯增产效应以及适宜施氮量的结果不尽一致。不同薯区适宜施氮量有较大差异,且同一薯区适宜施氮量变幅较大。北方薯区甘薯适宜施氮量为60~210 kg/hm2[48],长江流域薯区适宜施氮量为125~155 kg/hm2[3],南方薯区适宜施氮量为60~180 kg/hm2[914]。不同土壤肥力条件下施氮对甘薯的增产效应以及适宜施氮量不同。窦怀良等[15]研究认为,低肥力、中肥力和高肥力地块甘薯适宜施氮量分别为150、100、50 kg/hm2,增产幅度分别为33.3%、29.6%和16.1%。刘唯一[16]分析得出,砂质低肥力和中肥力土壤最佳施氮量分别为289.5和103.5 kg/hm2。这说明土壤基础肥力越高,氮肥需求量越小,土壤基础肥力越低,甘薯需肥量越大,增产效果越显著[16]。不同甘薯品种对施氮的响应不同。吴春红等[17]研究得出,施氮降低浙紫1号和紫菁2号产量,而施氮量120 kg/hm2显著提高宁紫2号鲜薯产量。Duan等[18]研究认为,施氮降低甘薯鲜薯产量,但不同甘薯品种对施氮的响应不同,施氮处理下济薯26鲜薯产量降幅(18.9%~58.0%)高于徐薯32 (4.8%~40.0%)。此外,不同磷钾肥管理措施[56, 1922]条件下,施氮对甘薯鲜薯产量及其构成因素的影响存在显著差异。

    尽管前人已对不同区域、土壤条件、品种、栽培管理条件下施氮对甘薯产量及其构成因素进行大量研究,然而,以上结果大多基于独立田间试验,试验结果受限于该区域特定的气候、土壤及栽培条件等因素,难以反映施氮对我国甘薯产量及其构成因素影响的整体情况。因此,需整合分析全国范围内独立试验数据,在全国尺度上定量分析施氮对甘薯产量及其构成因素的影响。

    整合分析法(Meta分析)可以整合同一研究主题下多项独立试验研究成果[2325]。卞倩倩等[26]利用Meta分析方法定量分析了施钾对我国甘薯产量和土壤钾素平衡的影响。然而,利用Meta分析方法定量分析我国甘薯施氮效应的研究尚未见报道。本研究采用Meta分析方法,定量分析施氮对我国甘薯产量及其构成因素的整体影响。通过亚组分析,明确不同薯区、对照组产量水平、品种类型、磷钾肥施用量条件下,施氮对甘薯产量及其构成因素的影响及最优施氮量;明确土壤肥力条件对甘薯施氮效应的影响,为我国甘薯生产中氮肥管理提供参考。

    本研究中数据来源于公开发表的有关施氮影响我国甘薯产量及其构成因子的学术论文。利用中国知网、万方、维普和Web of Science中英文数据库,选取“甘薯”、“氮”、“氮肥”、“产量”、“单株结薯数”、“单薯重”为关键词进行检索,基于以下标准对文献进行筛选:1)氮肥试验在我国农田进行,不包括盆栽试验和室内试验;2)同一组试验中须包含对照组和试验组,对照组为不施氮肥,处理组为施用不同量氮肥(N),对照组和处理组的磷肥(P2O5)、钾肥(K2O)施用量相同;3)每个处理至少有3次重复。

    根据以上标准共搜集筛选到45篇文献,利用筛选后所得文献中图表数据创建1个新的数据库,其中包含产量数据288组,单株结薯数数据191组,单薯重数据145组。试验点分布见表1。数据库主要包括以下文献中的原始信息:试验地点,土壤基础理化性状如土壤有机质(SOM)、速效氮(AN)、有效磷(AP)、速效钾(AK)、pH、栽插密度、氮磷钾肥施用量,鲜薯产量、单株结薯数、单薯重(均值、标准差和样本量)。

    表  1  分类因素及亚组
    Table  1.  Classification factors and subgroups
    分类因素
    Classification factors
    亚组
    Subgroups
    区域 Region 北方薯区:山东 (16)、河北 (1)、北京 (1)、山西 (4)、河南 (2)、陕西 (2)、江苏北部 (4)
    Northern sweetpotato planting region: Shandong (16), Hebei (1), Beijing (1), Shanxi (4), Henan (2), Shaanxi (2), Northern Jiangsu (4)
    长江流域薯区:安徽南部 (1)、湖北 (1)、江西北部 (1)、浙江 (1)
    Sweetpotato planting region in the middle and lower reaches of Yangtze River:
    Southern Anhui (1), Hubei (1), Northern Jiangxi (1), Zhejiang (1)
    南方薯区:海南 (4)、福建 (7)
    Southern sweetpotato planting region: Hainan (4), Fujian (7)
    施氮量 N application rate <75, 75~150, 150~225, 225~300 kg/hm2
    对照组产量 Control yield ≤25, 25~35, >35 kg/hm2
    品种类型 Type of cultivar 鲜食型甘薯 Fresh sweetpotato, 淀粉型甘薯 Starch-sweetpotato
    施钾量 K application rate <75, 75~150, 150~225, 225~300 kg/hm2
    施磷量 P application rate ≤ 60, 60~90, > 90 kg/hm2
    土壤 pH Soil pH ≤6.5, 6.5~7.5, >7.5
    土壤有机质 Soil organic matter ≤10, 10~20, >20 g/kg
    土壤速效氮 Soil available N ≤60, 60~120, >120 mg/kg
    土壤有效磷 Soil available P ≤10, 10~20, >20 mg/kg
    土壤速效钾 Soil available K ≤50, 50~100, >100 mg/kg
    注:括号内的数值代表试验点数。
    Note: The values in parentheses denote the number of experimental points.
    下载: 导出CSV 
    | 显示表格

    不同种植区域、对照组产量(CY)、品种类型、土壤肥力下,施肥对甘薯产量及其构成因素的影响不同,为进一步明确不同因素对甘薯施氮效应的影响,将各个因素进行分类分析。按照甘薯传统种植区域划分为3个薯区:北方薯区、长江流域薯区和南方种植区[27]。施氮量的划分主要是参考前人文献[17, 20]。土壤养分指标的分组主要依据我国第二次土壤普查时土壤养分分析标准划分。不同因素的分组情况如表1所示。

    由于本研究分析的大多数文献报告结果没有包含标准差,因此,将平均数的10%作为相应处理的标准差[28]

    本研究采用响应比(response ratio, RR)作为统计学指标,采用RR自然对数(lnRR)来表示施氮对甘薯产量、单株结薯数、单薯重的影响程度[29]。lnRR计算公式如下:

    lnRR=ln(XtXc) (1)

    式中:XtXc分别表示施氮和不施氮处理的甘薯产量及其构成因素的平均值。在分组计算合并效应时,需对独立的响应比进行加权处理,加权平均响应比(RR++)和95%置信区间(95%CI)计算公式如下:

    95%CI=RR++±1.96×S(RR++) (2)
    RR++=W×ln(RR)W (3)
    S(RR++)=1W (4)
    W=1V (5)
    V=SD2tnt×X2t+SD2cnc×X2c (6)

