Effects of different tillage practices on soil water and maize yield in the Mollisol region
-
摘要:目的
研究东北黑土区不同保护性耕作措施对土壤养分、玉米产量及水分利用的影响,为该区旱作农田耕作技术应用提供理论支持。
方法于2019年在黑龙江省齐齐哈尔进行田间试验,设置4个耕作措施处理:1) 秋季清理玉米秸秆并旋耕整地玉米连作(传统耕作);2) 玉米饲草间作,饲草盛期刈割覆盖,秋天深翻还田(粮草间作);3) 玉米单作,秸秆覆盖还田免耕(覆盖免耕);4) 休耕3年后旋耕整地,次年播种玉米并传统方法整地(休耕再耕作)。3年后(2022年)于播种前取样,分析0—20 cm土层土壤养分含量和0—100 cm土层土壤容重。在玉米出苗前、苗期、抽雄期和成熟期,每20 cm为1层,分析0—100 cm土层土壤水分含量,调查玉米产量和水分利用效率。
结果与传统耕作比,粮草间作、覆盖免耕和休耕再耕作3个耕作处理0—20 cm土壤容重显著降低,以休耕再耕作容重最低;苗前0—20 cm土层土壤储水量分别显著增加了6.36%、13.17%和23.09%,粮草间作与休耕再耕作20—100 cm土层土壤储水量显著低于传统耕作。粮草间作、覆盖免耕和休耕再耕作3个耕作处理玉米田间耗水量较传统耕作分别减少14.18%、9.26%和10.96%,水分利用效率分别提高48.51%、26.22%和42.46%,土壤有机碳含量分别增加2.24%、11.52%和15.68%。与传统耕作方式相比,粮草间作、覆盖免耕和休耕再耕作对玉米穗行数无显著影响,但显著提高玉米行粒数,因此产量分别提高27.46%、14.54%和26.87%。
结论保护性耕作可有效提高土壤有机碳含量,增加土壤水分,减少玉米田间耗水量,显著提高玉米产量14%~28%和水分利用效率26%~49%。因此,在东北黑土区旱作农田推广保护性耕作是一种增产、节水的有效途径。
Abstract:ObjectivesWe investigated the impacts of conservation tillage on soil nutrient availability, maize production, and soil water consumption, to elucidate the mechanisms that drive yield enhancements through conservation tillage practices, and furnish theoretical and technical underpinnings for dry farmland tillage in the Mollisol region.
MethodsA field experiment has been conducted in Qiqihar city, Heilongjiang Province since 2019. The four treatments included 1) traditional clearing maize straw and rotatory tillage control (CK); 2) maize and grass intercropping (grass were cut at full blooming stage and mulched on field, after maize harvest plough into soil); 3) no-tillage with straw mulching; and 4) re-tillage after fallow for three years. Before maize sowing in 2022, soil samples of 0−20 cm layer were collected for determination of nutrient content, and samples of 0−100 cm soil profile were collected in every 20 cm depth at the same time for determination of soil bulk density. Before seedling and at seedling, jointing and maturing stages of maize in 2022, soil samples of 0−20, 20−40, 40−60, 60−80, 80−100 cm layers were collected to measure soil bulk density and moisture; at maturing stage of the year, maize yields were investigated, and water use efficiency (WUE) were calculated.
ResultsCompared to traditional tillage control, the three conservation tillage treatments of maize and grass intercropping, no-tillage with straw mulching and re-tillage after fallow for three years decreased 0−20 cm soil bulk density (P<0.05), with the lowest bulk density observed in re-tillage after fallow; increased the 0−20 cm soil layer water storage before seedling emergence by 6.36%, 13.17 and 23.09%, respectively. However, treatment maize and grass intercropping and re-tillage after fallow decreased the 20−100 cm soil layer water storage (P<0.05). Compared to traditional tillage, the field water consumption of maize under the three conservation tillage practices decreased by 14.18%, 9.26%, and 10.96%, respectively, while WUE increased by 48.51%, 26.22%, and 42.46%, respectively; the soil organic carbon content increased by 2.24%, 11.52%, and 15.68%, respectively. The three conservation tillage practices had no significant impact on the kernel-row number per ear, but significantly increased the kernel number per row of maize and boosted the yield by 27.46%, 14.54%, and 26.87%, respectively.
ConclusionsConservation tillage can enhance soil organic carbon, and moisture, and minimized soil water consumption, thereby significantly improve maize yield and water use efficiency. The widespread adoption of these conservation tillage in the dry farmland of Mollisol region holds the potential to significantly boost yields while simultaneously conserving water resources.
-
东北黑土区是我国重要的粮食生产基地,粮食产量和商品粮调出量分别占全国总量的近1/4和1/3[1]。同时,该地区是典型的雨养农业区,生育季土壤水分和养分的有效利用会直接影响作物产量[2]。旋耕是当前东北黑土区农业生产中最常见的一种传统耕作方式,但连年旋耕加秸秆离田,易造成农田耕层浅薄,并导致土壤通气、透水、养分供应能力变差[3],严重制约黑土地产能的可持续性[4]。耕作管理措施通过改变土壤扰动和地表覆盖来调控农田水、养分供应能力,进而影响作物生长及产量构成[5]。因此,合理耕作管理措施对充分发挥耕地生产力并实现土壤水、养分资源高效利用十分必要,对东北黑土区乃至国家粮食安全保障具有重要的战略意义。
粮草间作、覆盖免耕以及耕地(自然)休耕是保护性耕作的重点工作内容,也是东北黑土区耕地保育和粮食产能提升的有效措施。粮草间作在旱区坡耕地上可通过其水土保持效应,显著提高土壤水分和养分供应能力,从而实现粮食增产[6−7]。然而,在东北黑土区,粮草间作对作物产量影响不一致[8−10];宿庆瑞[8]在东北中低产黑土区的研究发现,粮草间作导致土壤容重降低、玉米减产;但田慧梅[9]和许芳维[10]的研究却发现,合理粮草间作通过光、水、肥互补,产量高于单作模式。覆盖免耕通过减少土壤扰动提升土壤蓄水保墒[11−12]和养分供应能力[13−14],并提高作物光合作用[15],进而实现作物增产,但增产方式并不一致。鲁悦等[14]研究表明,覆盖免耕结合秸秆还田能够通过增加玉米光合作用,提高籽粒产量;而焦晓光等[15]研究发现,秸秆覆盖通过提高氮肥利用效率提高玉米产量及其构成因子。休耕是一种通过自然植被恢复耕地地力和巩固粮食产能的农田管理措施[16]。自然休耕不仅能影响土壤剖面水分分布[17],而且能显著增加土壤表层养分含量[18],从而实现用地和养地相结合的目的[19]。邹文秀等[17]研究发现,休耕处理下土壤剖面含水量从表层到深层表现为先增加后减小的趋势。周伟等[18]研究发现,长期撂荒有利于表层土壤碳积累和稳定,而深层土壤固碳能力会变弱。
