Physiological and agronomic effects of combined spraying of plant growth regulators and fertilizers on enhancing the waterlogging resistance of wheat seedlings
-
摘要:目的
四川平原地区小麦−水稻轮作模式下,小麦苗期易受渍害导致减产。我们从生理和农学效应两个方面研究了叶面施用植物生长调节剂、叶面肥对小麦幼苗抗渍能力的影响,为减轻麦田渍害提供途径。
方法在成都市大邑县元兴乡开展田间试验,供试材料为多穗型小麦品种蜀麦1963 (SM1963)与大穗型品种蜀麦133 (SM133)。稻茬小麦播种后30天内土壤相对含水量在90%以上,达到产生渍害的条件。在小麦三叶期,设置单独喷施S-诱抗素(S-ABA)、多效唑·甲哌鎓(PM)、氨基酸水溶肥(AF)、腐植酸水溶肥(HF)以及S-ABA和PM配合AF (S+P+A)或者HF (S+P+H)处理,以喷施清水(CK)作为对照。调查分析了麦苗生长速率、叶面积指数、茎蘖生长动态、结实特性、产量等农学性状。拔节期取叶片和分蘖节样品,分析碳氮代谢物积累量、丙二醛(MDA)含量、抗氧化酶活性。
结果6个喷施处理相比,S+P+H提升抗渍效果与稳产的效应最佳。与CK相比,S+P+H处理显著提升了两个穗型小麦拔节前群体生长速率与叶片净同化率,增加了叶面积指数与叶绿素含量,叶片与分蘖节蔗糖含量提升了38.8%~70.3%,游离氨基酸含量增加16.7%~24.2%,叶片脯氨酸含量提升了48.0%~71.5%,叶片与分蘖节MDA含量较CK降低了28.0%~51.2%,叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性较CK分别增加41.3%、47.6%、89.9%、38.7%以上,提升了碳氮代谢与抗氧化能力;SM1963、 SM133小麦单株分蘖力较CK分别增加28.2%、58.3%,有效分蘖发生速率显著增加,主茎穗粒数、分蘖穗重与穗粒数显著提升,分蘖产量贡献率分别提升了6.1%、8.8%,最终产量分别提升26.3%、13.2%。单独喷施HF也有助于苗期叶片生长与光合,SM1963、 SM133小麦分蘖产量贡献率分别提升12.2%、5.6%,实际产量分别提升15.4%与16.5%。多穗型蜀麦1963喷施S-ABA增产13.3%,大穗型蜀麦133喷施AF增产10%。
结论三叶期喷施一种或者配合喷施几种植物生长调节剂和叶面肥,可从不同途径不同程度地缓解渍害对麦苗生长的不利影响,从生理角度看,可以促进小麦叶片生长和叶绿素含量,提高叶片和分蘖节中糖氮代谢物的积累,增强抗氧化酶活性降低膜损伤,保护分蘖发生并增强第一分蘖的可塑性,从农学角度看,喷施植物生长调节剂和叶面肥可提升茎蘖群体数量,促进群体生长速率,提高成穗质量,最终提高产量。相较大穗型蜀麦133,多穗型蜀麦1963喷施组合试剂后叶片、分蘖节糖代谢物含量及叶片SOD、APX活性提升更多,其氮代谢物含量、MDA含量更低,成穗的分蘖多。总体而言,喷施腐植酸叶面肥的效果大于喷施氨基酸叶面肥,S-诱抗素和多效唑·甲哌鎓与腐植酸叶面肥的组合效应也大于与氨基酸叶面肥的组合效应。
Abstract:ObjectivesWater logging damage during wheat seedling stage is a common disaster limiting the growth and yield of wheat under wheat-rice rotation system in Sichuan Plain. We studied the effect of foliar application of plant stimulants and fertilizers on the water logging resistance of wheat seedlings from the points of physiological responses and population growth, to provide an approach for alleviating the damage caused by water logging in wheat fields.