    式中:SDtSDc分别为施氮和不施氮处理的标准差;ntnc分别为施氮和不施氮处理的样本数。W为权重系数,V为变异系数,S(RR++)为RR++的标准差。95%CI用于RR++的假设检验:若95%CI下限大于0,说明施氮显著提高甘薯产量及其构成因素,若95%CI与0重叠,则说明施氮对甘薯产量及其构成因素无明显影响,若95%CI上限小于0,则说明施氮显著降低甘薯产量及其构成因素[29]。为更好地解释施氮对产量及其构成因素的影响程度,将RR++转化为相对变化率,计算公式如下:

    E=(eRR++1)×100 (7)

    采用Microsoft Excel进行数据整理,采用Origin Pro 2016进行绘图。

    鲜薯产量、单株结薯数和单薯重响应比符合正态分布,其分布范围分别为−1.16~0.72、−0.78~0.76和−0.87~0.49,即相比不施氮,施氮处理的鲜薯产量、单株结薯数和单薯重变化分别为−68.6%~106.4%、−54.0~114.5%和−58.0%~63.6% (图1)。

    图  1  甘薯产量(a)、单株结薯数(b)和单薯重(c)响应比频数分布
    Figure  1.  Frequency distribution of response ratio of tuber yield (a), the number of tubers per plant (b) and the single tuber weight (c) of sweetpotato

    从全国尺度来看,施氮后鲜薯产量和单薯重加权平均响应比的95%置信区间(95%CI)下限均大于0,说明施氮显著增加鲜薯产量和单薯重,增幅分别为1.7%和3.2%,而单株结薯数加权平均响应比的95%CI包含0,说明施氮对单株结薯数的影响不明显,单株结薯数降低1.2%。随施氮量的增加,鲜薯产量、单株结薯数的增幅逐渐降低。与不施氮相比,施氮量在<75 kg/hm2时,鲜薯产量和单株结薯数增幅最大,增幅分别为8.7%和6.7%,其次为75~150 kg/hm2施氮量处理(6.3%和1.6%),当施氮量为225~300 kg/hm2时,与不施氮相比,施氮处理的鲜薯产量和单株结薯数分别显著降低13.0%和12.5%。随施氮量的增加,单薯重增幅呈先升高后降低的趋势,在施氮量75~150 kg/hm2时,单薯重增幅最大,增幅为8.1%,当施氮量为>150 kg/hm2时,施氮对单薯重的影响不显著(图2)。

    图  2  施氮对鲜薯产量 (a)、单株结薯数 (b)和单薯重 (c)的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。
    Figure  2.  Effects of nitrogen fertilizer application on the fresh tuber yield (a), the number of tubers per plant (b) and the single tuber weight (c) of sweetpotato
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. RR++ denotes the weighted average response ratio.

    与不施氮相比,施氮处理下北方薯区鲜薯产量加权平均响应比的95%CI包含0,表明施氮对北方薯区鲜薯产量的影响不显著,而施氮处理下长江流域薯区和南方薯区鲜薯产量加权平均响应比的95%CI下限均大于0,表明施氮显著提高长江流域薯区(13.9%)和南方薯区鲜薯产量(14.1%)。随施氮量的增加,北方薯区鲜薯产量增幅呈下降趋势,长江流域薯区和南方薯区鲜薯产量呈先升高后降低的趋势。在北方薯区,施氮量在<75 kg/hm2的情况下,鲜薯产量显著增加6.7%,施氮量在75~150和150~225 kg/hm2时,鲜薯产量增幅不显著,当施氮量在225~300 kg/hm2时,鲜薯产量显著降低15.4% (图3a)。在长江流域薯区,鲜薯产量增幅最高的施氮量为75~150 kg/hm2,施氮量<75或>150 kg/hm2时,鲜薯产量增幅不显著(图3b)。在南方薯区,鲜薯产量增幅最大的施氮量为75~150 kg/hm2 (18.8%),其余依次为施氮量150~225 kg/hm2 (15.7%)、施氮量<75 kg/hm2 (11.1%),施氮量为225~300 kg/hm2时,鲜薯产量增幅不显著(图3c)。

    图  3  不同薯区施氮量对鲜薯产量、单株结薯数和单薯重的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, b, c为鲜薯产量;d, e, f为单株结薯数;g, h, i为单薯重。
    Figure  3.  Effects of nitrogen fertilizer application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different planting regions
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, b, c are fresh tuber yield, d, e, f are number of tubers per plant, g, h, i are single tuber weight. NR—Northern sweetpotato planting region, SR—Southern sweetpotato planting region, MLRYR—Sweetpotao planting region in middle and lower reaches of Yangtze River. RR++ denotes the weighted average response ratio.

    随施氮量的增加,3个薯区单株结薯数增幅呈降低趋势。当施氮量在<75 kg/hm2时,与不施氮相比,施氮处理的单株结薯数增幅最大,分别为5.5%和7.6%。当施氮量为225~300 kg/hm2时,3个薯区单株结薯数显著降低,降幅分别为13.4%、17.0%和2.5% (图3d图3e图3f)。

    北方薯区施氮对单薯重影响较小,只有施氮量增加至225~300 kg/hm2时,与不施氮相比,北方薯区施氮处理的单薯重显著降低11.8% (图3g)。在长江流域薯区和南方薯区,随施氮量增加,单薯重增幅呈增加趋势。在长江流域薯区,施氮量在225~300 kg/hm2时,单薯重显著增加20.0%;在南方薯区,施氮量在<75 kg/hm2情况下,施氮对单薯重影响不显著,施氮量在75~300 kg/hm2时,单薯重显著增加15.6%~20.1% (图3h图3i)。

    随对照组产量(CY)的增加,施氮处理的鲜薯产量和单株结薯数增幅均呈下降趋势,而单薯重增幅呈增加趋势。当CY ≤25 t/hm2、25 t/hm2<CY≤35 t/hm2、CY>35 t/hm2时,与不施氮相比,施氮处理的鲜薯产量分别增加9.3%、6.4%和−4.9%,单株结薯数分别增加15.8%、6.4%和−10.9%,单薯重分别增加0.8%、3.6%和4.4% (图4)。

    图  4  不同对照组产量 (CY) 下施氮量对甘薯产量、单株结薯数和单薯重的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, b, c为鲜薯产量,d, e, f为单株结薯数,g, h, i为单薯重。
    Figure  4.  Effects of nitrogen application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato as affected by control yield (CY) levels
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, b, c are fresh tuber yield, d, e, f are number of tubers per plant, g, h, i are single tuber weight. RR++ denotes the weighted average response ratio.