综上可知,保护性耕作通过调控生育季土壤水分和养分供应,进而影响作物产量,但不同保护性耕作方式下影响因素并不明确。本研究从玉米生育期土壤水、养分供应入手,结合土壤水分动态以及玉米生长性状指标的变化,对粮草间作、覆盖免耕、休耕再耕作的增产效果展开分析,通过测定不同保护性耕作方式下土壤容重、水分和养分等理化指标以及玉米生长和产量构成,明确保护性耕作对玉米产量及其构成的影响和驱动因素,以期为东北黑土区耕地可持续利用和玉米的稳产增产提供科学依据。
1. 材料与方法
田间试验布设在黑龙江省水利科学研究院齐齐哈尔梅里斯试验站(123°75′E,47°31′N)。该区地处松嫩平原中西部,属中温带大陆性季风气候,雨热同期。近10年(2010—2020年)年平均气温5.7oC,大于10oC积温为2556℃~914℃,月平均气温7月最高(约为24°C),1月最低(约为−18°C)。2022年5—10月(玉米生育季)大于10℃积温为1416℃,占全年有效积温98%,作物积温利用充分。试验地地下水水位埋深20—40 cm,是典型的雨养农业区。据梅里斯试验站气象站监测数据(图1)显示,2022年度玉米生育季内降雨量为441 mm (占全年总降雨量83.8%),较近10年同期降雨量均值降低5.8%。
1.1 试验设计
试验始于2019年,试验区供试土壤是黑钙土,试验前土壤基本理化性质为:容重1.34 g/cm3,含水量0.29 g/g,pH 7.5,有机质14.9 g/kg,全氮1.77 g/kg,全磷1.64 g/kg,全钾24.7 g/kg,速效氮15.74 mg/kg,速效磷43.5 mg/kg,速效钾131 mg/kg。供试玉米品种为天育108,垄台宽为65 cm,垄沟宽为35 cm,小区平均种植密度为8.46万株/hm2。共设置传统耕作(对照)、粮草间作、覆盖免耕和休耕再耕作4个处理。试验小区长200 m、宽150 m,每个处理3次重复,且各试验小区间设置6垄隔离带。具体实施方法见表1。
表 1 耕作方式及其田间处理Table 1. Crop straw (grass) management and tillage practices处理
Treatment具体耕作和作物秸秆处理方式
Tillage practices and crop straw management传统耕作
Traditional
cultivation秋收后,玉米秸秆清理离田,用浅旋翻耕犁翻耙整地;次年春季起垄播种
After harvest in autumn, the maize stalks were cleaned off the field, and the field was rotatory plowed and harrowed; ridging in the following spring and seedling directly粮草间作
Maize and
grass inter-
cropping春季按照玉米∶牧草4∶1垄数播种;牧草为商品化的紫花苜蓿和黑麦草袋装混合种 (混合比例为重量比1∶1),在生育盛期刈割并就垄覆盖于田面,在秋收后粉碎深翻入土30 cm;玉米秸秆在秋收后清理离田,来年春季起垄播种
Maize and forage crop (alfalfa and ryegrass is 1∶1 by weight) were sowed in rows of 4∶1, the forage crops were mowed at full blooming stage and mulched on the rows. After maize harvest, maize straws were cleaned out of field, and the forage were pulverized and turned 30 cm deep into soil. Ridging in the next spring and seedling directly覆盖免耕
No-tillage
with straw
mulching秋收后,玉米秸秆粉碎长度≤10 cm且呈撕裂状,全量均匀覆盖田面;次年春季免耕播种
After harvest in the fall, all the maize straws were crushed to ≤10 cm long and mulched on field evenly; sowing directly in the following spring without tillage休耕再耕作
Re-tillage
after fallow2019—2021年自然休耕,恢复为次生草地 (优势草种以多年生羊草为主);2021年秋季用浅旋翻耕犁翻耙整地,次生草全部翻入土壤;2022年春季直接播种
Natural fallow in 2019−2021, the field were covered by secondary grasses with perennial fescue as dominant grass species; in the autumn of 2021, the field was tilled and harrowed with a shallow rotary tilling plow, and seedling was carried out in the spring of 20221.2 测试指标及方法
1.2.1 土壤样品采集及理化指标测定
2022年,在玉米出苗前,用柴油动力土钻,按五点取样法,在每小区采集0—20 cm土层土样,混匀得到土样1份。共计采集到混合土样12份,将土样装入自封袋带回实验室风干并剔除杂质过筛。同时于每个小区用环刀法在0—100 cm的剖面上,每20 cm采集1个样品,共采集5个原状土样,参照《土壤农化分析》[20]进行表层土壤理化性质的测定。
采用电位法测定土壤pH,土水比为1∶5;用KCl浸提—流动分析仪测定土壤铵态氮和硝态氮含量;用浓硫酸消煮—半微量开氏法测定土壤全氮含量;用NaOH熔融—钼锑抗比色法测定全磷含量;用NaOH熔融—火焰光度计法测全钾含量;用NH4OAC提取比色法测定速效钾含量;用NaHCO3浸提—钼锑抗比色法测定土壤速效磷含量;用H2SO4−K2Cr2O7油浴氧化—滴定法测定有机质含量;采用环刀法测定土壤容重。
1.2.2 土壤水分测定及计算
在玉米出苗前、苗期、抽雄期和成熟期,每个小区按五点取样法用土钻分别采集0—20、20—40、40—60、60—80和80—100 cm 5个土层的土样,每层土样混合后,烘干法测定土壤含水量。
土壤储水量计算公式[11]:
W=10×h×ρ×ω (1) 式中,W—土壤储水量,mm;h—土层深度,cm;ρ—土壤容重,g/cm3;ω—土壤含水率,g/g。
玉米田间耗水量公式[21]:
ET=ΔS+P (2) 式中,ET—农田耗水量,mm;P—作物生育期≥5 mm的降雨量,mm;∆S=(W1−W2),即播种(苗前,W1)和收获季(W2) 1 m土体内土壤储水量变化,mm。
产量水分利用效率公式[22]:
WUE=Y/ET (3) 式中,WUE—产量水分利用效率,kg/(hm2·mm);Y—作物产量,kg/hm2;ET—作物生育期耗水量,mm。
1.2.3 玉米植株生长性状测定
在玉米苗期、拔节期、抽雄期和成熟期动态监测玉米植株生长性状,包括株高、茎粗和叶面积。在小区去除边行及两端5 m后(排除边行效应),在6 m×2垄的范围内,选取长势均匀且具有代表性的玉米8株,用卷尺测量从玉米植株基部至植株顶部的高度,表征株高(cm);测定地面上部近地面第三节间的周长,表征茎粗(cm);测量植株第三片叶子的长、宽(量取叶片的最长、最宽部位),单株叶面积计算公式如下[23]:
单株叶面积=Σ(L×B×K)/N (4)
式中:L表示叶长,cm;B表示叶宽,cm;K表示校正系数,K=0.75,用求积仪实测面积,再与量取的叶面积相比求得;N表示实测株数,叶面积单位为cm2。
1.2.4 玉米产量及其构成测定
在玉米成熟期,各小区去除边行后于中间选取长势均匀面积为36 m2样区(6垄×6 m)测产。玉米穗全部收获后脱粒称重,并用国家认定且经校准的谷物水分测定仪(PM-8188-A)测定籽粒含水量,按国家(玉米)粮食标准水分14.0%计算产量;此外,各小区选取具有代表性的玉米穗20个,作为产量构成分析样本,测定玉米穗行数、百粒重、行粒数等指标,分析不同耕作方式下玉米产量构成的差异[24]。
1.3 数据分析
数据分析使用Excel 2021和SPSS 26软件,绘图采用Origin 2023 (柱状图和折线图)和R4.2.2 (RDA双序图)软件。采用单因素方差分析(ANOVA)比较4种耕作方式间土壤理化性质、水分和作物产量的差异,并利用最小显著差数法(LSD法)进行事后检验,显著性水平选取0.05;采用冗余分析法(RDA)明确各耕作方式下土壤养分和水分等环境因素对玉米产量的影响。
2. 结果与分析
2.1 不同耕作措施对土壤容重的影响
2022年为自然休耕地块休耕3年后再次耕作的年份。不同耕作措施对剖面各层土壤的容重影响不同。玉米出苗前,传统耕作各层土壤容重为1.26 ~1.42 g/cm3,0—60 cm土层间无显著差异,但显著大于60—100 cm土层;粮草间作处理0—60 cm土层土壤容重也显著大于60—100 cm土层;而覆盖免耕和休耕再耕作处理20—40 cm 土层土壤容重显著大于其他土层容重(P<0.05)。粮草间作、覆盖免耕和休耕再耕作较传统耕作均显著降低1 m土层土壤容重的平均值,分别降低1.37%、0.61%和3.84% (P<0.05)。经过3年自然恢复后,休耕再耕作处理0—20 cm土层的土壤容重显著小于其他3种处理(图2)。粮草间作在20—40 cm土壤容重小于传统耕作和休耕再耕作,并极显著小于覆盖免耕处理(P<0.01)。在40—60 cm土层土壤,粮草间作与覆盖免耕显著降低土壤容重,较传统耕作分别显著降低13.46%和12.73% (P<0.05)。