MethodsA field experiment was carried out in Dayi County, Sichuan Province during wheat season after rice, the wheat cultivars included a multi-spike type ‘Shumai 1963’ and a large-spike type ‘Shumai 133’. Within 30 days after sowing of wheat, the relative soil moisture content was above 90%, leading to water lodging damage seriously on wheat seedlings. Six foliar treatments were setup at the three-leaf stage of wheat seedlings, included spraying S-Abscisic acid (S-ABA), poleiotropic azole·meata (PM), amino acid water soluble fertilizer (AF), humic acid water soluble fertilizer (HF), and combined spraying S-ABA and PM with AF (S+P+A), or with HF (S+P+H), and spraying tap water (CK) as a control. The seedling traits, leaf area index, development dynamics of tillerings and stems, grain-setting characteristics, and yield of wheat population were investigated. At jointing stage, leaf and tillering node samples were collected for determination of the malondialdehyde (MDA) content, antioxidant enzyme activities, and the accumulation of carbon and nitrogen assimilation.
ResultsAmong the six treatments, S+P+H showed the highest anti-water logging effect and stable production effects on the multi spike type of Shumai 1963, and it can also produce similar effects on the large spike type of Shumai 133. Specifically, both spike types of wheat significantly improve the pre jointing population growth rate and leaf net assimilation rate, increase leaf area index and chlorophyll content; The sucrose content in leaves and tillering nodes increased by 38.8% to 70.3% compared to CK, the free amino acid content increased by 16.7% to 24.2%, and the proline content in leaves increased by 48.0% to 71.5%, respectively. MDA content in leaves and tiller nodes decreased by 28.0% to 51.2% compared to CK, while the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in leaves increased by more than 41.3%, 47.6%, 89.9%, and 38.7% compared to CK, improving carbon and nitrogen metabolism and antioxidant capacity. The tillering ability of Shumai 1963 and Shumai 133 spikes increased by 28.2% and 58.3% compared to the control group, and the effective tillering rate significantly increased. The number of grains per spike, tiller spike weight, and grain number per spike on the main stem significantly increased, and the contribution rate of tiller yield increased by 6.1% and 8.8%, respectively. The final yield increased by 26.3% and 13.2%, respectively. Spraying HF alone also contributed to leaf growth and photosynthesis during the seedling stage, with a 12.2%, 5.6% increase in tiller yield contribution for Shumai 1963 and Shumai 133, and an actual yield increase of 15.4% and 16.5%, respectively. Spraying S-ABA on multi spike Shumai 1963 increased yield by 13.3%, while spraying AF on large spike Shumai 133 increased yield by 10%.
ConclusionsSpraying one or a combination of several plant growth regulators and foliar fertilizers at the three-leaf stage can mitigate the adverse effects of water logging on wheat seedling growth through different pathways and to varying degrees. Physiologically, this practice promotes wheat leaf growth and chlorophyll content, enhances the accumulation of sugar and nitrogen metabolites in leaves and tillering nodes, boosts antioxidant enzyme activity to reduce membrane damage, protects tillering occurrence, and enhances the plasticity of the first tiller. From an agronomic perspective, applying plant growth regulators and foliar fertilizers can increase the population of stems and tillers, accelerate the growth rate of the population, improve the quality of spike formation, and ultimately boost yield. After applying the combined treatment, Shumai 1963 (a multi-spike variety) exhibited higher levels of sugar metabolites in leaves and tillering nodes, as well as higher SOD and APX activities in leaves, compared to Shumai 133 (a large-spike variety). Additionally, Shumai 1963 had lower nitrogen metabolite content and MDA content, and produced more tillers that formed spikes. Overall, the effect of spraying humic acid-based foliar fertilizer is greater than that of amino acid-based foliar fertilizer. The combined effect of S-abscisic acid (S-ABA), paclobutrazol·piperidine, and humic acid-based foliar fertilizer is also more pronounced than their combination with amino acid-based foliar fertilizer.
