Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

基质与灌溉耦合对大叶绣球光合特性和水分利用效率的影响

杨君, 邢强, 秦俊

杨君, 邢强, 秦俊. 基质与灌溉耦合对大叶绣球光合特性和水分利用效率的影响[J]. 植物营养与肥料学报, 2024, 30(10): 1974-1986. DOI: 10.11674/zwyf.2024123
引用本文: 杨君, 邢强, 秦俊. 基质与灌溉耦合对大叶绣球光合特性和水分利用效率的影响[J]. 植物营养与肥料学报, 2024, 30(10): 1974-1986. DOI: 10.11674/zwyf.2024123
YANG Jun, XING Qiang, QIN Jun. Effects of substrate-coupled irrigation on Hydrangea macrophylla photosynthetic characteristics and water use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(10): 1974-1986. DOI: 10.11674/zwyf.2024123
Citation: YANG Jun, XING Qiang, QIN Jun. Effects of substrate-coupled irrigation on Hydrangea macrophylla photosynthetic characteristics and water use efficiency[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(10): 1974-1986. DOI: 10.11674/zwyf.2024123

基质与灌溉耦合对大叶绣球光合特性和水分利用效率的影响

基金项目: 国家重点研发计划项目(2022YFC3802602)。
详细信息
    作者简介:

    杨君 E-mail: juriyang9403@163.com

    通讯作者:

    秦俊 E-mail: qinjun03@163.com

Effects of substrate-coupled irrigation on Hydrangea macrophylla photosynthetic characteristics and water use efficiency

  • 摘要:
    目的 

    研究不同基质类型和灌溉方式对大叶绣球光合特性和水分利用效率的影响,揭示大叶绣球对不同基质与灌溉措施的响应规律,为其科学灌溉和高效栽培提供依据。

    方法 

    在上海辰山植物园大棚内搭建智能灌溉系统,以2年生大叶绣球(品种为花手鞠)为供试材料进行田间盆栽试验。设置3种栽培基质类型:园土 (S1)、50%园土+50%园林废弃物(S2)、50%园土+40%园林废弃物+10%生物炭(S3);设两种灌溉方式:充分灌溉(FI)、亏缺灌溉(DI)。测量大叶绣球株高、冠幅和生物量,测定光合特性(气体交换参数、光合-CO2响应曲线和相对叶绿素含量SPAD)、气孔形态特征(气孔大小和气孔密度)、叶水势和碳同位素分辨率(Δ13C),计算植物生长指数和植株水分利用效率,并对指标进行相关性和主成分分析。

    结果 

    基质类型和灌溉方式显著影响了大叶绣球光合特性和水分利用效率(P<0.05)。与FI相比,DI条件下大叶绣球叶片的净光合速率(Pn)、气孔导度(GS)、蒸腾速率(Tr)、初始羧化速率(Rp)、光呼吸速率(Γ)和相对叶绿素含量(SPAD)均显著降低,但生物炭的添加(S3)显著提高了DI条件下叶片的PnRp、Γ和SPAD值。S1、S2和S3在DI条件下的总耗水量表现为S1>S3>S2,与FI相比,分别节约用水22.9%、65.1%和63.1%。DI条件下,不同基质的植物生长指数和地上生物量均表现为S1<S2<S3,与S1相比,S2、S3的植物生长指数分别显著增加了16.7%、30.1%;地上生物量分别增加了0.5和1.3倍。S2和S3基质使得大叶绣球在低耗水量的同时维持了较高的地上生物量,其中生物炭的添加(S3)使大叶绣球叶片瞬时水分利用效率 (WUEi)、内在水分利用效率(WUEn)、气孔密度和叶水势显著提高,而Δ13C显著减低,保持了最高的地上生物量和植株水分利用效率。相关性分析表明Δ13C 与WUEiWUEn呈极显著的负相关关系,且Δ13C对WUEn的指示性更优;主成分分析表明RpWUEn在光合特性和水分利用效率指标中起主导作用。

    结论 

    生物炭和亏缺灌溉的联合应用缓解了水分限制的负面影响,提高了叶片对 CO2 的利用能力,在维持大叶绣球生长的同时提高了水分利用效率,是提高大叶绣球水分利用效率的适宜栽培组合。

    Abstract:
    Objectives 

    This study aims to investigate the impact of various substrate types and irrigation methods on the photosynthetic characteristics and water use efficiency (WUE) of Hydrangea macrophylla. It seeks to elucidate the plant’s adaptive mechanisms to different substrate-irrigation combinations, providing insights for scientific irrigation and efficient cultivation.

    Methods 

    A pot experiment was conducted using 2-year-old Hydrangea macrophylla (‘Hanatemari’) and an intelligent irrigation system was built in the greenhouse of Chenshan Botanical Garden in Shanghai. Three substrate types (S1: garden substrate, S2: 50% garden substrate + 50% garden waste, S3: 50% garden substrate + 40% garden waste + 10% biochar) and two irrigation methods (full irrigation, FI; deficit irrigation, DI) were set up. Plant height, crown width, and biomass of H. macrophylla were measured, and photosynthetic characteristics (gas exchange parameters, photosynthetic-CO2 response curves, and relative chlorophyll content), stomatal morphological features (stomatal size and stomatal density), leaf water potential, and carbon isotope discrimination (Δ13C) were determined. Plant growth indices and water use efficiency were calculated, and correlation and principal component analyses were performed on the indicators.

    Results 

    Both substrate type and irrigation method significantly influenced the photosynthetic characteristics and water use efficiency of H. macrophylla (P<0.05). Compared with FI, under DI conditions, the net photosynthetic rate (Pn), stomatal conductance (GS), transpiration rate (Tr), initial carboxylation rate (Rp), photorespiration rate (Γ), and relative chlorophyll content (SPAD) of H. macrophylla leaves were significantly reduced, but the addition of biochar (S3) significantly increased Pn, Rp, Γ, and SPAD values of leaves under DI conditions. Compared with FI, under DI conditions, the total water consumption of three substrate types showed a pattern of S1>S3>S2, saving water by 22.9%, 65.1%, and 63.1%, respectively. Under DI conditions, the plant growth index and above ground biomass of the different substrates showed a pattern of S1<S2<S3, with S2 and S3 significantly increasing the plant growth index by 16.7% and 30.1%, and above ground biomass by 0.5 times and 1.3 times compared with S1, respectively. S2 and S3 substrates maintained a high aboveground biomass while conserving water, and the addition of biochar (S3) significantly increased instantaneous water use efficiency (WUEi), intrinsic water use efficiency (WUEn), stomatal density, and leaf water potential, while significantly reducing Δ13C, maintaining the highest aboveground biomass and plant water use efficiency. Correlation analysis showed a highly significant negative correlation between Δ13C and both WUEi and WUEn, with Δ13C being more indicative of WUEn; principal component analysis showed that Rp and WUEn played a dominant role in photosynthetic characteristics and water use efficiency indicators.

    Conclusions 

    The synergistic application of DI and S3 substrate mitigates the adverse effects of water scarcity, improving leaf utilization of CO2 , sustaining plant growth and augmenting WUE in H. macrophylla. This combination emerges as an effective cultivation strategy for enhancing the plant's water efficiency.

