The regulation of plant nutrition signaling and resistance to hazardous elements by small peptides
-
摘要:
在自然和农业生态系统中,固着生活的植物时刻面临各种生物和非生物胁迫,其中养分缺乏、养分失衡和重金属毒害极大地限制了植物的生长发育,导致作物产量和品质大幅下降。及时高效感知养分状态并做出适应性改变是植物赖以生存和繁衍生息的关键。经过长期的自然选择,植物已进化出一整套适应养分匮缺和应对有害元素胁迫的分子机制,包括对养分信号的感知与信号的级联传递,激活基因活性,重塑转录组、蛋白组和代谢组,最后导致生理生化和表型变化。植物感知养分信号分子调控网络一直是植物营养领域的研究热点。小肽通常指小于100个氨基酸长度的功能性肽段,参与植物生长发育的调控、植物和微生物的互作以及生物和非生物逆境的应答。本文就植物内源性小肽分子在养分信号调控、有害元素耐受等方面的最新研究进展进行阶段性总结和讨论,重点围绕小肽在大量元素氮、磷、硫和微量元素铁以及有害元素镉和砷等吸收平衡方面的作用展开,并对未来的研究方向进行展望。
Abstract:In natural and agricultural ecosystems, many sessile organisms and plants often suffer from various biotic and abiotic stresses, such as the nutrient deficiency and heavy metal-caused nutrient disorder which hinder plant growth and development, and even affect crop productivity and reduce crop yield and quality seriously. Timely and efficient perception of nutrient status is critical for plant survival and reproduction. Under long-term natural selection, plants have evolved a complete set of molecular mechanisms to adapt to nutrient deficiency and heavy metal stress. Specific signals are formed to regulate or activate the gene expression, reprogramming of transcriptome, proteome, and metabolome, ultimately leading to physiological, biochemical, and phenotypic changes. The molecular mechanisms by which plants perceive nutrient signals have always been a hot research topic in the field of plant nutrition. Small peptides, generally less than 100 amino acids in length and involve in plant growth, development and bio-/abiotic stress responses, have been proved to be plant signal peptides by increasing evidence. This article reviewed the latest research progress on the regulation of nutrient signaling by endogenous small peptides in plant. The regulation of small peptides on the absorption and homeostasis of nitrogen, phosphorus, sulfate, and micronutrient like iron, as well as on the tolerance to the toxicity of heavy metals such as cadmium and arsenic was focused as typical cases. This article also proposed prospects of future research in this field.
-
Keywords:
- nutrient signal /
- small peptide /
- nitrogen /
- phosphorus /
- iron /
- sulfur /
- cadmium /
- arsenic
-
在自然和农业生态系统中生活的植物,包括重要的粮食和经济作物,它们在生长过程中不可避免地遭受到各种生物和非生物逆境的胁迫,导致生产力降低,影响作物产量和品质[1−2]。植物根际除了必需的矿质元素外,亚健康土壤中时常还伴随大量有害元素,干扰和阻碍必需元素的吸收。当这些必需元素不能满足植物生长发育之需或有害元素浓度超出植物耐受范围,就导致了植物养分匮缺,生长发育受阻,甚至死亡[3−7]。为了应对养分逆境和有害元素胁迫,植物进化出了一系列适应机制,体现在表观组、转录组、蛋白组、代谢组和表型组的适应性改变[8−17]。近10年来,植物养分吸收平衡的分子调控网络取得了一系列突破,植物耐受有害元素的适应性机制方面也取得了重要进展[3−18]。本文重点围绕植物内源性小肽在氮、磷、硫和铁等养分响应以及镉和砷胁迫应答方面的研究进展进行阶段性总结和讨论 (图1)。
1. 植物小肽分子
小肽(small peptide),通常指5~60个氨基酸长度的肽段。小肽功能多样,往往起到“四两拨千金”的效果。植物小肽参与了细胞增殖、根系和根瘤发育、花粉育性、气孔开关、养分吸收调控、植物免疫等诸多过程[19−22]。小肽不仅在局部发挥作用,还可以作为长距离系统信号发挥功效。作为信号分子,小肽具有物种特异性和环境诱导性的特征,已经成为近年来的研究热点。
