Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

铁改性生物炭制备及其对磷的吸附和有效性

苏杨, 冼卓慧, 张俊涛

苏杨, 冼卓慧, 张俊涛. 铁改性生物炭制备及其对磷的吸附和有效性[J]. 植物营养与肥料学报, 2024, 30(9): 1782-1793. DOI: 10.11674/zwyf.2024063
引用本文: 苏杨, 冼卓慧, 张俊涛. 铁改性生物炭制备及其对磷的吸附和有效性[J]. 植物营养与肥料学报, 2024, 30(9): 1782-1793. DOI: 10.11674/zwyf.2024063
SU Yang, XIAN Zhuo-hui, ZHANG Jun-tao. Preparation of iron-modified biochar and its adsorption and effectiveness of phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1782-1793. DOI: 10.11674/zwyf.2024063
Citation: SU Yang, XIAN Zhuo-hui, ZHANG Jun-tao. Preparation of iron-modified biochar and its adsorption and effectiveness of phosphorus[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(9): 1782-1793. DOI: 10.11674/zwyf.2024063

铁改性生物炭制备及其对磷的吸附和有效性

基金项目: 广州林业园林科学技术研究专项 (2061900000139);广州市生态园林科技协同创新中心项目 (202206010058);广州市林业和园林局部门预算项目(202307130200)。
详细信息
    作者简介:

    苏杨 E-mail: 510368284@qq.com

    通讯作者:

    张俊涛 E-mail: 350965652@qq.com

Preparation of iron-modified biochar and its adsorption and effectiveness of phosphorus

  • 摘要:
    目的 

    受自身理化性质的影响,普通生物炭对磷的吸附能力较差。本研究尝试通过铁改性提升生物炭的磷吸附能力,以增强磷的固储能力,减轻土壤磷流失带来的环境风险。

    方法 

    供试生物炭包括核桃壳炭(WSB)、水稻秸秆炭(RSB)和木质炭(WB)。将10 g生物炭浸泡于1 mol/L HCl中1 h,用蒸馏水洗涤至滤液呈中性后烘干,然后加入到1 mol/L的FeCl3溶液中,设置铁与生物炭的质量比分别为0.28、0.56、0.84,经静置、过滤、烘干、煅烧后,得到铁改性生物炭,分别记为WSB-0.28、WSB-0.56、WSB-0.84、RSB-0.28、RSB-0.56、RSB-0.84、WB-0.28、WB-0.56、WB-0.84。采用扫描电子显微镜、能谱仪、傅立叶红外光谱仪、X射线衍射仪、全自动比表面积、孔径测试仪和元素分析仪分别对改性生物炭进行表征测定,并分别以2%、4%、6%的比例 (质量比) 添加至土壤中进行磷的吸附解吸试验,选取磷调控能力较好的生物炭进行矮牵牛栽培试验。

    结果 

    Fe2O3成功地负载到3种生物炭表面,改性后生物炭的吸附位点显著增多,特别是WSB-0.28对磷的吸附能力显著高于WSB。土壤对磷吸附量随铁改性生物炭添加量增加而增加,在相同添加量下,土壤磷吸附量排序为铁改性水稻秸秆炭>铁改性木质炭>铁改性核桃壳炭 (WSB-0.28除外),而铁改性木质炭对土壤磷的解吸量和解吸率高于其他生物炭。盆栽试验结果表明,富磷铁改性核桃壳炭可增加矮牵牛幼苗根、叶生物量,并提升叶片叶绿素含量及开花量。

    结论 

    铁改性可提升生物炭对磷的吸附能力,增强土壤固磷作用,提高土壤磷素供给,促进植物生长。因此,铁改性生物炭可作为一种新型炭基缓释肥料应用于城市绿地土壤中,固磷增效,减轻土壤磷流失的环境风险。

    Abstract:
    Objectives 

    The inherent physical and chemical properties of ordinary biochar render it incapable of exhibiting a notable phosphorus adsorption capacity. This study attempted to enhance the phosphorus adsorption capacity of biochar by iron modification, so as to enhance the phosphorus storage capacity and reduce the environmental risk caused by soil phosphorus loss.

    Methods 

    The biochars used in the study include walnut shell biochar (WSB), rice straw biochar (RSB), and wood biochar (WB). First, 10 g of each biochar was soaked in 1 mol/L HCl for 1 hour, washed with distilled water until the filtrate was neutral, and then dried. The biochar was then added to a 1 mol/L FeCl3 solution, with mass ratios of iron to biochar set at 0.28, 0.56, and 0.84. After standing, filtering, drying, and calcination, the iron-modified biochars were obtained and labeled as WSB-0.28, WSB-0.56, WSB-0.84, RSB-0.28, RSB-0.56, RSB-0.84, WB-0.28, WB-0.56, and WB-0.84, respectively. The modified biochars were characterized using scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, automatic surface area and pore size analyzer, and elemental analysis. The biochars were added to soil at ratios of 2%, 4%, and 6% (by mass) for phosphorus adsorption-desorption experiments. Biochars with strong phosphorus regulation capacity were selected for petunia cultivation experiments.

    Results 

    Fe2O3 was successfully loaded onto the surface of the three types of biochar, significantly increasing the number of adsorption sites, especially the phosphorus adsorption capacity of WSB-0.28 was significantly higher than that of WSB. The amount of phosphorus adsorbed by the soil increased with the addition of iron-modified biochar. At the same addition level, the phosphorus adsorption capacity of the soil followed the order: rice straw biochar>wood biochar>walnut shell biochar (except for WSB-0.28). Iron-modified wood biochar showed higher phosphorus desorption amount and desorption rate than the other biochars. Pot experiments indicated that phosphorus-enriced iron modified walnut shell biochar could promote the increase of root and leaf biomass of petunia seedlings, as well as enhance leaf chlorophyll content and flowering.

    Conclusions 

    Iron modification can enhance the phosphorus adsorption capacity of biochar, improving soil phosphorus retention, increasing phosphorus availability, and promoting plant growth. Therefore, modified biochar can be used as a novel carbon-based slow-release fertilizer in urban green space soils, contributing to efficient phosphorus retention and reducing the environmental risk of soil phosphorus loss.

  • 磷是植物生长发育所必需的大量营养元素之一,同时也是水体富营养化的主要影响因素之一。在园林绿化管理中,为了确保植物景观效果,往往会施加大量含磷复合肥,而能被植物吸收的磷元素仅占5%~30%[12]。盈余的磷则通过地表径流、渗漏等方式流失到水环境中[3],极易对脆弱的城市景观水体造成污染。因此,如何有效减少磷对环境的负面影响成为防止环境恶化的关键。

    生物炭以其较大的比表面积、较高的离子交换量以及丰富的化学官能团而备受关注[45]。通过物理化学吸附和解吸过程,生物炭能够改变磷的循环和有效性[6]。然而,普通生物炭对磷的吸附能力很大程度上受自身理化性质的影响,吸附容量相对较低[7],而且不同类型的生物炭表现出较大差异。前人研究表明,水稻秸秆炭对土壤磷的吸附有一定的提升效果,并随添加量的增加而增强,而核桃壳炭和木质炭对土壤磷的吸附能力几乎没有影响,甚至可能将本身携带的磷释放至溶液中[8]。相反,对生物炭进行铁改性可有效提升其对磷的吸附能力[910]。前人以FeCl3分别对毛藻生物炭[11]、小麦秸秆生物炭[12]、麻根生物炭[13]、污泥生物炭[14]、玉米秸秆生物炭[15]进行改性,均显著增强其对磷酸盐的吸附能力。