  • 亏缺灌溉(deficient irrigation,DI )是一种有效的节水方式,可以在减少耗水量的同时维持植物产量[1]和生长品质[2]。除了优化灌溉方式外,园林绿化废弃物(garden waste compost)、生物炭(biochar)等基质改良剂的添加,在提高植物生物量,缓解缺水干旱等方面表现出良好的应用潜力,成为国内外学者研究的热点。园林废弃物指苗木自然凋落或养护过程中所产生的修剪物,通过好氧发酵堆肥形成,可有效增加基质有机质,提高基质肥力,提升苗木生长品质。生物炭是由有机物在无氧或低氧的条件下热解炭化形成的稳定富炭物质,施入基质后可改善基质理化性质,显著增加基质碳储量,促进植物生长,提高植物抗逆性[3];但生物炭性质(原料来源、热解温度)、施用量、基质质地、植物类型等均是影响生物炭效应的主要因素[4]。因此,在不同基质和水分条件下,生物炭产生的效果仍需进一步探索。在水分亏缺条件下,提高植物水分利用效率是实现农业节水的最终目标。水分利用效率可分为叶片水平和整株植物水平,利用气体交换法测定的叶片内在和瞬时水分利用效率仅可表征植物水分利用过程中的瞬时响应;而碳同位素分辨率(Δ13C)可综合反映植株在较长时期生理过程中的气孔行为、光合特性和蒸腾作用的积累过程,成为指示植物长期水分利用效率的有效途径[5]

    大叶绣球(Hydrangea macrophylla)作为世界范围内广受欢迎的花灌木,其叶片大而肥厚,生长旺季主要在春夏季节,对水分需求较高,限制了其在干旱和半干旱区的应用推广。近年来,随着基质水分传感器技术的发展(substrate moisture sensors ,SMS),针对特定植物实现精准灌溉成为可能。SMS可实时监测基质水分状态,当达到预设阈值的基质含水率时,灌溉控制器会自动将含水率补充到预设水平,可显著减少灌溉用水,但在阈值设置方面需依据不同基质类型确定合适的灌溉上下限。目前这一技术已被应用于栎叶绣球(H. quercifolia ‘Alice’) 和大叶绣球(H. macrophylla ‘Fasan’)[6]的需水量评估上。Basiri Jahromi等 [7]以圆锥绣球(H. paniculata ‘Silver Dollar’)为试材,研究了不同配比基质和灌溉方式对其生长的影响,结果表明添加10%的生物炭结合基于基质含水量的灌溉方式,可有效提升其水分利用效率。然而,大叶绣球对不同灌溉方式的生长、生理和水分利用的响应规律尚未完全明确,在不同基质环境下会更为复杂,还有待进一步研究和探索。因此,本研究以大叶绣球‘花手鞠’(H. macrophylla‘Hanatemari’)为研究对象,设置田间盆栽试验,通过搭建智能灌溉系统,研究不同基质类型和灌溉方式对大叶绣球光合特性和水分利用效率的影响,揭示大叶绣球在不同基质和灌溉措施下的响应规律,以期为大叶绣球科学灌溉和高效栽培提供理论依据。

    试验于2023年7—9月在上海辰山植物园行道树大棚中开展(31°08′N,121°18′E),配有遮雨棚,以防止自然降雨对试验的影响。场地位于上海市松江区,属于亚热带季风气候,大棚内的环境数据由温湿度记录仪(S21A,彭云物联)自动记录(图1)。供试植物为2年生大叶绣球品种‘花手鞠’(H. macrophylla ‘Hanatemari’)。供试基质为园土、园林绿化废弃物和生物炭。园土取自农田表层0—25 cm的沙壤土;园林绿化废弃物由植物园内日常修剪的树枝树叶自然堆肥腐熟形成;生物炭为竹炭,在600℃温度下热解形成,竹炭颗粒统一过2 mm筛。试验开始前将不同配比的基质混匀后装填至体积为7.6 L的盆中(盆栽容器上口直径23 cm,下口直径20 cm,高21.5 cm),装填基质约7 L 。

    图  1  试验期间日均气温和相对湿度变化
    Figure  1.  Daily average air temperature and relative humidity during the experiment

    试验设置灌溉和基质两个因素,包括 3种基质类型和两种灌溉方式,共6个处理,每个处理8次重复,完全随机区组排列。3种基质分别为园土(S1)、50%园土+50%园林废弃物(S2)和50%园土+40%园林废弃物+10%生物炭(S3),基本理化性质见表1。两种灌溉方式分别为充分灌溉(FI)和亏缺灌溉(DI)。 灌溉系统采用基于云平台的智能灌溉控制系统,由上海润绿灌溉有限公司设计搭建,由电磁阀、基质水分传感器、流量传感器、数据采集终端等组成,可实现灌溉水量和灌溉上下限的精准控制。灌溉启动和关闭由电磁阀(EZP-23-54,托罗)控制,水量由流量传感器(485,润绿)监测,基质体积含水率由基质水分传感器(TDR,润绿)实时监测。FI处理通过喷灌方式每日定时灌溉固定水量以实现充分灌溉,喷头流量为80~280 L/h,工作压力150~300 Mpa,每日总灌溉量为2.8 mm。DI处理通过滴灌方式实现亏缺灌溉,滴头流量2 L/h,工作压力100 Kpa;依据基质最大持水能力的不同设置灌溉上下限,通过基质水分传感器(量程为0%~100%,精度为±3%)实时监测基质体积含水率变化,每隔1 h采集数据1次。DI处理开始前参考前人的研究确定不同基质的最大持水能力[89],具体方法为:将装满土的盆钵放置在有湿润和松散的基质表面,通过底部尼龙网孔与花盆内的基质建立水力接触,然后灌溉所有盆钵使基质达到饱和,用基质水分传感器实时监测体积含水率,待基质中的重力水完全下渗,基质体积含水率几乎不变达到稳定,此时的体积含水率即为盆内的最大基质持水能力,测得的S1、S2和S3基质的最大持水能力分别为36.8%、49.1%和41.7%。灌溉上下限设定为当基质体积含水率下降至基质最大持水能力的40%时启动,当基质体积含水率上升到基质最大持水能力的95%时则停止[10] (表2)。试验开始前,将基质体积含水率按不同基质类型统一灌溉至 95%最大持水能力。

    表  1  供试基质基本理化性质
    Table  1.  Basic physical and chemical properties of experimental substrate
    指标 Index S1 S2 S3
    pH 8.82 8.51 8.62
    电导率 Electric conductivity (μS/cm) 119.6 320.0 291.0
    基质容重 Bulk density (g/cm) 1.17 0.71 0.61
    毛管孔隙度 Capillary porosity (%) 42.56 61.92 54.38
    全氮 Total N (g/kg) 0.24 1.65 1.3
    全磷 Total P (g/kg) 0.37 0.96 0.83
    全钾 Total K (g/kg) 9.40 9.40 10.30
    碱解氮 (mg/kg)
    Alkaline hydrolyzable nitrogen
    39.20 120.40 72.80
    速效磷 Available phosphorus (mg/kg) 3.12 16.27 15.57
    速效钾 Available potassium (mg/kg) 36.00 13.00 69.00
    有机质 Organic matter (g/kg) 1.22 42.20 38.84
    注:S1为园土;S2 为50%园土+50%园林废弃物;S3为50%园土+40%园林废弃物+10%生物炭。
    Note: S1 is garden substrate; S2 is 50% garden substrate + 50% garden waste compost; S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.
    下载: 导出CSV 
    | 显示表格
    表  2  灌溉处理设计
    Table  2.  Irrigation experimental treatment
    基质 Substrate 灌溉 Irrigation
    最大持水能力 (%)
    Maximum water-holding capacity
    亏缺灌溉 Deficit irrigation 充分灌溉
    Full irrigation
    基质水分传感器启动阈值 (%)
    SMS start threshold
    基质水分传感器关闭 (%)
    SMS close threshold
    S1 36.8±3.6 b 14.7 35.0 每日灌水2.8 mm
    Irrigation of 2.8 mm each day
    S2 49.1±4.3 a 18.7 46.6
    S3 41.7±4.2 ab 16.7 39.7
    注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
    Note: SMS—Substrate moisture sensors. Different lowercase letters after data in the same column mean significant difference among treatments at 0.05 level.
    下载: 导出CSV 
    | 显示表格