从来源上可以将小肽分成3类:I,由原前体蛋白经过蛋白酶降解、加工而来。这类小肽的前体蛋白的氨基端通常含有信号肽,长度一般为16~30个氨基酸,导引前体蛋白进入到内质网和高尔基体中进行切割加工,最终产生长度不等的活性肽,这些活性肽通常来自前体蛋白的近羧基端(C端)[19]。II,由独立的基因直接翻译而来。这类小肽从来源上又可以细分为3个亚类,第一个亚类来自于一个独立完整的小肽编码基因的蛋白阅读框 (open reading frame, ORF),比如编码50个氨基酸的拟南芥小肽IMA1基因[23],这类小ORF (sORF)通常位于基因间,一度被认为是“垃圾DNA”。随着技术手段和分析能力的提升,目前在植物基因组中鉴定到这类海量的小ORF,但大多数的表达都具有发育和环境应答特异性,生理功能大多未知[21]。第二个亚类小肽也是来自正常的蛋白编码基因(正常起始密码子编码的蛋白通常较大),但是该基因可产生一个到多个可变起始密码子编码的ORF (所产生的蛋白氨基酸数量在小肽范围,比如小于60个氨基酸)[24]。第三个亚类来自于所谓的非编码RNA (non-coding RNA),这类RNA又分成前体微小RNA (precursor miRNA,pre-miRNA) 和长非编码RNA (long non-coding RNA,lncRNA)。过去认为这些RNA不编码蛋白,但最近研究表明这些RNA中的一部分也翻译出小于50个氨基酸的小肽。比如,蒺藜苜蓿前体微小RNA MtmiRNA171b翻译出一个20个氨基酸的小肽MtmiPEP171b[25−26]。III,由位于编码正常大小蛋白的5′−端或3′−端非翻译区 (untranslated region, UTR)上的小ORF翻译而来[27−28]。迄今,植物中来自3′-UTR的小肽还未见报道。
从移动性和作用位点来看,小肽可以分为两大类:分泌型和非分泌型小肽。分泌型小肽一般很少和细胞膜结合,具有短距离或长距离移动能力,长度一般为5~30个氨基酸,有些也可达60个氨基酸。分泌型小肽一般遵循受体−配体结合模式发挥功能,首先它们被膜定位的富含亮氨酸重复的受体样蛋白激酶(LRR-RLK)或LRR-RLK及其关联的共受体复合物识别,小肽和受体结合后激发下游信号级联反应,启动基因表达调控,最终调节植物生长发育[29−30]。非分泌型小肽通常在胞内发挥功能,作用模式多样。研究发现非分泌型小肽也可以长距离移动。比如,嫁接试验证明,IMA小肽可以从地上部转运到根中发挥调控作用,但是目前其长距离移动的分子机制还不清楚[23]。除了韧皮部长距离移动外,少数情况下非分泌型小肽也可以被释放到胞外,在质外体发挥细胞—细胞间或长距离信号分子作用。例如,随着伤害发生,非分泌型的系统素从伤害细胞释放出来,随蒸腾流经质外体空间转运到非伤害部位引起抗性反应[31−32]。
2. 小肽参与氮营养的信号调控
氮是植物需求量最大的必需元素。植物从土壤中获取的氮主要有两种形式,无机氮主要是硝酸盐(NO3−)和铵盐(NH4+),有机氮主要以氨基酸和尿素为主[33−34]。在农业和自然生态系统中,特别是通气良好的土壤中,硝酸盐是植物利用的主要无机氮形式。由于植物吸收和淋溶导致土壤中的养分特别是硝酸盐的分布具有较大的时空异质性,常常致使植物局部根系养分供应不足[33−34]。在长期演化过程中,植物进化出一整套氮营养调控分子网络来适应氮需求[33−34]。非固氮植物感知氮缺乏信号后,主要通过激活下游氮吸收、转运和利用基因的表达,增加氮的吸收利用效率,同时改变植物生长发育和对其他元素的需求,协同应对氮胁迫;而对于固氮植物,当氮供应不足时,根系和固氮菌互作增强,根瘤数量增加,固氮能力升高。研究表明,作为氮需求的系统性长距离信号,小肽在根系氮吸收和根瘤固氮方面发挥了重要调控作用,同时在不同氮营养状态下的根系发育上也发挥了重要的调控作用[35−37]。迄今,参与氮营养状态调控的小肽主要有3类:CEP (C-terminaly encoded peptide)、CLE (clavata3/embryo-surrounding region)和IMA (iron man)[35−36, 38−42]。
胞外硝酸盐状态、胞内硝酸盐和氮状态都会触发硝酸盐吸收系统活性改变。目前已知硝酸盐的吸收系统受到局部和系统性长距离需求信号的调控。CEP是植物中第一个报道调控氮需求的系统性长距离小肽信号。通过生物信息学预测并结合质谱分析,Matsuzaki等[43]和Ohyama等[44]首次鉴定到C端编码小肽1 (CEP1)。CEP1为翻译后修饰类分泌小肽,全长15个氨基酸。拟南芥基因组中,CEP家族共包含15个同源基因,CEP1到CEP11编码含有15个氨基酸的、C末端含有保守CEP结构域的分泌小肽,CEP12到CEP15编码CEP类似物,CEP1到CEP5主要在侧根基部表达,CEP1/3/5/6/7/8/9受缺氮诱导上调表达。当土壤中部分根系氮供应不足时,CEP1在缺氮根中诱导合成,通过木质部导管向地上部转移,到达茎部后,CEP1被LRR-RLK类受体CEPR1和CEPR2识别,这种受体−配体识别上调表达了CEPD多肽CEPD1和CEPD2。CEPD通过韧皮部组织运输到根部,并在处于氮富足区的根部特异性上调表达硝酸盐转运蛋白基因NRT2.1、NRT3.1和NRT1.1,同时促进高氮区根系侧根发育,增强根系对土壤中硝酸盐的吸收,最后实现植株总体氮营养平衡[45−47]。综上,通过缺氮诱导的根源CEP小肽将胞外局部缺氮信号和植株整体的氮需求信号通过根—茎—根的信号级联反应整合起来,最终激活高氮区氮吸收基因的表达和侧根发育,增加了硝酸盐的吸收,补偿了由于局部缺氮导致的氮营养不足。由于CEPD主要在地上部韧皮部表达,并通过韧皮部转运到根部,而且CEPD是非分泌型小肽,但NRT2.1等吸收蛋白编码基因在表皮表达,因此,CEPD如何调控硝酸根吸收基因的表达还需要进一步阐明。在具固氮能力的豆科植物中,低氮诱导的苜蓿MtCEP从根中移动到地上部,被地上部LRR-RLK受体MtCRA2识别后促进了根瘤形成和结瘤数量,从而增加了固氮能力。与非固氮植物不同,MtCEP-MtCRA2信号级联反应抑制了侧根发育但促进了主根生长[40, 48]。目前,CEP小肽在氮吸收和固氮中的调控作用已在多个物种中得到证实,是进化上保守的氮需求调控的系统性长距离信号。
