• ISSN 1008-505X
  • CN 11-3996/S

镁营养缓解植物铝毒机制的研究进展

刘欢, 马明珠, 黄翯, ShaikhAmjad-salam, 白蕊, 杨云洪, 刘轶飞, 韩晓日

刘欢, 马明珠, 黄翯, ShaikhAmjad-salam, 白蕊, 杨云洪, 刘轶飞, 韩晓日. 镁营养缓解植物铝毒机制的研究进展[J]. 植物营养与肥料学报, 2025, 31(4): 810-818. DOI: 10.11674/zwyf.2024218
引用本文: 刘欢, 马明珠, 黄翯, ShaikhAmjad-salam, 白蕊, 杨云洪, 刘轶飞, 韩晓日. 镁营养缓解植物铝毒机制的研究进展[J]. 植物营养与肥料学报, 2025, 31(4): 810-818. DOI: 10.11674/zwyf.2024218
LIU Huan, MA Ming-zhu, HUANG He, SHAIKH Amjad Salam, BAI Rui, YANG Yun-hong, LIU Yi-fei, HAN Xiao-ri. Research progress on the mechanism of magnesium nutrition alleviating aluminum toxicity in plants[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 810-818. DOI: 10.11674/zwyf.2024218
Citation: LIU Huan, MA Ming-zhu, HUANG He, SHAIKH Amjad Salam, BAI Rui, YANG Yun-hong, LIU Yi-fei, HAN Xiao-ri. Research progress on the mechanism of magnesium nutrition alleviating aluminum toxicity in plants[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 810-818. DOI: 10.11674/zwyf.2024218

镁营养缓解植物铝毒机制的研究进展

基金项目: 

国家自然科学基金面上项目(31772391);辽宁省国际科技合作计划项目(2024JH2/10190004);中国烟草总公司辽宁省公司科技项目(2023210600240088)。

详细信息
    作者简介:

    刘欢 E-mail: 1959190662@qq.com

    通讯作者:

    刘轶飞 E-mail: liuyifei@syau.edu.com

Research progress on the mechanism of magnesium nutrition alleviating aluminum toxicity in plants

  • 摘要:

    世界耕地面积的40%以上为酸性土壤,铝 (Al) 毒害是酸性土壤中限制植物生长和产量的主要障碍因子之一。镁 (Mg)是植物的必需营养元素,是植物细胞内含量最丰富的游离二价金属元素,可通过多种途径参与植物非生物逆境的抗性调控过程。Mg2+和Al3+的水化半径相似,这两种离子竞争结合植物离子转运体和其他重要的生物分子。本文基于中国知网(CNKI)和Web of Science核心数据库,共检索到79篇1989—2024年发表的植物镁铝互作研究文献。分析结果表明,外源镁可以有效减轻酸性土壤中的植物铝毒害,其作用机制包括:1) Mg2+与Al3+有效竞争植物质膜上的结合位点;2) 有效增加植物有机酸分泌;3) 上调铝诱导的镁转运蛋白基因表达,增强对镁的吸收,提高耐铝性;4) 显著增强质膜H+-ATPase促进有机酸的分泌;5) 增强抗氧化酶活性,减少ROS的产生,降低铝诱导的氧化应激风险;6) 提高光合作用和碳氮代谢相关酶活性,缓解铝胁迫导致的光合障碍和源库失衡。除此之外,镁还在植物基本的细胞代谢过程中发挥关键作用,如维持质膜和液泡质体中的质子泵活性,影响一氧化氮生物合成酶活性和相关基因表达,显著提升高铝毒农田土壤中植物产量和品质。有趣的是,在水稻、小麦等单子叶植物中,毫摩尔浓度的Mg2+主要通过降低Al3+在细胞壁和质膜结合位点的饱和活性来减轻土壤铝的毒性。在大豆(Glycine max)、赤小豆(Vigna umbellata)、蚕豆(Vicia faba)等双子叶豆科植物中,微摩尔浓度的Mg2+可以增强有机配体的生物合成,缓解土壤铝毒害。未来的研究工作应着重从以下3个方向展开:一是整合基因组学、转录组学和蛋白质组学等多组学技术,深入解析镁和铝胁迫响应下的基因表达谱及蛋白质组变化,全面揭示镁与铝胁迫互作的分子调控网络,为培育耐铝毒害作物提供理论依据;二是探究外源镁素营养(如镁素肥料)对酸性铝毒障碍土壤中有益微生物群落组装过程及机制的影响;三是开发基于镁基的土壤调理剂以及耐铝作物育种策略,以增强作物对铝毒的耐受性。

    Abstract:

    Over 40% of the world’s arable land are acidic soils, where aluminum (Al) toxicity stands as one of the primary obstacles limiting plant growth and productivity. Magnesium (Mg) is an essential nutrient for plants, being the most abundant free divalent metal ion within plant cells and participating in the regulation of plant resistance to abiotic stresses through various pathways. Given the similar hydration radii of Mg2+ and Al3+, Mg2+ compete with Al3+for binding sites on plant ion transporters and other vital biomolecules, thus alleviating the possible Al3+ toxicity. We searched the China National Knowledge Infrastructure (CNKI) and Web of Science core databases, a total of 79 articles published during 1989 to 2024 were retrieved on plant Mg-Al interaction research. In summary, exogenous Mg can effectively mitigate aluminum toxicity in plants grown in acidic soils, with the following mechanisms: 1) Mg2+ competes effectively with Al3+ for binding sites on the plant plasma membrane; 2) it effectively increases the secretion of plant organic acids; 3) it upregulates the expression of aluminum-induced Mg transporter genes, enhancing Mg uptake and aluminum tolerance; 4) it significantly enhances the plasma membrane H+-ATPase to promote the secretion of organic acids; 5) it boosts antioxidant enzyme activity, reducing reactive oxygen species (ROS) production and decreasing the risk of aluminum-induced oxidative stress; 6) it improves the activity of enzymes related to photosynthesis and carbon-nitrogen metabolism, alleviating photosynthetic impairments and source-sink imbalances caused by aluminum stress. In addition, Mg plays a pivotal role in fundamental cellular metabolic processes in plants, such as maintaining proton pump activity in the plasma membrane and vacuolar plastids, influencing nitric oxide synthase activity and related gene expression, and significantly enhancing plant yield and quality in high-aluminum-toxicity farmland soils. Interestingly, in monocotyledonous plants like rice and wheat, millimolar concentrations of Mg2+ primarily alleviate soil aluminum toxicity by reducing the saturation activity of Al3+ at binding sites in the cell wall and plasma membrane. In dicotyledonous legumes such as soybean (Glycine max), cowpea (Vigna umbellata), and broad bean (Vicia faba), micromolar concentrations of Mg2+ can enhance the biosynthesis of organic ligands, mitigating soil aluminum toxicity. Future research should focus on three directions: firstly, integrating multi-omics technologies such as genomics, transcriptomics, and proteomics to deeply analyze gene expression profiles and proteomic changes under Mg and Al stress responses, comprehensively revealing the molecular regulatory network of Mg-Al stress interactions, and providing a theoretical basis for breeding aluminum-tolerant crops; secondly, exploring the impact of exogenous Mg nutrition (e.g., Mg-containing fertilizers) on the assembly processes and mechanisms of beneficial microbial communities in acidic aluminum-toxic soils; and thirdly, developing Mg-based soil conditioners and aluminum-tolerant crop breeding strategies to enhance crop tolerance to aluminum toxicity.

