Effects of phosphorus and potassium fertilizer application strategies on grain yield, quality and nutrient absorption of medium and strong-gluten wheat in rice-wheat system
-
摘要:目的
探究秸秆还田条件下,磷钾肥用量和施用模式对稻茬中强筋小麦产量与品质的调控效应,为小麦优质高产栽培提供养分管理技术支撑。
方法2022—2023 年在江苏省江都区进行小麦田间试验,种植制度为稻麦轮作,稻麦秸秆全部还田。以中强筋品种扬麦39为材料,施氮量均为N 240 kg/hm2,设置磷钾肥全量单施、全量配施、半量配施、基追分施,以及施用不同类型肥料等9个处理,在开花前、后期,取样分析氮磷钾含量,小麦收获后,调查籽粒产量,分析营养品质与加工品质及籽粒氮、磷、钾素含量。
结果与不施磷钾肥对照相比,所有8个磷钾肥处理均不同程度地提高了籽粒产量、品质和氮磷钾积累量,且不同施肥模式间差异明显。全量磷钾肥(P2O5 120 kg/hm2 、K2O 120 kg/hm2)基追各半处理的增产幅度最高,且用单质磷钾肥处理与复合肥处理的增产效果没有显著差异,分别为61%、65%;其次为一次性基施全量磷钾肥,再次为全量磷肥单独基施和半量磷钾肥配合基施,全量钾肥基施和半量磷钾肥配合追施的增产效果最低。从品质看,全量磷钾肥配合基追各半的两个处理,其籽粒蛋白质、湿面筋、硬度和沉降值均显著高于其他处理,谷蛋白与醇溶蛋白比值较高,且复合肥处理的蛋白质含量还显著高于单质磷钾肥全量配合基施。两个全量磷钾肥基追分施处理的花前、花后氮积累量,花前氮素的转移量,花前磷钾素的积累量和转移量均高于其他处理,其次是全量磷钾基施处理,半量磷钾配合处理促进养分吸收运转的效果低于全量磷处理。一次性基施钾肥能够显著提升钾素积累量。
结论强筋小麦的优质高产依赖于充足的磷肥供应,全量磷钾肥一半在播种前基施,一半在拔节期追施,最有利于提升小麦氮、磷、钾营养元素的吸收与转运,并在增加籽粒产量和总蛋白量的同时,提高谷蛋白和醇溶蛋白比例,进而提高面粉的湿面筋含量以及面粉硬度、沉降值。同样施肥量和施肥方法下,复合肥的效果优于单质肥料。
Abstract:ObjectivesInvestigating the regulatory impact of phosphorus (P) and potassium (K) application patterns on grain yield and quality of medium and strong-gluten wheat can offer technological support for high-quality, high-yield cultivation of wheat in a rice-wheat system.
MethodsA wheat field experiment was conducted in Jiangdu District, Jiangsu Province during 2022−2023. The cultivation system was rice-wheat rotation, with all the rice and wheat straw being consistently returned to the field. Yangmai 39, a medium-strong gluten variety, was utilized as the experimental material. The nine treatments of P and K fertilizers were composed of single application, combined application, basal and top-dressing application, single nutrient fertilizers and compound fertilizer (N−P2O5−K2O2 15%−15%−15%). Before and after anthesis stage, plant samples were collected for determination of N, P and K contents and accumulation. At harvest, the yield and yield components were investigated, and the grain nutrition and procession quality were measured.
ResultsApplication of P and K fertilizers significantly improved grain yield, quality, and nutrient accumulation, and significant differences were observed among the treatments. Compared to the control without P and K fertilizers, the split application of total amount of P and K fertilizers (120 kg/hm2 for both) half as the basal and half as topdressing were recorded the highest grain yield, with the yield increase of 61% by applying single fertilizer and 65% by applying compound fertilizer. Total amount of P and K fertilizer in basal application were recorded the second high yield levels, while total K in base application alone was recorded the lowest yield effect. Split application of total PK fertilizers also increased grain total protein content, and the ratio of gluten to alcohol-soluble gluten, thereby improved the procession quality indexes like wet-gluten content, hardness, and sedimentation value. Like yield results, compound fertilizer showed better effect than the single fertilizers at the same application amount and method. The split application of PK fertilizers stimulated the N, P and K accumulation before and after anthesis stage, and the transportation of N and P accumulated before anthesis.