    以往的研究多集中在普通生物炭对磷的吸附和解吸性能,或铁改性生物炭在废水磷处理的应用上[1618],但对铁改性生物炭对土壤磷的吸附−解吸能力的影响以及其作为土壤固磷材料的研究报道相对较少。本研究探究常见3种生物炭 (水稻秸秆炭、核桃壳炭、木质炭) 改性后的理化性质及其对土壤磷的吸附−解吸能力的影响,旨在探明其对土壤磷的固储与缓释能力,为园林土壤磷固储及释放、研制新型炭基缓释肥料提供高性能材料。

    供试生物炭:核桃壳炭 (WSB,在限氧条件下400℃热解2 h,广东广森炭业科技有限公司)、水稻秸秆炭 (RSB,在限氧条件下400℃热解2 h,河南立泽环保科技有限公司)、木质炭 (WB,在限氧条件下400℃热解2 h,大连群芳园艺有限公司)。

    供试土壤:园林绿地土壤采集于广州市海珠湿地一期 (113o20′58′′E,23o4′58′′N) 的0—30 cm表层土壤,经自然风干后进行粉碎,过1.0 mm筛备用。供试土壤pH值、电导率 (EC)、有机质含量分别为5.5、0.02 mS/cm、16.6 g/kg,土壤全氮、全磷、全钾含量分别为1.03、0.53、33.31 g/kg,土壤碱解氮、有效磷、速效钾含量分别为71.0、8.4、88.6 mg/kg。

    供试植物:矮牵牛幼苗 (穴盘苗)的株高为(3.5±0.5) cm,冠幅为(8.3±0.7) cm。

    铁改性生物炭制备:取10 g供试生物炭 (WSB、RSB、WB) 浸泡于100 mL HCl (1 mol/L)中1 h,加入蒸馏水过滤直至滤液呈中性,将生物炭在烘箱中75℃烘干,将烘干的生物炭加入到1 mol/L的FeCl3溶液中 (铁与生物炭的质量比分别为0.28、0.56、0.84),磁力搅拌器搅拌1 h,随后静置18 h。过滤、烘干后移入瓷坩埚置于300℃马弗炉中煅烧2 h,即得到铁改性生物炭[9],分别记为WSB-0.28、WSB-0.56、WSB-0.84、RSB-0.28、RSB-0.56、RSB-0.84、WB-0.28、WB-0.56、WB-0.84。

    富磷铁改性核桃壳炭 (WSB-0.28+P) 的制备:在5 g WSB-0.28中加入25 mL KH2PO4溶液 (263 mg/L),在25℃下以200 r/min的转速恒温振荡24 h后,经4000 r/min离心3 min,过滤后,于80℃烘干制得。

    吸附试验:准确称取供试土壤1.25 g置于50 mL的离心管中,分别按照2%、4%、6% (w/w)比例添加制备的铁改性生物炭,混合均匀,以添加未改性生物炭的处理为对照 (CK),每个处理3次重复。随后,向各处理中分别加入25 mL KH2PO4溶液 (含磷量为60 mg/L,浓度选择参考代银分等[18]),分别在25℃下以200 r/min的转速振荡24 h后,经4000 r/min离心3 min后过滤,测定上清液磷浓度,计算磷的吸附量[18]

    解吸试验:吸附试验倾出上清液后,用25 mL饱和NaCl溶液加入到残余土样,充分搅拌土样至完全均匀,4000 r/min离心3 min,倾出上清液,重复操作1次以洗去游离的KH2PO4,然后加入25 mL 0.01 mol/L的KCl溶液,在25℃下以200 r/min转速振荡平衡24 h,经4000 r/min离心3 min、过滤,测定上清液中磷浓度,计算磷的解吸量[19]

    盆栽试验:试验于2022年8—9月在广州市林业和园林科学研究院科研楼天台进行,培养周期为35天。将矮牵牛幼苗移栽至装有0.3 kg (干重) 蛭石和陶粒的种植盆中,其中蛭石∶陶粒质量比=3∶1。每盆种植1株,每周施加25 mL缺磷的霍格兰氏营养液,每隔1天浇水25 mL。以穴施的方式分别将WSB-0.28 (T1)、WSB-0.28+P (T2) 施于矮牵牛幼苗的根系周围,每次3 g,施用两次 (总添加量为2%),每次间隔7 天(图1)。以不施加生物炭的处理为对照组 (CK),每个处理重复10盆。第35天时测量矮牵牛幼苗的株高、冠幅、SPAD、叶量、花量等生长指标,并对矮牵牛进行破坏性采样,将其分成地上和地下两部分,用自来水彻底清洗干净后转入烘箱烘干至恒重,测定其地上、地下部分的干重。

    图  1  生物炭施用示意图
    Figure  1.  Map of biochar application patterns

    采用高分辨场发射扫描电子显微镜 (SEM,Merlin,Zeiss,德国) 观察生物炭表面形貌;采用能谱仪 (X-MaxN20双探测器系统,牛津仪器公司,英国) 测定生物炭表面某点位的元素组成;采用红外光谱仪 (FTIR,VERTEX 33,Buker,德国) 测定生物炭的表面官能团[20];采用X射线衍射仪 ( XRD,X'Pert PRO MRD,PANalytical,荷兰) 测定生物炭样品的晶体结构[13];采用全自动比表面积及孔径测试仪( BET,ASAP 2460/2020,麦克,美国) 测定生物炭样品的比表面积;采用元素分析仪 (Vario EL cube,Elementar,德国) 测定生物炭中C、H、N、S元素的含量[20]

    参考《水质总磷的测定 钼酸铵分光光度法》(GB 11893-89),采用钼酸铵分光光度法检测。

    株高和冠幅用直尺进行测定,叶片相对叶绿素含量 (SPAD) 使用便携式叶绿素荧光分析仪[SPAD-502 Plus CHLOROPHYLL METER,Konica Minolta (China) Investment Co.,Ltd.,Shanghai]进行测定。

    参考彭启超等[21]、田雪等[22]方法计算土壤中磷的吸附量、解吸量及解吸率。

    土壤中磷的吸附量计算公式:

    Q1=(C0C)×V/m

    式中,Q1为平衡时土壤中磷的吸附量 (μg/g),C0为加入液中磷的浓度 (μg/mL),C为平衡液中磷的浓度 (μg/mL),V为平衡液体积 (mL),m为土壤质量 (g)。

    土壤中磷的解吸量计算公式:

    Q2=C×V/m

    式中,Q2为平衡时土壤中磷的解吸量 (μg/g),C为解吸平衡液中磷的浓度 (μg/mL),V为平衡液体积 (mL),m为土壤质量 (g)。

    解吸率=土壤中磷的解吸量/吸附量×100%。

    利用Excel进行数据初步分析和绘图,采用IBM SPSS Statistics 20.0 软件对试验数据进行统计分析,对不同处理的磷含量进行单因素方差分析,并采用Duncan法进行两两比较。采用jade 6.0分析XRD数据,并采用Origin 2018作图。