-
四川省是全国重要的小麦主产区,在国家粮食供给保障方面有举足轻重的地位,建设更高水平“天府粮仓”事关国之大者、省之大计[1]。冬小麦−水稻轮作作为该区域主要的种植制度具有周年效益高、便于机械化种植等优势[2]。然而,随着机插秧机直播的流行,水稻收获期越来越晚[3],不仅导致小麦茬口衔接非常紧张,而且小麦播种期间往往秋雨泛滥,加之稻季泡田、土壤沉降固结、机械压实等带来的土壤粘结,田间积水难以下渗,渍害问题严重[4]。小麦是典型的旱地作物,遭遇苗期渍害的麦苗常出现生长延缓,叶片发黄萎蔫,分蘖减少,不育小穗增多等问题,减产达10%~15%[5−6]。渍害还致使小麦根际缺氧,阻碍根系生长与水分、氮素吸收,叶片蒸腾与光合能力下降,导致碳氮代谢受阻。渍害也会引发活性氧代谢失衡,损伤组织与器官的膜结构与功能,引发早衰与凋亡。据报道,小麦遭遇逆境恢复生长后存在补偿效应,能促使前期形成的冗余分蘖成穗,这种可塑性受小麦品种与人工双重调控[7],大穗型品种可以打破主茎优势促分蘖成穗,多穗型品种可以调控代谢增加有效分蘖,确保苗期渍害后的减损、稳产。因此,探索小麦根外补充营养、调控代谢、促进分蘖成穗的措施,对于培育抗渍壮苗、实现稳产增收具有重要意义。
有关调节剂或叶面肥调节作物生长及抗逆性的报道很多,如植物生长调节剂能打破小麦体内激素平衡,影响生长速率,调控逆境相关基因表达并影响碳氮代谢,而叶面肥能弥补根系供肥不足,补充钙、锌、铁等中微量元素,促进养分吸收与光合,二者各具优势[8]。S-诱抗素(S-ABA)是公认的“胁迫激素”,能有效减缓和抵抗生物与非生物胁迫对植物的伤害,调节气孔开闭影响蒸腾作用[9]。多效唑·甲哌鎓(PM)能促进分枝,增加有效分蘖,促进叶绿素合成[10−11]。含氨基酸水溶肥(AF)能补充植物生长的必需氨基酸与非必需氨基酸,促进逆境下小麦恢复生长[12],也能促进植物对养分的吸收[13]。腐植酸(HF)是动植物遗骸通过微生物的降解和转化以及一定的物理化学作用形成的有机物,作为肥效增助剂能促进植物对氮素利用[14],可以影响NO-IAA信号途径调控作物生长[15],也能促进叶绿素的合成提升光合速率[16−17],提高抗逆能力[18]。可见,有关植物生长调节剂、微肥单独施用的效果报道较多,但其组合应用效果的研究较少。植物生长调节剂与叶面肥各具优点和调控机理,因此,本试验选择S-诱抗素、多效唑·甲哌鎓、含腐植酸水溶肥、含氨基酸水溶肥作为对象,比较了其单独使用与组合喷施对小麦茎蘖生长、抗逆代谢及产量的影响,以期提出渍害下抗渍壮苗的最佳措施。
1. 材料与方法
1.1 试验地概况
试验于2022—2023年在四川省成都市大邑县元兴乡(30°58′N,103°53′E)进行。试验地土壤为壤土,0—20 cm土层土壤化学性质:有机质38.91 g/kg,全氮2.05 g/kg,碱解氮19.26 mg/kg、全磷0.231 g/kg,速效磷19.3 mg/kg、全钾14.7 g/kg、速效钾250 mg/kg,pH 6.53。小麦生长季总降水量303 mm,日均温度13.5℃。本试验播种至拔节期的70天内,0—20 cm土层土壤含水量动态如图1所示,小麦播种后30天内土壤相对含水量在90%以上,根据(GB/T 32752—2016)[19]已达到渍害标准。
1.2 供试材料与试验设计
供试小麦品种选用多穗型品种蜀麦1963与大穗型品种蜀麦133,均由四川农业大学选育。供试植物生长调节剂为0.1% S-诱抗素(S-ABA),30%多效唑·甲哌鎓(PM),供试叶面肥包括腐植酸水溶肥(HF)和氨基酸水溶肥(AF),HF主要成分包括腐植酸40 g/L、N 100 g/L、P2O5 100 g/L、K2O 150 g/L,AF主要成分包括氨基酸100 g/L、Fe 4 g/L、Zn 18 g/L、B 4 g/L。所使用生长调节剂和水溶肥均由四川润尔科技有限公司提供,田间使用浓度分别为:S-ABA 5 mg/kg、PM 300 mg/kg、HF 100 mg/kg、AF 250 mg/kg,总用量300 kg/hm2。