ConclusionsHigh amount of P and K fertilizers applied half in base and half as topdressing is most conducive to enhancing the absorption and translocation of nitrogen, phosphorus, and potassium nutrients in wheat, elevating grain yield and total protein content. The method also increase the ratio of glutenin and gliadin, thereby improving the wet gluten content, hardness, and sedimentation value of the flour. With the same amount and method of fertilizer application, compound fertilizers are more effective than single-nutrient fertilizers. Basal applying potassium fertilizer only increases potassium absorption in wheat but does not enhance yield or quality.
-
Keywords:
- medium-strong-gluten wheat /
- phosphorus fertilizer /
- potassium fertilizer /
- yield /
- quality
-
-
图 1 小麦开花期植株磷、钾素积累量与氮素吸收利用、籽粒产量和品质的关系
注: 图(a)展示养分吸收和转运量、籽粒产量和品质间相关性分析,**表示在0.01水平相关显著。图(b)展示合理施用磷钾肥促进小麦产质量协同提升的技术途径概念图。
Figure 1. Relationship between plant P and K accumulation at anthesis stage and N uptake and utilization, grain yield and quality of wheat
Note: Figure (a) illustrates the correlation analysis between nutrient absorption and translocation, grain yield, and grain quality. ** indicates a significant correlation at the 0.01 level. Figure (b) provides a conceptual diagram outlining the technical strategy for enhancing grain yield and quality through optimized phosphorus and potassium fertilization.
表 1 不同施肥处理供试肥料种类、施用量和方法
Table 1 The types, application rates and methods of chemical fertilizers in each treatment
处理 Treatment 缩写
Abbreviation肥料
FertilizerP2O5 (kg/hm2) K2O (kg/hm2) 基施
Basal追施
Topdressing基施
Basal追施
Topdressing未施磷钾肥对照
Not applying P or K fertilizerP0K0 0 0 0 0 全量磷肥基施
Basal applying P at full doseP2K0 磷酸氢二铵
(NH4)2HPO4120 0 0 0 全量钾肥基施
Basal applying K at full doseP0K2 氯化钾 KCl 0 0 120 0 半量磷钾肥基施
Basal applying P and K at half doseP1K1 KCl, (NH4)2HPO4 60 0 60 0 半量磷钾肥追施
Topdressing P and K at half doseP0K0+P1K1 KCl, (NH4)2HPO4 0 60 0 60 全量磷钾肥基施
Basal applying P and K at full doseP2K2 KCl, (NH4)2HPO4 120 0 120 0 全量磷钾肥基追各半
Applying whole P and K fertilizer half as basal
and half as topdressingP1K1+P1K1 KCl, (NH4)2HPO4 60 60 60 60 全量磷钾复合肥基施
Basal applying PK compound fertilizer at full doseCP2K2 复合肥
Compound fertilizer120 0 120 0 全量磷钾复合肥基追各半
Applying PK compound fertilizer half as basal
and half as topdressingCP1K1+CP1K1 复合肥
Compound fertilizer60 60 60 60 注:复合肥N−P2O5−K2O为15%−15%−15%。
Note: The N−P2O5−K2O in the test compound fertilizer is 15%−15%−15%表 2 不同磷钾肥施用模式下小麦籽粒产量及其构成
Table 2 Grain yield and yield components of wheat under different P and K fertilizer application strategies
处理 Treatment 穗数 (×104/hm2)
Spike number每穗粒数
Grains per spike千粒重 (g)
1000-grain weight籽粒产量 (kg/hm2)