图 2 不同耕作措施下苗前土壤容重以及生育季土壤储水量变化值注:∆1表示苗前到苗期;∆2表示苗期到抽雄期;∆3分别表示抽雄期到成熟期。线上不同小写字母表示同一土层不同处理间差异达到显著水平,不同大写字母表示同一处理不同土层间差异达到显著水平(P<0.05)。Figure 2. Soil bulk density before seedling and water storage variations among growth stages under different tillage practicesNote: ∆1 denotes pre-seedling to seedling stage; ∆2 denotes seedling to tasseling stage; ∆3 denotes tasseling stage to maturity, respectively. Different lowercase letters on line indicate significant difference among treatments in the same soil layer; different uppercase letters indicate significant difference among soil layers in the same treatment (P<0.05).2.2 不同耕作措施对土壤水分的影响
结合玉米出苗前土壤含水量和土壤容重(图2),苗前1 m土层的土壤总储水量(W1)表现为覆盖免耕>传统耕作>休耕再耕作和粮草间作(表2)。与传统耕作比,粮草间作、覆盖免耕和休耕再耕作在表层(0—20 cm)的苗前土壤储水量分别显著增加了6.36%、13.17%和23.09%;而粮草间作和休耕再耕作在20—100 cm土层的苗前土壤储水量分别显著降低了4.83%和6.17%。对于成熟期1 m土层的土壤总储水量(W2),3种保护性耕作较传统耕作分别增加21.58% (粮草间作)、19.18% (覆盖免耕)和17.47% (休耕再耕作)。
表 2 玉米苗前和成熟期土壤储水量及生育期农田耗水量Table 2. Soil water storage before seedling and at maturing stage and the soil water consumption of maize growth period耕作方式
Tillage practice苗前土壤含水量 Soil water content at pre-seedling W1
(mm)W2
(mm)∆S
(mm)ET
(mm)WUE 0—20 cm 20—40 cm 40—60 cm 60—80 cm 80—100 cm kg/(hm2·mm) 传统耕作 Traditional cultivation 0.25 Dd 0.28 Ba 0.29 Ab 0.29 Aa 0.27 Cb 380 b 292 c 88 a 529 a 24.14 c 粮草间作 Maize and grass intercropping 0.27 BCc 0.26 Cc 0.28 Ab 0.28 Ab 0.27 Bb 368 c 355 a 13 d 454 c 35.85 a 覆盖免耕 No-tillage with straw mulching 0.29 Ab 0.27 Cb 0.30 Aa 0.29 Aa 0.28 Ba 387 a 348 b 39 b 480 b 30.47 b 休耕再耕作 Re-tillage after fallow 0.32 Aa 0.28 Ba 0.27 Cc 0.27 Cc 0.27 Cb 372 c 343 b 29 c 471 b 34.39 ab 注:W1、W2分别指苗前和成熟期0—100 cm土层总储水量,∆S 为W1与W2间差值,ET、WUE分别代表作物田间耗水量和水分利用效率。同列数据后不同小写字母表示同一土层不同处理间差异达到显著水平,同行数据后不同大写字母表示同一处理不同土层间差异达到显著水平 (P<0.05)。
Note: W1, and W2 indicate the total soil water storage in 0−100 cm layer before seedling and at maturing stage, ∆S is the difference of W1 and W2; ET, and WUE indicate crop water consumption and water use efficiency. Different lowercase letters after data in a column indicate significant difference among treatments in the same soil layer, and different uppercase letters after data in a row indicate significant difference among soil layers in the same treatment (P<0.05).比较玉米苗前和成熟期土壤储水量差值(∆S,W1−W2;表2)发现,较传统耕作,粮草间作、覆盖免耕和休耕再耕作的作物田间耗水量(ET)分别减少14.18%、9.26%和10.96%。此外,本研究还发现,传统耕作1 m土体内各土层都处于耗水状态,且该耕作方式下玉米在0—20 cm 土层的水分消耗要显著大于20 cm以下的4个土层(P<0.05);粮草间作消耗的主要是20—40和40—60 cm 两个土层的水分,而覆盖免耕(近90%)和休耕再耕作的作物田间耗水由0—20、20—40和40—60 cm这3个土层供应(图2)。
在作物苗期,各土层土壤储水量变化值(∆1)大于0 (图2)。自苗期至玉米抽雄前(即5月下旬—7月下旬),传统耕作1 m土层和3个保护性耕作20—100 cm土壤储水量变化值 ∆2>0,而3种保护性耕作措施下表层(0—20 cm)土壤储水量有所增加(∆2<0)。从抽雄至玉米成熟期(7月下旬—9月下旬),各耕作处理均显著消耗了表层(0—20 cm)土壤水分,但深层(20—100 cm)的土壤水分得到了补充(∆3<0)。粮草间作、覆盖免耕和休耕再耕作处理均显著提高作物水分利用效率(P<0.05),较传统耕作增幅分别为48.51%、26.22%、42.46%。
2.3 不同耕作措施对土壤养分的影响
不同耕作措施下,0—20 cm土壤pH无显著差异。与传统耕作相比,粮草间作土壤有机碳含量无显著增加,仅增加2.24%,覆盖免耕和休耕再耕作有机碳含量分别增加了11.52% 和15.68%。不同耕作方式土壤全氮含量依次为休耕再耕作>覆盖免耕>粮草间作≥传统耕作,相较传统耕作,休耕再耕作和覆盖免耕土壤全氮含量分别增加20.94%和11.62%;休耕再耕作耕层速效氮含量较传统耕作显著增加了57.69%;覆盖免耕耕层全磷含量显著提高了34.59%;覆盖免耕和休耕再耕作耕层分别显著降低了土壤全钾含量7.74%和6.92%;粮草间作、覆盖免耕和休耕再耕作显著减少了耕层速效磷以及速效钾含量(P<0.05),速效磷含量的降幅分别为31.47%、6.02%和25.60%,速效钾含量的降幅分别为12.67%、22.17%和32.25% (图3)。
2.4 不同耕作措施对玉米产量的影响
如表3所示,休耕再耕作下玉米成苗率显著高于传统耕作、粮草间作和覆盖免耕(P<0.05),增幅分别为5.43%、7.63%和7.63%。玉米拔节期、抽雄期的植株生长指标结果显示,与传统耕作相比,玉米株高和叶面积在3种保护性耕作方式下均显著增加(表3),玉米茎粗粮草间作和覆盖免耕措施在拔节期分别增加了6.65%和9.36%,粮草间作和休耕再耕作处理在抽雄期分别显著增加6.88%和12.27% (表3)。
表 3 不同耕作措施下玉米成苗率、植株生育期性状和产量构成Table 3. maize seedling establishment rates, plant traits and yield components under different tillage practices耕作方式
Tillage practice苗期
Seedling stage拔节期
Jointing stage抽雄期
Tasseling stage成熟期
Mature stage成苗率
Seedling rate
(plants/hm2)株高
Plant height
(cm)茎粗
Stem diameter
(cm)叶面积
Leaf area
(cm2)株高
Plant height
(cm)茎粗
Stem diameter
(cm)叶面积
Leaf area
(cm2)穗行数
Kernel-row
number per ear
(rows/ear)行粒数
Kernel number
per row
(kernels/row)百粒重
100-Kernel
weight
(g)秸秆量
Straw amount
(kg/hm2)产量
Yield
(kg/hm2)传统耕作
Traditional cultivation27222 b 46.2 c 6.77 b 335 d 259 d 8.97 c 961 c 18 a 37 b 22.1 b 6105 b 10215 c 粮草间作
Maize and grass intercropping26667 b 76.0 a 7.22 ab 517 a 311 a 9.58 b 1119 ab 18 a 40 a 26.6 a 6780 ab 13020 a 覆盖免耕
No-tillage with straw mulching26665 b 71.5 b 7.40 a 491 b 301 b 8.95 c 1186 a 18 a 40 a 23.9 b 6150 b 11700 b 休耕再耕作