  • 土壤中铝(Al)和许多其他金属元素如锌(Zn)、铜(Cu)和锰(Mn)等营养物质,以及汞(Hg)、镉(Cd)、铅(Pb)等污染物在浓度相对较高时,会损害植物细胞膜,影响植物养分的吸收,降低光合作用,干扰酶的功能和许多代谢物的生物合成,最终阻碍根系和地上部生长[1]。此外,酸性土壤铝毒害引起植物氧化应激反应[2]。这些危害不仅影响植物的生长发育,而且在农业生产中,会导致农作物产量和品质下降,特别是在酸性土壤广泛分布的区域,严重威胁着农业的可持续发展。因此,深入研究植物应对铝毒的机制以及如何缓解铝毒具有至关重要的意义。研究发现,外源添加毫摩尔(mmol/L)浓度的镁可以缓解多种植物的铝毒[34]。在小麦和水稻等禾本科植物中,镁介导的缓解铝毒机制与降低质外体结合位点的铝饱和度和根系细胞质膜表面的铝活性有关[56]。而大豆(Glycine max)[7]、赤小豆(Vigna umbellata)[8]和蚕豆(Vicia faba)[9]等豆科植物在保持根际Al3+活性不变的情况下,添加微摩尔浓度的Mg2+便可促进根系的生长。同时,外源Mg2+还能激活质膜H+-ATPase促进铝胁迫下柠檬酸的分泌,从而螯合Al3+,降低铝毒害[89]。这表明,植物体内存在多种镁介导的耐铝机制。此外,外源镁还可以通过调节生长素、活性氧的代谢缓解铝毒对根生长发育的抑制[1011]。田间施用含镁白云石或碳酸镁可提高土壤pH,降低Al3+的溶出度,促进植物生长[12]。铝毒害是限制植物生长发育的主要障碍因子之一,严重制约我国酸性土壤区域的农业生产水平[13]。近年来,植物铝毒害及其耐铝机制已成为国内外的研究热点之一,但镁铝交互缓解植物铝毒害的机制研究方面仍亟待加强。本研究通过整合生理生化与分子生物学证据,系统论述镁拮抗铝毒害的4大核心机制:1) 上调铝胁迫下的镁转运蛋白基因表达;2) 激活H+-ATPase促进有机酸分泌;3) 增强抗氧化酶活性;4) 提高碳氮代谢相关酶活性。为构建酸性土壤植物抗逆栽培体系、开发镁肥精准施用技术提供理论范式,助力实现“藏粮于技”的农业可持续发展战略。

    铝是地壳中第三大常见元素,仅次于氧(O)和硅(Si),约占地球总质量的7%[1]。在中性土壤中,铝通常与硅酸盐、磷酸盐和氧化物结合成惰性形态铝[14]。然而,当土壤pH值降至5.5以下时,硅酸铝以及其他形态的惰性铝溶解成游离态Al3+释放到土壤溶液中,被植物吸收后毒害细胞,限制植物生长[2, 15]。世界上近40亿hm2的土地(约占无冰覆盖土壤的30%)是酸性的[16],我国酸性土壤面积约占全国陆地总面积的22.7%[17],且这一比例还在不断增加。超过一半的酸性土壤主要集中在热带和亚热带地区,铝毒害是酸性土壤导致植物减产的主要因素,对这些地区的许多发展中国家的粮食安全构成威胁[2, 1819]。此外,工业化进程带来的酸雨以及不当的农业措施,特别是过量使用铵态氮肥,加剧了土壤的酸化和铝毒害[20]。Al3+最显著的毒害是减缓根分生组织内的细胞分裂,抑制细胞伸长过程,进而抑制根系生长[16, 2021]。根系吸收的Al3+通过木质部运输到叶片中,可降低叶片的色素含量和光合效率[22]。高浓度铝可促进脱落酸的产生,增强植物体葡萄糖-6-磷酸脱氢酶的活性,进而导致活性氧的积累和细胞程序性死亡发生[23]。植物进化出了多种应对铝毒害的策略[24],主要分为两大类(图1):一类是外部排斥机制,植物通过小分子有机酸(如苹果酸、草酸和柠檬酸等)、磷酸盐和酚类物质的渗出[2526],根际pH的升高[10]和根缘细胞的发生及其粘液的分泌[27],以及细胞壁上多糖物质与铝配体的结合[26]等方式阻止Al3+进入根细胞;另一类是内部耐受机制,通过有机酸或独特的膜蛋白,将Al3+螯合或转运最终隔离在液泡内,减轻铝毒的危害程度[2829]

    图  1  植物耐铝机制
    注:Nrat1—质膜定位铝转运蛋白;NIPs—质膜定位铝转运蛋白;CDT3—富含半胱氨酸的小肽;STAR1/STAR2—UDP-葡萄糖转运蛋白;NIP1;2—质膜定位铝-有机酸转运蛋白;ALS1/3—液泡膜定位铝转运蛋白;VALT1—液泡膜定位铝转运蛋白;AtOT—草酸转运蛋白;MATEs—多药及毒素外排转运蛋白;ALMTs—Al激活的苹果酸转运蛋白;OAs—有机酸。
    Figure  1.  Aluminum tolerance mechanisms of plants
    Note: Nrat1—Plasma membrane-localized aluminum transporter protein; NIPs—Plasma membrane-localized aluminum transporter protein; CDT3—Cysteine-rich small peptide; STAR1/STAR2—UDP-glucose transporter protein; NIP1; 2—Plasma membrane-localized aluminum-organic acid transporter protein; ALS1/3—Vacuolar membrane-localized aluminum transporter protein; VALT1—Vacuolar membrane-localized aluminum transporter protein; AtOT—Oxalate transporter protein; MATEs—Multidrug and toxin extrusion proteins; ALMTs—Aluminum-activated malate transporter proteins; OAs—Organic acids.

