• ISSN 1008-505X
  • CN 11-3996/S

干旱胁迫下负压灌溉对玉米生理特性及氮代谢的影响

王金乐, 张吉立, 龙怀玉, 王孟雪, 王鹏

王金乐, 张吉立, 龙怀玉, 王孟雪, 王鹏. 干旱胁迫下负压灌溉对玉米生理特性及氮代谢的影响[J]. 植物营养与肥料学报, 2024, 30(12): 2410-2420. DOI: 10.11674/zwyf.2024284
引用本文: 王金乐, 张吉立, 龙怀玉, 王孟雪, 王鹏. 干旱胁迫下负压灌溉对玉米生理特性及氮代谢的影响[J]. 植物营养与肥料学报, 2024, 30(12): 2410-2420. DOI: 10.11674/zwyf.2024284
WANG Jin-le, ZHANG Ji-li, LONG Huai-yu, WANG Meng-xue, WANG peng. The effects of negative pressure irrigation on physiological characteristics and nitrogen metabolism of maize[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(12): 2410-2420. DOI: 10.11674/zwyf.2024284
Citation: WANG Jin-le, ZHANG Ji-li, LONG Huai-yu, WANG Meng-xue, WANG peng. The effects of negative pressure irrigation on physiological characteristics and nitrogen metabolism of maize[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(12): 2410-2420. DOI: 10.11674/zwyf.2024284

干旱胁迫下负压灌溉对玉米生理特性及氮代谢的影响

基金项目: 国家重点研发计划项目 (2018YFE0112300)。
详细信息

The effects of negative pressure irrigation on physiological characteristics and nitrogen metabolism of maize

  • 摘要:
    目的 

    干旱地区水资源有限,难以确保作物持续获得水分。本研究创新性地引入了负压灌溉系统,旨在深入探讨在干旱胁迫下负压灌溉如何影响玉米的生理特性以及氮素代谢过程,以期为干旱地区农业节水灌溉提供技术支撑。

    方法 

    试验在黑龙江八一农垦大学试验基地进行,共设置了干旱胁迫下负压灌溉−10 kPa (H1)、干旱胁迫下人工浇灌(H2)、干旱胁迫下负压灌溉−15 kPa (H3)以及常规浇灌(CK) 4个处理,H1和H3处理均在全生育期进行负压灌溉,测定拔节期、抽雄期、灌浆期、成熟期玉米生长、氮代谢相关指标及产量。

    结果 

    在玉米拔节期至成熟期,CK处理土壤含水量为田间持水量的80.0%~90.4%,H1处理稳定在田间持水量的49.9%~53.0%,H2处理为田间持水量的29.1%~46.8%,H3处理为田间持水量的38.6%~41.4%。在拔节期、抽雄期、灌浆期和成熟期,H1处理株高较H2处理分别提高了64.4%、29.8%、19.5%和20.1%。在抽雄期和成熟期,H1处理茎粗较CK处理分别降低了48.4%和49.3%;拔节期H1处理茎粗显著高于H2处理,其余生育时期H1与H2处理之间无显著差异。在4个生育期,H1处理玉米干物质积累量较H2处理分别提高了20.2%~44.8%;H1处理氮素吸收量较H2处理分别提高了43.1%~151.9%。在拔节期至成熟期,玉米硝酸还原酶活性呈逐渐增加趋势,其中以H1处理最高,比CK处理提高24.8%~99.9%,比H2处理提高41.6%~427.4%,比H3处理提高25.8%~94.0%;H1处理谷氨酸脱氢酶(GDH)活性分别比CK处理提高118.9%~156.4%,比H2处理提高255.4%~293.5%,比H3处理提高了84.5%~98.4%;H1 处理谷氨酸丙酮酸转氨酶(GPT)活性比CK处理提高35.8%~81.8%,比H2处理提高111.9%~194.3%,比H3处理提高了21.6%~90.9%。在拔节期至成熟期,H1处理叶片硝态氮含量较H2处理提高了152.3%~296.7%,较H3处理提高了36.9%~89.4%,较CK处理提高了62.6%~162.7%;H1处理氨基酸含量较H2处理提高了39.4%~139.6%,较H3处理提高了15.2%~87.2%,较CK处理提高了41.3%~67.8%。在成熟期,CK与H1处理的产量无显著性差异,H1处理较H2、H3处理的产量分别提高了206.4%、134.7%。

    结论 

    在干旱胁迫下负压灌溉−10 kPa对玉米的生长具有显著的促进作用,与干旱胁迫下人工灌溉相比提高了株高、茎粗、干物质积累量和产量,增强了氮代谢能力,促进了玉米对氮素的吸收和利用,进而显著提高了氮吸收量。

    Abstract:
    Objectives 

    In response to the challenge of limited water resources and the difficulty in ensuring a sustainable water supply for crops in arid areas, this study innovatively introduces a negative pressure irrigation system. The aim is to explore in depth how negative pressure irrigation affects the physiological functional characteristics and nitrogen metabolism of maize under drought stress, providing new scientific strategies and technical support for agricultural irrigation in arid regions.