    试验开始前选取长势一致的2年生大叶绣球种苗移栽至盆中,每盆定植1株。在试验开始和结束时,用钢卷尺(精确到1 mm)测量大叶绣球盆栽苗的株高和冠幅。盆栽基质表面至植株最高点的自然高度为株高;测量盆栽分枝间的最大宽度记为冠幅1,垂直于冠幅1 的宽度记为冠幅2。植物生长指数 = (冠幅1+冠幅2+株高)/3,通过试验期间植物生长指数的增量/每盆总耗水量计算植株水分利用效率[11]。灌溉处理结束后获取大叶绣球地上组织,每个处理选取生长一致的植株3株,清洗后放入烘箱105℃杀青0.5 h,70℃烘干至恒重,再在干燥玻璃器皿内冷却至室温后称量地上生物量。

    在8月晴朗无风的天气,于上午9:00—11:00 用便携式光合仪(Li-6400,LI-COR)测定叶片气体交换参数和光合-CO2响应曲线。选取生长状况一致的植株,测定相同叶位且完全展开的成熟叶片的净光合速率(net photosynthetic rate,Pn)、气孔导度(stomatal conductance,Gs)、胞间CO2浓度(intercellular CO2 concentration,Ci)和蒸腾速率(transpiration rate,Tr),并计算叶片内在水分利用效率(intrinsic water use efficiency,WUEnWUEn =Pn /Gs)和瞬时水分利用效率(instantaneous water use efficiency,WUEiWUEi =Pn /Tr)。光合−CO2响应曲线选取相同叶片,测定条件设置为: 叶室温度 25°C,空气流速 500 μmol/s,光合有效辐射1000 μmol/(m2·s),叶室 CO2 浓度由安装的高压浓缩小钢瓶控制,CO2 浓度梯度先降低后升高,设定的CO2 浓度梯度为400、300、200、100、50、0、400、400、600、800、1000、1200、1500、1800、2000 μmol/mol,共15个浓度。获取响应曲线后,使用叶子飘光合计算软件的直角双曲线模型进行拟合[12]。在光合−CO2响应曲线测定完成后选用相同叶片使用叶绿素仪(TYS-3N,托普)测定相对叶绿素含量SPAD值。

    当亏缺灌溉下基质体积含水率降至最低点时,各处理取每盆光合测定的目标叶,用PSYPRO露点水势仪测定叶片午间叶水势。测定完成后用印记法测定叶片气孔形态,先用透明指甲油获取叶片下表皮印记,随后用镊子将表皮印记转移至显微镜载玻片上,用Axio Scope A1显微镜在40×镜下观察并获取图像,随机获取 6 张图像后用 ImageJ 软件计数所有气孔,计算单位面积的气孔即气孔密度(SD,stomatal density);并测量气孔长(stomatal length, SL)和气孔宽(stomatal width,SW),计算气孔大小(SS,stomatal size),公式为SS = (π×SL×SW)/4[13]

    光合测定完成后每处理选取6~8片成熟叶片测定叶片碳同位素自然丰度。叶片中的δ13C含量采用稳定同位素质谱仪(Delta plus XP,赛默飞)测定,并根据公式将δ13C转换为碳同位素分辨率Δ13C:

    Δ13C=δ13Cairδ13C/(1+δ13Cair/1000)

    式中,δ13Cair 的值为−8.2‰[14]

    试验所得数据用Excel 整理分析后,采用 SPSS进行不同处理间单因素方差分析、双因素交互作用分析和Duncan多重比较,GraphPad Prism 制图;使用R语言Psych 包进行Pearson相关性分析及制图,主成分分析使用标准主成分法,通过FactoMineR包进行分析和制图。图表中数据除标注外均为平均值±标准差。

    不同基质类型的基质体积含水率在充分灌溉(FI)条件下保持相对平稳的变化,在亏缺灌溉(DI)时存在明显差异(图2)。S1在整个DI灌溉周期经历了8个干湿循环,第一个最低点出现在灌溉处理后的第8天(8月4日);S2则经历了6个干湿循环,第一个最低点出现在灌溉处理后第9天(8月5日);S3则经历了9个干湿循环,第一个最低点出现在灌溉处理后第4天(7月31日)。由此可见,亏缺灌溉的基质体积含水率根据设定的阈值变化,当基质含水率逐渐降至低阈值后复水升高,依次循环。不同基质的灌溉频率存在差异,S2的灌溉频率最低,并且在夏季(7—8月)的灌溉频率高于秋季(9月)。

    图  2  不同基质类型和灌溉处理下基质体积含水率随时间变化
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。
    Figure  2.  Variation of substrate volumetric water content under different substrate types and irrigation treatments
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.

    不同基质类型显著影响了大叶绣球叶片的PnCiTrWUEnWUEi;与S1相比,S2和S3的Pn分别显著增加了10.0%和40.9%;Ci 分别显著降低了4.5%和6.7%;WUEn分别显著增加了17.5%和24.1%;WUEi分别显著增加了9.4%和19.4%。不同灌溉类型显著影响了大叶绣球叶片的PnGsTrWUEn;与 FI 相比,DI显著降低了Pn (37.3%)、Gs (43.4%)和Tr (38.9%),显著增加了WUEn (10.2%)。此外,叶片的净光合速率显著响应灌溉×基质的交互作用,在DI条件下,与S1相比,S3大叶绣球叶片的Pn显著提高了91.4% (图3)。

    图  3  基质类型和灌溉处理对大叶绣球叶片气体交换和叶片水平水分利用效率的影响
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。柱上不同小写字母表示处理间差异显著(P<0.05);*、**和***分别表示在0.05、0.01和0.001水平显著,ns为无显著性。
    Figure  3.  Effects of substrate type and irrigation treatment on leaf gas exchange and leaf-level water use efficiency of H. macrophylla
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level. *,** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.

    图4可知,在低CO2浓度条件下,净光合速率随着胞间CO2浓度增加快速上升,随着CO2的进一步升高,净光合速率呈线性快速上升,直至净光合速率稳定在一定水平。与S1相比,S2和S3处理明显放大了不同基质类型的光合-CO2响应曲线的差异,尤其在亏缺灌溉(DI)中更为明显。表3通过直角双曲线模型拟合得出了大叶绣球光合-CO2响应曲线的重要参数。双因素方差分析表明基质和灌溉处理显著影响了大叶绣球叶片的羧化效率α和光呼吸速率Rp,其中Rp显著响应了灌溉×基质的交互作用。与FI相比,DI的α值和Rp值分别显著降低了61.4%和53.0%。在DI条件下,3种基质类型的α值和Rp值均表现为S1<S2<S3,与S1相比,S3处理的α值和Rp值分别显著增加了2.0和1.8倍,表明生物炭的添加提高了大叶绣球叶片在亏缺灌溉条件下对 CO2 的利用能力。

    图  4  基质和灌溉处理对大叶绣球叶片光合- CO2响应曲线的影响
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。图中数据为3次重复平均值±标准误。
    Figure  4.  The effects of substrate types and irrigation on the photosynthetic-CO2 response curves of H. macrophylla
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. The data in the figure is the average of 3 repetitions ± standard error (SE).
    表  3  大叶绣球叶片光合-CO2响应曲线参数的双因素方差分析
    Table  3.  Two-factor analysis of variance for parameters of photosynthetic-CO2 response curves of H. macrophylla
    灌溉
    Irrigation
    基质类型
    Substrate type
    初始羧化速率
    α
    最大净光合速率
    Pnmax [μmol/(m2·s)]
    光呼吸速率
    Rp [μmol/(m2·s)]
    CO2 补偿点
    Γ (μmol/mol)
    DI S1 0.012±0.009 e 72.84±7.49 ab 1.37±0.63 d 168.17±66.13 a
    S2 0.019±0.003 de 74.16±38.01 a 2.45±0.21 d 133.67±3.55 ab
    S3 0.036±0.001 cd 32.93±6.07 c 3.79±0.05 c 121.17±9.24 ab
    FI S1 0.042±0.014 bc 58.15±23.81 abc 4.74±0.87 bc 130.99±11.96 ab
    S2 0.074±0.007a 36.89±1.25 bc 6.31±0.38 a 103.56±2.21 b
    S3 0.057±0.019 ab 42.66±4.37 abc 5.13±1.13 b 107.39±8.70 b
    FF value
    基质类型 Substrate type
    6.54* 3.33ns 8.61** 2.84ns
    灌溉 Irrigation 48.96*** 2.52ns 84.08*** 4.20ns
    基质类型×灌溉 Substrate type×irrigation 3.83ns 2.34ns 6.13** 0.28ns
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。同列数据后不同小写字母表示处理间差异显著 (P<0.05);*、**和***分别表示0.05、0.01和0.001;ns为无显著性。
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters after data in a column mean significant difference at 0.05 level among treatments. *,** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.
    下载: 导出CSV 
    | 显示表格