Grain yieldP0K0 357.1 e 31.4 g 50.1 bc 5435 f P2K0 419.2 c 33.5 ef 51.6 a 7557 cd P0K2 374.8 de 33.1 f 49.5 bc 6022 e P1K1 391.0 cd 39.9 b 49.9 bc 7446 d P0K0+P1K1 356.8 e 33.9 e 50.6 ab 6073 e P2K2 464.7 b 38.3 d 48.9 cd 7932 b P1K1+P1K1 511.7 a 38.9 c 47.7 d 8975 a CP2K2 398.1 cd 42.7 a 50.2 bc 7730 bc CP1K1+CP1K1 506.6 a 37.7 d 45.8 e 8729 a 方差分析 ANOVA 31.4** 352.8** 16.6** 220.3** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level.表 3 不同磷钾肥施用模式下小麦籽粒品质
Table 3 Grain quality of wheat under different P and K fertilizer application strategies
处理 Treatment 蛋白质 (%)
Protein湿面筋 (%)
Wet-gluten容重 (g/L)
Unit weight硬度 (%)
Hardness出粉率 (%)
Flour yield沉降值 (mL)
Sedimentation valueP0K0 13.2 f 30.5 d 797.0 c 68.6 e 70.5 c 29.6 g P2K0 15.1 cd 37.1 b 810.0 a 74.2 bcd 74.6 a 35.9 cd P0K2 13.7 e 34.5 c 810.5 a 73.1 d 72.8 b 32.4 f P1K1 14.7 d 36.5 b 815.0 a 73.5 d 73.5 ab 35.0 de P0K0+P1K1 14.1 e 35.0 c 801.0 bc 73.9 cd 70.2 c 33.6 ef P2K2 15.4 bc 37.3 b 817.5 a 74.9 bc 72.3 b 37.0 bc P1K1+P1K1 15.9 b 39.4 a 815.5 a 77.0 a 72.8 b 38.5 ab CP2K2 15.7 b 37.5 b 808.5 ab 75.3 b 74.6 a 37.5 bc CP1K1+CP1K1 16.5 a 40.1 a 817.5 a 77.4 a 73.0 b 39.8 a 方差分析 ANOVA 51.2** 52.7** 8.0** 41.0** 12.7** 23.0** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level.表 4 不同磷钾肥施用模式下籽粒的蛋白质组成
Table 4 Composition of grain proteins under different P and K fertilizer application strategies
处理 Treatment 清蛋白 (%)
Albumin球蛋白 (%)
Globulin醇溶蛋白 (%)
Alcohol-soluble protein谷蛋白 (%)
Gluten谷蛋白/醇溶蛋白
Gluten/alcohol-soluble proteinP0K0 1.7 e 1.6 e 4.2 bc 5.0 f 1.2 ef P2K0 2.3 c 2.3 bc 4.1 bc 6.1 d 1.5 c P0K2 2.0 d 2.0 d 4.5 a 5.1 f 1.1 f P1K1 2.6 b 2.7 a 4.0 c 5.3 e 1.3 d P0K0+P1K1 2.1 d 2.1 cd 4.0 c 5.0 f 1.3 de P2K2 2.6 b 2.5 ab 4.1 bc 6.2 cd 1.5 bc P1K1+P1K1 3.1 a 2.2 bc 4.0 c 6.5 b 1.6 b CP2K2 2.1 d 2.7 a 4.4 ab 6.3 c 1.4 c CP1K1+CP1K1 3.1 a 2.2 cd 4.0 c 6.9 a 1.7 a 方差分析 ANOVA 59.4** 49.6** 31.5** 88.1** 44.0** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level.表 5 不同磷钾肥施用模式对小麦氮素吸收利用的影响 (kg/hm2)
Table 5 Effects of different P and K fertilizer application strategies on N absorption and utilization in wheat
处理 Treatment 开花期
氮素积累量
N accumulation at
anthesis stage成熟期
氮素积累量
N accumulation at
maturity stage花前积累氮素向
籽粒转运量
Transportation of
ANPA to grains花后氮素积累量
N accumulation at
post-anthesis籽粒氮素积累量
N accumulation
in grainsP0K0 141.1 f 160.8 f 126.2 e 19.7 de 145.9 e P2K0 171.0 d 198.5 d 148.1 c 27.5 bc 175.6 c P0K2 152.1 e 168.2 e 135.3 d 16.2 e 151.5 e P1K1 167.1 d 192.8 d 147.8 c 25.8 cd 173.5 c P0K0+P1K1 148.5 e 172.5 e 136.8 d 24.0 cd 160.8 d P2K2 178.7 c 219.0 c 165.2 b 40.3 a 205.5 b P1K1+P1K1 185.6 ab 226.9 b 175.2 a 41.3 a 216.5 a CP2K2 182.0 bc 214.7 c 165.7 b 32.7 b 198.5 b CP1K1+CP1K1 188.5 a 234.9 a 176.2 a 46.4 a 222.6 a 方差分析 ANOVA 173.7** 161.6** 230.2** 30.0** 170.0** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: ANPA—N accumulation at pre-anthesis. P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level.表 6 不同磷钾肥施用模式对小麦磷素吸收利用的影响 (kg/hm2)
