• ISSN 1008-505X
  • CN 11-3996/S
尹丹, 朱忆雯, 胡敏, 徐乐, 于焕云. 水稻根际微生物及其驱动的土壤碳氮磷循环[J]. 植物营养与肥料学报. DOI: 10.11674/zwyf.2024096
引用本文: 尹丹, 朱忆雯, 胡敏, 徐乐, 于焕云. 水稻根际微生物及其驱动的土壤碳氮磷循环[J]. 植物营养与肥料学报. DOI: 10.11674/zwyf.2024096
YIN Dan, ZHU Yi-wen, HU Min, XU Le, YU Huan-yun. Rice rhizosphere microbiomes and their driving cycling of soil carbon, nitrogen, and phosphorus[J]. Journal of Plant Nutrition and Fertilizers. DOI: 10.11674/zwyf.2024096
Citation: YIN Dan, ZHU Yi-wen, HU Min, XU Le, YU Huan-yun. Rice rhizosphere microbiomes and their driving cycling of soil carbon, nitrogen, and phosphorus[J]. Journal of Plant Nutrition and Fertilizers. DOI: 10.11674/zwyf.2024096

水稻根际微生物及其驱动的土壤碳氮磷循环

Rice rhizosphere microbiomes and their driving cycling of soil carbon, nitrogen, and phosphorus

  • 摘要: 水稻根际微生物是指水稻根系与土壤紧密接触区域内的微生物,其对水稻生长、养分利用及土壤碳、氮、磷等元素循环具有重要影响。探讨水稻根际微生物驱动的土壤碳、氮和磷循环的关键过程及主要影响因子,为创造有利于微生物活性的微环境,提高养分利用效率提供理论基础。水稻根际微生物驱动的碳循环过程主要涵盖微生物固碳、有机碳矿化、甲烷排放。这些过程主要受外源有机质输入如秸秆还田、施用有机肥影响、其次是水分条件影响;氮循环过程则主要包括微生物固氮、硝化作用、反硝化作用和厌氧氨氧化,这些过程主要受施肥管理和土壤理化性质如pH和有机碳含量的显著影响;而磷循环的主要过程则为有机磷矿化和无机磷溶解,这些过程主要受到土壤含磷水平及微生物可利用性碳的影响。为了更好地利用水稻根际功能微生物,在今后的研究中,需要定量评估水稻根际微生物驱动的碳、氮、磷循环关键过程的不同影响因子的相对贡献,并通过优化关键影响因子来实现对这些关键过程的定向调控;同时利用单细胞拉曼光谱技术结合合成微生物组的方法,在控制条件下设计和优化功能可靠的“有益碳、氮、磷循环功能微生物群落”,从而促进生物肥料的研发应用,并改善全球农业生产对化学物质的依赖,保障粮食安全。

     

    Abstract: Rice rhizosphere microbiomes refer to the microbial communities in the soil near the root system of rice. These microbiomes play important roles in nutrient utilization and cycling, that is beneficial for enhancing rice growth. This article reviewed the key processionss of nitrogen, phosphorous, and carbon cycling that is driven by rice rhizosphere microbiomes, and the key influencing factors.The rice rhizosphere microbial-driven carbon cycle primarily encompasses microbial carbon sequestration, organic carbon mineralization, and methane emission. These processes are significantly influenced by the addition of exogenous organic matter, such as straw incorporation and the application of organic fertilizers, along with varying water conditions. The nitrogen cycle processes mainly include microbial nitrogen fixation, nitrification, denitrification, and anaerobic ammonia oxidation. These processes are predominantly affected by fertilization practices and soil physicochemical properties, such as pH and organic carbon content. The primary processes of the phosphorus cycle involve the mineralization of organic phosphate and the dissolution of inorganic phosphorus, which are chiefly influenced by soil phosphorus content and the availability of microbial carbon. To maximize the utilization of functional microorganisms in the rice rhizosphere, it is necessary to quantitatively evaluate the relative contributions of different influencing factors in the key processes of carbon, nitrogen, and phosphorus cycling driven by rice rhizosphere microorganisms in future research. It is also essential to engineer a "beneficial carbon, nitrogen, and phosphorus cycling functional microbial community" with reliable function using single-cell Raman spectroscopy, combined with synthetic microbiota methods. Ultimately, the goal is to contribute to the development and application of biofertilizers, reducing the global agriculture's reliance on chemical substances, and ensuring food security.

     

/

返回文章
返回