    扫描电镜结果显示,WSB、RSB和WB在改性前形貌特征差异明显,WSB具有较多细小的微孔,RSB和WB孔道排列均匀且孔径较大,其中WB的孔径更小(图2)。所有改性生物炭表面形态较改性前均发生明显变化,除RSB-0.56、RSB-0.84外,其他改性生物炭表面均匀形成了一层颗粒结构,说明铁元素成功负载到了这些生物炭表面。相比于其他材料处理生物炭,铁改性WB表面颗粒更加均匀、密集,其中WB-0.84最为致密。特别的,铁改性WSB表面形成了大颗粒的物质。

    图  2  铁改性前后生物炭扫描电镜图
    注:WSB、RSB、WB表示改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。
    Figure  2.  Scanning electron microscope (SEM) images of biochar before and after iron modification
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    能谱仪分析结果 (表1)显示,相对于未改性生物炭,3种铁改性生物炭的碳质量百分比均大幅下降 (21%~60%),O和Fe的质量百分比多上升 (−14%~171%),说明改性生物炭负载了铁的氧化物和羟基氧化物[9]

    表  1  3种原料生物炭铁改性前后的元素质量百分比及孔结构参数
    Table  1.  Elemental contents and pore structure parameters of biochar before and after iron modification
    生物炭
    Biochar
    元素质量百分比 Element mass percentage (%) 比表面积 (m2/g)
    Specific surface area
    平均孔径 (nm)
    Average pore size
    C O Fe
    WSB 85.6±2.0 a 9.2±0.1 d 0.0±0.0 d 26.7±0.5 a 1.9±0.1 c
    WSB-0.28 33.9±0.7 d 22.9±0.5 b 35.8±0.9 a 11.0±0.7 c 2.4±0.2 b
    WSB-0.56 42.1±1.2 b 21.8±0.3 c 31.6±1.5 b 16.8±0.8 b 2.2±0.2 b
    WSB-0.84 38.6±0.8 c 24.9±0.4 a 26.5±0.8 c 3.1±0.1 d 4.8±0.1 a
    RSB 63.1±1.3 a 19.0±0.5 c 0.0±0.0 d 13.4±0.3 c 13.3±0.5 a
    RSB-0.28 49.8±0.5 b 22.7±0.6 b 14.4±0.3 c 24.0±1.2 a 8.9±0.4 c
    RSB-0.56 40.4±0.9 c 16.3±0.6 d 31.5±0.2 a 18.8±0.2 b 10.2±0.4 b
    RSB-0.84 31.1±1.1 d 23.9±0.7 a 26.6±0.3 b 18.5±0.9 b 9.8±0.9 bc
    WB 75.1±0.8 a 19.0±0.4 b 0.0±0.0 d 4.5±0.2 c 4.2±0.3 c
    WB-0.28 38.5±0.2 b 22.2±0.5 a 28.8±0.5 b 8.2±0.5 b 7.1±0.4 b
    WB-0.56 32.0±0.7 c 22.3±0.4 a 30.3±0.5 a 1.9±0.1 d 10.0±0.7 a
    WB-0.84 37.9±0.9 b 19.0±0.2 b 26.0±0.7 c 12.0±0.5 a 4.4±0.2 c
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。元素质量百分比数据由能谱仪获得。同列数据后不同小写字母代表同一生物炭种类不同处理间差异显著 (P<0.05)。
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively. Elemental mass percentage data were measured by energy spectrometer. Different lowercase letters after data in a column represent significant difference among treatments for the same biochar (P<0.05).
    下载: 导出CSV 
    | 显示表格

    比表面积测定结果显示,改性前,WSB的比表面积最大 (26.7 m2/g),孔径最小 (1.9 nm);RSB的比表面积 (13.4 m2/g)次之,但是平均孔径最大(13.3 nm);WB比表面积最小(4.5 m2/g) (表1),与扫描电镜表征结果一致。

    在改性后,WSB比表面积变小平均孔径变大,结合扫描电镜表征中铁改性WSB表面和孔隙被大量颗粒状物质覆盖,推测是因为过量的铁堵塞孔隙,导致比表面积急剧减小[23]。而RSB和WB在改性后,比表面积增大,可能是盐酸预处理去除了RSB和WB含有的部分杂质和灰分,使得RSB和WB产生了大量孔道,进而大幅提高了生物炭的比表面积[24]

    元素分析结果表明,较改性前,改性后3种生物炭的碳含量显著降低了11%~53%,C/N均降低;WSB和WB的H含量分别显著降低了27%~45%、38%~60% (表2)。研究指出,土壤C/N过大,会减慢微生物的分解矿化作用,还会消耗土壤有效N素,因此施入土壤的材料需要考虑合适的C/N,一般认为最适合的C/N为25∶1[25]。虽然改性后生物炭C/N均有所降低,但多数铁改性生物炭的C/N仍大于25,这意味着过量施加铁改性生物炭依然可能会降低土壤N的有效性,影响作物的氮素营养。H/C代表了生物炭的芳香性,比值越小表示芳香性越强,生物炭结构越稳定[26]。检测结果表明,铁改性WSB的H/C值最小,说明铁改性WSB的芳香性最强,结构较稳定。

    表  2  3种生物炭铁改性前后的元素含量及原子比
    Table  2.  Elemental content and atomic ratio of biochar before and after iron modification
    生物炭 Biochar C (%) N (%) H (%) S (%) C/N H/C
    WSB 77.4±2.5 a 0.7±0.1 a 2.2±0.1 a 0.06±0.01 b 111±9 a 0.028±0.001 a
    WSB-0.28 58.5±2.1 d 0.7±0.1 a 1.6±0.2 b 0.08±0.01 ab 85±9 b 0.027±0.002 ab
    WSB-0.56 68.5±2.7 b 0.7±0.1 a 1.4±0.2 b 0.10±0.01 a 96±7 ab 0.020±0.002 bc
    WSB-0.84 63.9±1.6 c 0.6±0.1 a 1.2±0.3 b 0.09±0.02 a 103±14 ab 0.019±0.004 c
    RSB 35.1±1.2 a 0.7±0.1 a 1.2±0.1 ab 1.01±0.20 a 54±6 a 0.034±0.002 b
    RSB-0.28 26.8±1.1 b 0.6±0.2 a 1.0±0.2 b 0.06±0.01 b 43±13 a 0.037±0.006 b
    RSB-0.56 20.9±1.6 c 0.5±0.1 a 1.5±0.3 a 0.03±0.01 b 45±6 a 0.071±0.009 a
    RSB-0.84 21.1±1.4 c 0.5±0.2 a 1.3±0.3 ab 0.06±0.01 b 47±17 a 0.061±0.010 a
    WB 56.2±2.5 a 1.3±0.3 a 2.7±0.4 a 0 45±9 a 0.048±0.005 b
    WB-0.28 26.4±1.3 c 1.2±0.3 a 1.1±0.1 c 0 23±5 b 0.042±0.002 b
    WB-0.56 27.7±1.3 c 0.8±0.2 a 1.6±0.3 b 0 36±8 ab 0.058±0.008 a
    WB-0.84 32.6±1.9 b 0.9±0.3 a 1.7±0.1 b 0 36±10 ab 0.052±0.001 ab
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。同列数据后不同小写字母代表同一生物炭种类不同处理间差异显著 (P<0.05)。
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively. Different lowercase letters after data in a column represent significant difference among treatments for the same biochar (P<0.05).
    下载: 导出CSV 
    | 显示表格