    土壤中的镁主要以无机形态存在,有机形态的镁占比往往不足总量的1%[30]。无机态镁可分为矿物态、非交换态、交换态和水溶态。其中,交换态镁(Ex-Mg)是植物可直接吸收利用的主要形态,常被用于衡量土壤镁肥力。土壤中Ex-Mg的浓度波动很大,受多种内在和外在因素的调节,如土壤因素(土壤类型、pH值、阳离子交换量、土壤胶体的种类等)、环境条件(温度、光照等)和人为影响(施肥和其他管理措施)。在大多数生产系统中,通常认为土壤Ex-Mg超过120 mg/kg时,可实现最佳的植物产量[31]。就我国而言,Ex-Mg的分布也因土壤和气候类型以及土地利用方式的不同而有很大差异,总体趋势为东南低,西北高。这主要归因于南方亚热带湿润气候带来充沛雨量,加速了土壤镁的淋溶。此外,水果、蔬菜等需镁水平高的经济作物的集约化种植,在很大程度上导致了土壤中Ex-Mg的消耗[32]。土壤pH值不仅能调控粘土矿物中镁的释放,同时也影响植物对镁的吸收[33]。Hailes等[34]发现在土壤pH值低于6.0时,以硅酸盐为主的含镁矿物会释放出酸溶性镁,作为植物利用的潜在有效性镁。但土壤pH值从5.5提高到7.5时,土壤Ex-Mg则迅速降低。此外,当土壤溶液中可溶性镁浓度处于较高水平时,植物对Mg2+的吸收也可能会受到其他阳离子(即H+、K+、Al3+)的阻碍。因为,镁转运蛋白(MGT/MRS2)本身是通用的,允许K+、Ca2+、NH4+和Na+等竞争阳离子的通过,这通常会拮抗Mg2+的摄取[3536]

    通常情况下,植物实现最佳生长需要 1.5~3.5 g/kg的镁(以干重计)[37]。作为植物细胞内含量最丰富的游离二价必需营养元素,镁参与了多种生理生化过程,包括:光合作用、同化物分配、能量代谢以及核酸和蛋白质的合成[3839]。特别是,镁不仅是叶绿素分子的结构成分,还是ATP酶、RNA聚合酶、蛋白激酶、磷酸酶、谷胱甘肽合成酶和羧化酶等300多种酶的激活剂,对生物膜稳定、阳离子平衡、碳氮代谢和植物生长至关重要[4042]。镁通过提高蔗糖合成酶和蔗糖磷酸合成酶活性,增加叶片中蔗糖的积累,进而提高了叶片作为源器官输出碳水化合物的能力,为植物生长发育提供充足的能量和碳骨架[43]。值得注意的是,植物中的镁能够通过拮抗竞争质外体和共质体中阳离子结合位点、增强抗氧化系统、调节蛋白质活性和基因表达[38, 44],从而缓解铝毒[43]、盐胁迫[37]、热胁迫[44]等非生物胁迫。不仅如此,Wang等[31]通过对 99 篇田间研究文章中检索到的 570 组配对观测值进行荟萃分析,发现无论植物类型、土壤条件和其他因素如何,施用镁肥可使植物的平均产量和农学效率分别提高8.5% 和 34.4 kg/kg。总之,镁可通过产生有利的生理过程来增强植物性能,为综合镁管理以提高植物产量提供巨大潜力。

    在主要的生物阳离子中,Mg2+具有最小的离子半径(0.072 nm)和最高的电荷密度。因此,Mg2+比其他阳离子对水分子有更高的亲和力,容易形成较大的水合半径。Al3+与Mg2+的水化半径(分别为0.480和0.476 nm)相似。因此,高浓度的Mg2+可以取代或竞争根细胞壁、质膜以及其他组分结合位点的Al3+,从而保护植物根不受Al3+的毒害[4]。事实上,在酶促反应中,Al3+和Mg2+之间存在膜转运蛋白[45]和金属结合位点的竞争[46]

    除了简单的竞争外,植物还能够增强对镁的吸收以克服铝的毒性。例如,耐铝基因型玉米(Zea mays)[47]、小麦(Triticum aestivum)[48]、水稻(Oryza sativa)[49]和拟南芥(Arabidopsis thaliana)[50]表现出比铝敏感基因型更高的镁吸收或组织内镁的积累。这表明植物对镁的吸收速率与铝的耐受性呈正相关。一些镁转运蛋白可能在上述过程中发挥着特殊作用。阳离子钴抗性蛋白家族(CorA)是包括植物在内的各种生物体中研究最广泛的镁转运家族[51]。在拟南芥CorA家族中发现了9个镁转运基因(包含2个假基因),最初命名为AtMRS2AtMGT[5254]。基因定位证实MRS-MGT家族成员在许多植物组织的质膜和内膜中广泛表达,表明MRS-MGT家族转运蛋白参与了植物中Mg2+稳态的调节[51]。在拟南芥中,AtMGT1是一种高亲和力的镁转运蛋白但其活性受到Al3+的抑制[54]。然而,拟南芥和水稻细胞中镁转运蛋白(AtMGT1和OsMGT1)的过表达,显著提高了植株对铝的抗性[5556],这可能是通过减少质外体铝的结合位点和降低铝在质膜的表面活性实现的[45]