Re-tillage after fallow28700 a 67.9 b 6.85 b 432 c 284 c 10.1 a 1054 b 18 a 40 a 24.6 ab 6885 a 12960 a 注:同列数据后不同小写字母表示不同处理间差异达到显著水平 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05).与传统耕作相比,保护性耕作对成熟期玉米穗行数无显著影响,但显著提高玉米行粒数(P<0.05),玉米百粒重和秸秆量也有一定程度的提高,粮草间作和休耕再耕作处理的玉米百粒重分别提高20.36%和11.31%,粮草间作和休耕再耕作的秸秆量分别提高了11.11%和12.8%。最终,玉米产量分别提高了27.46% (粮草间作)、14.54% (覆盖免耕)和26.87% (休耕再耕作)。
2.5 不同耕作措施下玉米产量的影响因素分析
本研究发现,土壤pH、有机碳、全氮和速效氮等养分指标与玉米成苗率呈显著正相关(表4),这说明保护性耕作调控土壤的养分供应,保障玉米基本成苗率,为作物产量收获奠定基础。此外,在营养生长顶峰期(即玉米抽雄期),全钾、速效磷含量与株高呈显著正相关(P<0.05);与此同时,土壤pH、有机碳含量、全氮和速效氮含量与叶面积和产量均呈显著正相关(表4)。这表明,保护性耕作能通过改变土壤的养分环境,调节作物生长性状(株高和茎粗),尤其是显著提高叶面积,从而贡献于产量(表3和表4,P<0.05)。
表 4 不同耕作措施下玉米生长及产量性状与土壤环境因子的相关性Table 4. Correlation of maize plant and yield traits with soil environmental factors under different tillage practices作物性状指标
Crop trait indicators土壤养分因子
Soil nutrient factors苗前储水量
Pre-seedling water storage生育季各阶段土壤储水量变化值
Variation of soil water storage at various stages of maize growth田间耗水量
Field water
consumptionpH SOC TN TP TK AN AP AK W1 (1) W1 (2) W1 (3) Δ1 Δ2 Δ3 ET 生长性状
Plant traits成苗率
Seedling rate0.886** 0.848* 0.832* 0.116 −0.419 0.994** 0.589 −0.466 0.079 0.762 0.226 0.662 0.626 −0.733 0.819* 株高 (抽雄期)
Plant height
(tasseling stage)0.484 0.542 0.463 0.105 0.878* 0.112 0.804* 0.718 0.677 0.538 0.972*** 0.763 0.792 −0.322 0.593 茎粗 (抽雄期)
Stem diameter
(tasseling stage)0.713 0.775 0.766 −0.212 0.532 0.457 0.925** 0.236 0.307 0.877* 0.849* 0.893** 0.892** −0.758 0.809* 叶面积 (抽雄期)
Leaf area
(tasseling stage)0.996*** 0.996*** 0.945** 0.132 0.093 0.898** 0.913** −0.037 0.397 0.929** 0.687 0.952** 0.936** −0.798 0.997*** 产量构成
Yield
composition穗行数
Kernel-row number
per ear0.948** 0.913** 0.867* 0.224 −0.250 0.988*** 0.697 −0.283 0.267 0.791 0.394 0.769 0.741 −0.708 0.893** 行粒数
Kernel number
per row0.494 0.451 0.276 0.815* 0.378 0.326 0.441 0.606 0.942** 0.130 0.594 0.495 0.523 0.128 0.462 百粒重
100-kernel weight0.903** 0.865* 0.839* 0.158 −0.379 0.995*** 0.614 −0.416 0.137 0.764 0.268 0.688 0.655 −0.718 0.838* 秸秆量
Straw biomass−0.417 −0.370 −0.441 0.177 0.872* −0.728 −0.027 0.905* 0.504 −0.387 0.410 −0.094 −0.042 0.532 −0.318 产量 Yield 0.967*** 0.953** 0.933** 0.051 −0.186 0.978*** 0.780 −0.309 0.177 0.905** 0.456 0.833* 0.803* −0.84* 0.939** 注:SOC—土壤有机碳;TN—全氮;TP—全磷;TK—全钾;AN—速效氮;AP—速效磷;AK—速效钾。W1(1),苗前 0—40 cm 土层土壤储水量;W1(2),苗前 40—60 cm 土层土壤储水量;W1(3),苗前 60—100 cm 土层土壤储水量。∆1—苗前到苗期;∆2—苗期到抽雄期;∆3—抽雄期到成熟期;ET—作物田间耗水量。
Note: SOC—Soil organic C; TN—Total N; TP—Total P; TK—Total K; AN—Available N; AP—Available P; AK—Available K. W1(1), soil water storage of 0—40 cm soil layer before seedling; W1(2), soil water storage of 40—60 cm soil layer before seedling; W1(3), soil water storage of 60—100 cm soil layer before seedling. ∆1— Pre-seedling to seedling stage; ∆2—Seedling to staminate stage; ∆3—Staminate stage to maturity. ET—Crop water consumption. *—P<0.1; **—P<0.05; ***—P<0.01.如表4所示,0—40 cm土层的苗前土壤储水量[W1(1)]对玉米生长性状和产量均无显著影响,但在抽雄期40—60 cm土层苗前土壤储水量[W1(2)]与茎粗和叶面积、60—100 cm土层苗前土壤储水量[W1(3)]与茎粗和株高呈显著正相关(P<0.05),这一结果说明深层土壤储水有利于作物生长,尤其是40—60 cm土层苗前土壤储水量[W1(2)]与产量呈显著正相关(P<0.05)。本研究土壤的供水能力由生育季土壤储水量变化值表征。由表4可知,苗期(Δ1)和抽雄期(Δ2)土壤储水量变化值与抽雄期茎粗和叶面积呈显著正相关(P<0.05),而各生育期土壤储水量变化值(Δ1、Δ2和Δ3)与产量均呈显著相关(P<0.05)。这一结果说明营养生长期的土壤供水能力直接作用于作物生长从而影响了玉米产量(表4)。与此同时,土壤供水和降雨保障了作物生育所需耗水。本研究发现,作物田间耗水量(ET)与抽雄期茎粗和叶面积、成熟期穗行数、百粒重和产量均呈显著正相关(表4),这一结果进一步说明保护性耕作在降低土壤水分消耗的同时,提高了水分的利用效率(WUE),最终提高作物产量(表2和表4)。
为进一步了解不同保护性耕作方式下土壤水分和养分供应对玉米生长及其产量构成的贡献,本研究以玉米抽雄期生长指标、产量及其构成指标为响应变量,以土壤水分、养分为环境因子变量进行冗余分析(RDA,图4)。冗余分析的RDA1和RDA2轴累计解释量为66.45%,能充分反映水分和养分等环境因子对玉米生长及产量的影响。传统耕作与3种保护性耕作(粮草间作、覆盖免耕和休耕再耕作)在RDA1轴显著分开(图4左),造成这一分异的原因主要是保护性耕作能够通过调控生育季土壤水分(Δ1、Δ2和Δ3)和养分(速效磷和速效钾)的供应(RDA1轴第一、二象限),影响作物生长发育和产量形成(图4右,RDA1轴第三、四象限)。覆盖免耕和休耕再耕作处理在RDA2轴上显著分开(图4左),造成这一分异的原因主要是玉米成苗率、抽雄期茎粗、速效氮含量 和40—60 cm土层苗前土壤储水量[W1(2)]的差异,这说明休耕再耕作土壤有更多的速效养分,而覆盖免耕则能更充分的利用土壤深层水分,以保障玉米成苗和生长。
图 4 不同耕作措施下玉米产量及其构成与土壤环境因子的冗余(RDA)分析注:SOC—土壤有机碳;TN—全氮;TP—全磷;TK—全钾;AN—速效氮;AP—速效磷;AK—速效钾。W1(1),苗前0—40 cm土层土壤储水量;W1(2),苗前40—60 cm土层土壤储水量;W1(3),苗前60—100 cm土层土壤储水量。∆1—苗前到苗期;∆2—苗期到抽雄期;∆3—抽雄期到成熟期;ET—作物田间耗水量。Figure 4. Redundancy analysis (RDA) ordination biplot of maize yield and its components with soil environmental factors under different tillage practicesNote: SOC—Soil organic C; TN—Total N; TP—Total P; TK—Total K; AN—Available N; AP—Available P; AK—Available K. W1(1), soil water storage of 0—40 cm soil layer before seedling; W1(2), soil water storage of 40—60 cm soil layer before seedling; W1(3), soil water storage of 60—100 cm soil layer before seedling. ∆1—Pre-seedling to seedling stage; ∆2—Seedling to tasseling stage; ∆3—Tasseling stage to maturity. ET—Crop water consumption.3. 讨论