    当25 t/hm2<CY≤35 t/hm2和CY>35 t/hm2时,增产幅度最大的施氮量均为<75 kg/hm2 (8.4%和4.1%)。而当施氮量在225~300 kg/hm2情况下,鲜薯产量分别显著降低为5.8% (CY≤25 t/hm2)和28.6% (CY>35 t/hm2)。当CY≤25 t/hm2时,增产幅度最大的施氮量为75~150 kg/hm2 (23.4%)。在CY≤25 t/hm2情况下,随施氮量的增加,单株结薯数增幅呈增加趋势,而在25 t/hm2<CY≤35 t/hm2和CY>35 t/hm2情况下,随施氮量的增加,单株结薯数增幅呈下降趋势。当CY≤25 t/hm2时,与不施氮相比,施氮量<75 kg/hm2显著增加单薯重15.4%,当施氮量为75~225 kg/hm2时,施氮对单薯重影响不显著,而当施氮量为225~300 kg/hm2时,单薯重显著降低38.6%。当25 t/hm2<CY≤35 t/hm2时,施氮增加单薯重,增幅为0.6%~7.1%。当CY>35 t/hm2时,单薯重增幅随施氮量的增加呈下降趋势,单薯重增幅最大的施氮量为<75 kg/hm2 (图4)。

    不同甘薯品种类型对施氮的响应不同。总体而言,与不施氮相比,施氮对鲜食型甘薯的影响不显著,而显著提高了淀粉型甘薯产量(8.5%)。鲜食型甘薯增产幅度最大的施氮量为<75 kg/hm2,增产幅度为8.5%,施氮量在225~300 kg/hm2时,鲜薯产量显著下降16.5%。淀粉甘薯增产幅度最大的施氮量为75~150 kg/hm2,增产幅度为13.8%,其次是施氮量<75 kg/hm2,增产幅度为8.9% (图5a图5b)。

    图  5  不同品种类型下施氮量对鲜薯产量、单株结薯数和单薯重的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, c, e为鲜食型甘薯鲜薯产量、单株结薯数、单薯重,b, d, f为淀粉型甘薯鲜薯产量、单株结薯数、单薯重。
    Figure  5.  Effects of nitrogen application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different variety types
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, c, e are tuber yield, number of tubers per plant, and single tuber weight of fresh-eating sweetpotato; b, d, f are fresh tuber yield, number of tubers per plant, and single tuber weight of starch sweetpotato. RR++ denotes the weighted average response ratio.

    对于鲜食型甘薯而言,在施氮量<225 kg/hm2情况下,单株结薯数和单薯重增幅分别为2.5%~4.2%和4.4%~4.6%,施氮量在225~300 kg/hm2时,单株结薯数降低11.4%,单薯重变化不显著。对于淀粉型甘薯而言,单株结薯数随施氮量的增加而降低。与不施氮相比,施氮量在<75 kg/hm2时,单株结薯数增加9.5%,当施氮量在225~300 kg/hm2时,单株结薯数降低8.4%。与不施氮相比,施氮量在75~150、225~300 kg/hm2时,淀粉型甘薯单薯重分别增加9.3%和13.2% (图5e图5f)。

    不同钾肥和磷肥施用量下甘薯产量及其构成因素对施氮的响应不同。施氮处理的鲜薯产量增幅最高的施钾(K2O)量为150~225 kg/hm2,增幅为10.5%。施钾(K2O)量<150 kg/hm2情况下,施氮处理的鲜薯产量增幅较小,而当施钾 (K2O)量为225~>300 kg/hm2时,施氮处理的鲜薯产量降低2.2% (图6a)。施氮处理的单株结薯数增幅最高的施钾量为75~150 kg/hm2,增幅为6.7%,而单薯重显著降低3.1%。当施钾量为150~225 kg/hm2时,单株结薯数显著下降6.3%,但单薯重显著增加14.9% (图6b图6c)。施磷 (P2O5)量为≤60 kg/hm2时,施氮处理的鲜薯产量、单株结薯数和单薯重增幅最高,分别为7.2%、4.9%和5.8%。施磷 (P2O5)量>60 kg/hm2情况下,施氮处理的鲜薯产量、单株结薯数和单薯重增幅较小(图6d图6f)。进一步分析表明,钾肥施用量为150~225 kg/hm2、磷 (P2O5)肥施用量≤60 kg/hm2时,鲜薯产量增加幅度最高的施氮量均为75~150 kg/hm2,氮、磷、钾施用比例为1∶0~0.8∶1~3 (图7)。

    图  6  不同钾肥和磷肥施用量下施氮对鲜薯产量、单株结薯数和单薯重的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, d为鲜薯产量;b, e为单株结薯数;c, f为单薯重。
    Figure  6.  Effects of nitrogen application on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different application rates of potassium and phosphorus
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, d are fresh tuber yield; b, e are number of tubers per plant; c, f are single tuber weight. RR++ denotes the weighted average response ratio.
    图  7  最优磷钾肥施用量条件下施氮对鲜薯产量的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。KAR—钾肥施用量;PAR—磷肥施用量。
    Figure  7.  Effects of nitrogen fertilizer application on the fresh tuber yield of sweetpotato under optimal application rates of potassium and phosphorus
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. KAR—Potassium application rate; PAR—Phosphorus application rate. RR++ denotes the weighted average response ratio.

    不同土壤肥力条件下,施氮对鲜薯产量的影响不同。与不施氮相比,中性土壤(6.5<pH≤7.5)下,施氮的增产效果最高(13.5%),其次是酸性土壤(pH≤6.5) (8.1%)。土壤速效钾在50~100 mg/kg范围内,施氮的增产幅度为5.0%,土壤速效钾≤50 mg/kg和速效钾>100 mg/kg情况下,施氮对鲜薯产量的影响不显著。土壤低有效磷(≤10 mg/kg)情况下,施氮增产幅度最大,增幅为29.4%,土壤有效磷为10~20 mg/kg时,施氮的增产幅度为2.1%,而在有效磷>20 mg/kg情况下,施氮的增产幅度不显著。在土壤低速效氮(≤60 mg/kg)情况下,施氮的增产幅度最大,为8.8%,当速效氮为60~120 mg/kg情况下,施氮的增产幅度不显著,速效氮>120 mg/kg情况下,施氮显著降低鲜薯产量。在土壤高有机质(>20 g/kg)情况下,施氮增产幅度最大,增幅为12.2%,有机质<20 g/kg,施氮的增产幅度为2.7%~2.9% (图8a)。

    图  8  不同土壤肥力条件下施氮量对鲜薯产量、单株结薯数和单薯重的影响
    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a为鲜薯产量,b为单株结薯数,c为单薯重。
    Figure  8.  Effects of nitrogen application on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different soil conditions
    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a is tuber yield, b is number of tubers per plant, c is single tuber weight. RR++ denotes the weighted average response ratio.