    Methods 

    The experiment was conducted at the experimental base of Heilongjiang Bayi Agricultural University in Heilongjiang Province. Four treatments were set up: negative pressure irrigation under drought stress at −10 kPa (H1), artificial irrigation under drought stress (H2), negative pressure irrigation under drought stress at −15 kPa (H3), and conventional watering (CK). Negative pressure irrigation was applied throughout the entire growth period for H1 and H3 treatments to study changes in maize growth, yield, and nitrogen metabolism-related indicators.

    Results 

    During the jointing, heading, filling, maturity stages of maize, the soil moisture content of CK treatment was 80.0% to 90.4% of the field capacity, H1 treatment remained stable at 49.9% to 53.0% of the field capacity, H2 treatment was 29.1% to 46.8% of the field capacity, and H3 treatment was 38.6% to 41.4% of the field capacity. Plant height in H1 increased by 64.4%, 29.8%, 19.5%, and 20.1% compared to H2 plants. During the tasseling and maturation stages, the stem diameter of H1 treatment decreased by 48.4% and 49.3% compared to CK treatment; during the jointing stage, the stem diameter of H1 treatment was significantly higher than that of H2 treatment, while there was no significant difference between H1 and H2 treatments during other growth stages. In the four growth stages, the dry matter accumulation of maize under H1 treatment was increased by 20.2%−44.8% compared with H2 treatment. The nitrogen absorption of H1 treatment was increased by 43.1%−151.9% compared with H2 treatment. From jointing stage to maturity stage, the nitrate reductase activity of maize showed a continuous increase trend, and H1 treatment was the highest, which was 24.8%−99.9% higher than CK treatment, 41.6%−427.4% higher than H2 treatment and 25.8%−94.0% higher than H3 treatment, respectively. Glutamate dehydrogenase (GDH) activity of H1 treatment was 118.9%−156.4% higher than that of CK treatment, 255.4%−293.5% higher than that of H2 treatment, and 84.5%−98.4% higher than that of H3 treatment, respectively. The activity of glutamate pyruvate transaminase (GPT) in H1 treatment was increased by 35.8%−81.8% compared with CK treatment, 111.9%−194.3% compared with H2 treatment, and 21.6%−90.9% compared with H3 treatment. From jointing stage to maturity stage, the nitrate nitrogen content of H1 treatment was increased by 152.3% to 296.7% compared with H2 treatment, 36.9% to 89.4% compared with H3 treatment and 62.6% to 162.7% compared with CK treatment. The amino acid content of H1 treatment was increased by 39.4%−139.6% compared with H2 treatment, 15.2%−87.2% compared with H3 treatment and 41.3%−67.8% compared with CK treatment. At the maturity stage, there was no significant difference in yield between CK and H1 treatment, and the yield of H1 treatment was 206.4% and 134.7% higher than that of H2 and H3 treatment, respectively.

    Conclusions 

    Under drought stress, negative pressure irrigation at −10 kPa has a significant positive effect on maize growth. Compared with artificial irrigation under drought stress, it can increase plant height, stem diameter, dry matter accumulation, and yield, enhance nitrogen metabolism, promote nitrogen absorption and utilization in maize, and significantly improve nitrogen uptake.

  • 玉米作为一种重要的粮食、饲料兼经济作物,在全球范围内广泛种植和应用[1]。水分是影响玉米生长发育的重要因素,在全球气候变暖的背景下,大部分干旱和半干旱地区存在缺水的问题,从而导致农业生产灌溉水资源的不足,难以实现有效灌溉[23],因此干旱胁迫已成为影响农业生产的因素之一,探索合理的干旱解决方法具有十分重要的意义。负压灌溉(一种新型的节水灌溉技术)[4]为解决干旱胁迫的一种方式,其利用土壤毛细管作用,在灌溉管道中形成负压,通过吸水装置将水分直接输送到植物根系周围,具有节水、节肥、增产等优势[5]

    负压灌溉系统由储水桶、负压控制器、输水管道和渗水设备 4 部分组成[6],其中渗水设备为一种特制的陶土管,当土壤基质势小于供水桶存在势能差时,储水桶中的水通过输水管道从陶土管渗透到土壤中[7],在储水器上可以看到耗水量,从而记录玉米生长过程中的水分消耗情况[8]。在前人研究中,负压灌溉可以实现玉米按需供水[9],进而提高光合能力,使氧化应激反应降低[10],但关于干旱胁迫下玉米生理特性及氮代谢能力的研究较少。

    干旱胁迫会抑制玉米的光合作用,降低叶绿素含量和光合速率,导致硝酸还原酶活性降低[11];同时玉米干物质积累量减少,对氮素的吸收和利用能力降低[12],在干旱条件下,负压灌溉通过优化水分供应,增强了玉米的氮代谢能力,提升了土壤氮素含量和有效性,促进了根系对氮素的吸收利用,改善了植株水分状况,缓解了干旱对氮代谢的抑制,并优化了氮代谢过程,提高了氮素利用效率[1314]。干旱对硝酸还原酶活性及氮代谢能力有较大影响,但这种影响是直接的还是间接的还有待进一步研究。本试验利用负压灌溉系统装置实现在干旱胁迫下持续供给玉米水分,探索玉米氮吸收及氮代谢变化,经过分析在干旱胁迫下不同负压供水压力下玉米氮代谢指标的变化,可选出干旱胁迫下适宜的供水压力,为负压灌溉的推广应用提供科学依据。