Table 6 Effects of different P and K fertilizer application strategies on P absorption and utilization in wheat
处理
Treatment开花期
磷素积累量
P accumulation at
anthesis stage成熟期
磷素积累量
P accumulation at
maturity stage花前积累磷素向
籽粒转运量
Transportation of
APPA to grains花后磷素积累量
P accumulation at
post-anthesis籽粒磷素
积累量
P accumulation
in grainsP0K0 16.1 f 28.6 f 10.3 f 12.5 a 22.8 g P2K0 27.9 c 34.9 de 23.2 cd 7.0 d 30.2 d P0K2 19.9 e 31.7 e 13.8 e 11.8 abc 25.6 f P1K1 25.1 d 33.0 de 21.3 d 7.9 d 29.2 de P0K0+P1K1 20.9 e 33.1 de 15.4 e 12.2 ab 27.6 e P2K2 27.1 cd 36.1 cd 23.1 cd 8.9 d 32.0 c P1K1+P1K1 32.0 b 40.8 b 26.9 ab 8.8 d 35.7 ab CP2K2 29.1 c 38.8 bc 24.7 bc 9.7 bcd 34.4 b CP1K1+CP1K1 35.3 a 44.5 a 27.8 a 9.1 cd 36.9 a 方差分析 ANOVA 62.7** 27.4** 51.1** 6.1** 72.7** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: APPA—P accumulation at pre-anthesis. P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level.表 7 不同磷钾肥施用模式对小麦钾素吸收转运的影响 (kg/hm2)
Table 7 Effects of different P and K fertilizer application strategies on K absorption and utilization in wheat
处理
Treatment开花期钾素积累
K accumulation at anthesis stage成熟期钾素积累量
K accumulation at maturity stage籽粒钾素积累量
K accumulation in grainsP0K0 163.0 f 124.2 h 18.7 e P2K0 184.9 e 156.1 f 21.9 cd P0K2 202.7 c 173.0 d 23.5 bc P1K1 193.4 d 168.7 e 25.2 b P0K0+P1K1 183.7 e 151.1 g 20.0 de P2K2 226.7 b 180.4 c 31.6 a P1K1+P1K1 228.6 ab 188.0 ab 31.9 a CP2K2 232.5 ab 185.3 b 32.6 a CP1K1+CP1K1 236.2 a 189.4 a 32.3 a 方差分析 ANOVA 102.6** 599.2** 55.1** 注:P0K0—未施磷钾肥对照;P2K0—全量磷肥基施;P0K2—全量钾肥基施;P1K1—半量磷钾肥基施;P0K0+P1K1—半量磷钾肥追施;P2K2—全量磷钾肥基施;P1K1+P1K1—全量磷钾肥基追各半;CP2K2—全量磷钾复合肥基施;CP1K1+CP1K1—全量磷钾复合肥基追各半。同列数据后不同小写字母表示处理间差异显著 (P<0.05)。**表示施肥效应达到0.01显著水平。
Note: P0K0—Not applying P or K fertilizer; P2K0—Basal applying P at full dose; P0K2—Basal applying K at full dose; P1K1—Basal applying P and K at half dose; P0K0+P1K1—Topdressing P and K at half dose; P2K2—Basal applying P and K at full dose; P1K1+P1K1—Applying whole P and K fertilizer half as basal and half as topdressing; CP2K2—Basal applying PK compound fertilizer at full dose; CP1K1+CP1K1—Applying PK compound fertilizer half as basal and half as topdressing. Different lowercase letters after data in a column indicate significant difference among treatments at 0.05 level. ** indicates the fertilization effect is significant at 0.01 level. -
[1] 刘守英, 王宝锦, 程果. 农业要素组合与农业供给侧结构性改革[J]. 社会科学战线, 2021, (10): 56−63. Liu S Y, Wang B J, Cheng G, et al. Combination of agricultural elements and structural reform of agricultural supply side[J]. Social Science Front, 2021, (10): 56−63.