    水稻比拟南芥更耐铝毒胁迫[4]。在水稻中,没有Al3+胁迫时,质膜定位的OsMGT1基因在根和地上部均有表达,在根系遭受Al3+胁迫后(1 h内),表达量迅速上调[56]。研究发现施用0.25 mmol/L MgSO4可缓解0.5 mmol/L AlCl3诱导的水稻氧化胁迫,但没有关于Mg-Al相互作用影响抗氧化酶编码基因表达的信息[57]。此外,在Al3+胁迫过程中,野生型水稻根中OsMGT1表达的上调导致了该组织对Mg2+的吸收和细胞液中Mg2+浓度的增加(达到最大反应速率一半时的底物浓度Km没有变化,但最大反应速率Vmax值翻了一番),这表明OsMGT1表达量的上调对于提高水稻对Mg2+的吸收和增强水稻的耐铝性至关重要[4, 56]。有趣的是,在低pH和Al3+胁迫下,Al3+敏感型拟南芥als3突变体Mg2+吸收低于野生型[50],这意味着在Mg2+的吸收和液泡膜定位铝转运蛋白(ALS3)或STAR2 (ALS3的同源物)介导的铝耐受机制之间可能存在协同调节机制。事实上,高耐铝毒的杨树(Populus tremula)根细胞的转录组分析也证实了上述观点,在Al3+ (500 μmol/L)胁迫过程中,镁转运蛋白(MRS2-2和MRS2-3,4倍),ALS3 (44倍)和H+-ATPase (HA5,2倍)的表达均上调[58]。因此,铝引发的镁转运蛋白基因的上调可以被视为植物适应酸性土壤中铝胁迫的独特策略。

    早在20世纪70年代,人们就发现根系分泌的有机酸(OAs)可以降低植物的铝毒害[59],这主要归因于有机酸阴离子能够络合土壤中的Al3+,避免Al3+进入细胞产生危害。镁作为苹果酸和柠檬酸合酶的辅助因子,对于有机酸的合成和分泌至关重要[60]。Kibria等[61]的研究指出,在酸性土壤条件下,叶面施用 200 mg/L七水硫酸镁与不施用镁相比,小麦根部苹果酸盐和柠檬酸盐渗出量增加约2倍。质膜H+-ATPase参与铝诱导的有机酸分泌[6263]。研究表明,缺磷条件下白羽扇豆(Lupinus Albus)根系柠檬酸的分泌[64],以及铝毒害下的抗铝基因型大豆根系柠檬酸的分泌均与H+-ATPase有关[64]。有趣的是,铝既能抑制质膜H+-ATPase,又能激活质膜H+-ATPase,这取决于Al3+的浓度和处理时间[64]。充足的镁供应可通过提升质膜H+-ATPase活性来提高根系可溶性糖和蛋白含量,从而减轻铝的毒害,维持植物正常生长和发育[6566]。在赤小豆(Vigna umbellata)根中,铝对质膜H+-ATPase活性抑制率为37%,但在含铝培养液中添加10 μmol/L的镁可显著恢复质膜H+-ATPase活性,促进根系柠檬酸分泌[8]。蚕豆(Vicia faba)试验也有类似的结果,在含铝溶液中加入20 μmol/L Mg2+处理12 h后,质膜H+-ATPase活性增加了1.6倍,柠檬酸分泌量增加5.6倍;当在Al+Mg处理中加入质膜H+-ATPase活性调节物时,铝诱导的柠檬酸分泌和质膜H+-ATPase活性被显著抑制(壳梭孢菌素)或激活(5’-单磷酸腺苷)[9]。据此推测镁对铝诱导的柠檬酸分泌的促进作用,可能与镁激活H+-ATPase促进跨质膜电化学电位梯度的产生有关,H+-ATPase激活了铝胁迫下柠檬酸的外流[67] (图2)。值得注意的是,铝胁迫下,镁促进了草本植物柠檬酸盐的分泌,但不同浓度镁供应没有显著影响木本植物(杨树)柠檬酸盐的分泌[10]。尽管镁通过增加有机酸分泌和质膜H+-ATPase活性来减轻铝毒害已经有了很多报道[89],但控制有机酸分泌的关键基因及其上游调控因子如何受镁离子调控有待进一步探究。

    图  2  镁缓解植物铝毒的机制概念图
    注:MRS/MGT—镁转运蛋白;Rubisco—核酮糖-1,5-二磷酸羧化酶;PEP—磷酸烯醇丙酮酸;SOD—超氧化物歧化酶;POD—过氧化物酶;CAT—过氧化氢酶;OAs—有机酸。
    Figure  2.  Conceptual diagram of the mechanism by which magnesium alleviates aluminum toxicity in plants
    Notes: MRS/MGT—Magnesium transporter protein; Rubisco—Ribulose-1,5-bisphosphate carboxylase; PEP—Phosphoenolpyruvate; SOD—Superoxide dismutase; POD—Peroxidase; CAT—Catalase; OAs—Organic acids.

    此外,质膜H+-ATPase的活性还可在转录、翻译和翻译后水平上被各种非生物胁迫激活。例如,缺铁[68]和缺磷[69]会影响质膜H+-ATPase的转录。蛋白质的磷酸化和去磷酸化是翻译后调控的一个非常典型的途径,可以改变蛋白质活性[70]。铝胁迫下,镁通过促进质膜H+-ATPase倒数第二个苏氨酸残基的磷酸化以及与蚕豆根中14-3-3蛋白的相互作用来激活质膜H+-ATPase[9]。此外,有证据表明C-末端调节域中许多保守的苏氨酸和丝氨酸残基的磷酸化也参与了H+-ATPase的抑制作用[71]。14-3-3蛋白属于高度保守的蛋白家族成员,在所有真核生物中起调节作用,它们与磷酸化的靶蛋白如硝酸还原酶、蔗糖−磷酸合酶和质膜H+-ATPase相互作用[72]。据报道,镁和多胺可以稳定14-3-3与靶标(例如甘蓝中的硝酸还原酶)的结合[73]。蚕豆根系的免疫沉淀分析显示,在Al3+胁迫下,Mg2+的存在增加了VHA2 (蚕豆质膜H+-ATPase 2)倒数第二个苏氨酸残基的磷酸化及它与vf14-3-3b蛋白在体内的结合[9]。然而,Mg2+是否激活一种未知的蛋白激酶使质膜H+-ATPase磷酸化还有待确定。

    正常条件下,植物对活性氧(ROS)的清除和产生处于相对稳定的状态[74]。然而,各种非生物胁迫会增加活性氧自由基的数量,导致氧化损伤,迅速扰乱细胞正常代谢,从而对植物造成伤害[75]。据报道,镁可以限制脂肪酸组成的脂氧合酶积累,促进叶绿素合成,并增加核酮糖-1,5-二磷酸羧化酶(Rubisco)活性,从而减少ROS的产生[44, 47]。同样,Lyu等[43]在针对苹果幼苗的一项研究中也发现,添加镁降低了铝处理植物中过氧化氢(H2O2)和丙二醛(MDA)含量,并增强了超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)等抗氧化酶的活性。虽然确切的分子机制尚不清楚,但有证据表明镁可以上调抗氧化酶基因的转录水平[47]。 Pandey等[57]也发现施镁可降低水稻体内的ROS水平和脂质过氧化,从而减轻铝诱导的植物毒害。众所周知,镁在提升植物光合性能和调控源库同化物分配方面至关重要,这也可能是镁提高铝耐受性的方法之一。可以想象,保持高效的光合作用、维持抗氧化系统中酶的活性,以及确保充足的镁供应所支持的其他关键生理过程,都能够帮助植物有效减少由铝引起的氧化应激风险。