    试验于2023年5—10月在黑龙江八一农垦大学试验基地防雨棚内进行。试验用玉米(Zea mays L.)品种为‘先玉335 ’。玉米栽培方式为桶栽,栽植桶规格长、宽、高分别为40、30、42 cm,每桶装干土量为33 kg,供试土壤类型为黑钙土。土壤基本理化性质为pH 8.2,有机质30.7 g/kg,碱解氮194.4 mg/kg,有效磷34.3 mg/kg,速效钾150.1 mg/kg。

    根据前期试验结果,负压灌溉−10 kPa和−15 kPa供水压力下土壤含水量分别为田间持水量的50.0%和40.0%左右,而玉米生长适宜的土壤含水量为70%~90%[5],因此−10 kPa和−15 kPa供水压力属于干旱胁迫下的负压灌溉供水压力。以此为基础,共设置4个处理: H1为干旱胁迫下负压灌溉−10 kPa处理;H2为干旱下人工浇灌,土壤水分变化区间控制在田间持水量的30.3%~50.0%;H3为干旱胁迫下负压灌溉处理−15 kPa处理;CK为对照,常规灌溉,土壤含水量控制在田间持水量的70%~90%。其中,H1和H3处理全生育期进行负压灌溉;各处理施肥量均为 N 6.0 g/桶,P2O5 3.0 g/桶,K2O 4.5 g/桶;试验所用氮肥为尿素,含氮46.0%,所用磷肥为重过磷酸钙,P2O5含量为46.0%,所用钾肥为硫酸钾,K2O 含量为50.0%。在试验开始时将3种肥料混匀作为基肥施用,试验后期不再追肥。每桶栽植1株玉米,每个处理 12桶,共计48桶。

    结合玉米生长特点,分别在拔节期,抽雄期,灌浆期和成熟期取样来测定生理指标,取样时,按照叶和根系分别取样,每个处理 3次重复。叶片样品为两部分:一部分用于硝酸还原酶测定,另一部分直接放入液氮中冷冻,然后转入−80℃的冰箱中保存,用于测定叶片生理指标。

    1)土壤含水量的测定  将盛有新鲜土样的铝盒在分析天平上称重,准确至0.01 g。置于已预热至105℃±2℃的烘箱中烘烤12 h后,置于干燥器中冷却至室温,立即称重。每个处理测定3次,取平均值作为最终结果。

    计算公式:水分(%)=(m1m2)/(m1m0)×100

    式中,m0—干空铝盒质量 (g);m1—烘干前铝盒及土样质量 (g);m2—烘干后铝盒及土样质量(g)。

    2)玉米生长指标测定  玉米株高测定:使用 5 m 钢卷尺(精度 0.1 cm)直接测定地表至玉米顶部高度,精确至 0.1 cm,每个处理测定3株取平均值作为最终结果。

    玉米茎粗测定:利用游标卡尺测定玉米第 2、3、4 节粗度,取平均值作为最终结果。每个处理测定3株玉米。

    干物质积累量测定[15]:玉米植株在取样时期取样后,分别按照根系、茎、叶、鞘、苞叶、穗、轴、籽粒等部位分开,在 105℃下杀青30 min,然后在70℃下烘干,直接称重后得到各器官干物质积累量,累加后得到玉米植株总干物质积累量。

    玉米产量及产量构成因素测定:在成熟期,直接收集剩余的3株玉米穗,脱粒后测定籽粒含水量,直接换算为玉米实际产量。同时测定玉米穗行数、穗粒数、行粒数、百粒重、秃尖长度等指标。每个处理取3株玉米产量的平均值。

    3)玉米氮代谢相关酶活性测定  硝酸还原酶活性测定采用氨基苯磺酸比色法[15]。硝酸还原酶活性[NaNO2 μg/(g·h)]=[反应液酶催化产生的NaNO2浓度 (μg/mL)/反应时加入的粗酶液体积 (mL)×提取酶时加入的缓冲液体积 (mL)]/[样品鲜重 (g)×反应时间 (h)]。

    使用分光光度法测定谷氨酸脱氢酶(GDH)活性和谷氨酸丙酮酸转氨酶(GPT)活性[16]

    硝态氮含量测定采用水杨酸比色法。

    可溶性蛋白含量测定采用考马斯亮蓝G-250染色法[17]

    数据分析及图表制作使用 Excel 2021 版软件,差异显著性检验使用 IBM SPSS Statistics V.18 (SPSS Inc., IL, USA)完成。

    图1可知,不同处理的土壤含水量在不同生育期存在较大差异。拔节期至成熟期,CK处理土壤含水量为田间持水量的80.0.%~90.4%,H1处理稳定在田间持水量的49.9%~53.0%,H2处理为田间持水量的29.1%~46.8%,H3处理为田间持水量的38.6%~41.4%。在拔节期和抽雄期,4个处理的土壤含水量均存在显著差异,而在灌浆期和成熟期H1与H2处理之间无显著差异,H2与H3处理之间无显著差异,H1处理显著高于H3处理。

    图  1  干旱胁迫下负压灌溉对土壤含水量的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。土壤含水量为实际含水量占田间持水量的百分比。
    Figure  1.  The effects of negative pressure irrigation on soil moisture content under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05). The soil moisture content is the percentage of actual moisture content to field water holding capacity.