    随施氮量的增加,施氮处理的单株结薯数增幅呈增加趋势,中性土壤(6.5<pH≤7.5)下,施氮的单株结薯数增幅最高(11.0%),其次是碱性土壤(>7.5) (10.9%),酸性土壤(≤6.5)单株结薯数增幅为5.1%。土壤低速效钾(≤50 mg/kg)、有效磷(≤10 mg/kg)、速效氮(≤60 mg/kg)情况下,施氮的单株结薯数增幅最高,分别为10.5%、20.4%和10.2%,在土壤速效钾和有效磷和速效氮含量中、高水平下,施氮对单株结薯数的影响较小。随土壤有机质含量的增加,施氮处理的单株结薯数增加幅度逐渐下降,当有机质在>20 g/kg情况下,施氮导致单株结薯数降低2.8% (图8b)。在土壤pH≤7.5情况下,与不施氮相比,施氮的单薯重显著增加,增幅为8.0%。在50 mg/kg<土壤速效钾≤100 mg/kg、土壤有效磷>20 mg/kg、土壤速效氮>120 mg/kg、土壤有机质>20 g/kg情况下,与不施氮相比,施氮的单薯重显著增加,增幅分别为5.0%、5.3%、8.5%和15.7% (图8c)。

    甘薯产量与氮素营养关系密切,在一定范围内,增施氮肥可提高甘薯的干物质积累能力和块根产量,而施氮量过高使得地上部旺长,延迟或减少同化物向块根的输送,导致块根产量降低[3031]。目前,在全国尺度上关于施氮对甘薯产量及其构成因素影响的研究尚未见报道,仅在地区尺度上有少量报道[3, 32]。本研究表明,在全国尺度上,与不施氮相比,施氮量<150 kg/hm2时,鲜薯产量增加6.3%~8.7%,施氮量> 150 kg/hm2时,增产不显著,甚至减产。单株结薯数增幅随施氮量的增加逐渐下降,施氮量<75 kg/hm2时,单株结薯数增加6.7%,而施氮量225~300 kg/hm2时,单株结薯数显著降低12.5%。研究表明,低氮对甘薯根系生长和分化有促进作用,而中氮和高氮对甘薯前期根系分化有显著的抑制作用,适当减氮能促进甘薯前期块根分化建成,有利于增加单株结薯数[3334]。单薯重随施氮量的增加呈先升高后降低的趋势。本研究结果与宁运旺等[33]的研究结果一致。这主要是适量施氮有利于甘薯生长中期源库关系的发展及维持甘薯生长后期的源库平衡[3]

    长江流域薯区和南方薯区的施氮效果高于北方薯区。其原因包括:1)长江流域薯区和南方薯区土壤有机质含量(18.7和16.5 g/kg)高于北方薯区(13.0 g/kg),较高的土壤有机质含量,有利于降低土壤紧实度,改善土壤通气性,促进茎基部光合产物向块根的运转,提高块根中碳水化合物含量,促进薯块膨大,增加单薯重[3536],从而提高产量;2)长江流域薯区(24.6 t/hm2)和南方薯区(30.3 t/hm2)的平均基础产量低于北方薯区(36.3 t/hm2),基础产量在25~35 t/hm2时,施氮导致产量增加6.4%,而基础产量> 35 t/hm2,施氮导致产量降低4.9%,因此长江流域薯区和南方薯区施氮的产量增幅高于北方薯区。不同对照组产量条件下施氮效果的差异可能与土壤肥力的差异有关。对照组产量< 35 t/hm2时,平均土壤有机质(SOM)、速效氮(AN)、有效磷(AP)、速效钾(AK)含量分别为13.2 g/kg、75.9 mg/kg、26.3 mg/kg、94.8 mg/kg,而对照组产量> 35 t/hm2时,平均SOM、AN、AP、AK含量分别为16.4 g/kg、78.7 mg/kg、29.3 mg/kg、103.5 mg/kg。较低的对照组产量对应较低的土壤肥力。土壤肥力低,土壤养分供应能力差,因此施氮可以有效地为甘薯生长提供所需养分,显著提高鲜薯产量,而在高对照组产量条件下,土壤养分供应能力强,削弱了外源氮肥增产的效应,同时高肥力土壤速效氮含量较高,增施氮肥造成土壤氮素过量,甘薯地上部徒长,延迟或减少同化物向块根的输送,最终导致产量降低[15]

    不同品种对施氮的响应不同[1718]。吴春红等[17]研究得出,施氮量为75 kg/hm2 时,浙紫1号和紫菁2号产量降低,而宁紫2号鲜薯产量增加。Duan等[18]研究认为,施氮降低鲜食型甘薯品种济薯26和徐薯32产量,徐薯32产量降幅低于济薯26。以上研究针对同一类型的甘薯品种,有关不同类型品种对施氮响应的对比研究鲜有报道。目前我国甘薯种植以鲜食型和淀粉型甘薯为主,种植面积分别占47.7%和45.8%[37]。与不施氮相比,施氮对鲜食型甘薯鲜薯产量的影响不显著,而显著提高了淀粉型甘薯产量。随施氮量的增加,鲜食型甘薯产量增幅呈下降趋势,施氮量< 75 kg/hm2时,鲜薯产量增幅最高。淀粉型甘薯产量增幅随施氮量呈先升高后降低的趋势,鲜薯产量增幅最高的施氮量为75~150 kg/hm2。淀粉型甘薯适宜施氮量高于鲜食型,其原因可能是淀粉型甘薯鲜薯产量高于鲜食型甘薯[38],其库容量高于鲜食型甘薯。一般大库容品种生产中后期吸氮量和总吸氮量高于小库容品种[3940],因此淀粉型甘薯品种适宜施氮量高于鲜食型甘薯品种。

    氮、磷、钾是甘薯生长发育必需的三大营养元素。适量施氮和施磷提高甘薯的干物质积累和块根产量 [8, 30, 4142]。施钾促进碳水化合物由叶片向块根运输,提高碳同化物在块根中的分配比例,促进块根迅速膨大,增加块根产量[4344]。氮、磷、钾肥合理配比施用才能实现甘薯高产、稳产。然而,我国甘薯生产中,甘薯施肥中存在氮磷钾养分过量与不足并存,氮、磷、钾肥配施比例失调的问题[4546]。目前,在区域尺度上,关于甘薯氮、磷、钾肥适宜配比的研究已有报道。李娟等[46]研究表明,福建地区甘薯平均氮、磷、钾施用量分别为160、62、212 kg/hm2,三要素适宜比例为1∶0.4∶1.3。张辉等[3]分析得出,长江中下游地区甘薯氮、磷、钾适宜施用量分别为146、143.5、224 kg/hm2,三要素配比约为1∶1∶1.5。田江梅[47]研究认为,重庆地区中钾高氮土壤条件下甘薯氮、磷、钾适宜配比为1∶0.9∶2,高钾低氮土壤条件下甘薯氮、磷、钾肥适宜配比为1∶0.7∶1.5。本研究表明,在全国尺度上,当施钾(K2O)量为150~225 kg/hm2,施磷(P2O5)量≤60 kg/hm2时,施氮处理的鲜薯产量最高,增产幅度最大的施氮量为75~150 kg/hm2,增产幅度最大的氮、磷、钾施用配比为1∶0~0.8∶1~3。尽管受区域规模、土壤肥力等因素影响,氮、磷、钾肥配施比例有一定差异,但本研究结果与前人在区域上的研究结果基本一致,对全国甘薯生产中氮、磷、钾合理配施具有一定的指导意义。