    不同基质类型和灌溉方式显著影响了大叶绣球的SPAD值。与FI相比,DI条件下SPAD显著下降了5.5%。3种基质类型中S3处理的SPAD值在不同灌溉条件下均为最大值。在DI条件下,与S1相比,S3的SPAD值显著上升了57.5% (图5)。

    图  5  基质和灌溉处理对大叶绣球叶片相对叶绿素含量的影响
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。**—P<0.01, ***—P<0.001. 柱上不同小写字母表示处理间差异显著 (P<0.05)。
    Figure  5.  The effects of substrate types and irrigation on the SPAD value of H. macrophylla
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. **—P<0.01, ***—P<0.001. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.

    图6图7可知,不同基质类型显著影响了大叶绣球叶片气孔大小,且叶片气孔大小显著响应基质×灌溉的交互作用。不同基质类型下叶片气孔大小表现为S3<S1<S2,与S1相比,S2的叶片气孔大小显著增加了11.9%,而S3则显著降低了26.6%。不同基质类型和灌溉处理显著影响了大叶绣球叶片气孔密度,但二者的交互作用不显著。不同基质类型下气孔密度表现为S1<S2<S3,与S1相比,S2和S3处理下叶片气孔密度分别显著增加了15.2%和34.8%;不同灌溉条件下,与FI相比,DI处理下大叶绣球的叶片气孔密度显著增加了13.0%。

    图  6  基质和灌溉处理对大叶绣球叶片气孔大小和气孔密度的影响
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。ns—无显著性。柱上不同小写字母表示处理间差异显著 (P<0.05)。
    Figure  6.  The effects of substrate types and irrigation on the stomatal size and stomatal density of the H. macrophylla
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. *—P<0.05, **—P<0.01, ***—P<0.001, ns—No significance. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.
    图  7  不同基质和灌溉处理下大叶绣球叶片气孔形态
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。
    Figure  7.  Images of stomatal morphology of the H. macrophylla treated with different substrate types and irrigation
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.

    DI条件下,不同基质处理在整个灌溉周期的总耗水量表现为S1>S3>S2;与FI相比,S1、S2和S3分别节约用水22.9%、65.1%、63.1%。双因素方差分析结果表明基质和灌溉显著影响了大叶绣球生长。在DI条件下,不同基质处理的植物生长指数和地上生物量均表现为S1<S2<S3。与S1相比,S2、S3的植物生长指数分别显著增加了16.7%、30.1%;地上生物量分别增加了0.5和1.3倍。与FI相比,DI显著降低了S1的植物生长指数和地上生物量,但 S2和S3的植物生长指数和地上生物量在不同灌溉条件下并未存在显著差异,这表明园林废弃物和生物炭的添加使得大叶绣球在低耗水量的同时维持了大叶绣球生长(表4)。

    表  4  不同处理对大叶绣球生长和水分利用效率指标的影响
    Table  4.  Effects of different treatments on growth and water use efficiency indicators of H. macrophylla
    灌溉
    Irrigation
    基质类型
    Substrate
    type
    总耗水量 (L)
    Total water
    consumption
    植物生长指数 (cm)
    Final plant
    growth index
    植株水分利用效率 (cm/L )
    Plant water use efficiency
    地上生物量 (g)
    Above ground
    biomass
    叶水势 (Mpa)
    Leaf water
    potential
    Δ13C (‰)
    Shoot carbon isotope
    discrimination
    DI S1 15510 34.92±2.76 c 0.03±0.01 b 19.74± 7.12 c −3.97±0.87 b 21.91±0.13 a
    S2 7030 40.77±1.05 b 0.04±0.01 b 29.83 ±4.12 bc −2.07±0.69 a 21.09±0.13 d
    S3 7430 45.42±1.54 ab 0.11±0.05 a 45.04 ±2.70 a −1.93±0.60 a 21.24±0.10 cd
    FI S1 20120 43.08±0.23 ab 0.02±0.01 b 43.01± 6.52 a −2.22±0.31 a 22.03±0.08 a
    S2 20120 43.30±5.00 ab 0.03±0.02 b 39.65 ±8.32 ab −1.59±0.16 a 21.28±0.05 bc
    S3 20120 45.85±0.55 a 0.03±0.01 b 41.46 ±6.55 a −2.07±0.54 a 21.33±0.13 b
    FF value
    基质类型 Substrate type 10.88** 4.75* 5.87* 8.48** 108.98***
    灌溉 Irrigation 10.15** 7.85* 11.37** 6.50* 13.04**
    基质类型×灌溉 Substrate type×irrigation
    3.93** 4.73* 7.07** 4.16* 0.28ns
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。同列数据后不同小写字母表示处理间差异显著 (P<0.05);*、**和***分别表示0.05、0.01 和 0.001;ns为无显著性。
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters after data in a column mean significant difference among treatments at 0.05 level. *, ** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.
    下载: 导出CSV 
    | 显示表格

    不同灌溉和基质显著影响了大叶绣球植株水分利用效率。与FI相比,DI条件下的大叶绣球植株水分利用效率显著增加了1.2倍,其中S3基质在DI下表现出最高的植株水分利用效率。不同基质和灌溉处理显著影响了大叶绣球叶水势。与FI相比,DI使得S1基质的叶水势显著降低了78.7%,而S2和S3基质的叶水势在不同灌溉条件下差异不显著,这表明园林废弃物和生物炭的添加一定程度上维持了亏缺灌溉条件下的叶水势。此外,DI条件下不同基质类型的叶水势发生了显著变化,与S1相比,S2和S3基质的叶水势分别显著增加了47.9%和51.4%。不同基质和灌溉方式对大叶绣球叶片碳同位素(Δ13C)影响显著,但二者的交互作用影响不显著。3种基质处理在不同灌溉条件下的叶片Δ13C值均表现为S1>S3>S2,S2与S3较S1的Δ13C值均显著下降。与FI相比,同一基质处理下DI具有更低的Δ13C值,其中S2、S3显著降低了95.7%、42.5% (表4)。

    对测定的16个指标进行相关性分析,发现气孔形态、光合和水分利用效率相关指标之间存在相关关系。其中,SD与WUEpWUEnWUEi 极显著正相关,与Ci和Δ13C极显著负相关;此外,Δ13C与WUEnWUEi 极显著负相关,相关系数分别为−0.79和−0.60,且与WUEn的相关性高于WUEi (图8)。

    图  8  不同基质和灌溉处理下大叶绣球各指标间相关性分析
    注: *—P<0.05;**— P<0.01; WUEp—植株水分利用效率;LWP—叶水势;Δ13C—碳同位素分辨率;SD—气孔密度;SS—气孔大小;Pn—净光合速率;GS—气孔导度;Ci—胞间二氧化碳浓度;Tr—蒸腾速率;WUEn—叶片内在水分利用效率;WUEi—叶片瞬时水分利用效率;α—初始羧化速率;Pnmax—最大净光合速率;Rp—光呼吸速率;Γ—CO2 补偿点;SPAD—相对叶绿素含量。
    Figure  8.  Correlation analysis between indicators of the H. macrophylla treated with different substrate types and irrigation
    Note: *—P<0.05; **—P<0.01; WUEp—Plant water use efficiency; LWP—Leaf water potential; Δ13C—Carbon isotope resolution; SD—Stomatal density; SS—Stomatal size; Pn—Net photosynthetic rate; GS—Stomatal conductance; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; WUEn—Intrinsic water use efficiency; WUEi—Instantaneous water use efficiency; α—Initial carboxylation rate; Pnmax—Maximum net photosynthetic rate; Rp—Photorespiration rate; Γ—CO2 compensation point; SPAD—Relative chlorophyll content.