    FTIR分析结果表明,3种生物炭在铁改性后羟基 (3000~3665 cm−1)、芳香碳上的C=C、C=O (1627 cm−1)和Si―O―Si (466 cm−1)振动峰强度均显著增加(图3)。WSB-0.28表面羟基和C=C双键数量显著高于WSB-0.56和WSB-0.84,可能是因为在改性过程中,WSB表面形成了大量的羟基和C=C双键,由于铁炭比为0.28时的溶液中铁离子总量少,溶液体系氧化性较弱,对WSB表面的羟基和C=C双键的破坏较小,所以最终形成的WSB-0.28表面官能团更丰富。此外,在592 cm−1位置出现了新峰,此处对应于Fe―O的伸缩振动[27] (图3a),进一步说明铁的氧化物成功负载在生物炭表面。在铁改性WSB中,WSB-0.84的Fe―O振动峰强度略高于WSB-0.28和WSB-0.56。在铁改性RSB中,RSB-0.28、RSB-0.56和RSB-0.84的Fe―O振动峰强度大致相当,且明显弱于其他两种生物炭,说明铁改性RSB表面附着的铁氧化物更少(图3b),与扫描电镜表征结果一致。在铁改性WB中,WB-0.28的Fe―O振动峰强度明显高于WB-0.56和WB-0.84 (图3c),与扫描电镜表征结果不同,可能是由于有一定的铁元素附着在WB-0.28孔隙中。

    图  3  铁改性前后生物炭的FTIR谱图
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。
    Figure  3.  FTIR spectra of biochar before and after iron modification
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    对铁改性前后生物炭进行XRD分析以确定其所负载物质的形态(图4)。通过在jade6.0 进行物相检索,所有铁改性生物炭表面活性组分主要以Fe2O3 (PDF#89-0597)形式存在,进一步确定了FTIR表征中铁氧化物的形态。具体而言,在铁改性WSB中,WSB-0.56和WSB-0.84的Fe2O3衍射峰强度相当,且略高于WSB-0.28。在铁改性RSB中,RSB-0.56和RSB-0.84的Fe2O3衍射峰强度远低于RSB-0.28,说明RSB-0.56和RSB-0.84中的Fe2O3更少,与SEM和FTIR表征结果一致。在铁改性WB中,WB-0.28的Fe2O3衍射峰强度略高于WB-0.56和WB-0.84,与FTIR表征结果一致而与SEM表征结果不同,进一步证实可能有一定的Fe2O3附着在WB-0.28孔隙中。

    图  4  铁改性前后生物炭的XRD谱图
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。
    Figure  4.  XRD spectra of biochar before and after iron modification
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    添加铁改性WSB处理土壤对磷的吸收量为309~933 μg/g,是未改性WSB处理 (99~121 μg/g) 的3.3~9.9倍(图5),说明铁改性WSB显著提高了土壤对磷的吸附能力。在相同生物炭添加量下,WSB-0.28处理土壤对磷的吸收量显著高于WSB-0.56和WSB-0.84处理 (P<0.05)。当生物炭添加量由2%增加到4%时,WSB-0.28和WSB-0.56处理土壤对磷的吸附量分别增加了108、122 μg/g,但添加量增加至6%时,土壤对磷的吸附量再无显著提升 (P>0.05);而WSB-0.84处理土壤对磷的吸附量随着生物炭添加量的增加而显著增加 (P<0.05)。在解吸方面,铁改性WSB处理土壤对磷的解吸量为40~71 μg/g,是WSB处理的1.5~2.9倍;在相同生物炭添加量下,WSB-0.28处理土壤对磷的解吸量均显著低于WSB-0.56和WSB-0.84处理 (P<0.05)。铁改性WSB处理土壤磷的解吸率为5%~18%,是WSB处理的10%~44%,其中WSB-0.28处理土壤对磷的解吸率最低 (5%),低于WSB-0.56 (12%~18%)和WSB-0.84处理 (10%~15%),仅添加量为6%的WSB-0.84处理未达显著水平(P>0.05)。

    图  5  添加不同比例核桃壳炭土壤中磷的吸附量和解吸量
    注:WSB为核桃壳炭,WSB-0.28、WSB-0.56、WSB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性核桃壳炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。
    Figure  5.  Adsorption and desorption content of soil phosphorus when added with different percentages of walnut shell biochar
    Note: WSB is walnut shell biochar, WSB-0.28, WSB-0.56, and WSB-0.84 are the iron modified walnut shell biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    图6可以看出,所有RSB处理土壤对磷的吸附量均随着生物炭添加量的增加而显著增加 (P<0.05)。铁改性RSB处理土壤对磷的吸附量为435~1168 μg/g,是未改性RSB处理(112~271 μg/g) 的3.1~6.1倍(图6),说明铁改性RSB显著提高了土壤对磷的吸附能力。在相同生物炭添加量下,RSB-0.56处理土壤对磷的吸附量显著高于RSB-0.28和RSB-0.84处理 (P<0.05),显示了最高的磷吸附能力。生物炭添加比例为2%和4%时,铁改性与未改性RSB处理土壤对磷的解吸量没有显著差异。生物炭添加量为6%时,未改性RSB处理土壤磷的解吸量显著高于3个改性RSB处理,其中,RSB-0.28比RSB-0.56处理显著高,且显著高于RSB-0.84处理,RSB-0.84处理也显著高于RSB-0.56处理。铁改性RSB处理组土壤解吸率为2%~10%,是RSB处理组 (32%~43%) 的4%~31%,其中添加量为6%的RSB-0.56处理组最低 (仅为2%)。

    图  6  添加不同比例水稻秸秆炭土壤中磷的吸附量和解吸量
    注:RSB为水稻秸秆生物炭,RSB-0.28、RSB-0.56、RSB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性水稻秸秆生物炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。
    Figure  6.  Adsorption and desorption content of soil phosphorus when added with different percentages of rice straw biochar
    Note: RSB is rice straw biochar, RSB -0.28, RSB -0.56, and RSB -0.84 are the iron modified rice straw biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    铁改性WB处理土壤对磷的吸附量为385~1000 μg/g,是未改性WB处理 (49~128 μg/g) 的6~11倍,说明铁改性WB显著提高了土壤对磷的吸附能力。在相同生物炭添加量下,WB-0.56处理土壤对磷的吸附量显著高于WB-0.28和WB-0.84处理 (图7P<0.05)。所有铁改性WB处理土壤对磷的吸附量均随着生物炭添加量的增加而显著增加 (P<0.05)。在解吸方面,铁改性WB处理土壤对磷的解吸量为69~93 μg/g,是WB处理 (39~50 μg/g) 的1.6~2.0倍。在相同生物炭添加量下,WB-0.84处理土壤对磷的解吸量均高于WB-0.28和WB-0.56处理,仅6%添加量的效果达显著水平 (P<0.05)。而铁改性WB处理土壤解吸率为8%~19%,是WB处理 (68%~93%) 的8%~29%,其中6% WB-0.56处理土壤对磷的解吸率最低。