    本研究表明,在中性土壤条件下施氮产量效应最高,而在碱性土壤中最低。pH是调节土壤养分转化的重要因子,研究发现,在一定范围内随pH增加,土壤养分利用率提高,然而pH过高土壤酶活性和微生物有效性受抑制,使作物增产不明显[48]。随土壤速效钾含量的增加,施氮的产量增幅呈先升高后降低的趋势。氮钾互作促进光合产物在地上部积累,促进光合产物由地上部向地下部转运,兼顾“促流”和“扩库”,最终协同提高甘薯产量[49],而当土壤AK>100 mg/kg时,施氮增产的幅度下降。本研究中,AP ≤ 10 mg/kg和AN≤ 60 mg/kg时,施氮的增产幅度分别为29.4%和8.8%;当AP>10 mg/kg和AN>120 mg/kg时,施氮导致产量降低。这主要是高AP和AN土壤供给植株较多的磷素和氮素,进而削弱了施肥增产的效应[23]。本研究条件下,土壤有机质含量是衡量土壤综合肥力的一个重要指标。不同土壤有机质含量均能提高甘薯产量,土壤有机质≤20 g/kg时施氮的增产幅度为2.7%~2.9%,当SOM> 20 g/kg时施氮的增产幅度为12.2%,这主要是当SOM>20 g/kg时,施氮导致单薯重增加15.7%,这与窦怀良等[15]的研究结果一致。

    施用氮肥在我国不同甘薯产区均有不同程度的增产效应,主要受生产区域、地力产量、磷钾肥施用量、土壤基础肥力、甘薯类型的影响。

    1)长江流域和南方薯区的增产效果高于北方薯区,长江流域、南方薯区和北方薯区适宜的施氮量分别为75~150、75~150、< 75 kg/hm2

    2)地力产量≤ 25 t/hm2时,适宜施氮量为75~150 kg/hm2;地力产量超过25 t/hm2时,施氮量应< 75 kg/hm2

    3)氮肥对淀粉型甘薯的增产幅度高于对鲜食型甘薯,对应的适宜施氮量分别为75~150、<75 kg/hm2

    4)施氮增产幅度最大的情况:施钾 (K2O)量为150~225 kg/hm2,施磷(P2O5)量≤60 kg/hm2,适宜氮、磷、钾配施比例为1 : 0~0.8 : 1~3。

    5)在中性土壤、低有效磷、低速效氮、中速效钾或高有机质含量土壤条件下,施氮的增产幅度最大。

  • 图  1   甘薯产量(a)、单株结薯数(b)和单薯重(c)响应比频数分布

    Figure  1.   Frequency distribution of response ratio of tuber yield (a), the number of tubers per plant (b) and the single tuber weight (c) of sweetpotato

    图  2   施氮对鲜薯产量 (a)、单株结薯数 (b)和单薯重 (c)的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。

    Figure  2.   Effects of nitrogen fertilizer application on the fresh tuber yield (a), the number of tubers per plant (b) and the single tuber weight (c) of sweetpotato

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. RR++ denotes the weighted average response ratio.

    图  3   不同薯区施氮量对鲜薯产量、单株结薯数和单薯重的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, b, c为鲜薯产量;d, e, f为单株结薯数;g, h, i为单薯重。

    Figure  3.   Effects of nitrogen fertilizer application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different planting regions

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, b, c are fresh tuber yield, d, e, f are number of tubers per plant, g, h, i are single tuber weight. NR—Northern sweetpotato planting region, SR—Southern sweetpotato planting region, MLRYR—Sweetpotao planting region in middle and lower reaches of Yangtze River. RR++ denotes the weighted average response ratio.

    图  4   不同对照组产量 (CY) 下施氮量对甘薯产量、单株结薯数和单薯重的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, b, c为鲜薯产量,d, e, f为单株结薯数,g, h, i为单薯重。

    Figure  4.   Effects of nitrogen application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato as affected by control yield (CY) levels

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, b, c are fresh tuber yield, d, e, f are number of tubers per plant, g, h, i are single tuber weight. RR++ denotes the weighted average response ratio.

    图  5   不同品种类型下施氮量对鲜薯产量、单株结薯数和单薯重的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, c, e为鲜食型甘薯鲜薯产量、单株结薯数、单薯重,b, d, f为淀粉型甘薯鲜薯产量、单株结薯数、单薯重。

    Figure  5.   Effects of nitrogen application rate on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different variety types

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, c, e are tuber yield, number of tubers per plant, and single tuber weight of fresh-eating sweetpotato; b, d, f are fresh tuber yield, number of tubers per plant, and single tuber weight of starch sweetpotato. RR++ denotes the weighted average response ratio.

    图  6   不同钾肥和磷肥施用量下施氮对鲜薯产量、单株结薯数和单薯重的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a, d为鲜薯产量;b, e为单株结薯数;c, f为单薯重。

    Figure  6.   Effects of nitrogen application on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different application rates of potassium and phosphorus

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a, d are fresh tuber yield; b, e are number of tubers per plant; c, f are single tuber weight. RR++ denotes the weighted average response ratio.

    图  7   最优磷钾肥施用量条件下施氮对鲜薯产量的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。KAR—钾肥施用量;PAR—磷肥施用量。

    Figure  7.   Effects of nitrogen fertilizer application on the fresh tuber yield of sweetpotato under optimal application rates of potassium and phosphorus

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. KAR—Potassium application rate; PAR—Phosphorus application rate. RR++ denotes the weighted average response ratio.

    图  8   不同土壤肥力条件下施氮量对鲜薯产量、单株结薯数和单薯重的影响

    注:点和误差线分别代表加权平均响应比和95%置信区间;括号内的百分数和数值分别代表施氮响应百分数和样本数。a为鲜薯产量,b为单株结薯数,c为单薯重。

    Figure  8.   Effects of nitrogen application on the fresh tuber yield, the number of tubers per plant and the single tuber weight of sweetpotato under different soil conditions

    Note: Dots with error bars denote the weighted average response ratio and 95%CI, respectively. The percent and value in parentheses denote the percent response to nitrogen fertilizer application and sample size. a is tuber yield, b is number of tubers per plant, c is single tuber weight. RR++ denotes the weighted average response ratio.

    表  1   分类因素及亚组

    Table  1   Classification factors and subgroups

    分类因素
    Classification factors
    亚组
    Subgroups
    区域 Region 北方薯区:山东 (16)、河北 (1)、北京 (1)、山西 (4)、河南 (2)、陕西 (2)、江苏北部 (4)
    Northern sweetpotato planting region: Shandong (16), Hebei (1), Beijing (1), Shanxi (4), Henan (2), Shaanxi (2), Northern Jiangsu (4)
    长江流域薯区:安徽南部 (1)、湖北 (1)、江西北部 (1)、浙江 (1)
    Sweetpotato planting region in the middle and lower reaches of Yangtze River:
    Southern Anhui (1), Hubei (1), Northern Jiangxi (1), Zhejiang (1)
    南方薯区:海南 (4)、福建 (7)
    Southern sweetpotato planting region: Hainan (4), Fujian (7)
    施氮量 N application rate <75, 75~150, 150~225, 225~300 kg/hm2
    对照组产量 Control yield ≤25, 25~35, >35 kg/hm2
    品种类型 Type of cultivar 鲜食型甘薯 Fresh sweetpotato, 淀粉型甘薯 Starch-sweetpotato
    施钾量 K application rate <75, 75~150, 150~225, 225~300 kg/hm2
    施磷量 P application rate ≤ 60, 60~90, > 90 kg/hm2
    土壤 pH Soil pH ≤6.5, 6.5~7.5, >7.5
    土壤有机质 Soil organic matter ≤10, 10~20, >20 g/kg
    土壤速效氮 Soil available N ≤60, 60~120, >120 mg/kg
    土壤有效磷 Soil available P ≤10, 10~20, >20 mg/kg
    土壤速效钾 Soil available K ≤50, 50~100, >100 mg/kg
    注:括号内的数值代表试验点数。
    Note: The values in parentheses denote the number of experimental points.
    下载: 导出CSV
  • [1] 王欣, 李强, 曹清河, 马代夫. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学, 2021, 54(3): 483–492.