    对测定的16个指标进行主成分分析,提取前2个主成分,累计方差贡献为74.5%,可代表大部分的原始数据。由图9可知,第1主成分(PC1)包含了原始信息的42.9%,主要由Rp 、Pn和α等光合相关指标共同决定,其Rp在PC1的投影较大,在PC2投影较小,表明其对PC1的贡献较大;第2主成分(PC2)包含了原始信息的31.6%,主要由WUEn、SD和WUEp等水分利用效率指标共同决定,其中WUEn在PC2的投影较大,在PC1投影较小,表明其对PC2的贡献较大。主成分分析有效区分了不同灌溉处理和基质处理。不同基质处理沿PC1轴分离,由左至右依次为S1,S2 和S3;与S1相比,添加园林废弃物(S2)和生物炭(S3)后整体沿PC1轴向右移动(图9-a)亏缺灌溉(DI)处理主要集中于第三和第四象限,相对于PC2轴呈负向分布;而充分灌溉(FI)主要集中于第一、二象限,相对于PC2轴呈正向分布(图9-b)。

    图  9  不同基质和灌溉处理下大叶绣球指标主成分分析
    注:(a)不同基质处理各性状主成分分析;(b)不同灌溉处理各性状主成分分析。WUEp—植株水分利用效率;LWP—叶水势;Δ13C—碳同位素分辨率;SD—气孔密度;SS—气孔大小;Pn—净光合速率;GS—气孔导度;Ci—胞间二氧化碳浓度;Tr—蒸腾速率;WUEn—叶片内在水分利用效率;WUEi—叶片瞬时水分利用效率;α—初始羧化速率;Pnmax—最大净光合速率;Rp—光呼吸速率;Γ—CO2补偿点;SPAD—相对叶绿素含量。
    Figure  9.  Principal component analysis (PCA) of selected parameters measured on the H. macrophylla treated with different substrate types and irrigation
    Note: (a) PCA of various traits treated with different substrates; (b) PCA of various traits of hydrangea under different irrigation treatments. WUEp—Plant water use efficiency; LWP—Leaf water potential; Δ13C—Carbon isotope resolution; SD—Stomatal density; SS—Stomatal size; Pn—Net photosynthetic rate; GS—Stomatal conductance; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; WUEn—Intrinsic water use efficiency; WUEi—Instantaneous water use efficiency; α—Initial carboxylation rate; Pnmax—Maximum net photosynthetic rate; Rp—Photorespiration rate; Γ—CO2 compensation point; SPAD—Relative chlorophyll content.

    水分是调控植物生长的主要因子,基质水分的亏缺会诱发一系列植物光合生理特性改变,使植物适应水分胁迫[14]。亏缺灌溉(DI)在节水的同时,对植物产生的水分限制会降低光合速率,抑制Rubisco 酶活性,导致植物碳同化能力降低[1516]。本研究发现DI 处理下,大叶绣球叶片的净光合速率Pn、气孔导度Gs和蒸腾速率Tr均显著降低;进一步分析灌溉对大叶绣球CO2响应曲线的影响发现,DI的初始羧化速率α值和光呼吸速率Rp值均显著降低,这与前人[1718]的研究结果基本一致。一般认为,α值与Rubisco酶活性呈正相关,其值减小反映了Rubisco酶的量及活性降低,从而导致大叶绣球叶片对CO2的利用效率降低;而Rp值的下降可能是水分胁迫限制了大叶绣球的光合作用,植物通过抑制呼吸作用减少对光合产物的消耗[19]。此外,与其他两种基质相比,生物炭的添加显著提高了大叶绣球在亏缺灌溉条件下叶片的Pn、α、RpWUEiWUEn,主成分分析也表明Rp、Pn 和α 在光合相关指标中起主导作用;这可能由于施入生物炭后,缓解了水分亏缺对于光合作用的限制,提高了叶片水分利用效率,一定程度上维持了大叶绣球叶片净光合速率,提高了叶片对 CO2 的利用能力,并通过消耗过剩光能减轻水分胁迫对其的伤害,有利于保护光合机构并维持较高的光合速率。此外,大叶绣球的SPAD值与光合参数表现出相似的趋势,即与其他两种基质相比,生物炭的添加显著提高了大叶绣球在亏缺灌溉条件下叶片的SPAD值,缓解了水分亏缺条件下叶绿素含量的下降。

    随着基质水分状况的改变,气孔密度和大小会发生可塑性形态变化。亏缺灌溉显著增加了大叶绣球叶片的气孔密度,但并未引起气孔大小的显著变化;这与干旱胁迫会导致玉米[20]、小麦[21]等植物气孔密度增加一致;但本研究并未发现水分亏缺导致气孔明显变小,这可能与植物种类的差异和水分胁迫程度有关[14]。本研究发现亏缺灌溉显著降低了大叶绣球的叶水势,表明灌溉量的减少影响了大叶绣球体内的水分状况,影响了叶片膨压及其活力,加剧了叶片的水分胁迫[22];但是园林废弃物和生物炭的添加,显著提高了亏缺灌溉条件下大叶绣球叶片的叶水势,表明这两种基质的施入一定程度上缓解了水分亏缺对大叶绣球水分状况的不利影响植物碳同位素分辨率(Δ13C)与稳定碳同位素组成 (δ13C)一般为负相关,可表征植物长期的水分利用效率,一定程度上弥补了以气体交换为基础的水分利用效率评价的局限性[23]。本研究发现,与FI相比,同一基质处理下亏缺灌溉具有更低的Δ13C值,提高了大叶绣球长期水分利用效率;这是由于水分胁迫是通过影响植物气孔和Rubisco酶,产生碳同位素分馏效应来改变 δ13C,已在许多研究中得到证明[24];同时与园土相比,园林废弃物和生物炭的添加也使得Δ13C显著下降;相关性分析表明Δ13C与气孔密度、WUEnWUEi呈极显著的负相关关系,这与魏镇华等[5]对不同灌溉条件下番茄Δ13C与叶片水平水分利用效率关系的研究结果相似,即Δ13C 可作为量化表征大叶绣球叶片水分利用效率的重要指标;同时也表明在基质和灌溉的共同作用下,气孔形态的重塑可能也会影响大叶绣球的Δ13C,进而调节水分利用效率。相关性和主成分分析结果表明大叶绣球叶片的Δ13C与WUEn的相关性明显优于WUEi,且WUEn在水分利用效率相关指标中起主导作用,这与姜浩等[25]的结论一致,这是因为WUEn能更直接反映气孔阻力对叶片胞间与大气CO2浓度比(Ci/Ca)的影响,从而导致Δ13C对WUEn的指示性优于WUEi