[2] 金欣欣, 姚艳荣, 贾秀领, 等. 基因型和环境对小麦产量、品质和氮素效率的影响[J]. 作物学报, 2019, 45(4): 635−644. DOI: 10.3724/SP.J.1006.2019.81072 Jin X X, Yao Y R, Jia X L, et al. Effects of genotype and environment on wheat yield, quality, and nitrogen use efficiency[J]. Acta Agronomica Sinica, 2019, 45(4): 635−644. DOI: 10.3724/SP.J.1006.2019.81072
[3] 易媛, 张会云, 刘东涛, 等. 不同播期下春季追肥方式对冬小麦产量及群体性状的影响[J]. 中国土壤与肥料, 2022, (8): 158−164. DOI: 10.11838/sfsc.1673-6257.21344 Yi Y, Zhang H Y, Liu D T, et al. Effects of spring topdressing on grain yield and population characteristics of winter wheat at different sowing dates[J]. Soil and Fertilizer Sciences in China, 2022, (8): 158−164. DOI: 10.11838/sfsc.1673-6257.21344
[4] 汤明尧, 沈重阳, 陈署晃, 等. 新疆小麦、玉米的产量和氮磷钾肥利用效率[J]. 中国农业科学, 2022, 55(14): 2762−2774. DOI: 10.3864/j.issn.0578-1752.2022.14.007 Tang M Y, Shen C Y, Chen S H, et al. Yield of wheat and maize and utilization efficiency of nitrogen, phosphorus and potassium in Xinjiang[J]. Scientia Agricultura Sinica, 2022, 55(14): 2762−2774. DOI: 10.3864/j.issn.0578-1752.2022.14.007
[5] 王西娜, 于金铭, 谭军利, 等. 宁夏引黄灌区春小麦氮磷钾需求及化肥减施潜力[J]. 中国农业科学, 2020, 53(23): 4891−4903. DOI: 10.3864/j.issn.0578-1752.2020.23.014 Wang X N, Yu J M, Tan J L, et al. Requirement of nitrogen, phosphorus and potassium and potential of reducing fertilizer application of spring wheat in Yellow River irrigation area of Ningxia[J]. Scientia Agricultura Sinica, 2020, 53(23): 4891−4903. DOI: 10.3864/j.issn.0578-1752.2020.23.014
[6] Luo L C, Zhang X Y, Zhang M, et al. Improving wheat yield and phosphorus use efficiency through the optimization of phosphorus fertilizer types based on soil P pool characteristics in calcareous and non-calcareous soil[J]. Agronomy, 2023, 13(3): 928. DOI: 10.3390/agronomy13030928
[7] Longshang P R, Singh V P, Chandra S, et al. Optimization of nitrogen management reduce nitrogen stress and enhance productivity of super-seeder sown wheat under rice residue incorporation[J]. Discover Applied Sciences, 2024, 6(4): 211. DOI: 10.1007/s42452-024-05823-3
[8] 向晓玲, 陈松鹤, 杨洪坤, 等. 秸秆覆盖与施磷对丘陵旱地小麦产量和磷素吸收利用效应的影响[J]. 中国农业科学, 2021, 54(24): 5194−5205. DOI: 10.3864/j.issn.0578-1752.2021.24.003 Xiang X L, Chen S H, Yang H K, et al. Effects of straw mulching and phosphorus application on wheat yield, phosphorus absorption and utilization in hilly dryland[J]. Scientia Agricultura Sinica, 2021, 54(24): 5194−5205. DOI: 10.3864/j.issn.0578-1752.2021.24.003