CLE类小肽信号途径抑制氮固定和氮吸收,并以氮营养依赖的方式抑制根系发育,是氮信号调控网络中第二类重要的分泌型小肽信号[49]。CLE类小肽是CLV3 (CLAVATA3)小肽的同源物。拟南芥中,CLE1、CLE3、CLE 4和CLE 7同样被缺氮诱导表达,过表达这些小肽抑制侧根原基的发育及其在主根上的发生[49]。蛋白激酶CLAVATA1(CLV1)是CLE小肽受体;缺失CLV1的突变体中,CLE3不能抑制侧根发育。由于CLV1主要在韧皮部伴胞表达,而CLE3主要在根中柱鞘细胞中表达,暗示CLE3-CLV1信号途径需要细胞—细胞间或长距离信号传递[41, 49−50]。在豆科植物百脉根(Lotus japonicus)中,CLE被CLV1同源激酶受体HAR1 (hypernodulation aberrant root1) 识别,CLE-HAR1信号途径参与了根—茎—根负反馈调节根瘤形成[51−53]。简述如下,早期形成的根瘤或根瘤菌侵染或高氮都诱导根中CLE表达,CLE小肽随后通过木质部移动到地上部,被地上部受体激酶HAR1识别,CLE-HAR1信号途径通过级联信号反应诱导了根中结瘤抑制因子的上调表达,从而抑制根瘤进一步形成,控制了结瘤数量,减少地上部光合作用产物向根和根瘤过度分配,达到“节能减碳”之目标(根瘤固氮是一个高耗能的反应)。综上,通过根—茎—根负反馈信号,豆科植物通过CLE小肽调节了氮状态依赖的根瘤形成。该信号途径在调控豆科植物的根瘤形成和数量控制上具有保守性[53−54],已在多种植物中得到证实。
铁是激活固氮酶必需的辅因子。根瘤中铁的摄取和丰缺对根瘤功能和氮固定起重要调控作用。最近研究发现,在无外源氮供给条件下,接种缺失氮固定活性的根瘤菌或不接种根瘤菌都不影响百脉根地上部IMA表达,但在根瘤共生过程中,百脉根基因组包含的8个IMA中的5个都显著上调表达,暗示根瘤共生固氮导致的内源氮状态变化诱导了IMA表达;同时突变表达量最高的LjIMA1及其旁系同源LjIMA2导致结瘤数量增加,但根瘤变小且固氮活性显著下降;LjIMA1和LjIMA2局部性和系统性调控根瘤中铁的积累,进而建立根瘤共生关系而固氮,但过多的铁或过表达IMA抑制根瘤形成和共生固氮;百脉根根据胞内氮状态调控IMA的表达,进而调控根瘤中铁的摄取,影响氮固定和氮平衡[55]。总之,IMA通过调节氮−铁平衡来调控氮稳态具有功能保守性,已在拟南芥和百脉根中得以证实,但具体的分子机制还有待进一步研究。
3. 小肽参与磷营养介导的根构型重塑
磷在土壤中以有机和无机形式存在,无机形式以H2PO4−和HPO42−为主。然而,在自然生态系统,土壤中可以被植物直接吸收利用的无机磷酸盐(Pi)浓度较低,很难满足植物适宜生长之需。因此,缺磷(植物可利用的磷)是植物生长和作物生产力的主要限制因子之一[17, 56]。为了应对低Pi胁迫,植物已经进化出一系列适应机制,包括根冠比增加和根构型重塑,以最大限度地提高土壤对磷的吸收利用。这些适应性根构型变化主要包括增加侧根形成、根毛密度和长度增加以及根尖分生组织 (root apical meristem, RAM)衰竭导致主根长度减少[57−61]。缺磷诱导拟南芥CLE14上调表达,在RAM耗竭中发挥关键作用。RAM耗竭是指具有分裂能力的细胞丧失增殖潜力的现象,导致根部最终分化成熟,限制了主根长度继续增加。简言之,土壤或生长介质中较低的无机磷浓度增加了根际铁的活度,在LPR (low phosphate root) 1和LPR2协作下,促进了铁从周围土壤或介质中流入RAM,诱导CLE14在根分生组织的近端区域上调表达,CLE14被CLV2和PEPR2受体识别后,触发信号级联反应,可能通过抑制转录因子AtPOL和AtPLL1的表达,从而抑制了转录因子SCARCROW (SCR)/SHORT-ROOT (SHR)表达和PIN/生长素途径,而SCR/SHR和PIN/生长素途径是调控根尖分生组织细胞分化的要素,这样,CLE14-CLV2/PEPR2信号途径导致RAM终止,失去了细胞增殖能力,从而有效抑制主根生长,以适应根际缺磷环境[62−63]。相反,在百脉根、二穗短柄草和苜蓿中,CLE基因受高磷诱导,可能扮演磷充盈状态的信号指示作用[64−65]。
除了CLE14小肽外,根系生长因子RGF/GLV/CLEL (root growth factor/golven/cle-like )小肽家族也参与了植物磷响应,在控制根系生长中发挥着重要作用[43]。RGF小肽的酪氨酸残基硫酸化是该类小肽的一种关键蛋白翻译后修饰 (post-translational modification, PTM),硫酸化修饰激活了RGF1/GLV11、RGF2/GLV5和RGF3/GLV7活性。RGF1和RGF2突变体的根系表型和低Pi胁迫下的野生型根系表型具有相似性,表明这些小肽在Pi缺乏诱导的根系发育中发挥作用。研究发现,缺磷诱导RGF1、RGF2和RGF3在根尖分生区表皮和皮层上调表达,这些小肽作为配体被其受体识别后,触发下游信号级联反应,操纵转录因子PLETHORA沿根纵向上的梯度分布,从而调控根系生长发育。其中,RGF2在Pi缺乏时诱导根的垂直生长和根表皮、皮层和内皮层细胞的径向分裂,而RGF1抑制根分生组织中的径向分裂,这样在RGF1和RGF2协同作用下,才能保证根毛随着根系生长而不断更新迭代,这些特化的根毛极大增加了根系与土壤接触面积,从而促进Pi的吸收[62, 66−67]。
4. 小肽调控硫稳态
硫(S)是植物必需的中量元素,是抗氧化系统谷胱甘肽的组成部分,在活性氧(reactive oxygen species, ROS)的清除中发挥重要的解毒作用,同时以谷胱甘肽为基础形成的植物螯合肽(phytochelatin, PC)对重金属及砷具有很高的亲和性,可以对这些有害元素进行有效地解毒[68−69]。在通气良好的环境下,无机硫主要以硫酸盐(SO42−)为主;硫酸盐也是植物从土壤中吸收的硫主要来源。另外,除了根吸收外,植物也可以从大气中吸收部分气态硫(H2S)和硫酸盐[69]。