3.1 不同耕作措施对土壤水分的影响
保护性耕作在改善土壤结构的同时,也影响了各层土壤储水量。粮草间作和覆盖免耕降低土壤表层 (0—20 cm) 土壤容重,提高表层土壤的蓄水保墒能力[8, 25−26]。宿庆瑞[8]在中低产黑土区为期3年研究发现,粮草间作较单作(传统耕作)土壤容重降低,田间持水能力增加;刘爽等[25]和张兴义等[26]在松嫩黑土区的长期研究发现,免耕覆盖并未显著增加土壤容重,但提高了土壤结构稳定性,增加土壤蓄水保水能力[26],尤其可提高作物播种期表层土壤含水量[25]。我们的研究也发现,粮草间作和覆盖免耕措施下苗前0—20 cm土层土壤储水量与传统耕作比分别增加6%和13% (图2),与上述研究结论相同。轮作休耕能显著改善干旱区土壤物理性状[27−28],从而减少作物水分消耗[29]。近年因水资源限制和水土流失加剧,东北黑土区也逐渐采取轮作休耕措施;但对这一保护性耕作措施的关注目前还主要集中在种植结构优化[30−31]和耕地障碍消减上[32],对休耕措施的保水效应关注较少。在本研究中,休耕再耕作的表层0—20 cm土壤容重低于传统耕作,但苗前土壤储水能力却增加23% (图2),休耕后再耕作耕地土壤蓄水保水能力得到较大提升,这一结论与刘斐耀等[27]在干旱区绿洲耕地以及任雯丽等[28]在黄土高原的研究结果一致。
保护性耕作能减少玉米生育期内作物田间耗水,提高作物水分利用效率,从而提高土壤剖面储水量(图2, 表2)。在本研究中,3种保护性耕作较传统耕作比,作物田间耗水量(ET)分别减少9.26% (覆盖免耕)、10.96% (休耕再耕作)和14.18% (粮草间作),而水分利用效率(WUE)分别提高26.22% (覆盖免耕)、48.51% (粮草间作)和42.46% (休耕再耕作),最终成熟期1 m土层土壤储水量(W2)依次表现为:粮草间作>覆盖免耕和休耕再耕作>传统耕作(表2)。粮草间作通过合理的粮草配比和秸秆深翻还田,提高土壤吸收并保持水分能力,并通过增加叶面积降低玉米棵间蒸发量(表2, 表3)。这一结论与路海东等[6]在宁夏南部旱区坡地上的研究结果一致,他们通过连续两年的研究发现粮草带状间作增加生育后期单株叶面积,提高作物水分利用效率。覆盖免耕则通过秸秆覆盖减少了阳光对地面的直接辐射,有效地减少了土壤水分蒸发,进而提高作物水分利用效率,实现增产;齐智娟等[33]、田肖肖等[34]和李友军等[5]研究都验证了这一观点;但胡锦昇等[35]通过对连续3个平水年3 m剖面土壤水分消耗深度的监测发现,覆盖免耕与传统耕作0—100 cm土体的土壤水分消耗量无显著差异,但覆盖免耕增加了水分在下个生长年向土壤深层补给的可能性。休耕再耕作措施下因整地、施肥等人为田间作业活动使土壤水分响应机制复杂。马涛等[36]在黄土高原轮作休耕的研究中发现,休耕2年和休耕4年后再耕作的土地0—40 cm为土壤水分的弱利用层,而40 cm以下则是土壤水分利用层,且休耕4年的土壤水分利用层厚度(40—180 cm)要大于休耕2年(40—180 cm)的处理;本研究中也发现,40—60 cm土层的土壤水分对保障休耕再耕作的苗前土壤储水和生育季耗水至关重要,休耕再耕作生育季耗水表现为40—60 cm>20—40 cm>0—20 cm>60—80 cm和80—100 cm (图2),且40—60 cm苗前土壤储水[W1(2)]直接作用于玉米生长从而保障作物产量(表4,图4)。
3.2 不同耕作措施对玉米产量的影响
保护性耕作能通过调控土壤水分和养分的供应能力改善农田土壤环境;而土壤水分和养分状况又是影响作物生长的重要因素,因此不同保护性耕作措施下作物产量的主控环境影响因子可能有所差异。宿庆瑞[8]通过对玉米和草木樨间作的土壤养分研究发现,粮草间作较单作的土壤有机质、速效养分含量及田间持水能力均有所提高,但玉米产量却降低,这可能是由于研究中草木樨占比过大,光、水、肥不协调所致;而田慧梅[9]研究发现,合理粮草间作通过光、水、肥互补,能得到比单作更高的产量;路海东等[6]研究也表明,粮草间作处理可增加粮食作物生育后期的单株叶面积和生物量,从而实现粮食增产。在本研究中,粮草间作较传统耕作提高土壤有机碳和全氮含量,减少作物田间耗水,从而获得更大的叶面积和水分利用效率,最终粮草间作产量较传统耕作增加27.46% (表2,表3)。
覆盖免耕通过增加地表覆盖度,减少土壤水分蒸发、降低土壤有机质矿化[37−38];与此同时,覆盖秸秆的还田分解增加了土壤养分[33, 37−38];此外,覆盖免耕通过减少土壤扰动,提升土壤蓄水保墒和养分供应能力,提高作物光合作用,进而实现作物增产。本研究发现,与传统耕作相比覆盖免耕措施下土壤有机碳、全氮和全磷含量均显著提高,且叶面积和水分利用效率与作物生长和产量构成密切相关(表4,图4),最终玉米产量较传统耕作增加14.54%;齐翔鲲等[13]和鲁悦等[14]的研究结果进一步支持了本研究这一结论,齐翔鲲等[13]在黑龙江半干旱区的研究发现,免耕秸秆覆盖和秸秆还田均能通过养分分配调控玉米产量构成,从而提高了作物产量;而鲁悦等[14]在探究长期免耕及不同秸秆覆盖还田量下玉米光合性能及产量变化规律时,也发现覆盖免耕能提高玉米抽雄期净光合速率和蒸腾速率,提高光、水利用效率从而实现增产。
休耕的目的是使耕地得以休养生息,为以后作物生长创造良好的土壤环境和条件[39−40]。宋淑均等[39]通过3年连续研究表明,与休耕前的基础养分相比,休耕后土壤养分含量显著增加,其中有机质、全氮和全钾增幅依次为19.5%、23.0%和9.2%;王建国等[40]在探索大兴安岭西麓轮作休耕对土壤水分含量和作物产量的影响时发现,休耕后翌年种植小麦的农田土壤体积含水量、水分利用效率和产量均大于连作。本研究则发现,休耕再耕作的土壤有机碳、全氮和速效氮含量较传统耕作和其他两种保护性耕作(粮草间作和覆盖免耕)更高,该措施下充足的养分供应保障了玉米成苗和生长发育,最终作物产量增幅为26.87%。
4. 结论
1)保护性耕作通过改变土壤容重,减少玉米生育期内作物田间耗水,提高作物水分利用效率,影响剖面土体的土壤储水量。与传统耕作相比,3种保护性耕作(粮草间作、覆盖免耕和休耕再耕作)方式下出苗前表层(0—20 cm)土壤容重降低、土壤蓄水保墒能力提高;粮草间作与休耕再耕作方式下深层(20—100 cm 土层)土壤储水量均显著低于传统耕作。且粮草间作、覆盖免耕和休耕再耕作处理的作物田间耗水量(ET)分别减少14.18%、9.26%和10.96%。
2)粮草间作、覆盖免耕和休耕再耕作3种保护性耕作方式均显著提高玉米产量,但对玉米生长及其产量构成的主导影响因素各不相同。与传统耕作相比,粮草间作通过提高土壤有机碳和全氮含量、减少土壤耗水,获得更大的叶面积和水分利用效率,玉米产量增加27.46%;覆盖免耕则通过提高土壤有机碳、全氮和全磷含量、叶面积和水分利用效率,实现光、水高效和玉米增产14.54%;休耕再耕作方式下土壤有机碳、全氮和速效氮含量较传统耕作和其他两种保护性耕作方式(粮草间作和覆盖免耕)更高,有充足的养分保障玉米成苗和生长发育,作物产量提高26.87%。
-
图 2 不同耕作措施下苗前土壤容重以及生育季土壤储水量变化值
注:∆1表示苗前到苗期;∆2表示苗期到抽雄期;∆3分别表示抽雄期到成熟期。线上不同小写字母表示同一土层不同处理间差异达到显著水平,不同大写字母表示同一处理不同土层间差异达到显著水平(P<0.05)。
Figure 2. Soil bulk density before seedling and water storage variations among growth stages under different tillage practices
Note: ∆1 denotes pre-seedling to seedling stage; ∆2 denotes seedling to tasseling stage; ∆3 denotes tasseling stage to maturity, respectively. Different lowercase letters on line indicate significant difference among treatments in the same soil layer; different uppercase letters indicate significant difference among soil layers in the same treatment (P<0.05).
图 4 不同耕作措施下玉米产量及其构成与土壤环境因子的冗余(RDA)分析
注:SOC—土壤有机碳;TN—全氮;TP—全磷;TK—全钾;AN—速效氮;AP—速效磷;AK—速效钾。W1(1),苗前0—40 cm土层土壤储水量;W1(2),苗前40—60 cm土层土壤储水量;W1(3),苗前60—100 cm土层土壤储水量。∆1—苗前到苗期;∆2—苗期到抽雄期;∆3—抽雄期到成熟期;ET—作物田间耗水量。
Figure 4. Redundancy analysis (RDA) ordination biplot of maize yield and its components with soil environmental factors under different tillage practices
Note: SOC—Soil organic C; TN—Total N; TP—Total P; TK—Total K; AN—Available N; AP—Available P; AK—Available K. W1(1), soil water storage of 0—40 cm soil layer before seedling; W1(2), soil water storage of 40—60 cm soil layer before seedling; W1(3), soil water storage of 60—100 cm soil layer before seedling. ∆1—Pre-seedling to seedling stage; ∆2—Seedling to tasseling stage; ∆3—Tasseling stage to maturity. ET—Crop water consumption.