    干旱胁迫降低了玉米株高,但负压灌溉下不同供水压力与干旱条件下人工浇灌相比,对株高的影响不同(图2)。拔节期至成熟期,H1处理株高分别较CK处理降低了24.7%、55.7%、21.4%、28.1%;H1处理较H2处理分别提高了64.4%、29.8%、19.5%、20.1%;抽雄期至成熟期,H1处理分别较H3处理提高了27.5%、22.7%、21.9%。这表明H1与H2、H3处理相比可促进玉米株高增加。

    图  2  干旱胁迫下负压灌溉对玉米株高的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  2.  The effects of negative pressure irrigation on maize plant height under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    干旱胁迫下的玉米茎粗在不同生育期表现存在较大差异(图3)。在抽雄期和成熟期,H1处理茎粗较CK处理分别显著降低了48.4%、49.3%;拔节期H1处理茎粗显著高于H2处理,其余生育时期H1与H2处理之间无显著差异,表明干旱胁迫下负压灌溉−10 kPa处理与H2处理相比仅在拔节期能够显著提高玉米茎粗。

    图  3  干旱胁迫下负压灌溉对玉米茎粗的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  3.  The effects of negative pressure irrigation on maize stem diameter under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图4可知,干旱胁迫显著降低了玉米的干物质积累量,拔节期至成熟期,H1较CK处理分别降低了53.1%、121.0%、86.2%、81.1%,差异显著;适宜负压灌溉有利于提高玉米干物质积累量,其中H1较H2处理分别提高了44.8%、32.9%、20.2%、26.7%;H1较H3处理分别提高了73.2%、55.0%、42.0%、59.2%,表明H1与H2和H3处理相比能够显著提高玉米干物质积累量。

    图  4  干旱胁迫下负压灌溉对玉米干物质积累量的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  4.  Effects of negative pressure irrigation on dry matter accumulation in maize under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图5可知,干旱胁迫降低了玉米植株氮吸收量,其中拔节期至成熟期,H1处理氮吸收量较CK处理分别降低了26.6%、74.8%、52.46%、43.5%。适宜负压灌溉会提高干旱胁迫下玉米氮吸收量,拔节期至成熟期H1较H2分别提高了151.9%、58.5%、43.1%、72.7%;H1分别较H3处理提高了135.7%、75.7%、56.8%、107.9%,表明H1对提高玉米氮吸收量效果优于H2和H3处理。

    图  5  干旱胁迫下负压灌溉对玉米氮吸收量的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  5.  The effects of negative pressure irrigation on maize nitrogen absorption under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    干旱胁迫下负压灌溉有利于提高硝酸还原酶活性(图6)。拔节期至成熟期,H1硝酸还原酶活性较CK处理分别提高了29.7%、99.9%、61.2%、24.8%;H1与H2处理相比分别提高了216.9%、427.4%、192.0%、41.6%;H1较H3处理分别提高了54.7%、94.0%、43.9%、25.8%,表明H1处理提高玉米硝酸还原酶活性效果显著优于其他处理。

    图  6  干旱胁迫下负压灌溉对玉米硝酸还原酶活性的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  6.  Effects of negative pressure irrigation on maize nitrate reductase activity under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    干旱胁迫下负压灌溉显著提高了玉米叶片内GDH活性(图7)。拔节期至成熟期,H1 GDH活性较CK处理分别提高了156.4%、118.9%、133.5%、127.7%;H1较H2处理分别提高了293.5%、255.4%、285.7%、287.8%;H1较H3处理分别提高了98.4%、84.5%、90.3%、91.2%;H3较H2处理分别提高了98.3%、92.7%、102.7%、102.8%,表明H1处理提高玉米GDH活性效果显著优于H2、H3、CK处理。

    图  7  干旱胁迫下负压灌溉对玉米谷氨酸脱氢酶(GDH)活性的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  7.  The effects of negative pressure irrigation on maize glutamate dehydrogenase (GDH) activity under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    干旱胁迫下负压灌溉与常规灌溉相比显著提高玉米GPT活性(图8)。拔节期至成熟期,H1 处理GPT活性较CK处理分别提高了53.3%、35.8%、81.8%、74.5%;H1较H2分别提高了194.3%、111.9%、152.5%、175.0%;H1较H3处理分别提高了90.9%、39.6%、22.5%、21.6%;H3较H2处理分别提高了54.2%、51.7%、106.2%、126.2%,表明H1处理提高玉米GPT活性效果显著优于H2、H3和CK。

    图  8  干旱胁迫下负压灌溉对玉米谷氨酸丙酮酸转氨酶(GPT)活性的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  8.  The effects of negative pressure irrigation on maize glutamate pyruvate transaminase (GPT) activity under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图9可知,拔节期至成熟期,H1硝态氮含量较CK处理分别提高了62.6%、91.0%、162.7%、93.1%;H1较H2处理分别提高了238.7%、195.6%、296.7%、152.3%;H1较H3处理分别提高了89.4%、52.9%、70.4%、36.9%,表明H1处理提高玉米叶片内硝态氮含量效果显著优于H2、H3和CK处理。

    图  9  干旱胁迫下负压灌溉对玉米硝态氮含量的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  9.  Effects of negative pressure irrigation on nitrate nitrogen content in maize under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图10可知,在拔节期至成熟期,H1处理氨基酸含量较CK处理分别提高了64.5%、67.2%、41.3%、67.8%;H1较H2处理分别提高了139.6%、112.2%、42.3%、29.4%,差异显著;H1较H3处理分别提高了56.3%、59.5%、15.2%、87.2%,表明H1处理提高玉米氨基酸含量效果显著优于CK、H2和H3处理。