研究表明,CLE小肽在硫诱导的拟南芥根系发育中发挥调控作用[70]。长期缺硫导致拟南芥幼苗侧根密度降低,AtCLE2和AtCLE3表达下降。已有研究证明,AtCLE2和AtCLE3在侧根发育以及光/暗和氮等其他非生物响应介导的碳分配中发挥作用。CLE小肽发挥作用的前提是被其受体识别,AtCLE2和AtCLE3激酶受体是CLV1。研究发现,长期缺硫条件下,clv1突变体的侧根密度日增长率比野生型植物更高;而且在硫缺乏条件下,clv1突变体中AtCLE2和AtCLE3的表达量高于野生型,暗示依赖于CLV1的反馈机制负调控CLE表达和侧根发育,但迄今,该机制还不清楚,有待进一步阐明。另外,除了拟南芥,在苜蓿中也鉴定到硫响应的CLE基因[71],虽然目前对其功能还缺乏认识,但这一发现表明其他物种可能与拟南芥具有相似的适应根系S营养的机制。
miPEP408是最近发现的一种由前体微小RNA pri-miR408编码的小肽[72]。外源施用人工合成的miPEP408小肽显著增强微小miR408转录本的表达,从而导致 miR408靶基因的下调表达。其中一个靶基因为谷胱甘肽硫转移酶(glutathione S-transferase, GSTU25)基因。谷胱甘肽硫转移酶在硫同化中发挥重要作用,还参与了细胞内氧化还原反应、解毒和抗氧化作用等过程。研究发现,过表达miPEP408小肽基因和微小RNAmiR408都增加了植物对低硫胁迫的敏感性,而通过CRISPR/Cas9技术编辑突变miR408的株系显著提高了对低硫的耐受性[72]。转基因株系不仅导致形态学改变,而且影响了硫还原相关基因的表达以及硫酸盐和谷胱甘肽的积累[72]。综上,miPEP408是通过调控S代谢途径响应S缺乏的关键调节因子。
5. 小肽调控铁稳态
铁是植物生长发育所必需的微量元素。地壳中铁的含量虽然充足,但在中性和碱性土壤中铁主要以溶解度极低的 Fe(III)氧化物的形式存在,极大地降低了土壤中铁的生物有效性,不能满足植物生长发育对铁的需求,导致作物减产和品质降低[11, 73]。而在低pH或长期淹水条件下,植物会积累过量的铁,并通过芬顿反应产生大量的活性氧,如果不能及时清除并维持活性氧在一定范围内,植物将遭受氧化胁迫伤害,甚至死亡[74−77]。因此,精确调控铁的吸收转运,维持体内铁稳态是植物生长发育前提条件,也是国际植物铁营养领域研究的核心问题。
过去30年的研究已经证明,植物铁的吸收和稳态受控于一个主要的分子网络,该网络由bHLH类转录因子和E3泛素连接酶为核心组分[11, 16, 76−77]。在拟南芥中URI/bHLH121位于网络的上游位置,而下游核心转录因子FIT及其互作Ib家族bHLH转录因子,直接调节铁吸收基因AHA2、FRO2和IRT1的表达。FIT和bHLH Ib家族转录因子自身受缺铁诱导,由IVb家族bHLH 转录因子URI/bHLH121和IVc 家族bHLH 转录因子bHLH34、bHLH104、bHLH105/ILR3以及bHLH115调控[78−80]。水稻中这些关键组分的同源基因同样位于铁吸收调控网络的中心位置[16, 76]。目前研究认为,该网络中来自拟南芥的E3泛素连接酶BRUTUS (BTS)和BTS-LIKE (BTSL)以及水稻中的同源蛋白HRZ1和HRZ2是铁的受体,它们通过对底物靶蛋白的泛素化修饰,介导网络中IVc 家族转录因子经26S蛋白酶体而降解,进而调控下游基因表达,最终调控铁吸收和稳态[81−86]。
近年来,该网络得到升级完善,增添了一个关键调控新成员,即IMA小肽[23]。虽然IMA小肽在被子植物中广泛存在,但其生理功能目前只在拟南芥、水稻、小麦以及百脉根中得到证实,还远未完善[16, 23, 55, 87−88]。目前已知拟南芥中有8个成员,水稻中有2个,小麦中有14个,百脉根中有8个。过表达拟南芥AtIMA1在铁充足的条件下引发铁缺乏响应,导致铁吸收基因上调表达,铁和锰含量升高。另外,水稻OsIMA在拟南芥中的过表达或拟南芥AtIMA在番茄中过表达都导致铁含量显著积累,表明IMA的功能在被子植物中高度保守。拟南芥中敲除所有8个AtIMA小肽基因的八重突变体ima8x表现出严重的发育迟缓和极度褪绿表型。如果不补充高浓度的外源铁,突变体在土壤中将死亡[23]。同样,在水稻中增加OsIMA1和OsIMA2的表达在正常铁条件下可以增强大多数缺铁响应基因的表达[87]。在小麦中,通过病毒介导系统,高表达TaIMA3A的小麦植株显著增强了铁吸收基因TaNAS4D和TaNRAMP5的上调表达,导致铁和锰积累增加[88]。在百脉根中,LjIMA调控根瘤中铁的积累,从而调控氮依赖的根瘤形成和氮固定[55]。
IMA是非分泌型小肽,目前所知其发挥调控作用的机制亦非通过受体−配体识别模式运行。近期在拟南芥和水稻中的研究表明,IMA小肽和IVc家族bHLH转录因子竞争与BTS/HRZ互作,从而干扰BTS/HRZ对IVc家族bHLH转录因子的降解来发挥其调控作用。尽管IMA小肽和IVc家族bHLH转录因子都可以和BTS/HRZ泛素E3连接酶互作而被降解,但是在正常条件下,IVc家族bHLH转录因子丰度远大于IMA小肽分子,即高丰度的IVc家族bHLH转录因子将有更多机会与BTS泛素E3连接酶相互作用而被泛素化修饰,并通过26S蛋白酶系统降解,从而失去对其下游靶基因的表达调控,避免摄取过量铁。相反,在铁缺乏的条件下,IMA的表达显著上调,产生大量的IMA小肽,总体丰度远高于IVc家族bHLH转录因子(它们的转录水平几乎不受缺铁调控),导致IMA小肽获得更多机会和BTS/HRZ泛素E3连接酶互作,这样干扰了IVc家族bHLH转录因子的降解,导致FIT和Ib家族bHLH转录因子编码基因的上调表达,诱导了铁吸收基因的表达,最终增加铁的获取[16, 89−90]。
6. 小肽缓解镉毒害
镉是对所有生物体有害的重金属元素,影响植物的生长发育和作物生产力,最终通过食物链严重威胁人类健康[16, 91−93]。镉极易借助其他阳离子如铁、锰、锌等的转运蛋白进入植物体内,导致这些植物必需金属元素的短缺。镉胁迫导致明显的类似于缺铁的黄化症状,增加植物外源铁供应或调控铁缺乏响应基因的表达量可以提高植物镉毒耐性[94]。研究表明,镉处理显著诱导了拟南芥小肽基因IMA1和IMA3的表达量。过表达IMA基因比过表达其它调控因子如bHLH39和bHLH104表现出更强的镉耐性。进一步研究表明,过表达IMA基因最大程度激活了拟南芥缺铁响应系统,显著诱导铁吸收基因的上调表达,极大增加了植物体内铁的积累,减小了镉对拟南芥的毒害。移除生长介质中的铁显著增加了植株体内镉的积累,加剧了植株根系的毒害。IMA小肽介导的镉耐受性依赖于外源铁营养状态。IMA小肽在植物中具有高度保守性,在不同植物铁稳态的调节中都发挥作用[95]。小麦中上调表达TaIMA3A,激活了小麦缺铁响应系统,诱导TaNAS4D 和TaNRAMP5上调表达,增加了铁、锰和锌的浓度,增强了小麦镉耐受性[88]。因此,IMA小肽有望成为广谱增强植物镉胁迫耐受性的候选基因。