表 1 耕作方式及其田间处理
Table 1 Crop straw (grass) management and tillage practices
处理
Treatment具体耕作和作物秸秆处理方式
Tillage practices and crop straw management传统耕作
Traditional
cultivation秋收后,玉米秸秆清理离田,用浅旋翻耕犁翻耙整地;次年春季起垄播种
After harvest in autumn, the maize stalks were cleaned off the field, and the field was rotatory plowed and harrowed; ridging in the following spring and seedling directly粮草间作
Maize and
grass inter-
cropping春季按照玉米∶牧草4∶1垄数播种;牧草为商品化的紫花苜蓿和黑麦草袋装混合种 (混合比例为重量比1∶1),在生育盛期刈割并就垄覆盖于田面,在秋收后粉碎深翻入土30 cm;玉米秸秆在秋收后清理离田,来年春季起垄播种
Maize and forage crop (alfalfa and ryegrass is 1∶1 by weight) were sowed in rows of 4∶1, the forage crops were mowed at full blooming stage and mulched on the rows. After maize harvest, maize straws were cleaned out of field, and the forage were pulverized and turned 30 cm deep into soil. Ridging in the next spring and seedling directly覆盖免耕
No-tillage
with straw
mulching秋收后,玉米秸秆粉碎长度≤10 cm且呈撕裂状,全量均匀覆盖田面;次年春季免耕播种
After harvest in the fall, all the maize straws were crushed to ≤10 cm long and mulched on field evenly; sowing directly in the following spring without tillage休耕再耕作
Re-tillage
after fallow2019—2021年自然休耕,恢复为次生草地 (优势草种以多年生羊草为主);2021年秋季用浅旋翻耕犁翻耙整地,次生草全部翻入土壤;2022年春季直接播种
Natural fallow in 2019−2021, the field were covered by secondary grasses with perennial fescue as dominant grass species; in the autumn of 2021, the field was tilled and harrowed with a shallow rotary tilling plow, and seedling was carried out in the spring of 2022表 2 玉米苗前和成熟期土壤储水量及生育期农田耗水量
Table 2 Soil water storage before seedling and at maturing stage and the soil water consumption of maize growth period
耕作方式
Tillage practice苗前土壤含水量 Soil water content at pre-seedling W1
(mm)W2
(mm)∆S
(mm)ET
(mm)WUE 0—20 cm 20—40 cm 40—60 cm 60—80 cm 80—100 cm kg/(hm2·mm) 传统耕作 Traditional cultivation 0.25 Dd 0.28 Ba 0.29 Ab 0.29 Aa 0.27 Cb 380 b 292 c 88 a 529 a 24.14 c 粮草间作 Maize and grass intercropping 0.27 BCc 0.26 Cc 0.28 Ab 0.28 Ab 0.27 Bb 368 c 355 a 13 d 454 c 35.85 a 覆盖免耕 No-tillage with straw mulching 0.29 Ab 0.27 Cb 0.30 Aa 0.29 Aa 0.28 Ba 387 a 348 b 39 b 480 b 30.47 b 休耕再耕作 Re-tillage after fallow 0.32 Aa 0.28 Ba 0.27 Cc 0.27 Cc 0.27 Cb 372 c 343 b 29 c 471 b 34.39 ab 注:W1、W2分别指苗前和成熟期0—100 cm土层总储水量,∆S 为W1与W2间差值,ET、WUE分别代表作物田间耗水量和水分利用效率。同列数据后不同小写字母表示同一土层不同处理间差异达到显著水平,同行数据后不同大写字母表示同一处理不同土层间差异达到显著水平 (P<0.05)。
Note: W1, and W2 indicate the total soil water storage in 0−100 cm layer before seedling and at maturing stage, ∆S is the difference of W1 and W2; ET, and WUE indicate crop water consumption and water use efficiency. Different lowercase letters after data in a column indicate significant difference among treatments in the same soil layer, and different uppercase letters after data in a row indicate significant difference among soil layers in the same treatment (P<0.05).表 3 不同耕作措施下玉米成苗率、植株生育期性状和产量构成
Table 3 maize seedling establishment rates, plant traits and yield components under different tillage practices
耕作方式
Tillage practice苗期
Seedling stage拔节期
Jointing stage抽雄期
Tasseling stage成熟期
Mature stage成苗率
Seedling rate
(plants/hm2)株高
Plant height
(cm)茎粗
Stem diameter
(cm)叶面积
Leaf area
(cm2)株高
Plant height
(cm)茎粗
Stem diameter
(cm)叶面积
Leaf area
(cm2)穗行数
Kernel-row
number per ear
(rows/ear)行粒数
Kernel number
per row
(kernels/row)百粒重
100-Kernel
weight
(g)秸秆量
Straw amount
(kg/hm2)产量
Yield
(kg/hm2)传统耕作
Traditional cultivation27222 b 46.2 c 6.77 b 335 d 259 d 8.97 c 961 c 18 a 37 b 22.1 b 6105 b 10215 c 粮草间作
Maize and grass intercropping26667 b 76.0 a 7.22 ab 517 a 311 a 9.58 b 1119 ab 18 a 40 a 26.6 a 6780 ab 13020 a 覆盖免耕
No-tillage with straw mulching26665 b 71.5 b 7.40 a 491 b 301 b 8.95 c 1186 a 18 a 40 a 23.9 b 6150 b 11700 b 休耕再耕作
Re-tillage after fallow28700 a 67.9 b 6.85 b 432 c 284 c 10.1 a 1054 b 18 a 40 a 24.6 ab 6885 a 12960 a 注:同列数据后不同小写字母表示不同处理间差异达到显著水平 (P<0.05)。
Note: Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05).表 4 不同耕作措施下玉米生长及产量性状与土壤环境因子的相关性
Table 4 Correlation of maize plant and yield traits with soil environmental factors under different tillage practices
作物性状指标
Crop trait indicators土壤养分因子
Soil nutrient factors苗前储水量
Pre-seedling water storage生育季各阶段土壤储水量变化值
Variation of soil water storage at various stages of maize growth田间耗水量
Field water
consumptionpH SOC TN TP TK AN AP AK W1 (1) W1 (2) W1 (3) Δ1 Δ2 Δ3 ET 生长性状
Plant traits成苗率
Seedling rate0.886** 0.848* 0.832* 0.116 −0.419 0.994** 0.589 −0.466 0.079 0.762 0.226 0.662 0.626 −0.733 0.819* 株高 (抽雄期)
Plant height
(tasseling stage)0.484 0.542 0.463 0.105 0.878* 0.112 0.804* 0.718 0.677 0.538 0.972*** 0.763 0.792 −0.322 0.593 茎粗 (抽雄期)
Stem diameter
(tasseling stage)0.713 0.775 0.766 −0.212 0.532 0.457 0.925** 0.236 0.307 0.877* 0.849* 0.893** 0.892** −0.758 0.809* 叶面积 (抽雄期)
Leaf area
(tasseling stage)0.996*** 0.996*** 0.945** 0.132 0.093 0.898** 0.913** −0.037 0.397 0.929** 0.687 0.952** 0.936** −0.798 0.997*** 产量构成
Yield
composition穗行数
Kernel-row number
per ear0.948** 0.913** 0.867* 0.224 −0.250 0.988*** 0.697 −0.283 0.267 0.791 0.394 0.769 0.741 −0.708 0.893** 行粒数
Kernel number
per row0.494 0.451 0.276 0.815* 0.378 0.326 0.441 0.606 0.942** 0.130 0.594 0.495 0.523 0.128 0.462 百粒重
100-kernel weight0.903** 0.865* 0.839* 0.158 −0.379 0.995*** 0.614 −0.416 0.137 0.764 0.268 0.688 0.655 −0.718 0.838* 秸秆量
Straw biomass−0.417 −0.370 −0.441 0.177 0.872* −0.728 −0.027 0.905* 0.504 −0.387 0.410 −0.094 −0.042 0.532 −0.318 产量 Yield 0.967*** 0.953** 0.933** 0.051 −0.186 0.978*** 0.780 −0.309 0.177 0.905** 0.456 0.833* 0.803* −0.84* 0.939** 注:SOC—土壤有机碳;TN—全氮;TP—全磷;TK—全钾;AN—速效氮;AP—速效磷;AK—速效钾。W1(1),苗前 0—40 cm 土层土壤储水量;W1(2),苗前 40—60 cm 土层土壤储水量;W1(3),苗前 60—100 cm 土层土壤储水量。∆1—苗前到苗期;∆2—苗期到抽雄期;∆3—抽雄期到成熟期;ET—作物田间耗水量。
Note: SOC—Soil organic C; TN—Total N; TP—Total P; TK—Total K; AN—Available N; AP—Available P; AK—Available K. W1(1), soil water storage of 0—40 cm soil layer before seedling; W1(2), soil water storage of 40—60 cm soil layer before seedling; W1(3), soil water storage of 60—100 cm soil layer before seedling. ∆1— Pre-seedling to seedling stage; ∆2—Seedling to staminate stage; ∆3—Staminate stage to maturity. ET—Crop water consumption. *—P<0.1; **—P<0.05; ***—P<0.01. -
[1] 李保国, 刘忠, 黄峰, 等. 巩固黑土地粮仓 保障国家粮食安全[J]. 中国科学院院刊, 2021, 36(10): 1184−1193. Li B G, Liu Z, Huang F, et al. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1184−1193.