    碳和氮代谢是植物的两个主要代谢过程。维持碳氮代谢是植物提高抗逆性和保持产量的重要途径之一[76]。光合作用产生的碳水化合物为氮同化提供能量来源和碳骨架,氮的有效性又反过来影响碳的固定。碳和氮代谢的产物可以调节酶和转运蛋白的活性,从而控制碳和氮通量,调节植物对环境信号的反应,改变源库关系[77]。因此,保持高水平的碳和氮同化稳态对植物抵御铝毒害至关重要。核酮糖-1,5-二磷酸羧化酶、磷酸烯醇式丙酮酸羧化酶、蔗糖合酶和蔗糖磷酸合酶等碳代谢相关酶的活性,高度依赖于Mg2+的浓度,尤其是基质中的游离Mg2+[37]。充分的镁营养不仅可以促进碳水化合物的形成,还有助于其向根系等库器官的运输,维持源库平衡[78]。因此,施用镁可以通过提高净光合速率、调节碳水化合物代谢酶活来缓解铝胁迫导致的光合障碍和源库失衡[43]

    氮的吸收和同化是需要Mg-ATP参与的耗能过程。植物根系吸收NO3后,经硝酸还原酶、亚硝酸还原酶转化为NH4+,并通过硝酸盐转运蛋白(NRTs)和铵转运蛋白(AMTs)运输,最终用于氨基酸或者蛋白质的合成。因此,镁可以通过影响能量代谢间接影响氮的吸收和同化。大量研究指出,在非生物胁迫条件下,镁可以改善氮代谢相关酶的活性提高氮的利用效率和同化能力[37, 4344]。值得注意的是,镁还可能通过调节一氧化氮的含量促进根系生长并增强耐铝性[79]

    粮食安全是“国之大者”。随着全球人口粮食需求的持续增长,为避免未来出现粮食短缺危机,我们愈发需要有效且合理地利用酸性铝毒等障碍性中低产田。大量研究表明,外源镁可以有效减轻酸性土壤中的植物铝毒害,其具体作用机制如下:1) Mg2+与Al3+有效竞争植物质膜上的结合位点;2) 有效增加植物有机酸分泌;3) 上调铝诱导的镁转运蛋白基因表达,增强对镁的吸收,提高耐铝性;4) 显著增强质膜H+-ATPase促进有机酸的分泌;5) 增强抗氧化酶活性,减少ROS的产生,降低铝诱导的氧化应激风险;6) 提高光合作用和碳氮代谢相关酶活性,缓解铝胁迫导致的光合障碍和源库失衡。因此,外源镁素营养(含镁素肥料)在提升植物的耐铝毒害方面具有重要作用。除此之外,镁还在植物基本的细胞代谢过程中发挥关键作用,如维持质膜和液泡质体中的质子泵活性,影响一氧化氮生物合成酶活性和相关基因表达,显著提升高铝毒农田土壤中植物产量和品质。

    外源镁营养缓解铝毒害的调控机制方面还有许多未知,未来需要从以下几个方面开展研究工作:1) 研究和开发镁基土壤调理剂和耐铝植物育种策略,以提高植物对铝毒的耐受性;2) 整合基因组、转录组和蛋白组学等多组学技术,揭示镁和铝互作下基因表达谱和蛋白组变化,全面了解镁和铝互作下的分子调控网络,为培育耐铝毒害的植物提供理论基础;3) 探究外源镁素营养(含镁素肥料)如何调控酸性铝毒障碍土壤中有益微生物群落组装过程和机制等。

  • 图  1   植物耐铝机制

    注:Nrat1—质膜定位铝转运蛋白;NIPs—质膜定位铝转运蛋白;CDT3—富含半胱氨酸的小肽;STAR1/STAR2—UDP-葡萄糖转运蛋白;NIP1;2—质膜定位铝-有机酸转运蛋白;ALS1/3—液泡膜定位铝转运蛋白;VALT1—液泡膜定位铝转运蛋白;AtOT—草酸转运蛋白;MATEs—多药及毒素外排转运蛋白;ALMTs—Al激活的苹果酸转运蛋白;OAs—有机酸。

    Figure  1.   Aluminum tolerance mechanisms of plants

    Note: Nrat1—Plasma membrane-localized aluminum transporter protein; NIPs—Plasma membrane-localized aluminum transporter protein; CDT3—Cysteine-rich small peptide; STAR1/STAR2—UDP-glucose transporter protein; NIP1; 2—Plasma membrane-localized aluminum-organic acid transporter protein; ALS1/3—Vacuolar membrane-localized aluminum transporter protein; VALT1—Vacuolar membrane-localized aluminum transporter protein; AtOT—Oxalate transporter protein; MATEs—Multidrug and toxin extrusion proteins; ALMTs—Aluminum-activated malate transporter proteins; OAs—Organic acids.

    图  2   镁缓解植物铝毒的机制概念图

    注:MRS/MGT—镁转运蛋白;Rubisco—核酮糖-1,5-二磷酸羧化酶;PEP—磷酸烯醇丙酮酸;SOD—超氧化物歧化酶;POD—过氧化物酶;CAT—过氧化氢酶;OAs—有机酸。

    Figure  2.   Conceptual diagram of the mechanism by which magnesium alleviates aluminum toxicity in plants

    Notes: MRS/MGT—Magnesium transporter protein; Rubisco—Ribulose-1,5-bisphosphate carboxylase; PEP—Phosphoenolpyruvate; SOD—Superoxide dismutase; POD—Peroxidase; CAT—Catalase; OAs—Organic acids.

  • [1]

    Bhalerao S A, Prabhu D V. Aluminium toxicity in plants – A review[J]. Journal of Applicable Chemistry, 2013, 2(3): 447−474.