试验采用二因素裂区设计,主区为品种蜀麦1963与蜀麦133,副区为单独喷施S-ABA、PM、AF、HF以及联合喷施S-ABA、PM、AF处理(S+P+A)、联合喷施S-ABA、PM、HF处理(S+P+H),并设置喷施清水(CK)作为对照,每个处理设置3次重复,小区面积为12 m2 (3 m ×4 m)。试验田于10月25日翻耕、旋耕,11月1日播种,采用穴播,行距20 cm,穴距10 cm,每穴播种6粒,基本苗为2×106株/hm2,三叶一心期(12月4日)喷施处理,14天后(12月19日)再度喷施,以叶表面形成一层水雾但不下滴为准。每个小区施用N 180 kg/hm2、P2O5 90 kg/hm2、K2O 90 kg/hm2,其中氮50%于播前基施,50%平均分两次于苗期(11月21日)、拔节期(12月31日)追施,磷、钾肥全部基施,施肥方式采用撒施,其他栽培管理措施与当地农户一致。
1.3 测定项目与方法
1.3.1 土壤相对含水量
采用五点法取样,于播种当天与播后每隔10天取样一次,取样深度为0—20 cm的土层,使用环刀进行取样。土样烘干后,计算土壤含水率。
土壤含水率 = (W1−W3)/(W1−W2)×100%
其中,W1、W2、W3分别为环刀取土后环刀与土重量、环刀重量、烘干后环刀与土重量。
1.3.2 苗期生长质量调查
于三叶期与拔节期各小区取15株小麦,称取主茎顶端平展叶片0.1 g,置于10 mL丙酮−乙醇混合液(1∶1,V/V)浸提7 d后,将提取液分别在645和663 nm波长下测定吸光度,计算出叶绿素a、b及总叶绿素含量。植株其余叶片与茎秆在105℃杀青30 min,在85℃烘干至恒重后称量重量,计算拔节期叶面积指数、叶面积比率以及三叶期(t1)到拔节期(t2)的群体生长速率、相对生长速率。计算公式如下:
叶绿素a (Chl a,mg/g) = (12.7×A663−2.69×A645)×V/w/1000
叶绿素b (Chl b,mg/g) = (22.9×A645−4.68×A663)×V/w/1000
总叶绿素 (Chl,mg/g) = (20.2×A645+8.02×A663)×V/w/1000
叶面积指数 (LAI)=L2/S
叶面积比率(LAR,cm2/g) = [(ln W2−ln W1)·(L2−L1)]/[(W2−W1)·(ln L2−ln L1)]
叶干重比(LWR)=LW/W
相对生长速率 [RGR, mg/(g·d)] = (lnW2−InW1)/(t2−t1)×1000
净同化率 [NAR, mg/(m2·d)] = [(lnL2−InL1)(W2−W1)]/[(L2−L1)(t2−t1)]× 1000
群体生长率 [CGR, g/(m2·d)] = ( W2−W1)/( t2−t1)×S
其中,V为叶绿素提取液体积(如为稀释液,则需要换算);w为材料鲜重;W、L、Lw分别为植株干重、叶面积和叶干重;W1、W2和L1、L2分别为t1、t2的植株干重和叶面积;S为土地面积。
1.3.3 茎蘖生长动态调查
每小区框定有代表性的0.8 m长的2行样点,分别于出苗期、分蘖快速发生期、拔节期、孕穗期、开花期和成熟期调查茎蘖数。并根据茎蘖发生规律,从成熟期有效穗9点方向做反向延长至分蘖期形成交点,做出“有效分蘖临界点”[20]。根据茎蘖动态分别计算有效分蘖发生速率(TER1)、无效分蘖发生速率(TER2)、分蘖消亡速率(TDR)、单株分蘖力(TC)、单株成穗数(EN)、成穗率(SR)。各参数计算公式如下:
TER1 = (有效分蘖临界点茎蘖数−基本苗)/时间间隔
TER2 = (最大茎蘖数−有效分蘖临界点茎蘖数)/时间间隔
TDR = (最大茎蘖数−有效穗)/时间间隔
TC = (最大茎蘖数−基本苗)/ 基本苗
EN = 有效穗 / 基本苗
SR = 有效穗/最大茎蘖数×100%
1.3.4 叶片分蘖节丙二醛测定
在六叶一心期,从各个小区中选取15株小麦,取其主茎顶端的展开叶以及分蘖节。然后采用硫代巴比妥酸法[21],测定拔节期分蘖节与叶片MDA含量。
1.3.5 叶片与分蘖节可溶性糖、蔗糖、可溶性蛋白、游离氨基酸、脯氨酸含量测定