    一般而言,水分胁迫条件下,植物生产力会下降。本研究结果表明,在亏缺灌溉条件下,园林废弃物和生物炭的添加使得大叶绣球在降低耗水量的同时维持了较高的地上生物量和植物生长指数,这可能由于亏缺灌溉下形成的干湿交替环境,通过优化气孔形态,改善了植物营养状况,提高了大叶绣球碳同化能力[26];并且园林废弃物与生物炭改良基质后,促进了植物对水分、养分的吸收、利用和分配[27]。但这种影响也会因基质类型、植物种类存在差异[28],对植物的水分吸收也可能产生负面影响[29]。在相同灌溉条件下,生物炭的添加虽然显著提高了大叶绣球叶片的净光合速率,但蒸腾速率也显著增加,这一定程度上造成了水分无效损失。尽管这样,亏缺灌溉条件下生物炭的添加可以显著提高大叶绣球植株水分利用效率,一方面这可能由于生物炭和亏缺灌溉的结合在降低植物耗水量的同时维持了较高的地上生物量和植物生长指数;另一方面,二者通过协同作用调节大叶绣球生长和生理特性,如提高净光合速率,增加气孔密度,增加叶水势、降低叶片 Δ13C等提高水分利用效率[14]。因此,生物炭结合亏缺灌溉可缓解水分限制的负面影响,在维持大叶绣球生长的同时提高了水分利用效率。

    亏缺灌溉处理下,大叶绣球叶片的净光合速率、气孔导度、蒸腾速率、初始羧化速率、光呼吸速率和相对叶绿素含量均显著降低,但生物炭的添加一定程度上维持了大叶绣球叶片净光合速率、初始羧化速率、相对叶绿素含量和光呼吸速率,提高了大叶绣球叶片对 CO2 的利用能力。

    亏缺灌溉显著增加了大叶绣球叶片气孔密度,显著降低了叶水势和Δ13C。但园林废弃物和生物炭的添加使得大叶绣球在降低耗水量的同时维持了较高的地上生物量,尤其是生物炭的添加显著提高了大叶绣球水分利用效率。因此,生物炭和亏缺灌溉的联合应用是提高大叶绣球水分利用效率适宜的栽培组合。

  • 图  1   试验期间日均气温和相对湿度变化

    Figure  1.   Daily average air temperature and relative humidity during the experiment

    图  2   不同基质类型和灌溉处理下基质体积含水率随时间变化

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。

    Figure  2.   Variation of substrate volumetric water content under different substrate types and irrigation treatments

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.

    图  3   基质类型和灌溉处理对大叶绣球叶片气体交换和叶片水平水分利用效率的影响

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。柱上不同小写字母表示处理间差异显著(P<0.05);*、**和***分别表示在0.05、0.01和0.001水平显著,ns为无显著性。

    Figure  3.   Effects of substrate type and irrigation treatment on leaf gas exchange and leaf-level water use efficiency of H. macrophylla

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level. *,** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.

    图  4   基质和灌溉处理对大叶绣球叶片光合- CO2响应曲线的影响

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。图中数据为3次重复平均值±标准误。

    Figure  4.   The effects of substrate types and irrigation on the photosynthetic-CO2 response curves of H. macrophylla

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. The data in the figure is the average of 3 repetitions ± standard error (SE).

    图  5   基质和灌溉处理对大叶绣球叶片相对叶绿素含量的影响

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。**—P<0.01, ***—P<0.001. 柱上不同小写字母表示处理间差异显著 (P<0.05)。

    Figure  5.   The effects of substrate types and irrigation on the SPAD value of H. macrophylla

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. **—P<0.01, ***—P<0.001. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.

    图  6   基质和灌溉处理对大叶绣球叶片气孔大小和气孔密度的影响

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。ns—无显著性。柱上不同小写字母表示处理间差异显著 (P<0.05)。

    Figure  6.   The effects of substrate types and irrigation on the stomatal size and stomatal density of the H. macrophylla

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. *—P<0.05, **—P<0.01, ***—P<0.001, ns—No significance. Different lowercase letters above the bars mean significant difference among treatments at 0.05 level.

    图  7   不同基质和灌溉处理下大叶绣球叶片气孔形态

    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。

    Figure  7.   Images of stomatal morphology of the H. macrophylla treated with different substrate types and irrigation

    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.

    图  8   不同基质和灌溉处理下大叶绣球各指标间相关性分析

    注: *—P<0.05;**— P<0.01; WUEp—植株水分利用效率;LWP—叶水势;Δ13C—碳同位素分辨率;SD—气孔密度;SS—气孔大小;Pn—净光合速率;GS—气孔导度;Ci—胞间二氧化碳浓度;Tr—蒸腾速率;WUEn—叶片内在水分利用效率;WUEi—叶片瞬时水分利用效率;α—初始羧化速率;Pnmax—最大净光合速率;Rp—光呼吸速率;Γ—CO2 补偿点;SPAD—相对叶绿素含量。

    Figure  8.   Correlation analysis between indicators of the H. macrophylla treated with different substrate types and irrigation

    Note: *—P<0.05; **—P<0.01; WUEp—Plant water use efficiency; LWP—Leaf water potential; Δ13C—Carbon isotope resolution; SD—Stomatal density; SS—Stomatal size; Pn—Net photosynthetic rate; GS—Stomatal conductance; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; WUEn—Intrinsic water use efficiency; WUEi—Instantaneous water use efficiency; α—Initial carboxylation rate; Pnmax—Maximum net photosynthetic rate; Rp—Photorespiration rate; Γ—CO2 compensation point; SPAD—Relative chlorophyll content.

    图  9   不同基质和灌溉处理下大叶绣球指标主成分分析

    注:(a)不同基质处理各性状主成分分析;(b)不同灌溉处理各性状主成分分析。WUEp—植株水分利用效率;LWP—叶水势;Δ13C—碳同位素分辨率;SD—气孔密度;SS—气孔大小;Pn—净光合速率;GS—气孔导度;Ci—胞间二氧化碳浓度;Tr—蒸腾速率;WUEn—叶片内在水分利用效率;WUEi—叶片瞬时水分利用效率;α—初始羧化速率;Pnmax—最大净光合速率;Rp—光呼吸速率;Γ—CO2补偿点;SPAD—相对叶绿素含量。

    Figure  9.   Principal component analysis (PCA) of selected parameters measured on the H. macrophylla treated with different substrate types and irrigation

    Note: (a) PCA of various traits treated with different substrates; (b) PCA of various traits of hydrangea under different irrigation treatments. WUEp—Plant water use efficiency; LWP—Leaf water potential; Δ13C—Carbon isotope resolution; SD—Stomatal density; SS—Stomatal size; Pn—Net photosynthetic rate; GS—Stomatal conductance; Ci—Intercellular CO2 concentration; Tr—Transpiration rate; WUEn—Intrinsic water use efficiency; WUEi—Instantaneous water use efficiency; α—Initial carboxylation rate; Pnmax—Maximum net photosynthetic rate; Rp—Photorespiration rate; Γ—CO2 compensation point; SPAD—Relative chlorophyll content.

    表  1   供试基质基本理化性质

    Table  1   Basic physical and chemical properties of experimental substrate

    指标 Index S1 S2 S3
    pH 8.82 8.51 8.62
    电导率 Electric conductivity (μS/cm) 119.6 320.0 291.0
    基质容重 Bulk density (g/cm) 1.17 0.71 0.61
    毛管孔隙度 Capillary porosity (%) 42.56 61.92 54.38
    全氮 Total N (g/kg) 0.24 1.65 1.3
    全磷 Total P (g/kg) 0.37 0.96 0.83
    全钾 Total K (g/kg) 9.40 9.40 10.30
    碱解氮 (mg/kg)
    Alkaline hydrolyzable nitrogen
    39.20 120.40 72.80
    速效磷 Available phosphorus (mg/kg) 3.12 16.27 15.57
    速效钾 Available potassium (mg/kg) 36.00 13.00 69.00
    有机质 Organic matter (g/kg) 1.22 42.20 38.84
    注:S1为园土;S2 为50%园土+50%园林废弃物;S3为50%园土+40%园林废弃物+10%生物炭。
    Note: S1 is garden substrate; S2 is 50% garden substrate + 50% garden waste compost; S3 is 50% garden substrate + 40% garden waste compost + 10% biochar.
    下载: 导出CSV