[9] 赵士诚, 曹彩云, 李科江, 等. 长期秸秆还田对华北潮土肥力、氮库组分及作物产量的影响[J]. 植物营养与肥料学报, 2014, 20(6): 1441−1449. DOI: 10.11674/zwyf.2014.0614 Zhao S C, Cao C Y, Li K J, et al. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on a fluvo-aquic soil in North China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(6): 1441−1449. DOI: 10.11674/zwyf.2014.0614
[10] Singh V K, Dwivedi B S, Buresh R J, et al. Potassium fertilization in rice–wheat system across Northern India: Crop performance and soil nutrients[J]. Agronomy Journal, 2013, 105(2): 471−481. DOI: 10.2134/agronj2012.0226
[11] 于振文, 梁晓芳, 李延奇, 王雪. 施钾量和施钾时期对小麦氮素和钾素吸收利用的影响[J]. 应用生态学报, 2007, 18(1): 69−74. DOI: 10.3321/j.issn:1001-9332.2007.01.012 Yu Z W, Liang X F, Li Y Q, Wang X. Effects of potassium application rate and time on the uptake and utilization of nitrogen and potassium by winter wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 69−74. DOI: 10.3321/j.issn:1001-9332.2007.01.012
[12] 龙素霞, 李芳芳, 石书亚, 等. 氮磷钾配施对小麦植株养分吸收利用和产量的影响[J]. 作物杂志, 2018, (6): 96−102. Long S X, Li F F, Shi S Y, et al. Effects of coordinately application of N, P, and K on nutrient contents in plants and soils and wheat yield[J]. Crops, 2018, (6): 96−102.
[13] 钱晨诚, 陈立, 马泉, 等. 磷钾肥施用量和方法对弱筋小麦籽粒产量和蛋白质含量及养分吸收利用的影响[J]. 植物营养与肥料学报, 2023, 29(2): 287−299. DOI: 10.11674/zwyf.2022314 Qian C C, Chen L, Ma Q, et al. Effects of phosphorus and potassium fertilizer on grain yield, nutrient uptake and utilization in low-gluten wheat[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(2): 287−299. DOI: 10.11674/zwyf.2022314
[14] 赵广才, 常旭虹, 杨玉双, 等. 氮磷钾运筹对不同小麦品种产量和品质的调节效应[J]. 麦类作物学报, 2011, 31(1): 106−112. DOI: 10.7606/j.issn.1009-1041.2011.01.019 Zhao G C, Chang X H, Yang Y S, et al. Adjustment effect of nitrogen phosphorus potassium operation on grain yield and quality in different variety of wheat[J]. Journal of Triticeae Crops, 2011, 31(1): 106−112. DOI: 10.7606/j.issn.1009-1041.2011.01.019
[15] 武际, 郭熙盛, 王允青, 黄晓荣. 钾肥运筹对小麦氮素和钾素吸收利用及产量和品质的影响[J]. 土壤, 2008, 40(5): 777−783. DOI: 10.3321/j.issn:0253-9829.2008.05.017 Wu J, Guo X S, Wang Y Q, Huang X R. Effects of potassium fertilizer operation on the uptake and utilization of nitrogen and potassium, yield and quality of wheat[J]. Soils, 2008, 40(5): 777−783. DOI: 10.3321/j.issn:0253-9829.2008.05.017
[16] 张晶, 党建友, 张定一, 等. 节水灌溉方式与磷钾肥减施对小麦产量、品质及水肥利用效率的影响[J]. 水土保持学报, 2020, 34(6): 166−171. Zhang J, Dang J Y, Zhang D Y, et al. Effects of water-saving irrigation and phosphorus and potassium fertilizer reduction on yield, quality, and water and fertilizer use efficiency of wheat[J]. Journal of Soil and Water Conservation, 2020, 34(6): 166−171.