[2] 邱琛, 韩晓增, 陆欣春, 等. 东北黑土区玉米秸秆还田对土壤肥力及作物产量的影响[J]. 土壤与作物, 2020, 9(3): 277−286. DOI: 10.11689/j.issn.2095-2961.2020.03.008 Qiu C, Han X Z, Lu X C, et al. Effects of maize straw incorporation on soil fertility and crop production in the black soil region of Northeast China[J]. Soils and Crops, 2020, 9(3): 277−286. DOI: 10.11689/j.issn.2095-2961.2020.03.008
[3] 蒋发辉, 钱泳其, 郭自春, 等. 基于Meta分析评价东北黑土地保护性耕作与深耕的区域适宜性: 以作物产量为例[J]. 土壤学报, 2022, 59(4): 935−952. Jiang F H, QianY Q, Guo Z C, et al. Evaluating the regional suitability of conservation tillage and deep tillage based on crop yield in the black soil of Northeast China: A meta-analysis[J]. Acta Pedologica Sinica, 2022, 59(4): 935−952.
[4] He C, Niu J R, Xu C T, et al. Effect of conservation tillage on crop yield and soil organic carbon in Northeast China: A meta-analysis[J]. Soil Use and Management, 2022, 38(2): 1146−1161. DOI: 10.1111/sum.12784
[5] 李友军, 黄明, 吴金芝, 等. 不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J]. 水土保持学报, 2006, 20(2): 42−45. DOI: 10.3321/j.issn:1009-2242.2006.02.011 Li Y J, Huang M, Wu J Z, et al. Effects of different tillage on utilization and run-off of water and nutrient in sloping farmland of Yuxi Dryland Area[J]. Journal of Soil and Water Conservation, 2006, 20(2): 42−45. DOI: 10.3321/j.issn:1009-2242.2006.02.011
[6] 路海东, 贾志宽, 杨宝平, 等. 宁夏南部旱区坡地不同粮草带比间作种植模式比较[J]. 生态学报, 2010, 30(21): 5941−5948. Lu H D, Jia Z K, Yang B P, et al. Different strip intercropping of grain-grass on sloping field in dry areas of south Ningxia[J]. Acta Ecologica Sinica, 2010, 30(21): 5941−5948.
[7] 成婧, 吴发启, 云峰, 等. 渭北旱塬坡耕地玉米−苜蓿间作对土壤养分和产量的影响[J]. 水土保持通报, 2013, 33(4): 228−232. Cheng J, Wu F Q, Yun F, et al. Effect of intercropping corn and alfalfa on soil nutrients and yield of sloping field in Weibei Dryland[J]. Bulletin of Soil and Water Conservation, 2013, 33(4): 228−232.
[8] 宿庆瑞. 东北玉米主产区玉米、草木樨间种轮作农牧结合综合效益的研究[J]. 中国草地, 1998, (4): 18−21. Su Q R. Studies on the comprehensive benefits of the inter-cropping and rotation of maize and sweet clover in the maize production zone in Northeast of China[J]. Grassland of China, 1998, (4): 18−21.
[9] 田慧梅. 粮草间作的光能利用率和产量的关系[J]. 黑龙江农业科学, 1998, (2): 24−26. Tian H M. Effects of crop sweetclover intercropping on sunlight utitilization and the yields of corn and sweetclover[J]. Heilongjiang Agricultural Science, 1998, (2): 24−26.
[10] 许芳维. 不同密度玉米与苜蓿间作对玉米生产潜能的研究[D]. 黑龙江哈尔滨: 东北农业大学硕士学位论文, 2022. Xu F W. Research on the production potential of maize by intercropping maize and alfalfa at different densities[D]. Harbin, Heilongjiang: MS Thesis of Northeast Agricultural University, 2022.
[11] 张龙, 李简, 赵富贵, 等. 免耕或深松结合秸秆覆盖提升土壤碳氮水含量和马铃薯产量的协同效应[J]. 植物营养与肥料学报, 2023, 29(1): 45−56. DOI: 10.11674/zwyf.2022199 Zhang L, Li J, Zhao F G, et al. Synergistic effect of no-tillage or sub-soiling tillage with straw mulching increasing soil carbon, nitrogen and water storage and potato yield[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(1): 45−56. DOI: 10.11674/zwyf.2022199
[12] 且天真, 李福, 厉雅华, 等. 秸秆还田条件下不同耕作方式对土壤化学性状的影响[J]. 中国农学通报, 2022, 38(21): 58−69. DOI: 10.11924/j.issn.1000-6850.casb2021-0747 Qie T Z, Li F, Li Y H, et al. Effects of tillage methods on soil chemical properties under straw returning condition[J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 58−69. DOI: 10.11924/j.issn.1000-6850.casb2021-0747
[13] 齐翔鲲, 安思危, 侯楠, 等. 耕作和秸秆还田方式对半干旱区黑土玉米养分积累分配与产量的影响[J]. 植物营养与肥料学报, 2022, 28(12): 2214−2226. DOI: 10.11674/zwyf.2022198 Qi X K, An S W, Hou N, et al. Effects of tillage and straw returning method on the nutrient accumulation, distribution and yield of maize in black soil of semi-arid region[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2214−2226. DOI: 10.11674/zwyf.2022198
[14] 鲁悦, 鲍雪莲, 霍海南, 等. 免耕条件下不同量秸秆覆盖还田提高东北黑土区玉米光合性能和产量的效应[J]. 植物营养与肥料学报, 2023, 29(5): 840−847. DOI: 10.11674/zwyf.2022507 Lu Y, Bao X L, Huo H N, et al. Effects of different amounts of stover mulching on improving photosynthetic characteristics and yield of maize in Mollisol of Northeast China under long-term no-tillage[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 840−847. DOI: 10.11674/zwyf.2022507
[15] 焦晓光, 王晓军, 徐欣, 等. 秸秆覆盖条件下不同施氮水平对春玉米产量及氮肥利用率的影响[J]. 土壤与作物, 2018, 7(2): 242−247. DOI: 10.11689/j.issn.2095-2961.2018.02.018 Jiao X G, Wang X J, Xu X, et al. Effects of different nitrogen application rates on spring maize yield and nitrogen fertilizer utilization efficiency under straw cover[J]. Soils and Crops, 2018, 7(2): 242−247. DOI: 10.11689/j.issn.2095-2961.2018.02.018
[16] 聂英, 韩鲜籽, 王子茗惠, 等. 耕地休耕: 国外经验与中国实践[J]. 世界农业, 2022, (12): 34−44. Nie Y, Han X Z, Wang Z M H, et al. Fallow of arable land: Foreign experience and Chinese practice[J]. World Agriculture, 2022, (12): 34−44.
[17] 邹文秀, 韩晓增, 李良皓, 王凤仙. 黑土区不同土地利用方式土壤水分动态变化特征研究[J]. 水土保持学报, 2009, 23(2): 236−239. DOI: 10.3321/j.issn:1009-2242.2009.02.051 Zou W X, Han X Z, Li L H, Wang F X. Study on soil moisture characteristic of different land use types in black soil[J]. Journal of Soil and Water Conservation, 2009, 23(2): 236−239. DOI: 10.3321/j.issn:1009-2242.2009.02.051
[18] 周伟, 张运龙, 徐明岗, 等. 长期撂荒对黑土土壤有机碳组分的影响[J]. 中国土壤与肥料, 2021, (4): 11−18. DOI: 10.11838/sfsc.1673-6257.20259 Zhou W, Zhang Y L, Xu M G, et al. Effects of long-term abandonment on the organic carbon fraction of black soil[J]. Soil and Fertilizer Sciences in China, 2021, (4): 11−18. DOI: 10.11838/sfsc.1673-6257.20259
[19] 杨婧, 宋茜, 陆苗, 等. 我国“黑土粮仓”建设的科技支撑路径[J/OL]. 中国农业资源与区划. [2024−06−01]. http://kns.cnki.net/kcms/detail/11.3513.S.20240229.1523.018.html. Yang J, Song X, Lu M, et al. Path of scientific and technological support for the construction of “black soil granary” in China[J/OL]. Journal of China Agricultural Resources and Regional Planning. [2024−06−01]. http://kns.cnki.net/kcms/detail/11.3513.S.20240229.1523.018.html.
[20] 鲍士旦. 土壤农化分析(第3版)[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil agrochemical analysis (3rd edition)[M]. Beijing: China Agricultural Press, 2000.