    [2]

    Kochian L V, Piñeros M A, Liu J, et al. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance[J]. Annual Review of Plant Biology, 2015, 66: 571−598. DOI: 10.1146/annurev-arplant-043014-114822

    [3]

    Bose J, Babourina O, Rengel Z. Role of magnesium in alleviation of aluminium toxicity in plants[J]. Journal of Experimental Botany, 2011, 62(7): 2251−2264. DOI: 10.1093/jxb/erq456

    [4]

    Chen Z C, Ma J F. Magnesium transporters and their role in Al tolerance in plants[J]. Plant and Soil, 2013, 368: 51−56. DOI: 10.1007/s11104-012-1433-y

    [5]

    Kinraide T, Pedler J, Parker D. Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH[J]. Plant and Soil, 2004, 259: 201−208. DOI: 10.1023/B:PLSO.0000020972.18777.99

    [6]

    Watanabe T, Okada K. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH[J]. Annals of Botany, 2005, 95(2): 379−385. DOI: 10.1093/aob/mci032

    [7]

    Silva I R, Smyth T J, Israel D W, et al. Altered aluminum inhibition of soybean root elongation in the presence of magnesium[J]. Plant and Soil, 2001, 230(2): 223−230. DOI: 10.1023/A:1010384516517

    [8]

    Yang J L, You J F, Li Y Y, et al. Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity[J]. Plant and Cell Physiology, 2007, 48(1): 66−73.

    [9]

    Chen Q, Kan Q, Wang P, et al. Phosphorylation and interaction with the 14-3-3 protein of the plasma membrane H+-ATPase are involved in the regulation of magnesium-mediated increases in aluminum-induced citrate exudation in broad bean (Vicia faba L.)[J]. Plant and Cell Physiology, 2015, 56: 1144−1153. DOI: 10.1093/pcp/pcv038

    [10]

    Zhang Z, Liu D, Meng H J, et al. Magnesium alleviates aluminum toxicity by promoting polar auxin transport and distribution and root alkalization in the root apex in populus[J]. Plant and Soil, 2020, 448: 565−585. DOI: 10.1007/s11104-020-04459-7

    [11]

    Liu M, Liu X X, He X L, et al. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis[J]. New Phytologist, 2017, 213: 1242−1256. DOI: 10.1111/nph.14259

    [12]

    Cristancho R J A, Hanafi M M, Syed Omar S R, et al. Aluminum speciation of amended acid tropical soil and its effects on plant root growth[J]. Journal of Plant Nutrition, 2014, 37: 811−827. DOI: 10.1080/01904167.2014.881856

    [13] 张冉, 韩博, 任健, 等. 铝对植物毒害及草本植物耐铝毒机制研究进展[J]. 云南农业大学学报(自然科学), 2020, 35(2): 353−360.

    Zhang R, Han B, Ren J, et al. Research progress on the mechanism of aluminum toxicity to plants and resistance to aluminum toxicity in herbs[J]. Journal of Yunnan Agricultural University (Natural Sciences), 2020, 35(2): 353−360.

    [14]

    Chowra U, Yanase E, Koyama H, et al. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper[J]. Protoplasma, 2017, 254: 293−302. DOI: 10.1007/s00709-016-0943-5

    [15]

    Huang C F. Activation and activity of STOP1 in aluminium resistance[J]. Journal of Experimental Botany, 2021, 72(7): 2269−2272. DOI: 10.1093/jxb/erab015

    [16]

    Kochian L V. Cellular mechanisms of aluminum toxicity and resistance in plant[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 237−260. DOI: 10.1146/annurev.pp.46.060195.001321

    [17] 沈仁芳. 铝在土壤−植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008.

    Shen R F. Aluminum behavior in soil-plant and plant adaptation mechanism[M]. Beijing: Science Press, 2008.

    [18]

    Bian M, Zhou M, Sun D, et al. Molecular approaches unravel the mechanism of acid soil tolerance in plants[J]. Crop Journal, 2013, 1: 91−104. DOI: 10.1016/j.cj.2013.08.002

    [19]

    Szurman-Zubrzycka M, Chwiałkowska K, Niemira M, et al. Aluminum or low pH – which is the bigger enemy of barley? Transcriptome analysis of barley root meristem under Al and low pH stress[J]. Frontiers in Genetics, 2021, 12: 675260. DOI: 10.3389/fgene.2021.675260

    [20]

    Hajiboland R, Panda C K, Lastochkina O, et al. Aluminum toxicity in plants: Present and future[J]. Journal of Plant Growth Regulation, 2022, 42: 3967−3999.

    [21]

    Shi J, Zhao M, Zhang F, et al. Physiological mechanism through which Al toxicity inhibits peanut root growth[J]. Plants, 2024, 13(2): 325. DOI: 10.3390/plants13020325

    [22]

    Siqueira J A, Silva M F, Wakin T, et al. Metabolic and DNA checkpoints for the enhancement of Al tolerance[J]. Journal of Hazardous Materials, 2022, 430: 128366. DOI: 10.1016/j.jhazmat.2022.128366

    [23]

    Huang J, Han R, Ji F, et al. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips[J]. Journal of Hazardous Materials, 2022, 425: 127964. DOI: 10.1016/j.jhazmat.2021.127964

    [24]

    Munyaneza V, Zhang W, Haider S, et al. Strategies for alleviating aluminum toxicity in soils and plants[J]. Plant and Soil, 2024, 504: 167−190. DOI: 10.1007/s11104-024-06617-7

    [25] 张圳. 镁营养在杨树响应铝毒害胁迫中的作用机制研究[D]. 重庆: 西南大学硕士学位论文, 2020.

    Zhang Z. Study on the mechanism of magnesium nutrition in poplar in response to aluminum toxicity stress[D]. Chongqing: MS Thesis of Southwest University, 2020.

    [26]

    Zhu X F, Shen R F. Towards sustainable use of acidic soils: Deciphering aluminum-resistant mechanisms in plants[J]. Fundamental Research, 2023, 4(6): 1533−1541.