    Wang X, Li Q, Cao Q H, Ma D F. Current status and future prospective of sweetpotato production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 483–492.

    [2]

    Food and Agriculture Organization. FAOSTAT agriculture data[EB/OL]. [2024–01–30]. http://www.fao.org/faostat/en.

    [3] 张辉, 谭诚, 周晓月, 等. 长江中下游甘薯氮磷钾肥施用效果与区域土壤养分丰缺指标研究[J]. 土壤, 2022, 54(4): 676−681.

    Zhang H, Tan C, Zhou X Y, et al. Study on application effects of N, P and K fertilizers on sweet potato and abundance-deficiency indexes of regional soil nutrients in middle and lower reaches of Yangtze River[J]. Soils, 2022, 54(4): 676−681.

    [4] 权宝全, 吕瑞洲, 王贵江. 不同施氮量对甘薯生长发育及产量的影响[J]. 东北农业科学, 2019, 44(6): 14−17.

    Quan B Q, Lü R Z, Wang G J. Effects of different nitrogen application rates on growth and yield of sweet potato[J]. Journal of Northeast Agricultural Sciences, 2019, 44(6): 14−17.

    [5] 陈路路, 孙哲, 田昌庚, 等. 氮钾互作对甘薯生长发育、干物质积累分配及产量形成的影响[J]. 江苏农业科学, 2023, 51(9): 68−75.

    Chen L L, Sun Z, Tian C G, et al. Interactive effects of nitrogen and potassium on the growth, dry matter accumulation and yield formation of sweet potato[J]. Jiangsu Agricultural Sciences, 2023, 51(9): 68−75.

    [6] 孙哲, 田昌庚, 陈路路, 等. 氮钾配施对甘薯茎叶生长、产量形成及干物质分配的影响[J]. 中国土壤与肥料, 2021, (4): 186−191. DOI: 10.11838/sfsc.1673-6257.20268

    Sun Z, Tian C G, Chen L L, et al. Interactive effects of nitrogen and potassium on the stem and leaves growth, yield formation and dry matter distribution of sweet potato[J]. Soil and Fertilizer Sciences in China, 2021, (4): 186−191. DOI: 10.11838/sfsc.1673-6257.20268

    [7] 陈娟, 曲明山, 郭宁, 等. 氮肥用量对甘薯干物质积累和氮磷钾吸收的影响[J]. 农学学报, 2014, 4(3): 35−38. DOI: 10.3969/j.issn.1007-7774.2014.03.008

    Chen J, Qu M S, Guo N, et al. Nitrogen applying on dry matter accumulation and N, P and K absorption efficiencies of sweet potato[J]. Journal of Agriculture, 2014, 4(3): 35−38. DOI: 10.3969/j.issn.1007-7774.2014.03.008

    [8] 陈晓光, 丁艳锋, 李洪民, 等. 施氮量对甘薯块根产量和氮素利用的影响[J]. 西南农业学报, 2015, 28(5): 2158−2161.

    Chen X G, Ding Y F, Li H M, et al. Effects of nitrogen rates on yield and nitrogen utilization of sweetpotato[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(5): 2158−2161.

    [9] 陈玥, 梁清干, 王蒙召, 等. 施氮量和种植密度对甘薯封垄期干物质积累和分配及收获期产量的影响[J]. 热带作物学报, 2024, 45(4): 761−771.

    Chen Y, Liang Q G, Wang M Z, et al. Effects of nitrogen application rate and planting density on dry matter accumulation and distribution at ridge sealing stage and yield at harvest stage of sweetpotato[J]. Chinese Journal of Tropical Crops, 2024, 45(4): 761−771.

    [10] 王宁, 孟亚依, 姚剑锋, 等. 甘薯源库发育及产量品质对氮源和施氮量的响应[J]. 热带作物学报, 2024, 45(1): 77−86.

    Wang N, Meng Y Y, Yao J F, et al. Response of source-sink development and yield and quality of sweetpotato to nitrogen source and nitrogen application rate[J]. Chinese Journal of Tropical Crops, 2024, 45(1): 77−86.

    [11] 黄文星. 甘薯施用氮肥效果试验[J]. 福建农业科技, 2012, (8): 55−57. DOI: 10.3969/j.issn.0253-2301.2012.08.034

    Huang W X. Effects of applying nitrogen fertilizer on sweet potato[J]. Fujian Agricultural Science and Technology, 2012, (8): 55−57. DOI: 10.3969/j.issn.0253-2301.2012.08.034

    [12] 林水明, 李广昌, 林炎照, 等. 甘薯品种龙津薯1号施用氮肥效果试验[J]. 福建农业科技, 2016, (10): 16−17.

    Lin S M, Li G C, Lin Y Z, et al. Effect of nitrogen fertilizer application on sweet potato variety“Longjinshu No. 1”[J]. Fujian Agricultural Science and Technology, 2016, (10): 16−17.

    [13] 吴振新, 吴礼仁, 吴才玉. 不同氮肥施用量对甘薯产量的影响[J]. 福建农业科技, 2012, (11): 63−65. DOI: 10.3969/j.issn.0253-2301.2012.11.028

    Wu Z X, Wu L R, Wu C Y. Effects of different nitrogen-applied rate on sweet potato yield[J]. Fujian Agricultural Science and Technology, 2012, (11): 63−65. DOI: 10.3969/j.issn.0253-2301.2012.11.028

    [14] 林子龙, 郭其茂, 陈根辉, 等. 氮钾配施对甘薯龙薯31号生长和产量的影响[J]. 江西农业学报, 2019, 31(8): 42−45.

    Lin Z L, Guo Q M, Chen G H, et al. Effects of combined application of nitrogen and potassium on growth and yield of sweet potato Longshu 31[J]. Acta Agriculturae Jiangxi, 2019, 31(8): 42−45.

    [15] 窦怀良, 史衍玺, 刘庆, 李欢. 不同土壤肥力水平下施氮对甘薯产量与氮肥利用率的影响[J]. 水土保持学报, 2017, 31(4): 235−240.

    Dou H L, Shi Y X, Liu Q, Li H. Effect of nitrogen application on yield and nitrogen use efficiency of sweetpotato under different soil fertility[J]. Journal of Soil and Water Conservation, 2017, 31(4): 235−240.

    [16] 刘唯一. 北京大兴地区甘薯氮磷钾适宜用量研究[D]. 北京: 中国农业科学院硕士学位论文, 2012.

    Liu W Y. Study on optimum rate of nitrogen, phosphorus and potassium in sweet potato in Daxing District, Beijing[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2012.