[21] 刘爽, 张兴义. 不同耕作方式对黑土农田土壤水分及利用效率的影响[J]. 干旱地区农业研究, 2012, 30(1): 126−131. DOI: 10.3969/j.issn.1000-7601.2012.01.022 Liu S, Zhang X Y. Effects of tillage management on soil water dynamics, yield and water use efficiency in arable black soil cropping system in Northeast China[J]. Agricultural Research in the Arid Areas, 2012, 30(1): 126−131. DOI: 10.3969/j.issn.1000-7601.2012.01.022
[22] 王永华, 刘焕, 辛明华, 等. 耕作方式与灌水次数对砂姜黑土冬小麦水分利用及籽粒产量的影响[J]. 中国农业科学, 2019, 52(5): 801−812. DOI: 10.3864/j.issn.0578-1752.2019.05.003 Wang Y H, Liu H, Xin M H, et al. Effects of tillage practices and irrigation times on water use efficiency and grain yield of winter wheat in lime concretion black soil[J]. Scientia Agricultura Sinica, 2019, 52(5): 801−812. DOI: 10.3864/j.issn.0578-1752.2019.05.003
[23] 郑洪兵, 齐华, 刘武仁, 等. 不同耕层构造对玉米叶面积和SPAD值的影响[J]. 农业与技术, 2014, 34(10): 1−2. DOI: 10.3969/j.issn.1671-962X.2014.10.003 Zheng H B, Qi H, Liu W R, et al. Effects of different tillage configurations on leaf area and SPAD values of maize[J]. Agriculture and Technology, 2014, 34(10): 1−2. DOI: 10.3969/j.issn.1671-962X.2014.10.003
[24] 李瑞平, 谢瑞芝, 罗洋, 等. 典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响[J]. 中国生态农业学报(中英文), 2024, 32(1): 71−82. DOI: 10.12357/cjea.20230346 Li R P, Xie R Z, Luo Y, et al. Effects of conservation tillage methods on maize growth and yields in a typical black soil region[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 71−82. DOI: 10.12357/cjea.20230346
[25] 刘爽, 张兴义. 保护性耕作下黑土水热动态研究[J]. 干旱地区农业研究, 2010, 28(6): 15−22. Liu S, Zhang X Y. Dynamics of soil water and temperature under conservational soil tillage[J]. Agricultural Research in the Arid Areas, 2010, 28(6): 15−22.
[26] 张兴义, 李健宇, 郭孟洁, 等. 连续14年黑土坡耕地秸秆覆盖免耕水土保持效应[J]. 水土保持学报, 2022, 36(3): 44−50. Zhang X Y, Li J Y, Guo M J, et al. Effects of straw mulching and no tillage for continuous 14 years on soil and water conservation in mollisols sloping farmland[J]. Journal of Soil and Water Conservation, 2022, 36(3): 44−50.
[27] 刘斐耀, 尤全刚, 吴思渊, 等. 干旱区绿洲耕地撂荒与复耕对土壤水力性质的影响[J]. 中国沙漠, 2021, 41(6): 169−178. Liu F Y, You Q G, Wu S Y, et al. Effects of abandonment and recultivation of farmland on soil hydraulic properties in a typical oasis of arid regions[J]. Journal of Desert Research, 2021, 41(6): 169−178.
[28] 任雯丽, 任亮, 赵贵宾, 等. 黄土高原半干旱地区休耕条件下深翻次数对土壤理化性状的影响[J]. 农业科技与信息, 2023, (2): 5−9. DOI: 10.3969/j.issn.1003-6997.2023.02.003 Ren W L, Ren L, Zhao G B, et al. Influence of the number of deep turning on soil physicochemical properties under fallow conditions in semi-arid region of Loess Plateau[J]. Agricultural Science-Technology and Information, 2023, (2): 5−9. DOI: 10.3969/j.issn.1003-6997.2023.02.003
[29] Song W, Song W. Cropland fallow reduces agricultural water consumption by 303 million tons annually in Gansu Province, China[J]. Science of the Total Environment, 2023, 879: 163013. DOI: 10.1016/j.scitotenv.2023.163013
[30] 宋戈, 张红梅. 东北典型黑土区耕地轮作休耕的空间重构[J]. 自然资源学报, 2022, 37(9): 2231−2246. DOI: 10.31497/zrzyxb.20220903 Song G, Zhang H M. Spatial reconstruction of farmland rotation and fallow in the typical black soil region of Northeast China[J]. Journal of Natural Resources, 2022, 37(9): 2231−2246. DOI: 10.31497/zrzyxb.20220903
[31] Luo C, Liu H J, Fu Q, et al. Mapping the fallowed area of paddy fields on Sanjiang Plain of Northeast China to assist water security assessments[J]. Journal of Integrative Agriculture, 2020, 19(7): 1885−1896. DOI: 10.1016/S2095-3119(19)62871-6
[32] 邓琳璐, 王继红, 刘景双, 等. 休耕轮作对黑土酸化的影响[J]. 水土保持学报, 2013, 27(3): 184−188. Deng L L, Wang J H, Liu J S, et al. Influence of fallow rotation on the black soil acidification[J]. Journal of Soil and Water Conservation, 2013, 27(3): 184−188.
[33] 齐智娟, 宋芳, 张忠学, 等. 保护性耕作对寒地黑土土壤水热效应与玉米产量的影响[J]. 农业机械学报, 2022, 53(12): 380−389. DOI: 10.6041/j.issn.1000-1298.2022.12.037 Qi Z J, Song F, Zhang Z X, et al. Effects of different conservation tillage methods on soil hydrothermal condition as well as maize yield in cold black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 380−389. DOI: 10.6041/j.issn.1000-1298.2022.12.037
[34] 田肖肖, 吕慎强, 张亮, 等. 免耕覆盖有效提高夏玉米产量及水氮利用效率[J]. 植物营养与肥料学报, 2017, 23(3): 606−614. DOI: 10.11674/zwyf.16290 Tian X X, Lü S Q, Zhang L, et al. No-tillage with straw mulching could increase grain yield, water and nitrogen use efficiencies of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(3): 606−614. DOI: 10.11674/zwyf.16290
[35] 胡锦昇, 樊军, 付威, 等. 保护性耕作措施对旱地春玉米土壤水分和硝态氮淋溶累积的影响[J]. 应用生态学报, 2019, 30(4): 1188−1198. Hu J S, Fan J, Fu W, et al. Effects of conservation tillage measures on soil water and NO3−-N leaching in dryland maize cropland[J]. Chinese Journal of Applied Ecology, 2019, 30(4): 1188−1198.
[36] 马涛, 吕文强, 李泽霞, 等. 黄土高原丘陵沟壑区轮作休耕模式下5种土地利用方式土壤剖面水分分布特征[J]. 草业学报, 2020, 29(7): 30−39. DOI: 10.11686/cyxb2019582 Ma T, Lü W Q, Li Z X, et al. Water distribution characteristics of soil profiles in five land use types under rotational cropping in the Hill and Gully Regions on the Loess Plateau[J]. Acta Prataculturae Sinica, 2020, 29(7): 30−39. DOI: 10.11686/cyxb2019582
[37] 祁剑英, 马守田, 刘冰洋, 等. 保护性耕作对土壤有机碳稳定化影响的研究进展[J]. 中国农业大学学报, 2020, 25(1): 1−9. DOI: 10.11841/j.issn.1007-4333.2020.01.01 Qi J Y, Ma S T, Liu B Y, et al. Advances in effects of conservation tillage on soil organic carbon stabilization[J]. Journal of China Agricultural University, 2020, 25(1): 1−9. DOI: 10.11841/j.issn.1007-4333.2020.01.01
[38] Ussiri D A N, Lal R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio[J]. Soil and Tillage Research, 2009, 104(1): 39−47. DOI: 10.1016/j.still.2008.11.008
[39] 宋淑钧, 崔小茹, 陈雄, 等. 休耕对陇中旱农区农田土壤养分的影响[J]. 水土保持研究, 2023, 30(6): 143−159. Song S J, Cui X R, Chen X, et al. Effects of fallow on soil nutrients in the dryland farming area of Central Gansu[J]. Research of Soil and Water Conservation, 2023, 30(6): 143−159.
[40] 王建国, 路战远, 程玉臣, 等. 轮作休耕对小麦和油菜水分利用效率和产量的影响[J]. 北方农业学报, 2018, 46(4): 29−34. DOI: 10.3969/j.issn.2096-1197.2018.04.05 Wag J G, Lu Z Y, Cheng Y C, et al. Effects of rotation and fallow on water use efficiency and yield of wheat and rape[J]. Journal of Northern Agriculture, 2018, 46(4): 29−34. DOI: 10.3969/j.issn.2096-1197.2018.04.05
-
期刊类型引用(2)
1. 王春雷,刘冲,林东洪,刘忠军,刘立晶,唐汉. 东北黑土地保护性用养技术与装备研究进展. 农业机械学报. 2025(04): 1-21 . 百度学术
2. 白东星,陈宣伊,张向前,葛国龙,王满秀,张德健,孟天天,罗方,张传玲. 不同耕作方式对土壤水分动态变化规律及玉米产量的影响. 华北农学报. 2025(02): 67-80 . 百度学术
其他类型引用(0)