    表  2   灌溉处理设计

    Table  2   Irrigation experimental treatment

    基质 Substrate 灌溉 Irrigation
    最大持水能力 (%)
    Maximum water-holding capacity
    亏缺灌溉 Deficit irrigation 充分灌溉
    Full irrigation
    基质水分传感器启动阈值 (%)
    SMS start threshold
    基质水分传感器关闭 (%)
    SMS close threshold
    S1 36.8±3.6 b 14.7 35.0 每日灌水2.8 mm
    Irrigation of 2.8 mm each day
    S2 49.1±4.3 a 18.7 46.6
    S3 41.7±4.2 ab 16.7 39.7
    注:同列数据后不同小写字母表示处理间差异显著 (P<0.05)。
    Note: SMS—Substrate moisture sensors. Different lowercase letters after data in the same column mean significant difference among treatments at 0.05 level.
    下载: 导出CSV

    表  3   大叶绣球叶片光合-CO2响应曲线参数的双因素方差分析

    Table  3   Two-factor analysis of variance for parameters of photosynthetic-CO2 response curves of H. macrophylla

    灌溉
    Irrigation
    基质类型
    Substrate type
    初始羧化速率
    α
    最大净光合速率
    Pnmax [μmol/(m2·s)]
    光呼吸速率
    Rp [μmol/(m2·s)]
    CO2 补偿点
    Γ (μmol/mol)
    DI S1 0.012±0.009 e 72.84±7.49 ab 1.37±0.63 d 168.17±66.13 a
    S2 0.019±0.003 de 74.16±38.01 a 2.45±0.21 d 133.67±3.55 ab
    S3 0.036±0.001 cd 32.93±6.07 c 3.79±0.05 c 121.17±9.24 ab
    FI S1 0.042±0.014 bc 58.15±23.81 abc 4.74±0.87 bc 130.99±11.96 ab
    S2 0.074±0.007a 36.89±1.25 bc 6.31±0.38 a 103.56±2.21 b
    S3 0.057±0.019 ab 42.66±4.37 abc 5.13±1.13 b 107.39±8.70 b
    FF value
    基质类型 Substrate type
    6.54* 3.33ns 8.61** 2.84ns
    灌溉 Irrigation 48.96*** 2.52ns 84.08*** 4.20ns
    基质类型×灌溉 Substrate type×irrigation 3.83ns 2.34ns 6.13** 0.28ns
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。同列数据后不同小写字母表示处理间差异显著 (P<0.05);*、**和***分别表示0.05、0.01和0.001;ns为无显著性。
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters after data in a column mean significant difference at 0.05 level among treatments. *,** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.
    下载: 导出CSV

    表  4   不同处理对大叶绣球生长和水分利用效率指标的影响

    Table  4   Effects of different treatments on growth and water use efficiency indicators of H. macrophylla

    灌溉
    Irrigation
    基质类型
    Substrate
    type
    总耗水量 (L)
    Total water
    consumption
    植物生长指数 (cm)
    Final plant
    growth index
    植株水分利用效率 (cm/L )
    Plant water use efficiency
    地上生物量 (g)
    Above ground
    biomass
    叶水势 (Mpa)
    Leaf water
    potential
    Δ13C (‰)
    Shoot carbon isotope
    discrimination
    DI S1 15510 34.92±2.76 c 0.03±0.01 b 19.74± 7.12 c −3.97±0.87 b 21.91±0.13 a
    S2 7030 40.77±1.05 b 0.04±0.01 b 29.83 ±4.12 bc −2.07±0.69 a 21.09±0.13 d
    S3 7430 45.42±1.54 ab 0.11±0.05 a 45.04 ±2.70 a −1.93±0.60 a 21.24±0.10 cd
    FI S1 20120 43.08±0.23 ab 0.02±0.01 b 43.01± 6.52 a −2.22±0.31 a 22.03±0.08 a
    S2 20120 43.30±5.00 ab 0.03±0.02 b 39.65 ±8.32 ab −1.59±0.16 a 21.28±0.05 bc
    S3 20120 45.85±0.55 a 0.03±0.01 b 41.46 ±6.55 a −2.07±0.54 a 21.33±0.13 b
    FF value
    基质类型 Substrate type 10.88** 4.75* 5.87* 8.48** 108.98***
    灌溉 Irrigation 10.15** 7.85* 11.37** 6.50* 13.04**
    基质类型×灌溉 Substrate type×irrigation
    3.93** 4.73* 7.07** 4.16* 0.28ns
    注:FI为充分灌溉,DI为亏缺灌溉;S1为园土,S2 为50%园土+50%园林废弃物,S3为50%园土+40%园林废弃物+10%生物炭。同列数据后不同小写字母表示处理间差异显著 (P<0.05);*、**和***分别表示0.05、0.01 和 0.001;ns为无显著性。
    Note: FI is conventional irrigation, DI is deficit irrigation; S1 is garden substrate, S2 is 50% garden substrate + 50% garden waste compost, and S3 is 50% garden substrate + 40% garden waste compost + 10% biochar. Different lowercase letters after data in a column mean significant difference among treatments at 0.05 level. *, ** and *** represent significance at 0.05, 0.01 and 0.001 levels, respectively; ns represents no significance.
    下载: 导出CSV
  • [1] 杨北方, 杨国正, 冯璐, 等. 亏缺灌溉对棉花生长和水分利用效率的影响研究进展[J]. 应用生态学报, 2021, 32(3): 1112−1118.

    Yang B F, Yang G Z, Feng L, et al. Effects of deficit irrigation on cotton growth and water use efficiency: A review[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 1112−1118.

    [2] 彭有亮, 费良军, 刘小刚, 等. 减量施肥耦合调亏灌溉对干热区芒果产量和品质的影响[J]. 植物营养与肥料学报, 2022, 28(3): 521−531. DOI: 10.11674/zwyf.2021400

    Peng Y L, Fei L J, Liu X G, et al. Effect of reduced fertilization and regulated deficit irrigation coupling on yield and quality of mango in a dry-hot region[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(3): 521−531. DOI: 10.11674/zwyf.2021400

    [3] 钟佳旺, 张丽, 詹祥生, 等. 热解温度和氮肥用量影响生物炭的减排和增产效应[J]. 植物营养与肥料学报, 2023, 29(4): 664−676. DOI: 10.11674/zwyf.2022493

    Zhong J W, Zhang L, Zhan X S, et al. Pyrolysis temperature and nitrogen application rate influence the effects of biochar on greenhouse gas emission reduction and spring maize yield[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(4): 664−676. DOI: 10.11674/zwyf.2022493

    [4] 杜兵杰, 曹红霞, 裴书瑶, 等. 亏缺灌溉下温室番茄生长生理指标对生物炭的响应[J]. 灌溉排水学报, 2021, 40(10): 43−51.

    Du B J, Cao H X, Pei S Y, et al. The effects of deficit irrigation combined with biochar amendment on growth and physiological traits of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2021, 40(10): 43−51.

    [5] 魏镇华, 杜太生, 张娟, 徐淑君. 利用碳同位素分辨率表征沟灌番茄水分利用效率[J]. 农业工程学报, 2013, 29(7): 58−65.

    Wei Z H, Du T S, Zhang J, Xu S J. Stable carbon isotope discrimination on water use efficiency of field tomato under furrow irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(7): 58−65.

    [6]

    O’Meara L, Iersel M W, Chappell M R. Modeling daily water use of Hydrangea macrophylla and Gardenia jasminoides as affected by environmental conditions[J]. HortScience, 2013, 48(8): 1040−1046. DOI: 10.21273/HORTSCI.48.8.1040

    [7]

    Basiri Jahromi N, Fulcher A, Walker F, Altland J. Photosynthesis, growth, and water use of Hydrangea paniculata ‘Silver Dollar’ using a physiological-based or a substrate physical properties-based irrigation schedule and a biochar substrate amendment[J]. Irrigation Science, 2020, 38: 263−274. DOI: 10.1007/s00271-020-00670-7

    [8]

    Ahmed F, Arthur E, Plauborg F, et al. Biochar amendment of fluvio-glacial temperate sandy subsoil: Effects on maize water uptake, growth and physiology[J]. Journal of Agronomy and Crop Science, 2018, 204(2): 123−136. DOI: 10.1111/jac.12252

    [9] 李晴. 智能滴灌水肥一体化培育‘秀场’海棠大苗研究[D]. 北京: 北京林业大学硕士学位论文, 2020.