    图  7  添加不同比例木质炭土壤中磷的吸附量和解吸量
    注:WB为木质生物炭,WB-0.28、WB-0.56、WB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性木质生物炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。
    Figure  7.  Adsorption and desorption content of soil phosphorus when added with different percentages of wood biochar
    Note: WB is wood biochar, WB-0.28, WB-0.56, and WB-0.84 are the iron modified wood biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    在3个添加比例下,RSB对磷的吸附量和解吸量都高于WSB和WB,其中吸附量差异均达显著水平 (P<0.05)。在铁炭比为0.28时,3个添加比例下的WSB对磷的吸附量均显著高于RSB和WB,对磷的解吸量除添加比例为2%外,均低于RSB和WB (P<0.05)。在铁炭比为0.56和0.84时,在3个添加比例下RSB对磷的吸附量均显著高于WSB和WB,而解吸率均低于WSB和WB (P<0.05)。

    综上所述,在铁炭比为0.56和0.84时,铁改性RSB处理的土壤对磷的吸附能力最强,且与添加量呈正相关关系,铁改性WB次之。而铁改性WB处理土壤对磷的解吸量和解吸率高于其他生物炭。特别的,WSB-0.28处理土壤对磷的吸附能力显著优于WSB-0.56处理和WSB-0.84处理。

    吸附解吸试验证明,铁改性生物炭在吸附一定的磷后,能够释放出一部分磷,但是解吸率偏低,特别是WSB-0.28处理。为初步探索其是否能在实际应用中释放出磷供植物生长,将WSB-0.28进行富磷处理,添加至栽培基质中,进行盆栽试验。在生长35天后 (表3),与不施生物炭组相比,添加WSB-0.28处理 (T1) 的矮牵牛在株高、叶片数、花数及叶干重分别增长了8%、8%、12%、11%,说明添加WSB-0.28对矮牵牛生长有一定的促进作用。与T1相比,WSB-0.28+P处理 (T2) 的矮牵牛株高、冠幅、叶片数、花数、叶干重、根干重分别增长9%、36%、64%、91%、156%、146%,同时矮牵牛叶片的相对叶绿素含量明显提高,表明T2处理矮牵牛的生长势较优的主要原因可能与WSB-0.28+P中释放的磷有关。

    表  3  对照组和处理组矮牵牛的生长指标差异
    Table  3.  Detection of growth indicators of petunias in control and treatment groups
    处理
    Treatment
    株高 (cm)
    Plant height
    冠幅 (cm)
    Crown width
    相对叶绿素含量
    SPAD
    叶片数
    Leaf number
    花数
    Flower number
    叶干重 (g/plant)
    Leaf dry weight
    根干重 (g/plant)
    Root dry weight
    CK 13.3±0.8 a 9.8±0.5 b 27.1±1.1 b 16.9±1.5 b 9.4±0.8 b 0.37±0.03 b 0.16±0.01 b
    T1 14.3±1.2 a 9.4±0.4 b 27.4±2.3 b 18.3±1.1 b 10.5±1.6 b 0.41±0.05 b 0.13±0.01 b
    T2 15.6±0.7 a 12.8±0.7 a 34.1±2.3 a 30.0±1.5 a 20.1±1.3 a 1.05±0.05 a 0.32±0.01 a
    注:CK—不施生物炭,T1—添加WSB-0.28处理,T2—添加WSB-0.28+P处理。同列数据后不同小写字母代表不同处理间差异显著 (P<0.05)。
    Note: CK—No biochar addition. T1—Addion of iron modified walnut shell biochar with iron-carbon ratio of 0.28, T2—Addion of phosphorus-enriched iron modified walnut shell biochar with iron-carbon ratio of 0.28. Different lowercase letters after data in a column represent significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    铁改性对3种生物炭的理化性质影响显著。在盐酸预处理作用下,生物炭表面基团容易质子化,从而增加了生物炭的正吸附位,提高了生物炭对磷的吸附能力[28]。此外,铁改性后,铁被成功加载到生物炭表面和孔隙结构中,形成了一层薄薄的氧化铁层,使得生物炭的表面变得粗糙,从而增加生物炭上的吸附位点,提高离子交换能力[2931]

    生物炭对磷酸根的吸附主要受物理化学作用的影响。生物炭的孔隙结构为磷酸根离子提供了吸附位点,使得磷酸根离子能够在生物炭表面发生物理沉淀。同时,生物炭表面的官能团也可与磷酸根离子间通过氢键、配位基交换等化学作用产生吸附[7]。本研究中,添加RSB的土壤对磷的吸附有一定的提升效果,并且这一效果随添加量的增加而逐渐增强。相反,添加WSB和WB的土壤对磷的吸附能力几乎没有影响,与罗元等[32]、连神海等[8]研究结果一致。这可能与RSB理化性质有关,其表面粗糙多孔,比表面积较大[8],而WSB和WB表面孔隙较少,比表面积较小[33]。因此,对于不同材质的生物炭,需要进一步深入探究其本身特性。

    大量研究表明,铁改性显著提升了生物炭对磷的吸附能力。在吴超等[11]的研究中,经过FeCl3改性的毛藻生物炭在添加量为10 g/L时,其对磷酸盐的单位吸附量可达18.09 mg/g。该研究指出,改性后的生物炭表面微孔结构和Fe—O等多种官能团是其对磷酸盐吸附的主要原因。类似地,蒋旭涛[12]通过FeCl3改性小麦秸秆生物炭,其对磷酸盐的单位吸附量可达10.1 mg/g,相较于改性前增加了19.4倍。改性后主要是化学吸附,进一步增加了其吸附容量。王娜娜等[13]以FeCl3对麻根生物炭进行改性后,生物炭对磷酸盐最大吸附容量达到6.9 mg/kg。该研究发现,改性后生物炭表面增加了更多的吸附位点,并与FeOOH之间形成的氢键是磷酸盐吸附能力提升的关键因素。本研究结果表明,添加铁改性生物炭能够显著提升土壤对磷的吸附能力,同时显著降低解吸率,这使添加铁改性生物炭的土壤具有更好的调控磷的能力。值得注意的是,在低添加量时,WSB-0.28处理表现出对磷的最强吸附能力。在本研究中,结合表征分析结果,可以推测铁改性生物炭对磷酸盐吸附能力的提升主要源于其表面负载了Fe2O3,改善了生物炭表面性能,增加了活性吸附点位,从而增强吸附能力,这与李广柱等[10]、魏存等[23]的研究结果一致。

    改性后的生物炭显著提高了对磷的吸附能力,这些改性生物炭一旦施加到土壤中,便能够有效吸附大量磷元素,从而减少了园林绿地养护中磷肥的流失[34]。尤其是富磷的改性生物炭,更可作为一种缓释肥料,有助于提高土壤中磷供给。目前,关于改性生物炭作为磷肥的研究相对有限,而已有的研究主要集中于镁改性方面,对于铁改性的报道相对较少[35]。Wan等[35]研究发现,载磷改性生物炭复合材料可促进生菜幼苗的生长。同样,载磷的镁改性生物炭也可显著促进黑麦草6号幼苗的生长[36]。本研究通过试验证明了富磷铁改性生物炭对植物的生长同样具有显著的促进作用,为其作为缓释肥料、增强土壤肥力的理论基础提供了支持。

    铁改性方法有效提高了生物炭中功能团的数量,增加吸附位点,进而提升了其对磷的吸附和固储能力。铁改性生物炭施入土壤后,显著提升了土壤对磷的吸附能力,增强土壤固磷作用,提高土壤磷供给,促进植物生长。核桃壳、水稻秸秆、木质生物炭铁改性的最佳铁/生物炭比为0.28、0.56、0.56。

  • 图  1   生物炭施用示意图

    Figure  1.   Map of biochar application patterns

    图  2   铁改性前后生物炭扫描电镜图

    注:WSB、RSB、WB表示改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。

    Figure  2.   Scanning electron microscope (SEM) images of biochar before and after iron modification

    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    图  3   铁改性前后生物炭的FTIR谱图

    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。

    Figure  3.   FTIR spectra of biochar before and after iron modification

    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    图  4   铁改性前后生物炭的XRD谱图

    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。

    Figure  4.   XRD spectra of biochar before and after iron modification

    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively.