    图  10  干旱胁迫下负压灌溉对玉米氨基酸含量的影响
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。
    Figure  10.  Effects of negative pressure irrigation on amino acid content in maize under drought stress
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    表1可知,H1处理玉米产量较H2、H3处理分别提高了206.4%、134.7%;穗行数CK较H1处理提高了31.3%,H1较H2、H3处理分别降低了6.3%、12.5%;穗粒数CK处理较H1提高了87.3%,H1较H2、H3处理分别提高了103.6%、48.5%;行粒数CK较H1降低了18.2%,H1较H2、H3处理分别提高了52.9%、27.9%;秃尖长度H1较H2、H3处理分别提高了16.3%、31.0%。综上分析来看,H1处理提高玉米产量和改善相关性状效果显著优于H2和H3处理。

    表  1  干旱胁迫下负压灌溉对玉米产量及相关性状的影响(2023年)
    Table  1.  Yield and related traits of maize under different negative pressure irrigation under drought stress during the mature stage in 2023
    处理
    Treatment
    产量
    Yield
    穗行数
    Rows per ear
    穗粒数
    Grains per ear
    行粒数
    Particles per row
    百粒重
    100-Grain weight
    秃尖长度
    Bald tip length
    CK177.04±9.26 a14.00±1.00 a497.00±22.65 a22.00±1.00 b30.59±1.27 a3.03±0.06 a
    H1172.23±7.60 a10.67±1.53 b265.33±17.47 b26.00±1.00 a29.63±2.39 a3.10±0.36 a
    H256.21±2.76 c11.33±2.08 ab130.33±7.51 d17.00±2.65 c29.95±1.32 a2.67±0.15 ab
    H373.38±6.76 b12.00±1.00 ab178.67±9.61 c20.33±1.53 bc28.51±0.56 a2.37±0.15 b
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa;表内数据为平均数±标准差。同列数据后不同小写字母表示处理之间差异显著 (P<0.05)。
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Values in the table are shown as mean ± standard deviation. Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV 
    | 显示表格

    本研究结果表明,在干旱胁迫下负压−10 kPa灌溉处理玉米的干物质积累量有所增加,这一结果与肖海强等[18]的研究结果相似,表明负压灌溉有增加干旱胁迫下玉米干物质积累量的作用,这与干旱胁迫下负压灌溉能够保证连续和稳定的水分供应有关,同时负压灌溉也会减少地表水分的蒸发,从而提高水分利用效率,因此有利于促进玉米生长并提高产量,同时这也是负压灌溉−10 kPa干物质积累量和产量高于干旱下人工浇灌处理的重要原因[19]。作物较高的干物质积累量有利于最终产量的提高[20],因此提高玉米干物质积累的栽培措施也有利于玉米增产。从本试验结果来看,干旱胁迫下负压灌溉−10 kPa干物质积累量显著高于H2和H3处理,这也是H1产量高于H2和H3处理的重要原因。

    玉米氮吸收和利用能力高低也与玉米产量相关,负压灌溉可提高植物氮吸收量,从而也有利于增产[5, 21]。本研究结果表明,在干旱胁迫下适宜负压灌溉处理氮吸收量明显高于干旱下人工浇灌处理,这与张吉立[5]先前的研究结果相似,分析原因认为这可能与负压灌溉可提高转运蛋白活性有关[11]。玉米氮吸收量增加改善了玉米氮营养条件,从而有利于产量提高[22]

    硝酸还原酶、谷氨酸丙酮酸转氨酶(GPT)、谷氨酸脱氢酶(GDH)是参与植物氮代谢过程的重要酶类,其活性变化对玉米氮代谢能力有直接影响。本试验结果表明,干旱胁迫下负压灌溉可以提高这3种氮代谢相关酶活性,同时也提高了硝态氮和氨基酸含量,这与张吉立等[11]的结果一致。硝态氮是植物根系吸收的主要氮源,也是硝酸还原酶的底物,硝态氮在叶片中的含量变化会起到调节硝酸还原酶活性的作用。玉米叶片内较高的硝态氮含量会显著提高硝酸还原酶活性,从而提高植物氮还原能力,促进氨基酸的合成,有利于玉米对氮的利用[23]

    GDH是谷氨酸合成与代谢过程的关键酶,其活性变化与植物对氨的利用能力高低有关。玉米氮同化过程中会产生大量的NH4+,过多的NH4+会对植物的生长产生毒害作用。在NH4+浓度较高的情况下,GDH活性升高,从而促进谷氨酸的合成,并增加脯氨酸的数量,从而提高植物的耐逆性,降低NH4+对植物的毒害作用[24]。本试验结果表明,干旱胁迫下负压灌溉显著提高了玉米GDH的活性,这对提高玉米氮代谢能力和抵抗干旱胁迫具有重要意义。