[17] 蒋小忠, 封超年, 郭文善. 磷肥种类对弱筋小麦产量和品质的影响[J]. 耕作与栽培, 2014, 34(3): 1−3. DOI: 10.3969/j.issn.1008-2239.2014.03.001 Jiang X Z, Feng C N, Guo W S, et al. Effects of different kinds of phosphate fertilizers on yield and quality of weak gluten wheat[J]. Tillage and Cultivation, 2014, 34(3): 1−3. DOI: 10.3969/j.issn.1008-2239.2014.03.001
[18] 胡学旭, 孙丽娟, 周桂英, 等. 2006—2015年中国小麦质量年度变化[J]. 中国农业科学, 2016, 49(16): 3063−3072. DOI: 10.3864/j.issn.0578-1752.2016.16.001 Hu X X, Sun L J, Zhou G Y, et al. Quality in China from 2006 to 2015[J]. Scientia Agricultura Sinica, 2016, 49(16): 3063−3072. DOI: 10.3864/j.issn.0578-1752.2016.16.001
[19] 张会芳, 张建红, 刘海礁, 等. 近20年黄淮冬麦区南片小麦种质性状演变及其育种价值评价[J]. 中国农业科技导报, 2023, 25(11): 28−41. Zhang H F, Zhang J H, Liu H J, et al. Evolution of wheat (Triticum aestivum L.) germplasm traits and evaluation of breeding value in southern Huang-Huai winter wheat region in recent 20 years[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 28−41.
[20] 苏珮, 蒋纪云, 王春虎. 小麦蛋白质组分的连续提取分离法及提取时间的选择[J]. 河南职技师院学报, 1993, 21(2): 1−4. Su P, Jiang J Y, Wang C H, et al. The successive extract method for the separation of wheat grain protein component and the selection of extract time[J]. Journal of Henan Vocation-Technical Teachers College, 1993, 21(2): 1−4.
[21] Rakshit R, Patra K A, Purakayastha J T, et al. Effect of super-optimal dose of NPK fertilizers on nutrient harvest index, uptake and soil fertility levels in wheat crop under a maize (Zea mays L.)-wheat (Triticum aestivum L.) cropping system[J]. International Journal of Bio-resource and Stress Management, 2015, 6(1): 15−23. DOI: 10.5958/0976-4038.2015.00001.9
[22] 岳俊芹, 李向东, 邵运辉, 等. 氮钾固定配施下施磷量对小麦光合、干物质转运及产量形成的影响[J]. 麦类作物学报, 2020, 40(4): 473−481. Yue J Q, Li X D, Shao Y H, et al. Effect of different phosphorus levels under same nitrogen-potassium ratios on photosynthetic, dry matter transportation and yield of winter wheat[J]. Journal of Triticeae Crops, 2020, 40(4): 473−481.
[23] 马悦, 田怡, 于杰, 等. 北方麦区土壤有效磷阈值及小麦产量、籽粒氮磷钾含量对监控施肥的响应[J]. 植物营养与肥料学报, 2021, 27(10): 1675−1691. DOI: 10.11674/zwyf.2021109 Ma Y, Tian Y, Yu J, et al. Threshhold of soil available P and the response of wheat yield and grain N, P, and K concentrations to test-integrated fertilizer application in the northern wheat production region of China[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1675−1691. DOI: 10.11674/zwyf.2021109
[24] Arbačauskas J, Vaišvila Z J, Staugaitis G, et al. The influence of mineral NPK fertiliser rates on potassium dynamics in soil: Data from a long-term agricultural plant fertilisation experiment[J]. Plants, 2023, 12(21): 3700. DOI: 10.3390/plants12213700
[25] He B, Xue C, Sun Z M, et al. Effect of different long-term potassium dosages on crop yield and potassium use efficiency in the maize–wheat rotation system[J]. Agronomy, 2022, 12(10): 2565. DOI: 10.3390/agronomy12102565
[26] Pechanek U, Karger A, Gröger S, et al. Effect of nitrogen fertilization on quantity of flour protein components, dough properties, and breadmaking quality of wheat[J]. Cereal Chemistry, 1997, 74(6): 800−805. DOI: 10.1094/CCHEM.1997.74.6.800
[27] 贺明荣, 杨雯玉, 王晓英, 等. 不同氮肥运筹模式对冬小麦籽粒产量品质和氮肥利用率的影响[J]. 作物学报, 2005, 31(8): 1047−1051. He M R , Yang W Y, Wang X Y, et al. Effects of different N management modes on grain yield and quality as well as fertilizer N use efficiency of winter wheat[J]. Acta Agronomica Sinica, 2005, 31(8): 1047−1051.