    图  5   添加不同比例核桃壳炭土壤中磷的吸附量和解吸量

    注:WSB为核桃壳炭,WSB-0.28、WSB-0.56、WSB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性核桃壳炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。

    Figure  5.   Adsorption and desorption content of soil phosphorus when added with different percentages of walnut shell biochar

    Note: WSB is walnut shell biochar, WSB-0.28, WSB-0.56, and WSB-0.84 are the iron modified walnut shell biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    图  6   添加不同比例水稻秸秆炭土壤中磷的吸附量和解吸量

    注:RSB为水稻秸秆生物炭,RSB-0.28、RSB-0.56、RSB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性水稻秸秆生物炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。

    Figure  6.   Adsorption and desorption content of soil phosphorus when added with different percentages of rice straw biochar

    Note: RSB is rice straw biochar, RSB -0.28, RSB -0.56, and RSB -0.84 are the iron modified rice straw biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    图  7   添加不同比例木质炭土壤中磷的吸附量和解吸量

    注:WB为木质生物炭,WB-0.28、WB-0.56、WB-0.84为铁生物炭比为0.28、0.56、0.84的铁改性木质生物炭。2%、4%、6%为土壤中添加的生物炭比例。柱上不同小写字母表示同一添加量不同生物炭间差异显著,不同大写字母表示同一生物炭不同添加量间差异显著 (P<0.05)。

    Figure  7.   Adsorption and desorption content of soil phosphorus when added with different percentages of wood biochar

    Note: WB is wood biochar, WB-0.28, WB-0.56, and WB-0.84 are the iron modified wood biochar with iron-carbon ratio of 0.28, 0.56, and 0.84, respectively. 2%, 4%, and 6% are the addition percentage of biochar in soil. Above the bars, different lowercase letters indicate significant difference among different types of biochar at the same additive amount in soil, and different capital letters indicate significant difference among different addition amounts of the same biochar (P<0.05).

    表  1   3种原料生物炭铁改性前后的元素质量百分比及孔结构参数

    Table  1   Elemental contents and pore structure parameters of biochar before and after iron modification

    生物炭
    Biochar
    元素质量百分比 Element mass percentage (%) 比表面积 (m2/g)
    Specific surface area
    平均孔径 (nm)
    Average pore size
    C O Fe
    WSB 85.6±2.0 a 9.2±0.1 d 0.0±0.0 d 26.7±0.5 a 1.9±0.1 c
    WSB-0.28 33.9±0.7 d 22.9±0.5 b 35.8±0.9 a 11.0±0.7 c 2.4±0.2 b
    WSB-0.56 42.1±1.2 b 21.8±0.3 c 31.6±1.5 b 16.8±0.8 b 2.2±0.2 b
    WSB-0.84 38.6±0.8 c 24.9±0.4 a 26.5±0.8 c 3.1±0.1 d 4.8±0.1 a
    RSB 63.1±1.3 a 19.0±0.5 c 0.0±0.0 d 13.4±0.3 c 13.3±0.5 a
    RSB-0.28 49.8±0.5 b 22.7±0.6 b 14.4±0.3 c 24.0±1.2 a 8.9±0.4 c
    RSB-0.56 40.4±0.9 c 16.3±0.6 d 31.5±0.2 a 18.8±0.2 b 10.2±0.4 b
    RSB-0.84 31.1±1.1 d 23.9±0.7 a 26.6±0.3 b 18.5±0.9 b 9.8±0.9 bc
    WB 75.1±0.8 a 19.0±0.4 b 0.0±0.0 d 4.5±0.2 c 4.2±0.3 c
    WB-0.28 38.5±0.2 b 22.2±0.5 a 28.8±0.5 b 8.2±0.5 b 7.1±0.4 b
    WB-0.56 32.0±0.7 c 22.3±0.4 a 30.3±0.5 a 1.9±0.1 d 10.0±0.7 a
    WB-0.84 37.9±0.9 b 19.0±0.2 b 26.0±0.7 c 12.0±0.5 a 4.4±0.2 c
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接的数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。元素质量百分比数据由能谱仪获得。同列数据后不同小写字母代表同一生物炭种类不同处理间差异显著 (P<0.05)。
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively. Elemental mass percentage data were measured by energy spectrometer. Different lowercase letters after data in a column represent significant difference among treatments for the same biochar (P<0.05).
    下载: 导出CSV

    表  2   3种生物炭铁改性前后的元素含量及原子比

    Table  2   Elemental content and atomic ratio of biochar before and after iron modification

    生物炭 Biochar C (%) N (%) H (%) S (%) C/N H/C
    WSB 77.4±2.5 a 0.7±0.1 a 2.2±0.1 a 0.06±0.01 b 111±9 a 0.028±0.001 a
    WSB-0.28 58.5±2.1 d 0.7±0.1 a 1.6±0.2 b 0.08±0.01 ab 85±9 b 0.027±0.002 ab
    WSB-0.56 68.5±2.7 b 0.7±0.1 a 1.4±0.2 b 0.10±0.01 a 96±7 ab 0.020±0.002 bc
    WSB-0.84 63.9±1.6 c 0.6±0.1 a 1.2±0.3 b 0.09±0.02 a 103±14 ab 0.019±0.004 c
    RSB 35.1±1.2 a 0.7±0.1 a 1.2±0.1 ab 1.01±0.20 a 54±6 a 0.034±0.002 b
    RSB-0.28 26.8±1.1 b 0.6±0.2 a 1.0±0.2 b 0.06±0.01 b 43±13 a 0.037±0.006 b
    RSB-0.56 20.9±1.6 c 0.5±0.1 a 1.5±0.3 a 0.03±0.01 b 45±6 a 0.071±0.009 a
    RSB-0.84 21.1±1.4 c 0.5±0.2 a 1.3±0.3 ab 0.06±0.01 b 47±17 a 0.061±0.010 a
    WB 56.2±2.5 a 1.3±0.3 a 2.7±0.4 a 0 45±9 a 0.048±0.005 b
    WB-0.28 26.4±1.3 c 1.2±0.3 a 1.1±0.1 c 0 23±5 b 0.042±0.002 b
    WB-0.56 27.7±1.3 c 0.8±0.2 a 1.6±0.3 b 0 36±8 ab 0.058±0.008 a
    WB-0.84 32.6±1.9 b 0.9±0.3 a 1.7±0.1 b 0 36±10 ab 0.052±0.001 ab
    注:WSB、RSB、WB为改性前核桃壳炭、水稻秸秆炭、木质炭,后面连接数字0.28、0.56、0.84分别代表铁与生物炭质量比为0.28、0.56、0.84的改性生物炭。同列数据后不同小写字母代表同一生物炭种类不同处理间差异显著 (P<0.05)。
    Note: WSB, RSB, and WB are walnut shell biochar, rice straw biochar, and wood biochar, and those followed with numbers are the Fe-modified biochar with ratio of iron to biochar at 0.28, 0.56, and 0.84, respectively. Different lowercase letters after data in a column represent significant difference among treatments for the same biochar (P<0.05).
    下载: 导出CSV