除了IMA小肽,研究证明长度为34个氨基酸的水稻Ospep5小肽可以提高水稻镉耐受性。外源施加 Ospep5 后, 可以有效缓解镉胁迫对水稻幼苗的生长抑制, 显著提高超氧化物歧化酶(superoxide dismutase, SOD)活性, 同时显著降低丙二醛(malondialdehyde, MDA)含量、脯氨酸(Pro)含量和镉离子含量, 并且诱导耐镉基因(OsHMA2、OsHMA3、OsCAL1)的上调表达[96]。但是,Ospep5 在植物中是否具有保守性不太清楚。最近从水稻中鉴定了一个由前体微小RNA pri-miR156e编码的功能性小肽miPEP156e[97]。在镉胁迫下,过表达miPEP156e导致植物镉吸收和ROS积累降低,相反,miPEP156e突变体中镉和ROS的积累增加,对镉胁迫表现出更强的敏感性。进一步研究表明,miPEP156e通过下调镉转运蛋白基因和上调ROS清除基因的表达,来提高水稻对镉的耐受性[97]。
7. 小肽调控砷耐受性
砷具有高毒性和致癌性质,植物即使暴露在较低的砷浓度也会诱发激烈的生化反应,导致巨大的生理变化。因此,增加砷胁迫的耐受性对作物产量提升和保护人类健康都有重要的意义[3, 93, 98]。
miPEP408除了参与低硫响应,同时也是应对砷毒性的关键调节因子。过表达miPEP408小肽基因和微小RNAmiR408都增加植物对砷毒害的敏感性,miR408突变株系提高了对砷胁迫的耐受性。重金属毒性通常导致各种ROS的产生,植物中ROS水平升高会导致各种细胞伤害。进一步研究证实,过表达miR408和miPEP408的株系中ROS水平比野生型显著升高,而突变体株系中ROS水平比野生型明显降低。究其原因是过表达miPEP408和miR408导致硫同化基因下调,谷胱甘肽、植物螯合素等积累下降,去除ROS能力降低,增加对砷胁迫敏感性。因此,miPEP408通过调节硫还原途径解砷毒[72]。
8. 问题与展望
植物小肽参与植物各种重要的生物学过程以及各种逆境响应,相关研究近年来方兴未艾,经过30多年的探索,取得了一系列研究进展。鉴定到很多新的小肽家族,特别是来自前体微小RNA编码的小肽;小肽参与的分子调控进一步得到完善,比如前体微小RNA编码的小肽可以调控相应的微小RNA的表达和积累,而后者通过对靶基因的降解或翻译从而调控靶基因介导的生物学过程,如通过调节硫还原过程影响植物对镉和砷的耐受性;外源施用人工合成的内源性小肽或人为设计的互补性小肽可以调控生物学过程或逆境响应,特别是人为设计的互补性小肽有望成为未来智慧农业的重要调控措施。
虽然植物小肽的研究取得了一些重要进展,但仍然存在亟需解决的问题:1)高通量低成本鉴定功能性小肽仍然是目前植物小肽研究的瓶颈问题。植物往往含有多糖、次生代谢物和酚类物质,这些都给小肽的分离、富集和稳定性带来了巨大挑战。在植物必需的矿质元素中,比较确定有小肽参与调控的仅有氮、磷、硫和铁,其他必需或有益元素的吸收、转运和稳态是否有小肽参与以及如何参与还不清楚。2)来自同一家族的高度同源的小肽往往因为一个氨基酸的不同导致功能不同,甚至迥异,这为小肽功能性预测带来了风险,往往需要生物化学和遗传学的实验证据来证实特定小肽的生理功能。例如,拟南芥CLE2和CLE3序列具有高度一致性,只有一个氨基酸不同,但两者的表达谱和参与的生物学过程不同。3)越来越多研究揭示,同一生物学过程或环境逆境往往受到多种因子正负调控或叠加调控或拮抗调控,该网络中往往有多种小肽以及植物传统激素参与其中,增加了调控的复杂性和精确性,但是目前对这些调控因子间的上下游关系还不完善,有待进一步研究。例如,参与氮养分信号调控的小肽有CEP、CLE和IMA 3类,但这些小肽之间是如何协同的分子机制还有待进一步阐明。4)一些小肽的生理功能虽然已经得到证实,但是其受体及其下游信号级联反应途径还不明确,阻碍了对小肽调控功能的深入理解及其潜在的开发应用。5)植物小肽的研究目前仍然局限于一些基因组信息比较全面、功能研究比较成熟的模式植物或作物,其他基因组复杂、遗传转化困难、生长周期长的作物或林木方面的研究还有待进一步展开。6)土壤宏小肽组学方面的研究目前并不多见,有待加强,存在众多的空白尚未填补。总之,小肽的研究是未来的研究热点之一,一旦将小肽理论研究成果转化为农用产品,应用到农业生产中,不仅起到肥料减施增效及保护生态环境的效果,而且可以提高粮食作物和果蔬的品质,以及林木的材质,为未来高质量农业生产服务。
-
[1] Ngou B P M, Ding P, Jones J D G. Thirty years of resistance: Zig-zag through the plant immune system[J]. Plant Cell, 2022, 34(5): 1447−1478.
[2] Zhang H, Zhu J, Gong Z, Zhu J K. Abiotic stress responses in plants[J]. Nature Reviews Genetics, 2022, 23(2): 104−119.
[3] Bai Y, Wan X, Lei M, et al. Research advances in mechanisms of arsenic hyperaccumulation of pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny[J]. Journal of Hazardous Material, 2023, 460: 132463.
[4] Kumar A, Kumari N, Singh A, et al. The effect of cadmium tolerant plant growth promoting rhizobacteria on plant growth promotion and phytoremediation: A review[J]. Current Microbiology, 2023, 80(5): 153.