    [27]

    Xiao Z, Liang Y. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice[J]. Plant Physiology and Biochemistry, 2022, 175: 12−22. DOI: 10.1016/j.plaphy.2022.02.003

    [28]

    Li J Y, Liu J, Dong D, et al. Natural variation underlies alterations in Nramp aluminum transporter (Nrat1) expression and function that play a key role in rice aluminum tolerance[J]. Proceedings of the National Academy of Sciences, 2014, 111(17): 6503−6508. DOI: 10.1073/pnas.1318975111

    [29]

    Chai Y N, Schachtman D P. Root exudates impact plant performance under abiotic stress[J]. Trends in Plant Science, 2022, 27(1): 80−91. DOI: 10.1016/j.tplants.2021.08.003

    [30] 王芳, 刘鹏, 徐根娣. 土壤中的镁及其有效性研究概述[J]. 河南农业科学, 2004, (1): 33−36. DOI: 10.3969/j.issn.1004-3268.2004.01.011

    Wang F, Liu P, Xu G D. Overview of studies on magnesium in soil and its availability[J]. Journal of Henan Agricultural Sciences, 2004, (1): 33−36. DOI: 10.3969/j.issn.1004-3268.2004.01.011

    [31]

    Wang Z, Hassan M U, Nadeem F, et al. Magnesium fertilization improves crop yield in most production systems: A meta-analysis[J]. Frontiers in Plant Science, 2020, 10: 1727. DOI: 10.3389/fpls.2019.01727

    [32]

    Ishfaq M, Wang Y, Yan M, et al. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China[J]. Frontiers in Plant Science, 2022, 13: 802274. DOI: 10.3389/fpls.2022.802274

    [33]

    Dash M, Thiyageshwari S, Selvi D, et al. Unravelling the release kinetics of exchangeable magnesium in acid soil of nilgiris[J]. Sustainability, 2023(12), 15: 9848. DOI: 10.3390/su15129848

    [34]

    Hailes K J, Aitken R L, Menzies N W. Magnesium in tropical and subtropical soils from north-eastern Australia. Ⅱ. Response by glasshouse-grown maize to applied magnesium[J]. Soil Research, 1997, 35(3): 629−642. DOI: 10.1071/S96082

    [35]

    Xie K L, Cakmak I, Wang S Y, et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants[J]. Crop Journal, 2021, 9(2): 249−256. DOI: 10.1016/j.cj.2020.10.005

    [36]

    Garcia A, Crusciol C A C, Rosolem C A, et al. Potassium-magnesium imbalance causes detrimental effects on growth, starch allocation and rubisco activity in sugarcane plants[J]. Plant and Soil, 2022, 472: 225−238. DOI: 10.1007/s11104-021-05222-2

    [37]

    Chen, Z C, Peng W T, Li J, et al. Functional dissection and transport mechanism of magnesium in plants[J]. Seminars in Cell & Developmental Biology, 2018, 74: 142−152.

    [38]

    Tian X Y, He D D, Bai S, et al. Physiological and molecular advances in magnesium nutrition of plants[J]. Plant and Soil, 2021, 468: 1−17. DOI: 10.1007/s11104-021-05139-w

    [39]

    Shaul O. Magnesium transport and function in plants: The tip of the iceberg[J]. Biometals, 2002, 15(3): 309−323.

    [40]

    Yang N, Jiang J, Xie H L, et al. Metabolomics reveals distinct carbon and nitrogen metabolic responses to magnesium deficiency in leaves and roots of soybean [Glycine max (Linn. ) Merr. ][J]. Frontiers in Plant Science, 2017, 8: 2091. DOI: 10.3389/fpls.2017.02091

    [41]

    Rehman H U, Alharby H F, Alzahrani Y, et al. Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progenyon sandy soil[J]. Plant Physiology and Biochemistry, 2018, 126: 97−105. DOI: 10.1016/j.plaphy.2018.02.031

    [42]

    Tian G, Qin H, Liu C, et al. Magnesium improved fruit quality by regulating photosynthetic nitrogen use efficiency, carbon-nitrogen metabolism, and anthocyanin biosynthesis in 'Red Fuji' apple[J]. Frontiers in Plant Science, 2023, 14: 1136179. DOI: 10.3389/fpls.2023.1136179

    [43]

    Lyu M, Liu J, Xu X, et al. Magnesium alleviates aluminum-induced growth inhibition by enhancing antioxidant enzyme activity and carbon–nitrogen metabolism in apple seedlings[J]. Ecotoxicology and Environmental Safety, 2023, 249: 114421. DOI: 10.1016/j.ecoenv.2022.114421

    [44]

    Ahmed N, Zhang B, Bozdar B, et al. The power of magnesium: Unlocking the potential for increased yield, quality, and stress tolerance of horticultural crops[J]. Frontiers in Plant Science, 2023, 14: 1285512. DOI: 10.3389/fpls.2023.1285512

    [45]

    Rengel Z, Robinson D L. Competitive Al3+ inhibition of net Mg2+ uptake by intact Lolium multiflorum roots. I. Kinetics[J]. Plant Physiology, 1989, 91(4): 1407−1413. DOI: 10.1104/pp.91.4.1407

    [46]

    Pécsváradi A, Nagy Z, Varga A, et al. Chloroplastic glutamine synthetase is activated by direct binding of aluminium[J]. Physiologia Plantarum, 2009, 135(1): 43−50. DOI: 10.1111/j.1399-3054.2008.01167.x

    [47]

    Kong X Y, Peng Z P, Li D X, et al. Magnesium decreases aluminum accumulation and plays a role in protecting maize from aluminum-induced oxidative stress[J]. Plant and Soil, 2020, 457: 71−81. DOI: 10.1007/s11104-020-04605-1

    [48]

    Silva S, Pinto-Carnide O, Martins-Lopes P, et al. Differential aluminium changes on nutrient accumulation and root differentiation in an Al sensitive vs. tolerant wheat[J]. Environmental and Experimental Botany, 2010, 68(1): 91−98. DOI: 10.1016/j.envexpbot.2009.10.005

    [49]

    Sivaguru M, Paliwal K. Differential aluminum tolerance in some tropical rice cultivars. Ⅱ. Mechanism of aluminum tolerance[J]. Journal of Plant Nutrition, 1993, 16(9): 1717−1732. DOI: 10.1080/01904169309364645

    [50]

    Bose J, Babourina O, Shabala S, et al. Low-pH and aluminum resistance in Arabidopsis correlates with high cytosolic magnesium content and increased magnesium uptake by plant roots[J]. Plant and Cell Physiology, 2013, 54(7): 1093−1104. DOI: 10.1093/pcp/pct064

    [51]

    Stetsenko A, Guskov A. Cation permeability in CorA family of proteins[J]. Scientific Reports, 2020, 10(1): 840. DOI: 10.1038/s41598-020-57869-z

    [52]

    Ishijima S, Shiomi R, Sagami I. Functional analysis of whether the glycine residue of the GMN motif of the Arabidopsis MRS2/MGT/CorA-type Mg2+ channel protein AtMRS2-11 is critical for Mg2+ transport activity[J]. Archives of Biochemistry and Biophysics, 2021, 697: 108673. DOI: 10.1016/j.abb.2020.108673

    [53]

    Schock I, Gregan J, Steinhauser S, et al. A member of a novel Arabidopsis thaliana gene family of candidate Mg2+ ion transporters complements a yeast mitochondrial group Ⅱ intron-splicing mutant[J]. The Plant Journal, 2000, 24(4): 489−501.