于六叶一心期,采集主茎顶端展开叶与分蘖节样品。然后,采用蒽酮比色法[22]测定可溶性糖含量,采用间苯二酚法[21]测定蔗糖含量,采用考马斯亮蓝G-250法[23]测定可溶性蛋白含量,采用茚三酮显色法[23]测定游离氨基酸含量,采用酸性茚三酮显色法[21]测定脯氨酸含量。
1.3.6 叶片抗氧化酶活性
在六叶一心期,采集小麦主茎顶端的展开叶,并采用NBT(氮蓝四唑)光还原法[24]测定超氧化物歧化酶(SOD)活性,采用愈创木酚法[24]测定过氧化物酶(POD)活性,采用紫外吸收法[24]测定过氧化氢酶(CAT)活性,采用紫外吸收法[25]测定抗坏血酸过氧化物酶(APX)活性。
1.3.7 结实特性与产量
在小麦成熟期,调查各小区0.8 m2固定样点内的茎蘖数。同时,选取30株小麦主茎及其分蘖,调查结实小穗数、不育小穗数、穗粒数。将各小区内未取样的2.4 m2,脱粒晒干后测定群体千粒重和实际产量(按13%含水量计)。
1.4 数据处理
采用Excel 2010软件整理试验数据,采用DPS 7.05软件进行相应的双因素裂区试验方差分析,采用LSD法进行平均值显著性多重比较(P<0.05为差异显著),采用origin 2021进行相关性分析与软件绘图。
2. 结果与分析
2.1 喷施植物生长调节剂与叶面肥对小麦拔节前生长的影响
2.1.1 喷施措施对小麦生长速率的影响
两种穗型小麦的相对生长率、群体生长速率、净同化率均有显著差异(P<0.05),喷施处理对上述3个指标的影响达到极显著水平(P<0.01),品种与喷施处理对小麦的相对生长率和净同化率有显著的交互作用(表1)。与CK相比,PM处理两种穗型小麦SM1963与SM133的相对生长速率分别提升了23.9%、25.3%,群体生长速率分别提升了14.2%、31.4%,净同化率分别提升了19.8%、16.5%;喷施HF处理相对生长速率分别提升10.5%、30.6%,群体生长速率分别提升16.6%、39.1%,净同化率分别提升15.7%、35.0%;喷施S-ABA处理净同化率分别提升7.3%、15.2%;喷施AF处理提升SM1963净同化率7.9%。喷施组合S+P+H与S+P+A处理间生长速率差异不显著,S+P+H处理较单独施用HF处理SM1963的相对生长速率与净同化率分别提升6.0%、7.2%,较单独施用S-ABA、PM处理 SM133的相对生长速率分别提升31.5%、7.3%,净同化率分别提升21.4%、13.9%。综上,小麦遭遇苗期渍害胁迫后喷施HF、PM能提高叶片同化能力,促进地上部生长。大穗型SM133喷施PM使得群体生长速率提升,多穗型SM1963喷施HF更有助于其补充养分快速生长。将S-ABA、PM与HF、AF组合喷施能综合各试剂优点,且试剂间存在互作提升效应。
表 1 不同喷施措施下两个品种小麦的生长速率Table 1. The growth rate of two wheat cultivar populations under different spraying treatments品种 Cultivar (C) 处理 Treatment (T) 相对生长速率 RGR [mg/(g·d)] 群体生长速率 CGR [g/(m2·d)] 净同化率 NAR [mg/(m2·d)] SM1963 CK 32.37 c 3.44 b 3.51 d S-ABA 34.22 bc 3.41 b 3.81 c PM 40.13 a 3.93 a 4.19 ab AF 32.33 c 3.15 b 3.81 c HF 35.77 b 4.01 a 3.97 bc S+P+A 39.84 a 4.07 a 4.17 ab S+P+H 37.92 a 4.29 a 4.31 a SM133 CK 28.18 d 2.61 c 2.93 c S-ABA 28.82 d 2.68 c 3.39 b PM 35.32 c 3.43 b 3.60 b AF 26.64 d 2.38 c 2.97 c HF 36.81 bc 3.63 ab 3.94 a