[5] Lux A, Martinka M, Vaculík M, White P J. Root responses to cadmium in the rhizosphere: A review[J]. Journal of Experimental Botany, 2011, 62(1): 21−37.
[6] Nawaz M, Sun J F, Shabbir S, et al. A review of plants strategies to resist biotic and abiotic environmental stressors[J]. Science of the Total Environment, 2023, 900: 165832.
[7] Podar D, Maathuis F J M. The role of roots and rhizosphere in providing tolerance to toxic metals and metalloids[J]. Plant, Cell & Environment, 2022, 45(3): 719−736.
[8] Lan P, Li W F, Schmidt W. Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation[J]. Molecular Cell Proteomics, 2012, 11(11): 1156−1166.
[9] Lan P, Li W F, Wen T N, Schmidt W. Quantitative phosphoproteome profiling of iron-deficient Arabidopsis roots[J]. Plant Physiology, 2012, 159(1): 403−417.
[10] Lan P, Li W F, Wen T N, et al. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis[J]. Plant Physiology, 2011, 155(2): 821−834.
[11] Li W F, Han X W, Lan P. Emerging roles of protein phosphorylation in plant iron homeostasis[J]. Trends Plant Science, 2022, 27(9): 908−921. DOI: 10.1016/j.tplants.2022.03.012
[12] Li W F, Lan P. Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots[J]. BMC Research Notes, 2015, 8: 555. DOI: 10.1186/s13104-015-1524-y
[13] Li W F, Lan P. The understanding of the plant iron deficiency responses in strategy I plants and the role of ethylene in this process by omic approaches[J]. Front Plant Science, 2017, 8: 40.
[14] Li W, Lin W D, Ray P, et al. Genome-wide detection of condition-sensitive alternative splicing in Arabidopsis roots[J]. Plant Physiology, 2013, 162(3): 1750−1763.
[15] Lilay G H, Thiébaut N, du Mee D, et al. Linking the key physiological functions of essential micronutrients to their deficiency symptoms in plants[J]. New Phytologist, 2024, 242(3): 881−902. DOI: 10.1111/nph.19645
[16] Wang R, Fei Y, Pan Y, et al. IMA peptides function in iron homeostasis and cadmium resistance[J]. Plant Science, 2023, 336: 111868.
[17] Yang S Y, Lin W Y, Hsiao Y M, Chiou T J. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus[J]. Plant Cell, 2024, 36(5): 1504−1523. DOI: 10.1093/plcell/koad326
[18] Etesami H, Jeong B R, Maathuis F J M, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice?[J]. Science of the Total Environment, 2023, 903: 166870.
[19] Datta T, Kumar R S, Sinha H, Trivedi P K. Small but mighty: Peptides regulating abiotic stress responses in plants[J]. Plant, Cell & Environment, 2024, 47(4): 1207−1223. DOI: 10.1111/pce.14792
[20] Erokhina T N, Ryazantsev D Y, Zavriev S K, Morozov S Y. Biological activity of artificial plant peptides corresponding to the translational products of small orfs in primary mirnas and other long "non-coding" RNAs[J]. Plants, 2024, 13(8): 1137.
[21] Hsu P Y, Benfey P N. Small but mighty: Functional peptides encoded by small orfs in plants[J]. Proteomics, 2018, 18(10): e1700038. DOI: 10.1002/pmic.201700038
[22] Tan W Y, Nian H, Tran L S P, et al. Small peptides: Novel targets for modulating plant-rhizosphere microbe interactions[J/OL]. Trends in Microbiology: 1−12. [2024-07-04]. https://doi.org/10.1016/j.tim.2024.03.011.
[23] Grillet L, Lan P, Li W F, et al. Iron man is a ubiquitous family of peptides that control iron transport in plants[J]. Nature Plants, 2018, 4(11): 953−963. DOI: 10.1038/s41477-018-0266-y
[24] Ong S N, Tan B C, Al-Idrus A, Teo C H. Small open reading frames in plant research: From prediction to functional characterization[J]. 3 Biotech, 2022, 12(3): 76.
[25] Lauressergues D, Couzigou J M, Clemente H S, et al. Primary transcripts of micrornas encode regulatory peptides[J]. Nature, 2015, 520: 90−93. DOI: 10.1038/nature14346
[26] Lauressergues D, Ormancey M, Guillotin B, et al. Characterization of plant microRNA-encoded peptides (miPEPs) reveals molecular mechanisms from the translation to activity and specificity[J]. Cell Report, 2022, 38(6): 110339. DOI: 10.1016/j.celrep.2022.110339
[27] Fesenko I, Kirov I, Kniazev A, et al. Distinct types of short open reading frames are translated in plant cells[J]. Genome Research, 2019, 29(9): 1464−1477.
[28] Xu G Y, Yuan M, Ai C R, et al. Uorf-mediated translation allows engineered plant disease resistance without fitness costs[J]. Nature, 2017, 545: 491−494.
[29] Matsubayashi Y. Posttranslationally modified small-peptide signals in plants[J]. Annual Review of Plant Biology, 2014, 65(1): 385−413.
[30] Tavormina P, De Coninck B, Nikonorova N, et al. The plant peptidome: An expanding repertoire of structural features and biological functions[J]. Plant Cell, 2015, 27(8): 2095−2118. DOI: 10.1105/tpc.15.00440
[31] McGurl B, Pearce G, Orozco-Cardenas M, Ryan C A. Structure, expression, and antisense inhibition of the systemin precursor gene[J]. Science, 1992, 255: 1570−1573.