[28] 代新俊, 夏清, 杨珍平, 高志强. 氮肥后移对强筋小麦氮素积累转运及籽粒产量与品质的影响[J]. 水土保持学报, 2018, 32(3): 289−294. Dai X J, Xia Q, Yang Z P, Gao Z Q. Effects of postponing nitrogen application on accumulation and transport of nitrogen and yield and quality of grain in strong-gluten wheat[J]. Journal of Soil and Water Conservation, 2018, 32(3): 289−294.
[29] 张海竹, 张永清, 张建平, 贾志宽. 氮、磷、钾肥对强筋小麦产量与品质的影响[J]. 麦类作物学报, 2008, 28(3): 457−460. DOI: 10.7606/j.issn.1009-1041.2008.03.105 Zhang H Z, Zhang Y Q, Zhang J P, Jia Z K. Effect of nitrogen, phosphorus, potassium fertilizer application on yield and quality of high-gluten wheat[J]. Journal of Triticeae Crops, 2008, 28(3): 457−460. DOI: 10.7606/j.issn.1009-1041.2008.03.105
[30] Elliott G D, Cathryn A O, Sullivan, et al. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(3): 364−373. DOI: 10.1002/jpln.201700376
[31] 谢炜, 贺鹏, 马宏亮, 等. 秋闲期秸秆覆盖与施磷对冬小麦氮素吸收利用的影响[J]. 作物学报, 2024, 50(2): 440−450. Xie W, He P, Ma H L, et al. Effects of straw mulching from autumn fallow and phosphorus application on nitrogen uptake and utilization of winter wheat[J]. Acta Agronomica Sinica, 2024, 50(2): 440−450.
[32] Nitharwal K P, Chauhan S P, Mandeewal L R, et al. Influence of different levels and methods of N P K fertilizer application on the growth and production of wheat (Triticum aestivum L.) in arid region of Rajasthan[J]. International Journal of Plant & Soil Science, 2022, 34(16): 107−114.
[33] 姜宗庆, 封超年, 黄联联, 等. 施磷量对小麦物质生产及吸磷特性的影响[J]. 植物营养与肥料学报, 2006, 12(5): 628−634. DOI: 10.3321/j.issn:1008-505X.2006.05.005 Jiang Z Q, Feng C N, Huang L L, et al. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.)[J]. Journal of Plant Nutrition and Fertilizers, 2006, 12(5): 628−634. DOI: 10.3321/j.issn:1008-505X.2006.05.005
[34] Du M, Zhang W Z, Gao J P, et al. Improvement of root characteristics due to nitrogen, phosphorus, and potassium interactions increases rice (Oryza sativa L.) yield and nitrogen use efficiency[J]. Agronomy, 2021, 12(1): 23. DOI: 10.3390/agronomy12010023
[35] Masoni A, Ercoli L, Mariotti M, Arduini I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type[J]. European Journal of Agronomy, 2006, 26(3): 179−186.
[36] 李瑞, 王玲玲, 谭植, 等. 氮磷互作对弱筋小麦氮素利用与籽粒淀粉品质的影响[J]. 中国土壤与肥料, 2021, (3): 27−34. DOI: 10.11838/sfsc.1673-6257.20111 Li R, Wang L L, Tan Z, et al. Effects of nitrogen and phosphorus interaction on nitrogen utilization and starch quality of weak gluten wheat[J]. Soil and Fertilizer Sciences in China, 2021, (3): 27−34. DOI: 10.11838/sfsc.1673-6257.20111