    转氨基作用是植物体内重要的氮代谢过程,谷氨酸丙酮酸转氨酶(GPT)是植物体内转氨基作用过程的重要酶,其活性变化会对植物转氨基过程产生影响。本试验结果表明,干旱胁迫下负压灌溉可以提高玉米GPT活性,从而提高了玉米转氨基作用,有利于氨基酸的合成,这也是H1氨基酸含量高于H2和H3的重要原因[25]。本试验中−10 kPa处理氮代谢相关酶活性和氨基酸含量显著高于−15 kPa和干旱下人工浇灌处理,表明−10 kPa是本试验中提高干旱胁迫下玉米氮代谢能力的适宜供水压力。

    本试验中,负压灌溉−10 kPa处理和−15 kPa处理的土壤含水量保持相对稳定,其中−10 kPa处理使玉米处于轻度干旱条件,−15 kPa使玉米处于中度干旱条件,而T2则使玉米在轻度和重度干旱范围内变化,对照则使玉米始终处于适宜的土壤含水量范围[26],因此导致H1、H2、H3处理的干物质积累量和产量均低于对照。另外,尽管本试验中−10 kPa处理使玉米始终处于轻度干旱胁迫状态,但是玉米产量−10 kPa与CK之间无显著差异,这可能与−10 kPa处理显著提高了玉米氮代谢能力并改善了玉米氮营养状况有关。同时−10 kPa和CK两个处理产量均显著高于−15 kPa和干旱胁迫下人工浇灌处理,这一试验结果表明在干旱条件下负压灌溉−10 kPa缓解玉米干旱胁迫并提高产量的效果明显优于干旱胁迫下人工浇灌处理。

    综上所述,干旱胁迫下负压灌溉可促进玉米生长并提高氮吸收量,与其在生育期内提高了玉米氮代谢能力直接相关。国内外关于负压灌溉的研究目前仍然处于初步探索阶段,其装置并不适合于农田中大面积推广应用,主要原因是负压灌溉系统装置成本太高,但负压灌溉技术仍然具有广阔的应用前景,有关负压灌溉技术的理论知识、实践应用都有待进一步研究和探讨。

    干旱胁迫下负压灌溉可使土壤含水量处于相对稳定状态,增强了玉米氮代谢能力,促进玉米对氮的吸收和利用,有利于玉米生长发育,提高干物质积累量和产量,其中−10 kPa为玉米在持续干旱胁迫下的适宜供水压力。

  • 图  1   干旱胁迫下负压灌溉对土壤含水量的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。土壤含水量为实际含水量占田间持水量的百分比。

    Figure  1.   The effects of negative pressure irrigation on soil moisture content under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05). The soil moisture content is the percentage of actual moisture content to field water holding capacity.

    图  2   干旱胁迫下负压灌溉对玉米株高的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  2.   The effects of negative pressure irrigation on maize plant height under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  3   干旱胁迫下负压灌溉对玉米茎粗的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  3.   The effects of negative pressure irrigation on maize stem diameter under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  4   干旱胁迫下负压灌溉对玉米干物质积累量的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  4.   Effects of negative pressure irrigation on dry matter accumulation in maize under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  5   干旱胁迫下负压灌溉对玉米氮吸收量的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  5.   The effects of negative pressure irrigation on maize nitrogen absorption under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  6   干旱胁迫下负压灌溉对玉米硝酸还原酶活性的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  6.   Effects of negative pressure irrigation on maize nitrate reductase activity under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  7   干旱胁迫下负压灌溉对玉米谷氨酸脱氢酶(GDH)活性的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  7.   The effects of negative pressure irrigation on maize glutamate dehydrogenase (GDH) activity under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  8   干旱胁迫下负压灌溉对玉米谷氨酸丙酮酸转氨酶(GPT)活性的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  8.   The effects of negative pressure irrigation on maize glutamate pyruvate transaminase (GPT) activity under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  9   干旱胁迫下负压灌溉对玉米硝态氮含量的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  9.   Effects of negative pressure irrigation on nitrate nitrogen content in maize under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    图  10   干旱胁迫下负压灌溉对玉米氨基酸含量的影响

    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa。柱上不同小写字母表示同一时期不同处理之间差异显著(P<0.05)。

    Figure  10.   Effects of negative pressure irrigation on amino acid content in maize under drought stress

    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Different lowercase letters above the bars indicate significant difference among treatments during the same stage (P<0.05).

    表  1   干旱胁迫下负压灌溉对玉米产量及相关性状的影响(2023年)

    Table  1   Yield and related traits of maize under different negative pressure irrigation under drought stress during the mature stage in 2023

    处理
    Treatment
    产量
    Yield
    穗行数
    Rows per ear
    穗粒数
    Grains per ear
    行粒数
    Particles per row
    百粒重
    100-Grain weight
    秃尖长度
    Bald tip length
    CK177.04±9.26 a14.00±1.00 a497.00±22.65 a22.00±1.00 b30.59±1.27 a3.03±0.06 a
    H1172.23±7.60 a10.67±1.53 b265.33±17.47 b26.00±1.00 a29.63±2.39 a3.10±0.36 a
    H256.21±2.76 c11.33±2.08 ab130.33±7.51 d17.00±2.65 c29.95±1.32 a2.67±0.15 ab
    H373.38±6.76 b12.00±1.00 ab178.67±9.61 c20.33±1.53 bc28.51±0.56 a2.37±0.15 b
    注:CK―常规灌溉无干旱处理;H1―干旱胁迫下负压灌溉处理,负压供水压力为−10 kPa;H2―干旱下人工浇灌;H3―干旱胁迫下负压灌溉处理,负压供水压力为−15 kPa;表内数据为平均数±标准差。同列数据后不同小写字母表示处理之间差异显著 (P<0.05)。
    Note: CK—Conventional irrigation without drought treatment; H1—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −10 kPa; H2—Artificial irrigation under drought conditions; H3—Negative pressure irrigation treatment under drought stress, with a negative pressure water supply pressure of −15 kPa. Values in the table are shown as mean ± standard deviation. Different lowercase letters after data in a column indicate significant difference among treatments (P<0.05).
    下载: 导出CSV
  • [1]