    [17] 吴春红, 刘庆, 孔凡美, 等. 氮肥施用量对不同紫甘薯品种产量和氮素效率的影响[J]. 作物学报, 2016, 42(1): 113−122. DOI: 10.3724/SP.J.1006.2016.00113

    Wu C H, Liu Q, Kong F M, et al. Effects of nitrogen application rates on root yield and nitrogen utilization in different purple sweetpotato varieties[J]. Acta Agronomica Sinica, 2016, 42(1): 113−122. DOI: 10.3724/SP.J.1006.2016.00113

    [18]

    Duan W X, Wang Q M, Zhang H Y, et al. Differences between nitrogen-tolerant and nitrogen-susceptible sweetpotato cultivars in photosynthate distribution and transport under different nitrogen conditions[J]. PLoS ONE, 2018, 13(3): e0194570. DOI: 10.1371/journal.pone.0194570

    [19] 柴沙沙, 雷剑, 王连军, 等. 氮、钾互作对甘薯生长发育规律的影响[J]. 湖北农业科学, 2018, 57(22): 24−26.

    Chai S S, Lei J, Wang L J, et al. Effects of nitrogen and potassium on the growth and development of sweet potato[J]. Hubei Agricultural Sciences, 2018, 57(22): 24−26.

    [20] 后猛, 刘亚菊, 王欣, 等. 氮钾配施对食用甘薯产量和品质的影响[J]. 西南农业学报, 2015, 28(1): 260−264.

    Hou M, Liu Y J, Wang X, et al. Effects of nitrogen application combined with potassium on yield and quality of edible sweetpotato[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(1): 260−264.

    [21] 张海燕, 董顺旭, 董晓霞, 等. 氮磷钾不同配比对甘薯产量和品质的影响[J]. 山东农业科学, 2013, 45(3): 76−79. DOI: 10.3969/j.issn.1001-4942.2013.03.019

    Zhang H Y, Dong S X, Dong X X, et al. Effects of different proportions of nitrogen, phosphorous and potassium on yield and quality of sweet potato [Ipomoea batatas(L.) Lam][J]. Shandong Agricultural Sciences, 2013, 45(3): 76−79. DOI: 10.3969/j.issn.1001-4942.2013.03.019

    [22] 杨育峰, 张晓申, 王慧瑜, 等. 氮、磷、钾肥配施对甘薯农艺性状和产量的影响[J]. 河南农业科学, 2015, 44(3): 52−55.

    Yang Y F, Zhang X S, Wang H Y, et al. Effects of combined application of nitrogen, phosphorus and potassium fertilizers on agronomic traits and yield of sweetpotato[J]. Journal of Henan Agricultural Sciences, 2015, 44(3): 52−55.

    [23] 韩天富, 马常宝, 黄晶, 等. 基于Meta分析中国水稻产量对施肥的响应特征[J]. 中国农业科学, 2019, 52(11): 1918−1929.

    Han T F, Ma C B, Huang J, et al. Variation in rice yield response to fertilization in China : Meta-analysis[J]. Scientia Agricultura Sinica, 2019, 52(11): 1918−1929.

    [24] 徐菊祯, 张梦璐, 何文清, 等. 中国马铃薯地膜覆盖增产效应及其影响因素的Meta分析[J]. 中国农业科学, 2023, 56(15): 2895−2906. DOI: 10.3864/j.issn.0578-1752.2023.15.005

    Xu J Z, Zhang M L, He W Q, et al. Yield-increasing effects under plastic film mulching of potato in China based on meta-analysis[J]. Scientia Agricultura Sinica, 2023, 56(15): 2895−2906. DOI: 10.3864/j.issn.0578-1752.2023.15.005

    [25] 廖萍, 孟轶, 翁文安, 等. 杂交稻对产量和氮素利用率影响的荟萃分析[J]. 中国农业科学, 2022, 55(8): 1546−1556. DOI: 10.3864/j.issn.0578-1752.2022.08.006

    Liao P, Meng Y, Weng W A, et al. Effects of hybrid rice on grain yield and nitrogen use efficiency: A meta-analysis[J]. Scientia Agricultura Sinica, 2022, 55(8): 1546−1556. DOI: 10.3864/j.issn.0578-1752.2022.08.006

    [26] 卞倩倩, 王雁楠, 陈金金, 等. 施钾对我国甘薯产量和土壤钾素平衡影响的Meta分析[J]. 植物营养与肥料学报, 2022, 28(8): 1509−1519. DOI: 10.11674/zwyf.2021632

    Bian Q Q, Wang Y N, Chen J J, et al. Effects of potassium application on yield and potassium balance of sweet potato field in China: A meta-analysis[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1509−1519. DOI: 10.11674/zwyf.2021632

    [27] 马代夫, 刘庆昌, 张立明, 等. 中国甘薯[M]. 江苏南京: 江苏凤凰科学技术出版社, 2020.

    Ma D F, Liu Q C, Zhang L M, et al. Sweet potato in China[M]. Nanjing, Jiangsu: Jiangsu Phoenix Science and Technology Press, 2020.

    [28] 肖大康, 胡仁, 韩天富, 等. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学, 2023, 37(5): 529–542.

    Xiao D K, Hu R, Han T F, et al. Effects of nitrogen fertilizer consumption and operation on rice yield and its components in China: A meta-analysis[J] Chinese Journal of Rice Science, 2023, 37(5): 529–542.

    [29] 许国春, 纪荣昌, 邱永祥, 等. 我国马铃薯产量对施氮的响应及其影响因素分析[J]. 植物营养与肥料学报, 2020, 26(4): 727−737. DOI: 10.11674/zwyf.19278

    Xu G C, Ji R C, Qiu Y X, et al. Responses of potato yields to nitrogen application and associated driving factors in China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(4): 727−737. DOI: 10.11674/zwyf.19278

    [30] 刘明, 李洪民, 张爱君, 等. 不同氮肥与密度水平对鲜食甘薯产量和品质的影响[J]. 华北农学报, 2020, 35(1): 122−130. DOI: 10.7668/hbnxb.20190278

    Liu M, Li H M, Zhang A J, et al. Effects of nitrogen fertilizer and density on yield and quality of fresh edible type sweetpotato[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(1): 122−130. DOI: 10.7668/hbnxb.20190278

    [31] 陈晓光, 丁艳锋, 唐忠厚, 等. 氮肥施用量对甘薯产量和品质性状的影响[J]. 植物营养与肥料学报, 2015, 21(4): 979−986. DOI: 10.11674/zwyf.2015.0417

    Chen X G, Ding Y F, Tang Z H, et al. Suitable nitrogen rate for storage root yield and quality of sweet potato[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 979−986. DOI: 10.11674/zwyf.2015.0417

    [32] 章明清, 李娟, 孔庆波, 姚宝全. 福建甘薯氮磷钾施肥指标研究[J]. 土壤通报, 2012, 43(4): 861−866.

    Zhang M Q, Li J, Kong Q B, Yao B Q. Study on fertilization index of nitrogen, phosphorus and potassium for sweet potato in Fujian[J]. Chinese Journal of Soil Science, 2012, 43(4): 861−866.