    Li Q. Research on intelligent drip irrigation and fertigation technology for precise cultivation of Malus ‘Showtime’ seedlings[D]. Beijing: MS Thesis of Beijing Forestry University, 2020.

    [10] 刘学智. 生物炭与交替灌溉对草本作物生长、生理及水分利用效率的影响研究[D]. 陕西杨凌: 西北农林科技大学博士学位论文, 2022.

    Liu X Z. The effects of biochar and alternate irrigation on herbaceous crops growth, physiology and water use efficiency[D]. Shaanxi Yangling: PhD Dissertation of Northwest A&F University, 2022.

    [11]

    Hagen E, Nambuthiri S, Fulcher A, Geneve R. Comparing substrate moisture-based daily water use and on-demand irrigation regimes for oakleaf hydrangea grown in two container sizes[J]. Scientia Horticulturae, 2014, 179: 132−139. DOI: 10.1016/j.scienta.2014.09.008

    [12] 叶子飘, 康华靖, 段世华, 王怡娟. 不同CO2浓度下大豆叶片的光合生理生态特性[J]. 应用生态学报, 2018, 29(2): 583−591.

    Ye Z P, Kang H J, Duan S H, Wang Y J. Photosynthetic physio-ecological characteristics in soybean leaves at different CO2 concentrations[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 583−591.

    [13] 王青, 刘聪聪, 何念鹏, 侯继华. 内蒙古高原植物气孔性状的空间变异及其适应机制[J]. 生态学报, 2023, 43(9): 3766−3777.

    Wang Q, Liu C C, He N P, Hou J H. Spatial variations and adaptive mechanisms of plant stomatal traits on the Inner Mongolian Plateau[J]. Acta Ecologica Sinica, 2023, 43(9): 3766−3777.

    [14]

    Liu X Z, Wei Z H, Manevski K, et al. Partial root-zone drying irrigation increases water-use efficiency of tobacco plants amended with biochar[J]. Industrial Crops and Products, 2021, 166: 113487.

    [15]

    Prasad P V V, Pisipati S R, Momčilović I, Ristic Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast Ef-Tu expression in spring wheat[J]. Journal of Agronomy and Crop Science, 2011, 197(6): 430−441. DOI: 10.1111/j.1439-037X.2011.00477.x

    [16]

    Guo L L, Bornø M L, Niu W Q, Liu F L. Biochar amendment improves shoot biomass of tomato seedlings and sustains water relations and leaf gas exchange rates under different irrigation and nitrogen regimes[J]. Agricultural Water Management, 2021, 245: 106580. DOI: 10.1016/j.agwat.2020.106580

    [17]

    Rashid M A, Andersen M N, Wollenweber B, et al. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat[J]. Agricultural and Forest Meteorology, 2018, 248: 119−129. DOI: 10.1016/j.agrformet.2017.09.018

    [18]

    Liu X Z, Ma Y Y, Manevski K, et al. Biochar and alternate wetting-drying cycles improving rhizosphere soil nutrients availability and tobacco growth by altering root growth strategy in Ferralsol and Anthrosol[J]. Science of the Total Environment, 2022, 806: 150513. DOI: 10.1016/j.scitotenv.2021.150513

    [19] 邢换丽, 周文彬, 郝卫平, 等. 水分胁迫下氮素增加对玉米生长的抑制作用[J]. 中国农业气象, 2020, 41(4): 240−252. DOI: 10.3969/j.issn.1000-6362.2020.04.006

    Xing H L, Zhou W B, Hao W P, et al. Inhibition of nitrogen increasing on maize growth under water stress[J]. Chinese Journal of Agrometeorology, 2020, 41(4): 240−252. DOI: 10.3969/j.issn.1000-6362.2020.04.006

    [20] 袁家梁, 蔡明蕾, 李秧秧. 玉米叶气孔特征对氮素和水分的响应及其与叶气体交换的关系[J]. 干旱地区农业研究, 2022, 40(1): 155−162. DOI: 10.7606/j.issn.1000-7601.2022.01.18

    Yuan J L, Cai M L, Li Y Y. Responses of leaf stomatal traits to nitrogen and water and their relationship with leaf gas exchange in corn[J]. Agricultural Research in the Arid Areas, 2022, 40(1): 155−162. DOI: 10.7606/j.issn.1000-7601.2022.01.18

    [21] 刘德政, 卢山, 高珅奥, 等. 大田和旱棚环境下小麦旗叶气孔性状变异及其与光合参数的关系[J]. 麦类作物学报, 2024, 44(3): 360−369.

    Liu D Z, Lu S, Gao S A , et al. Variations of flag leaf and stomatal traits of wheat in field and drought shed environment[J]. Journal of Triticeae Crops, 2024, 44(3): 360−369.

    [22]

    Wei Z H, Du T S, Li X N, et al. Interactive effects of CO2 concentration elevation and nitrogen fertilization on water and nitrogen use efficiency of tomato grown under reduced irrigation regimes[J]. Agricultural Water Management, 2018, 202: 174−182.

    [23] 沈芳芳, 樊后保, 吴建平, 等. 植物叶片水平δ13C与水分利用效率的研究进展[J]. 北京林业大学学报, 2017, 39(11): 114−124.

    Shen F F, Fan H B, Wu J P, et al. Review on carbon isotope composition (δ13C) and its relationship with water use efficiency at leaf level[J]. Journal of Beijing Forestry University, 2017, 39(11): 114−124.

    [24] 魏杰, 王晶苑, 温学发. 植物光合与呼吸过程CO2及其δ13C的变异特征与影响因素研究进展[J]. 生态学报, 2023, 43(10): 4319−4331.

    Wei J, Wang J Y, Wen X F. Research progress on variations and influencing factors of CO2 and its δ13C during photosynthesis and respiration in plants[J]. Acta Ecologica Sinica, 2023, 43(10): 4319−4331.

    [25] 姜浩, 陈鹏, Shehakk, 张忠学. 碳同位素表征干旱条件下大豆水氮利用效率[J]. 大豆科学, 2018, 37(6): 906−914.

    Jiang H, Chen P, Shehakk, Zhang Z X. Use efficiency of water and nitrogen of soybean with water stress by stable carbon isotope discrimination[J]. Soybean Science, 2018, 37(6): 906−914.

    [26]

    Wang Y, Liu F, Andersen M N, et al. Improved plant nitrogen nutrition contributes to higher water use efficiency in tomatoes under alternate partial root-zone irrigation[J]. Functional Plant Biology, 2010, 37(2): 175−182. DOI: 10.1071/FP09181

    [27]

    Faloye O T, Alatise M O, Ajayi A E, Ewulo B S. Effects of biochar and inorganic fertiliser applications on growth, yield and water use efficiency of maize under deficit irrigation[J]. Agricultural Water Management, 2019, 217: 165−178. DOI: 10.1016/j.agwat.2019.02.044

    [28]

    Joseph S, Cowie A L, Van Zwieten L, et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar[J]. Gcb Bioenergy, 2021, 13(11): 1731−1764. DOI: 10.1111/gcbb.12885

    [29]

    Tanure M M C, da Costa L M, Huiz H A, et al. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil[J]. Soil and Tillage Research, 2019, 192: 164−173. DOI: 10.1016/j.still.2019.05.007

图(9)  /  表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  5
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-21
  • 录用日期:  2024-07-24
  • 网络出版日期:  2024-09-29
  • 刊出日期:  2024-10-24

目录

/

返回文章
返回