    Zhang J L, Wang P, Long H Y, et al. Metabolomics analysis reveals the physiological mechanism underlying growth restriction in maize roots under continuous negative pressure and stable water supply[J]. Agricultural Water Management, 2022, 263(4): 107452.

    [2] 王婧, 郑粉莉, 赵苗苗, 等. CO2浓度倍增、增温和轻度干旱对冬小麦根系生长和氮素吸收的影响[J]. 植物营养与肥料学报, 2022, 28(1): 1977−1989.

    Wang J, Zheng F L, ZhaoM M. Effects of CO2 doubling, warming, and light drought stress on root growth and nitrogen uptake of winter whea[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(11): 1977−1989.

    [3] 李强. 基于遥感与模型同化的逐栅格冬小麦干旱风险评估[D]. 北京: 中国农业科学院博士学位论文, 2023.

    Li Q. Drought risk assessment of grid by grid winter wheat based on remote sensing and model assimilation[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2023.

    [4] 李生平, 武雪萍, 龙怀玉, 等. 负压水肥一体化灌溉对黄瓜产量和水、氮利用效率的影响[J]. 植物营养与肥料学报, 2017, 23(2): 416−426.

    Li S P, Wu X P, Long H Y, et al. Water and nitrogen use efficiencies of cucumber under negatively pressurized fertigation[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 416−426.

    [5] 张吉立. 连续负压供水对玉米生长调控和提高水分利用效率的机制[D]. 黑龙江: 黑龙江八一农垦大学博士学位论文, 2024.

    Zhang J L. The mechanism of continuous negative pressure water supply on maize growth regulation and improvement of water use efficiency[D]. Heilongjiang: PhD Dissertation of Heilongjiang Bayi Agricultural and Reclamation University, 2024.

    [6]

    Olivia L P, Matike G, Ganoudi M, et al. Rhizophagus irregularis MUCL 41833 improves phosphorus uptake and water use efficiency in maize plants during recovery from drought stress[J]. Frontiers in Plant Science, 2019, 10(16): 897−908.

    [7] 黄梦琪. 不同负压供水灌溉对番茄产量及水分利用效率的影响[J]. 陕西农业科学, 2021, 67(1): 14−17.

    Huang M Q. Effects of irrigation with different negative pressures on tomato yield and water use efficiency[J]. Shaanxi Journal of Agricultural Sciences, 2021, 67(1): 14−17.

    [8] 孙建好, 李伟绮, 赵建华, 等. 一种适时灌溉系统[Z]. 甘肃: 甘肃省农业科学院土壤肥料与节水农业研究所, 2022-12-01.

    Sun J H, Li W Q, Zhao J H, et al. A timely irrigation system[Z]. Gansu: Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, 2022-12-01.

    [9] 徐莹, 关晋宏, 邓磊. 高寒半干旱区沙地植被土壤水分变化特征及其影响因素[J]. 生态学报, 2024, 44(13): 5554−5566.

    Xu Y, Guan J H, Deng L. Characteristics and influencing factors of soil moisture changes in sandy vegetation in alpine and semiarid areas[J]. Acta Ecologica Sinica, 2024, 44(13): 5554−5566.

    [10] 张新星, 杨振杰, 彭云, 等. 我国节水灌溉的现状与分析[J]. 安徽农业科学, 2014, 42(33): 11972−11974.

    Zhang X X, Yang Z J, Peng Y, et al. Status and analysis of water-saving irrigation in China[J]. Journal of Anhui Agricultural Sciences, 2014, 42(33): 11972−11974.

    [11] 张吉立, 冀金凤, 龙怀玉, 王鹏. 连续负压供水对玉米氮素吸收、叶片硝酸还原酶活性及根际氮素供应的影响[J]. 植物营养与肥料学报, 2023, 29(8): 1411−1422.

    Zhang J L, Ji J F, Long H Y, Wang P. Effects of continuous negative pressure water supply on maize nitrogen uptake, leaf nitrate reductase activity and rhizosphere nitrogen supply[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(8): 1411−1422.

    [12] 李广浩, 董树亭, 赵斌, 等. 不同土壤水分状况下实现夏玉米高产及氮素高效的控释尿素用量研究[J]. 植物营养与肥料学报, 2018, 24(3): 579−589.

    Li G H, Dong S T, Zhao B, et al. Optimal application rates of controlled release urea for high yield and high nitrogen use efficiency of summer maize under different soil water conditions[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(3): 579−589.

    [13] 伍超, 邹鑫, 王辉, 等. 负压灌溉下土壤水分运移特性及氮素分布规律研究[J]. 灌溉排水学报, 2019, 38(6): 44−49.