    [33] 宁运旺, 马洪波, 张辉, 等. 甘薯源库关系建立、发展和平衡对氮肥用量的响应[J]. 作物学报, 2015, 41(3): 432−439. DOI: 10.3724/SP.J.1006.2015.00432

    Ning Y W, Ma H B, Zhang H, et al. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates[J]. Acta Agronomica Sinica, 2015, 41(3): 432−439. DOI: 10.3724/SP.J.1006.2015.00432

    [34] 杜祥备, 刘小平. 氮肥减量分施促进甘薯根系分化与块根膨大[J]. 植物营养与肥料学报, 2019, 25(10): 1702−1709. DOI: 10.11674/zwyf.18353

    Du X B, Liu X P. Lowering rate and split application of nitrogen fertilizer promote root differentiation and storage root enlargement of sweet potato[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1702−1709. DOI: 10.11674/zwyf.18353

    [35] 刘永晨, 司成成, 柳洪鹃, 等. 土壤紧实度对甘薯群体结构及产量的影响[J]. 山东农业科学, 2019, 51(10): 99−103.

    Liu Y C, Si C C, Liu H J, et al. Effects of soil compactness on population structure and yield of sweet potato[J]. Shandong Agricultural Sciences, 2019, 51(10): 99−103.

    [36] 刘永晨, 司成成, 柳洪鹃, 等. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462−471.

    Liu Y C, Si C C, Liu H J, et al. Reason exploration for soil aeration promoting photosynthate transportation between sink and source in sweet potato[J]. Acta Agronomica Sinica, 2020, 46(3): 462−471.

    [37] 陆建珍, 汪翔, 秦建军, 等. 我国甘薯种植业发展状况调查报告(2017年): 基于国家甘薯产业技术体系产业经济固定观察点数据的分析[J]. 江苏农业科学, 2018, 46(23): 393−398.

    Lu J Z, Wang X, Qin J J, et al. Investigation report on development status of China's sweet potato planting industry in 2017: Analysis of fixed observing point data based on National Sweet Potato Industry Technology System[J]. Jiangsu Agricultural Sciences, 2018, 46(23): 393−398.

    [38] 张晓艳, 王丽丽, 刘淑云, 等. 不同基因型甘薯品种产量及营养成分的动态变化[J]. 山东农业科学, 2011, 43(1): 24−28. DOI: 10.3969/j.issn.1001-4942.2011.01.007

    Zhang X Y, Wang L L, Liu S Y, et al. Dynamic changes of yield and nutritional components of different genotypical sweetpotato varieties[J]. Shangdong Agricultural Sciences, 2011, 43(1): 24−28. DOI: 10.3969/j.issn.1001-4942.2011.01.007

    [39] 陈琛, 于小凤, 高英博, 等 不同库容量类型遗传群体水稻氮素吸收利用性状的差异[J]. 西南农业学报, 2020, 33(12): 2707–2713.

    Chen C, Yu X F, Gao Y B, et al. Differential nitrogen uptake and utilization in rice genetic populations with contrasting sink capacity[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(12): 2707–2713.

    [40] 董月, 安霞, 张辉, 等. 不同品种甘薯的生物量累积、养分吸收和分配规律[J]. 江苏农业学报, 2016, 32(2): 313−318. DOI: 10.3969/j.issn.1000-4440.2016.02.012

    Dong Y, An X, Zhang H, et al. Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J]. Jiangsu Journal of Agricultural Sciences., 2016, 32(2): 313−318. DOI: 10.3969/j.issn.1000-4440.2016.02.012

    [41] 贾赵东, 马佩勇, 边小峰, 等. 不同施磷水平下甘薯干物质积累及其氮磷钾养分吸收特性[J]. 西南农业学报, 2016, 29(6): 1358−1365.

    Jia Z D, Ma P Y, Bian X F, et al. Effects of different phosphorus application rate on dry matter accumulation and N, P, K absorption and utilization in sweetpotato[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(6): 1358−1365.

    [42] 刘明, 郑冬梅, 靳容, 等. 施磷对鲜食甘薯产量、品质及磷利用效率的影响: 以徐薯32为例[J]. 应用生态学报, 2023, 34(1): 131−136.

    Liu M, Zheng D M, Jin R, et al. Effects of phosphorus application on yield, quality and phosphorus use efficiency of edible sweetpotato: A case study of Xushu 32[J]. Chinese Journal of Applied Ecology, 2023, 34(1): 131−136.

    [43] 柳洪鹃, 史春余, 张立明, 等. 钾素对食用型甘薯糖代谢相关酶活性的影响[J]. 植物营养与肥料学报, 2012, 18(3): 724−732. DOI: 10.11674/zwyf.2012.11253

    Liu H J, Shi C Y, Zhang L M, et al. Effect of potassium on related enzyme activities in sugar metabolism of edible sweet potato[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(3): 724−732. DOI: 10.11674/zwyf.2012.11253

    [44] 柳洪鹃, 史春余, 柴沙沙, 等. 不同时期施钾对甘薯光合产物运转动力的调控[J]. 植物营养与肥料学报, 2015, 21(1): 171−180. DOI: 10.11674/zwyf.2015.0119

    Liu H J, Shi C Y, Chai S S, et al. Effect of different potassium application time on the vigor of photosynthate transportations of edible sweet potato (Ipomoea batata L. )[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1): 171−180. DOI: 10.11674/zwyf.2015.0119

    [45] 张辉, 贺娟, 梁健, 等. 长江中下游薯区甘薯农户施肥现状调查分析[J]. 江苏师范大学学报(自然科学版), 2021, 39(2): 31−34.

    Zhang H, He J, Liang J, et al. Investigation and analysis of farmers fertilizer application for sweetpotato in the middle and lower reaches of Yangtze River[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2021, 39(2): 31−34.

    [46] 李娟, 张立成, 张华, 等. 福建甘薯氮磷钾推荐施肥与有机肥替代化肥技术模式[J]. 福建农业学报, 2022, 37(8): 968−976.

    Li J, Zhang L C, Zhang H, et al. Recommended NPK fertilization and partial replacement with organic manure for sweet potato cultivation in Fujian[J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 968−976.

    [47] 田江梅. 氮磷钾肥对甘薯产量品质影响及光合和养分积累的调控[D]. 重庆: 西南大学硕士学位论文, 2016.

    Tian J M. The effect of NPK fertilizers on yield-quality, the regulation of photosynthesis and nutrient accumulation of sweet potato[D]. Chongqing: MS Thesis of Southwest University, 2016.

    [48] 于滨杭, 姬建梅, 王丽, 等. 中国主粮作物生物炭产量效应的Meta分析[J]. 环境科学, 2023, 44(1): 520−530.

    Yu B H, Ji J M, Wang L, et al. Meta analysis on yield effect of biochar for staple crops in China[J]. Environmental Science, 2023, 44(1): 520−530.

    [49] 汪顺义, 刘庆, 史衍玺, 李欢. 氮钾配施对甘薯光合产物积累及分配的影响[J]. 中国农业科学, 2017, 50(14): 2706−2716. DOI: 10.3864/j.issn.0578-1752.2017.14.007

    Wang S Y, Liu Q, Shi Y X, Li H. Interactive effects of nitrogen and potassium on photosynthesis product distribution and accumulation of sweet potato[J]. Scientia Agricultura Sinica, 2017, 50(14): 2706−2716. DOI: 10.3864/j.issn.0578-1752.2017.14.007

图(8)  /  表(1)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  52
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 录用日期:  2024-03-26
  • 网络出版日期:  2024-07-03
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回