    [54]

    Li L, Tutone A F, Drummond R S M, et al. A novel family of magnesium transport genes in Arabidopsis[J]. The Plant Cell, 2001, 13(12): 2761−2775. DOI: 10.1105/tpc.010352

    [55]

    Deng W, Luo K, Li D, et al. Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance[J]. Journal of Experimental Botany, 2006, 57(15): 4235−4243. DOI: 10.1093/jxb/erl201

    [56]

    Chen Z C, Yamaji N, Motoyama R, et al. Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice[J]. Plant Physiology, 2012, 159(4): 1624−1633. DOI: 10.1104/pp.112.199778

    [57]

    Pandey P, Srivastava R K, Dubey R S. Salicylic acid alleviates aluminum toxicity in rice seedlings better than magnesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense[J]. Ecotoxicology, 2013, 22(4): 656−670. DOI: 10.1007/s10646-013-1058-9

    [58]

    Grisel N, Zoller S, Kunzli-Gontarczyk M, et al. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula)[J]. BMC Plant Biology, 2010, 10: 185. DOI: 10.1186/1471-2229-10-185

    [59]

    Ma J F. Role of organic acids in detoxification of aluminum in higher plants[J]. Plant and Cell Physiology, 2000, 41(4): 383−390. DOI: 10.1093/pcp/41.4.383

    [60]

    Ahn S J, Rengel Z, Matsumoto H. Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum[J]. New Phytologist, 2004, 162: 71−79. DOI: 10.1111/j.1469-8137.2004.01009.x

    [61]

    Kibria M G, Barton L, Rengel Z. Applying foliar magnesium enhances wheat growth in acidic soil by stimulating exudation of malate and citrate[J]. Plant and Soil, 2021, 464(1): 621−634.

    [62]

    Shen H, He L F, Sasaki T, et al. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase[J]. Plant Physiology and Biochemistry, 2005, 138(1): 287−296.

    [63]

    Xie W X, Liu S, Gao H L, et al. PP2C. D phosphatase SAL1 positively regulates aluminum resistance via restriction of aluminum uptake in rice[J]. Plant Physiology, 2023, 192(2): 1498−1516. DOI: 10.1093/plphys/kiad122

    [64]

    Yan F, Zhu Y, Muller C, et al. Adaptation of H+-pumping and plasma membrane H+-ATPase activity in proteoid roots of white lupin under phosphate deficiency[J]. Plant Physiology, 2002, 129(1): 50−63. DOI: 10.1104/pp.010869

    [65]

    Ghorbanian A R, Khoshgoftarmanesh A H, Zahedi M. The effect of foliar-applied magnesium on root cell membrane H+-ATPase activity and physiological characteristics of sugar beet[J]. Physiology and Molecular Biology of Plants, 2019, 25(5): 1273−1282.

    [66]

    Hanstein S, Wang X, Qian X, et al. Changes in cytosolic Mg2+ levels can regulate the activity of the plasma membrane H+-ATPase in maize[J]. The Biochemical Journal, 2011, 435(1): 93−101. DOI: 10.1042/BJ20101414

    [67]

    Rengel Z, Bose J, Chen Q, et al. Magnesium alleviates plant toxicity of aluminium and heavy metals[J]. Crop and Pasture Science, 2015, 66(12): 1298−1307. DOI: 10.1071/CP15284

    [68]

    Santi S, Cesco S, Varanini Z, et al. Two plasma membrane H+-ATPase genes are differentially expressed in iron-deficient cucumber plants[J]. Plant Physiology and Biochemistry, 2005, 43(3): 287−292. DOI: 10.1016/j.plaphy.2005.02.007

    [69]

    Zhang R P, Liu G, Wu N, et al. Adaptation of plasma membrane H+-ATPase and H+ pump to P deficiency in rice roots[J]. Plant and Soil, 2011, 349(1−2): 3−11.

    [70]

    Falhof J, Pedersen J T, Fuglsang A T, et al. Plasma membrane H+-ATPase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323−337. DOI: 10.1016/j.molp.2015.11.002

    [71]

    Haruta M, Gray W M, Sussman M R. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation[J]. Current Opinion in Plant Biology, 2015, 28: 68−75. DOI: 10.1016/j.pbi.2015.09.005

    [72]

    Xu H N, Zhao X L, Guo C L, et al. Spinach 14-3-3 protein interacts with the plasma membrane H+-ATPase and nitrate reductase in response to excess nitrate stress[J]. Plant Physiology and Biochemistry, 2016, 106: 187−197. DOI: 10.1016/j.plaphy.2016.04.043

    [73]

    Wu X, Li R, Shi J, et al. Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2014, 55(8): 1426−1436.

    [74]

    El-Shabrawi H, Kumar B, Kaul T, et al. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice[J]. Protoplasma, 2010, 245(1−4): 85−96. DOI: 10.1007/s00709-010-0144-6

    [75]

    Alscher R G, Erturk N, Heath L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 2002, 53: 1331−1341. DOI: 10.1093/jexbot/53.372.1331

    [76]

    Shan L, Yonghang T, Kun W, et al. Modulating plant growth–metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560: 595−600. DOI: 10.1038/s41586-018-0415-5

    [77]

    Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions[J]. Molecular Plant, 2010, 3(6): 973−996. DOI: 10.1093/mp/ssq049

    [78]

    Kocha M, Busse M, Naumann M, et al. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants[J]. Physiologia Plantarum, 2019, 166(4): 921−935. DOI: 10.1111/ppl.12846

    [79]

    Li D X, Ma W N, Wei J, et al. Magnesium promotes root growth and increases aluminum tolerance via modulation of nitric oxide production in Arabidopsis[J]. Plant and Soil, 2020, 457(25): 83−95. DOI: 10.1007/s11104-019-04274-9

图(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  17
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 录用日期:  2025-02-02
  • 网络出版日期:  2025-03-09
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回