    表  3   对照组和处理组矮牵牛的生长指标差异

    Table  3   Detection of growth indicators of petunias in control and treatment groups

    处理
    Treatment
    株高 (cm)
    Plant height
    冠幅 (cm)
    Crown width
    相对叶绿素含量
    SPAD
    叶片数
    Leaf number
    花数
    Flower number
    叶干重 (g/plant)
    Leaf dry weight
    根干重 (g/plant)
    Root dry weight
    CK 13.3±0.8 a 9.8±0.5 b 27.1±1.1 b 16.9±1.5 b 9.4±0.8 b 0.37±0.03 b 0.16±0.01 b
    T1 14.3±1.2 a 9.4±0.4 b 27.4±2.3 b 18.3±1.1 b 10.5±1.6 b 0.41±0.05 b 0.13±0.01 b
    T2 15.6±0.7 a 12.8±0.7 a 34.1±2.3 a 30.0±1.5 a 20.1±1.3 a 1.05±0.05 a 0.32±0.01 a
    注:CK—不施生物炭,T1—添加WSB-0.28处理,T2—添加WSB-0.28+P处理。同列数据后不同小写字母代表不同处理间差异显著 (P<0.05)。
    Note: CK—No biochar addition. T1—Addion of iron modified walnut shell biochar with iron-carbon ratio of 0.28, T2—Addion of phosphorus-enriched iron modified walnut shell biochar with iron-carbon ratio of 0.28. Different lowercase letters after data in a column represent significant difference among treatments (P<0.05).
    下载: 导出CSV
  • [1]

    Pavinato P S, Merlin A, Rosolem C A. Phosphorus fractions in Brazilian Cerrado soils as affected by tillage[J]. Soil and Tillage Research, 2009, 105(1): 149−155. DOI: 10.1016/j.still.2009.07.001

    [2]

    Zhang H Z, Chen C R, Gray E M, et al. Roles of biochar in improving phosphorus availability in soils: A phosphate adsorbent and a source of available phosphorus[J]. Geoderma, 2016, 276: 1−6. DOI: 10.1016/j.geoderma.2016.04.020

    [3]

    Hendricks N P, Sinnathamby S, Douglas-Mankin K, et al. The environmental effects of crop price increases: Nitrogen losses in the US Corn Belt[J]. Journal of Environmental Economics and Management, 2014, 68(3): 507−526. DOI: 10.1016/j.jeem.2014.09.002

    [4] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324−3333. DOI: 10.3864/j.issn.0578-1752.2013.16.003

    Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar in agriculture[J]. Scientia Agricultura Sinica, 2013, 46(16): 3324−3333. DOI: 10.3864/j.issn.0578-1752.2013.16.003

    [5]

    Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis distribution, implications, and current challenges[J]. Global Biogeochemical Cyeles, 2000, 14(3): 777−794. DOI: 10.1029/1999GB001208

    [6] 武玉, 徐刚, 吕迎春, 邵宏波. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1): 68−79. DOI: 10.11867/j.issn.1001-8166.2014.01-0068

    Wu Y, Xu G, Lü Y C, Shao H B. Effects of biochar amendment on soil physical and chemical properties: Current status and knowledge gaps[J]. Advances in Earth Science, 2014, 29(1): 68−79. DOI: 10.11867/j.issn.1001-8166.2014.01-0068

    [7] 赵卫, 王世亮, 赵荣飞. 环境条件对生物炭吸附磷的影响研究进展[J]. 山东化工, 2016, 45(8): 44−50. DOI: 10.3969/j.issn.1008-021X.2016.08.016

    Zhao W, Wang S L, Zhao R F. Research progress on the effects of environmental conditions on adsorption of phosphorus onto biochar[J]. Shandong Chemical Industry, 2016, 45(8): 44−50. DOI: 10.3969/j.issn.1008-021X.2016.08.016

    [8] 连神海, 张树楠, 刘锋, 等. 不同生物炭对磷的吸附特征及其影响因素[J]. 环境科学, 2022, 43(7): 3692−3698.

    Lian S H, Zhang S N, Liu F, et al. Phosphorus adsorption characteristics of different biochar types and its influencing factors[J]. Environmental Science, 2022, 43(7): 3692−3698.

    [9] 蒋旭涛, 迟杰. 铁改性生物炭对磷的吸附及磷形态的变化特征[J]. 农业环境科学学报, 2014, 33(9): 1817−1822. DOI: 10.11654/jaes.2014.09.020

    Jiang X T, Chi J. Phosphorus adsorption by and forms in Fe-modified biochar[J]. Journal of Agro-Environment Science, 2014, 33(9): 1817−1822. DOI: 10.11654/jaes.2014.09.020

    [10] 李广柱, 曾尚景, 孙述海, 等. 生物炭负载铁氧化物复合材料的制备及在水处理中的应用[J]. 化工进展, 2021, 40(2): 917−931.

    Li G Z, Zeng S J, Sun S H, et al. Preparation of biochar supported iron oxides composites and its application in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 917−931.

    [11] 吴超, 韩宇, 李秋雨, 等. 强壮硬毛藻生物炭的FeCl3改性及其对磷酸盐的吸附性能[J]. 大连海洋大学学报, 2022, 37(6): 985−992.

    Wu C, Han Y, Li Q Y, et al. FeCl3 modification and phosphate adsorption capacity of green alga Chaetomorpha valida biochar[J]. Journal of Dalian Ocean University, 2022, 37(6): 985−992.

    [12] 蒋旭涛. 生物炭对水中氨氮和磷酸盐吸附性能研究[D]. 天津: 天津大学硕士学位论文, 2013.

    Jiang X T. Study on the adsorption of ammonia and phosphate by biochar[D]. Tianjin: MS Thesis of Tianjin University, 2013.

    [13] 王娜娜, 王静, 李扬, 李靖. 铁改性麻根生物炭吸附水体磷酸盐特性及其对养殖尾水的处理效果[J]. 大连海洋大学学报, 2023, 38(3): 464−473.

    Wang N N, Wang J, Li Y, Li J. A study on adsorption characteristics of iron-modified hemp root biochar for phosphate in water[J]. Journal of Dalian Ocean University, 2023, 38(3): 464−473.

    [14]

    Rahman M A, Lamb D, Kunhikrishnan A, Rahman M M. Kinetics, isotherms and adsorption–desorption behavior of phosphorus from aqueous solution using zirconium–iron and iron modified biosolid biochars[J]. Water, 2021, 13(23): 3320. DOI: 10.3390/w13233320

    [15]

    Li B T, Jing F Y, Hu Z Q, et al. Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar[J]. Journal of Saudi Chemical Society, 2021, 25(4): 101213 . DOI: 10.1016/j.jscs.2021.101213

    [16] 计海洋, 汪玉瑛, 刘玉学, 等. 生物炭及改性生物炭的制备与应用研究进展[J]. 核农学报, 2018, 32(11): 2281−2287. DOI: 10.11869/j.issn.100-8551.2018.11.2281

    Ji H Y, Wang Y Y, Liu Y X, et al. Advance in preparation and application of biochar and modified biochar research[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(11): 2281−2287. DOI: 10.11869/j.issn.100-8551.2018.11.2281

    [17]

    Trazzi P A, Leahy J J, Hayes M H B, Kwapinski W. Adsorption and desorption of phosphate on biochars[J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 37−46. DOI: 10.1016/j.jece.2015.11.005

    [18] 代银分, 李永梅, 范茂攀, 等. 不同原料生物炭对磷的吸附–解吸能力及其对土壤磷吸附解析的影响[J]. 山西农业大学学报(自然科学版), 2016, 36(5): 345−351.