[32] Pearce G, Strydom D, Johnson S, Ryan C A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins[J]. Science, 1991, 253: 895−897. DOI: 10.1126/science.253.5022.895
[33] Shanks C M, Rothkegel K, Brooks M D, et al. Nitrogen sensing and regulatory networks: It's about time and space[J]. Plant Cell, 2024, 36(5): 1482−1503. DOI: 10.1093/plcell/koae038
[34] Vidal E A, Alvarez J M, Araus V, et al. Nitrate in 2020: Thirty years from transport to signaling networks[J]. Plant Cell, 2020, 32(7): 2094−2119. DOI: 10.1105/tpc.19.00748
[35] Chen K E, Chen H Y, Tseng C S, Tsay Y F. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants[J]. Nature Plants, 2020, 6(9): 1126−1135. DOI: 10.1038/s41477-020-00758-0
[36] Cheng Y H, Durand M, Brehaut V, et al. Interplay between nin-like proteins 6 and 7 in nitrate signaling[J]. Plant Physiology, 2023, 192(4): 3049−3068. DOI: 10.1093/plphys/kiad242
[37] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F. Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85−122. DOI: 10.1146/annurev-arplant-042817-040056
[38] Bashyal S, Gautam C K, Müller L M. Clavata signaling in plant-environment interactions[J]. Plant Physiology, 2024, 194(3): 1336−1357. DOI: 10.1093/plphys/kiad591
[39] Laffont C, Frugier F. Rhizobium symbiotic efficiency meets cep signaling peptides[J]. New Phytologist, 2024, 241(1): 24−27. DOI: 10.1111/nph.19367
[40] Luo Z P, Wang J, Li F Y, et al. The small peptide cep1 and the nin-like protein nlp1 regulate nrt2.1 to mediate root nodule formation across nitrate concentrations[J]. Plant Cell, 2023, 35(2): 776−794. DOI: 10.1093/plcell/koac340
[41] Nakagami S, Aoyama T, Sato Y, et al. Cle3 and its homologs share overlapping functions in the modulation of lateral root formation through clv1 and bam1 in Arabidopsis thaliana[J]. Plant Journal, 2023, 113(6): 1176-1191.
[42] Taleski M, Jin M, Chapman K, et al. Cep hormones at the nexus of nutrient acquisition and allocation, root development, and plant-microbe interactions[J]. Journal of Experimental Botany, 2024, 75(2): 538−552. DOI: 10.1093/jxb/erad444
[43] Matsuzaki Y, Ogawa-Ohnishi M, Mori A, Matsubayashi Y. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis[J]. Science, 2010, 329: 1065−1067. DOI: 10.1126/science.1191132
[44] Ohyama K, Ogawa M, Matsubayashi Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis[J]. Plant Journal, 2008, 55(1): 152−160. DOI: 10.1111/j.1365-313X.2008.03464.x
[45] Hermans C, Hammond J P, White P J, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation?[J]. Trends in Plant Science, 2006, 11(12): 610−617.
[46] Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3: 17029. DOI: 10.1038/nplants.2017.29
[47] Tabata R, Sumida K, Yoshii T, et al. Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling[J]. Science, 2014, 346: 343−346. DOI: 10.1126/science.1257800
[48] Laffont C, Ivanovici A, Gautrat P, et al. The nin transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically[J]. Nature Communication, 2020, 11(1): 3167. DOI: 10.1038/s41467-020-16968-1
[49] Araya T, Miyamoto M, Wibowo J, et al. CLE-clavata1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 2029−2034. DOI: 10.1073/pnas.1319953111
[50] Ma D C, Endo S, Betsuyaku E, et al. Root-specific CLE3 expression is required for WRKY33 activation in Arabidopsis shoots[J]. Plant Molecular and Biology, 2022, 108(3): 225−239. DOI: 10.1007/s11103-021-01234-9
[51] Krusell L, Madsen L H, Sato S, et al. Shoot control of root development and nodulation is mediated by a receptor-like kinase[J]. Nature, 2002, 420: 422−426. DOI: 10.1038/nature01207
[52] Nishimura R, Hayashi M, Wu G J, et al. HAR1 mediates systemic regulation of symbiotic organ development[J]. Nature, 2002, 420: 426−429. DOI: 10.1038/nature01231
[53] Okamoto S, Shinohara H, Mori T, et al. Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communication, 2013, 4(1): 2191. DOI: 10.1038/ncomms3191
[54] Soyano T, Hirakawa H, Sato S, et al. Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14607−14612. DOI: 10.1073/pnas.1412716111
[55] Ito M, Tajima Y, Ogawa-Ohnishi M, et al. IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status[J]. Nature Communication, 2024, 15(1): 733.
[56] Madison I, Gillan L, Peace J, et al. Phosphate starvation: Response mechanisms and solutions[J]. Journal of Experimental Botany, 2023, 74(21): 6417−6430. DOI: 10.1093/jxb/erad326
[57] López-Arredondo D L, Leyva-González M A, González-Morales S I, et al. Phosphate nutrition: Improving low-phosphate tolerance in crops[J]. Annual Review in Plant Biology, 2014, 65: 95−123. DOI: 10.1146/annurev-arplant-050213-035949
[58] López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture[J]. Current Opinion in Plant Biology, 2003, 6(3): 280−287. DOI: 10.1016/S1369-5266(03)00035-9
[59] López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system[J]. Plant Physiology, 2002, 129(1): 244−256. DOI: 10.1104/pp.010934
[60] Paz-Ares J, Puga M I, Rojas-Triana M, et al. Plant adaptation to low phosphorus availability: Core signaling, crosstalks, and applied implications[J]. Molecular Plant, 2022, 15(1): 104−124. DOI: 10.1016/j.molp.2021.12.005
[61] Sánchez-Calderón L, López-Bucio J, Chacón-López A, et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana[J]. Plant Cell Physiology, 2005, 46(1): 174-184.
[62] Gutiérrez-Alanís D, Ojeda-Rivera J O, Yong-Villalobos L, et al. Adaptation to phosphate scarcity: Tips from Arabidopsis roots[J]. Trends in Plant Science, 2018, 23(8): 721−730. DOI: 10.1016/j.tplants.2018.04.006
[63] Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, et al. Phosphate starvation-dependent iron mobilization induces cle14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling[J]. Developmental Cell, 2017, 41(5): 555−570. DOI: 10.1016/j.devcel.2017.05.009
[64] Funayama-Noguchi S, Noguchi K, Yoshida C, Kawaguchi M. Two cle genes are induced by phosphate in roots of lotus japonicus[J]. Journal of Plant Research, 2011, 124(1): 155−163. DOI: 10.1007/s10265-010-0342-5
[65] Müller L M, Flokova K, Schnabel E, et al. A cle-sunn module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza[J]. Nature Plants, 2019, 5(9): 933−939. DOI: 10.1038/s41477-019-0501-1
[66] Cederholm H M, Benfey P N. Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development[J]. New Phytologist, 2015, 207(3): 683−691. DOI: 10.1111/nph.13405
[67] Janes G, von Wangenheim D, Cowling S, et al. Cellular patterning of Arabidopsis roots under low phosphate conditions[J]. Front Plant Science, 2018, 9: 735. DOI: 10.3389/fpls.2018.00735
[68] Kopriva S, Malagoli M, Takahashi H. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses[J]. Journal of Experimental Botany, 2019, 70(16): 4069−4073. DOI: 10.1093/jxb/erz319
[69] Maathuis F J. Physiological functions of mineral macronutrients[J]. Current Opinion in Plant Biology, 2009, 12(3): 250−258. DOI: 10.1016/j.pbi.2009.04.003
[70] Dong W, Wang Y, Takahashi H. Cle-clavata1 signaling pathway modulates lateral root development under sulfur deficiency[J]. Plants, 2019, 8(4): 103. DOI: 10.3390/plants8040103
[71] de Bang T C, Lundquist P K, Dai X B, et al. Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation[J]. Plant Physiology, 2017, 175(4): 1669−1689. DOI: 10.1104/pp.17.01096
[72] Kumar R S, Sinha H, Datta T, et al. Microrna 408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis[J]. Plant Physiology, 2023, 192(2): 837−856.