    Wu C, Zou X, Wang H, et al. Water flow and nitrogen distribution in soil under negative-pressure irrigation[J]. Journal of Irrigation and Drainage, 2019, 38(6): 44−49.

    [14] 张志民. 负压灌溉及土壤调理剂对土壤水分和玉米生长影响[D]. 内蒙古: 内蒙古农业大学硕士学位论文, 2022.

    Zhang Z M. The effects of negative pressure irrigation and soil conditioning agents on soil moisture and maize growth[D]. Inner Mongolia: MS Thesis of Inner Mongolia Agricultural University, 2022.

    [15]

    Zhang J L, Wang P, Ji J F, et al. Transcriptome analysis reveals the molecular mechanism of yield increases in maize under stable soil water supply[J]. PLoS ONE, 2021, 16(9): e0257756. DOI: 10.1371/journal.pone.0257756

    [16] 杨奇, 闫泽川, 冯嘉, 等. 氮肥类型与施氮量对玉米干物质及氮素积累的影响[J]. 江苏农业科学, 2024, 52(7): 86−93.

    Yang Q, Yan Z C, Feng J, et al. Effects of nitrogen fertilizer type and nitrogen application rate on dry matter and nitrogen accumulation of maize[J]. Jiangsu Agricultural Sciences, 2024, 52(7): 86−93.

    [17] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.

    Zou Q. Experimental guidance on plant physiology[M]. Beijing: China Agricultural Publishing House, 2000.

    [18] 肖海强, 丁亚会, 黄楚瑜, 等. 负压灌溉对烤烟生长及水肥利用率的影响[J]. 中国烟草学报, 2016, 22(2): 52−60.

    Xiao H Q, Ding Y H, Huang C Y, et al. Effect of negative-pressure irrigation on water fertilizer utilization and flue-cured tobacco growth[J]. Acta Tabacaria Sinica, 2016, 22(2): 52−60.

    [19] 蔡耀辉, 吴普特, 张林, 等. 无压条件下微孔陶瓷灌水器入渗特性模拟[J]. 水利学报, 2017, 48(6): 730−737.

    Cai Y H, Wu P T, Zhang L, et al. Simulation of infiltration characteristics of porous ceramic emitter under non-pressure condition[J]. Journal of Hydraulic Engineering, 2017, 48(6): 730−737.

    [20] 龙怀玉, 武雪萍, 张淑香, 等. 作物主动汲水技术内涵与研究进展[J]. 农业工程学报, 2020, 36(23): 139−152.

    Long H Y, Wu X P, Zhang S X, et al. Connotation and research progress of crop initiate water drawing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(23): 139−152.

    [21]

    He X L, Zhang J Y, Long H Y, Wang P. Effect of negative pressure irrigation on dry matter accumulation and nutrient absorption of eggplant[J]. Journal of Biobased Materials and Bioenergy, 2022, 16(1): 48−55. DOI: 10.1166/jbmb.2022.2163

    [22] 马艳华, 任秀娟, 杨慎骄, 等. 负压供水下水氮耦合对温室辣椒品质及产量的影响[J]. 灌溉排水学报, 2017, 36(5): 17−20.

    Ma Y H, Ren X J, Yang S J, et al. Effect of fertigation by keeping irrigating water under negative pressure on quality and yield of pepper grown in greenhouse[J]. Journal of Irrigation and Drainage, 2017, 36(5): 17−20.

    [23] 张智猛, 戴良香, 胡昌浩, 等. 灌浆期不同水分处理对玉米籽粒蛋白质及其组分和相关酶活性的影响[J]. 植物生态学报, 2007, 31(4): 720−728. DOI: 10.17521/cjpe.2007.0092

    Zhang Z M, Dai L X, Hu C H, et al. Effect of water on protein, protein composition and related enzyme activity in different types of maize[J]. Chinese Journal of Plant Ecology, 2007, 31(4): 720−728. DOI: 10.17521/cjpe.2007.0092

    [24] 常晓, 张云龙, 徐翎清, 等. 不同氮素形态配比对甜菜氮同化关键酶的影响[J/OL]. 作物杂志, 1−9. [2024−06−23]. http://kns.cnki.net/kcms/detail/11.1808.S.20240318.1817.002.html.

    Chang X, Zhang Y L, Xu L Q, et al. Effects of different nitrogen form ratio on key enzymes of nitrogen assimilation in sugar beet[J/OL]. Crops, 1−9 [2024-06-23]. http://kns.cnki.net/kcms/detail/11.1808.S.20240318.1817.002.html.

    [25] 吴良欢, 蒋式洪, 陶勤南. 植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J]. 土壤通报, 1998, 29(3): 41−43.

    Wu L H, Jiang S H, Tao Q N. Colorimetric determination method and application of plant transaminase (GOT and GPT) activity[J]. Chinese Journal of Soil Science, 1998, 29(3): 41−43.

    [26] 王相玲. 负压灌溉对土壤水分分布与油菜水分利用的影响[D]. 北京: 中国农业科学院硕士学位论文, 2015.

    Wang X L. Effects of negative pressure irrigation on soil moisture distribution and rapeseed water use[D]. Beijing: MS Thesis of Chinese Academy of Agricultural Sciences, 2015.

图(10)  /  表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  15
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-16
  • 录用日期:  2024-09-10
  • 网络出版日期:  2024-10-11
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回