    Dai Y F, Li Y M, Fan M P, et al. Study on phosphorus sorption desorption capacity of different biochar and the effect of its amendment to soil[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2016, 36(5): 345−351.

    [19] 刘慧, 张伟康, 李蒋戈野, 等. 不同生物质炭对棕壤中磷素吸附解吸的影响[J]. 土壤, 2023, 55(6): 1198−1206.

    Liu H, Zhang W K, Li J G Y, et al. Effects of different biochars on phosphorus adsorption and desorption in brown soil[J]. Soils, 2023, 55(6): 1198−1206.

    [20] 赵伟宁, 杨兴, 何丽芝, 等. 热解温度对典型南方木本园林废弃物生物质炭理化特性的影响[J]. 浙江农林大学学报, 2018, 35(6): 1007−1016. DOI: 10.11833/j.issn.2095-0756.2018.06.003

    Zhao W N, Yang X, He L Z, et al. Pyrolysis temperature with physicochemical properties of biochars derived from typical urban woody green wastes in southern China[J]. Journal of Zhejiang A & F University, 2018, 35(6): 1007−1016. DOI: 10.11833/j.issn.2095-0756.2018.06.003

    [21] 彭启超, 刘小华, 罗培宇, 等. 不同原料生物炭对氮、磷、钾的吸附和解吸特性[J]. 植物营养与肥料学报, 2019, 25(10): 1763−1772. DOI: 10.11674/zwyf.18406

    Peng Q C, Liu X H, Luo P Y, et al. Adsorption and desorption characteristics of nitrogen, phosphorus and potassium by biochars from different raw materials[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1763−1772. DOI: 10.11674/zwyf.18406

    [22] 田雪, 周文君, 郑卫国, 等. 不同碳化时间对园林废弃物生物炭氮磷吸附解吸研究[J]. 林业与环境科学, 2020, 36(5): 41−47. DOI: 10.3969/j.issn.1006-4427.2020.05.007

    Tian X, Zhou W J, Zheng W G, et al. Study on the adsorption and desorption of nitrogen and phosphorus by biochar prepared from garden waste branches and leaves in different carbonization time[J]. Forestry and Environmental Science, 2020, 36(5): 41−47. DOI: 10.3969/j.issn.1006-4427.2020.05.007

    [23] 魏存, 吕豪豪, 汪玉瑛, 等. 铁改性稻壳生物炭对铵态氮的吸附效果研究[J]. 植物营养与肥料学报, 2021, 27(4): 595−609. DOI: 10.11674/zwyf.20440

    Wei C, Lü H H, Wang Y Y, et al. Adsorption effectiveness of ammonium nitrogen by iron-modified rice husk biochar[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(4): 595−609. DOI: 10.11674/zwyf.20440

    [24] 王润之, 何强, 郭程晨, 等. 稻秆生物炭负载Fe/Ca对化粪池中磷的吸附特性[J]. 土木与环境工程学报(中英文), 2023, 45(3): 205−214.

    Wang R Z, He Q, Guo C C, et al. Adsorption capacity of phosphorus in septie tank by rice straw biochar loaded with Fe/Ca[J]. Journal of Civil and Environmental Engineering, 2023, 45(3): 205−214.

    [25] 刘少文, 殷敏, 褚光, 等. 土壤氮激发效应及其微生物机理研究进展[J]. 中国水稻科学, 2019, 33(4): 303−312.

    Liu S W, Yin M, Chu G, et al. Research progress of soil nitrogen priming effect and its microbial mechanisms[J]. Chinese Journal of Rice Science, 2019, 33(4): 303−312.

    [26] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757−1765.

    Jian M F, Gao K F, Yu H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw[J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757−1765.

    [27] 张博文. 铁改性花生壳生物炭吸附除磷性能及机理研究[D]. 北京: 中国地质大学(北京)硕士学位论文, 2018.

    Zhang B W. Performance and mechanism on the phosphorus adsorption by iron modified peanut shell biochar[D]. Beijing: MS Thesis of China University of Geosciences, 2018.

    [28]

    Law X N, Cheah W Y, Chew K W, et al. Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications[J]. Environmental Research, 2022, 204: 111966. DOI: 10.1016/j.envres.2021.111966

    [29]

    Li M, Zhang Z S, Li Z, Wu H T. Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar[J]. Ecological Engineering, 2020, 149: 105792. DOI: 10.1016/j.ecoleng.2020.105792

    [30]

    Liu L, He N N, Borham A, et al. The effect of iron-modified biochar on phosphorus adsorption and the prospect of synergistic adsorption between biochar and iron-oxidizing bacteria: A review[J]. Water, 2023, 15(18): 3315. DOI: 10.3390/w15183315

    [31] 胡祖武, 吴多基, 吴建富, 等. 富硅生物炭有效提高红壤性稻田土壤不同形态硅含量及水稻产量[J]. 植物营养与肥料学报, 2022, 28(8): 1421−1429.

    Hu Z W, Wu D J, Wu J F. Adsorption of phosphorus in water by magnetized modified sludge-based biochar[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(8): 1421−1429.

    [32] 罗元, 谢坤, 冯弋洋, 等. 镧改性核桃壳生物炭制备及吸附水体磷酸盐性能[J]. 化工进展, 2021, 40(2): 1121−1129.

    Luo Y, Xie K, Feng Y Y, et al. Preparation of lanthanum modified walnut shell biochar and adsorption of phosphate from aqueous solutions[J]. Chemical Industry and Engineering Procress, 2021, 40(2): 1121−1129.

    [33] 索桂芳, 吕豪豪, 汪玉瑛, 等. 不同生物炭对氮的吸附性能[J]. 农业环境科学学报, 2018, 37(6): 1193−1202. DOI: 10.11654/jaes.2017-1378

    Suo G F, Lü H H, Wang Y Y, et al. Study on the adsorption properties of nitrogen by different biochars[J]. Journal of Agro-Environment Science, 2018, 37(6): 1193−1202. DOI: 10.11654/jaes.2017-1378

    [34]

    Vikrant K, Kim K H, Ok Y S, et al. Engineered/designer biochar for the removal of phosphate in water and wastewater[J]. Science of the Total Environment, 2017, 616-617: 1242.

    [35]

    Wan S, Wang S S, Li Y C, Gao B. Functionalizing biochar with Mg-Al and Mg-Fe layered double hydroxides for removal of phosphate from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2017, 47: 246−253. DOI: 10.1016/j.jiec.2016.11.039

    [36]

    Li R H, Wang J J, Zhou B, et al. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute[J]. Bioresource Technology, 2016, 215: 209−214. DOI: 10.1016/j.biortech.2016.02.125

图(7)  /  表(3)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  35
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-04
  • 录用日期:  2024-07-25
  • 网络出版日期:  2024-09-11
  • 刊出日期:  2024-09-24

目录

/

返回文章
返回