[73] Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis[J]. Front Plant Science, 2023, 14: 1250588.
[74] Assunção A G L, Cakmak I, Clemens S, et al. Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition[J]. Journal of Experimental Botany, 2022, 73(6): 1789−1799. DOI: 10.1093/jxb/erac014
[75] Kirk G J D, Manwaring H R, Ueda Y, et al. Below-ground plant-soil interactions affecting adaptations of rice to iron toxicity[J]. Plant, Cell & Environment, 2022, 45(3): 705−718. DOI: 10.1111/pce.14199
[76] Riaz N, Guerinot M L. All together now: Regulation of the iron deficiency response[J]. Journal of Experimental Botany, 2021, 72(6): 2045−2055. DOI: 10.1093/jxb/erab003
[77] Vélez-Bermúdez I C, Schmidt W. How plants recalibrate cellular iron homeostasis[J]. Plant Cell Physiology, 2022, 36(2): 154−162.
[78] Gao F, Robe K, Bettembourg M, et al. The transcription factor bHLH121 interacts with bHLH105 (ilr3) and its closest homologs to regulate iron homeostasis in Arabidopsis[J]. Plant Cell, 2020, 32(2): 508−524. DOI: 10.1105/tpc.19.00541
[79] Kim S A, LaCroix I S, Gerber S A, Guerinot M L. The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(50): 24933−24942. DOI: 10.1073/pnas.1916892116
[80] Lei R H, Li Y, Cai Y R, et al. bHLH121 functions as a direct link that facilitates the activation of FIT by bHLHIVc transcription factors for maintaining Fe homeostasis in Arabidopsis[J]. Molecular Plant, 2020, 13(4): 634-649.
[81] Hindt M N, Akmakjian G Z, Pivarski K L, et al. BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana[J]. Metallomics, 2017, 9(7): 876-890.
[82] Kobayashi T, Nagasaka S, Senoura T, et al. Iron-binding haemerythrin ring ubiquitin ligases regulate plant iron responses and accumulation[J]. Nature Communications, 2013, 4(1): 2792.
[83] Kobayashi T, Nishizawa N K. Iron sensors and signals in response to iron deficiency[J]. Plant Science, 2014, 224: 36−43.
[84] Long T A, Tsukagoshi H, Busch W, et al. The bHLH transcription factor popeye regulates response to iron deficiency in Arabidopsis roots[J]. Plant Cell, 2010, 22(7): 2219−2236.
[85] Rodríguez-Celma J, Connorton J M, Kruse I, et al. Arabidopsis brutus-like e3 ligases negatively regulate iron uptake by targeting transcription factor fit for recycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(35): 17584−17591.
[86] Selote D, Samira R, Matthiadis A, et al. Iron-binding e3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors[J]. Plant Physiology, 2015, 167(1): 273−286.
[87] Kobayashi T, Nagano A J, Nishizawa N K. Iron deficiency-inducible peptide-coding genes osima1 and osima2 positively regulate a major pathway of iron uptake and translocation in rice[J]. Journal of Experimental Botany, 2021, 72(6): 2196−2211.
[88] Zhu Y X, Zhang Q, Li Y J, et al. Role of soil and foliar-applied carbon dots in plant iron biofortification and cadmium mitigation by triggering opposite iron signaling in roots[J]. Small, 2023, 19(35): e2301137. DOI: 10.1002/smll.202301137
[89] Li Y, Lu C K, Li C Y, et al. Iron man interacts with brutus to maintain iron homeostasis in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(39): e2109063118. DOI: 10.1073/pnas.2109063118
[90] Wang R N, Lan P, Li W F. IMA peptides are dwarf giants fighting for fitness[J/OL]. Trends in Plant Science: 1−3. [2024-07-04]. https://doi.org/10.1016/j.tplants.2024.03.016.
[91] Clemens S, Aarts M G, Thomine S, Verbruggen N. Plant science: The key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92−99.
[92] Clemens S, Ma J F. Toxic heavy metal and metalloid accumulation in crop plants and foods[J]. Annual Review of Plant Biology, 2016, 67(1): 489−512.
[93] Wang C C, Zhang Q C, Yan C A, et al. Heavy metal(loid)s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis[J]. Science of the Total Environment, 2023, 882: 163361.
[94] Fu Y Q, Yang X J, Shen H. Root iron plaque alleviates cadmium toxicity to rice (Oryza sativa) seedlings[J]. Ecotoxicology and Environmental Safety, 2018, 161: 534−541.
[95] Meng X X, Li W F, Shen R F, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response[J]. Journal of Hazardous Materials, 2022, 422: 126913.
[96] 李明月, 张文婷, 李阳, 等. 小肽ospep5对水稻耐镉性的影响[J]. 作物学报, 2024, 50(1): 67−75. Li M Y, Zhang W T, Li Y, et al. Effects of small peptide Ospep5 on cadmium tolerance in rice[J]. Acta Agronomica Sinica, 2024, 50(1): 67−75.
[97] Lu L, Chen X Y, Chen J M, et al. Microrna-encoded regulatory peptides modulate cadmium tolerance and accumulation in rice[J]. Plant, Cell & Environment, 2024, 47(5): 1452−1470.
[98] Mondal S, Pramanik K, Ghosh S K, et al. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: A critical review[J]. Planta, 2022, 255(4): 87.