S+P+A 39.81 a 3.94 a 4.23 a S+P+H 37.90 ab 4.09 a 4.10 a 方差分析 ANOVA C 32.9* 109.0** 81.8* T 59.3** 22.2** 29.5** C×T 7.3** 1.4 5.3** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. RGR—Relative growth rate, CGR—Crop growth rate, NAR—Net assimilation rate. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.2.1.2 喷施措施对小麦叶片生长的影响
两种穗型小麦的叶面积指数、叶干重比均有显著差异(P<0.05),喷施处理对上述两个指标及叶绿素含量的影响达到极显著水平(P<0.01),且品种与喷施处理具有极显著交互作用(表2)。与CK相比,喷施HF处理SM1963与SM133拔节期叶面积指数分别提升23.9%、30.3%,叶面积比率分别提升93.2%、124.1%,SM1963叶绿素a含量提升7.0%,总叶绿素含量提升9.4%;喷施S-ABA较CK处理SM1963、SM133总叶绿素含量分别增加6.3%、15.2%,叶面积比率分别提升81.1%、45.4%;喷施PM较CK处理SM1963、SM133总叶绿素含量分别提升19.8%、27.1%,叶面积比率分别提升42.2%、81.5%,显著降低SM133叶干重比;喷施AF较CK处理提升SM1963叶绿素b含量16%。对比单一试剂喷施处理,SM1963、SM133小麦组合处理S+P+H的LAI分别提升10.2%、5.7%以上,较组合处理 S+P+A分别提升22.0%、41.0%;SM1963叶绿素b含量提升9.7%,较组合处理 S+P+A处理分别提升6.5%、13.7%。综上,喷施HF有效提升了叶片的光合面积,喷施S-ABA、PM能有效延缓叶片黄化,喷施PM对大穗型SM133的LAI、LAR提升较对多穗型SM1963显著,3种试剂组合能促进叶片生长并提高叶片质量。
表 2 不同喷施措施下两个品种小麦叶片性状和叶绿素含量Table 2. The leaf traits and chlorophyll content of two wheat cultivars under different spraying treatments品种
Cultivar (C)处理
Treatment (T)叶面积指数
LAI叶面积比率
LAR叶干重比
LWR叶绿素a (mg/g)
Chl a叶绿素b (mg/g)
Chl b总叶绿素 (mg/g)
Total chlorophyllSM1963 CK 1.34 d 5.02 d 0.62 b 0.71 d 0.25 c 0.96 d S-ABA 1.36 d 9.09 b 0.62 bc 0.77 c 0.26 c 1.02 c PM 1.45 cd 7.14 c 0.66 a 0.86 a 0.28 b 1.15 a AF 1.35 d 5.99 cd 0.59 c 0.71 d 0.29 ab 1.00 cd HF 1.66 b 9.70 ab 0.54 d 0.76 c 0.28 b 1.05 bc S+P+A 1.50 c 5.86 cd 0.65 a 0.82 ab 0.28 b 1.08 b S+P+H 1.83 a 11.01 a 0.61 bc 0.78 bc 0.31 a 1.15 a SM133 CK 1.22 c 5.31 d 0.62 a 0.77 d 0.27 c 1.05 d S-ABA 1.24 c 7.72 c 0.58 b 0.91 b 0.31 b 1.21 b PM 1.50 b 9.64 b 0.58 b 1.07 a 0.37 a 1.44 a AF 1.14 c 6.55 cd 0.55 c 0.73 d 0.27 c 1.00 d HF 1.56 ab 11.9 a 0.59 b 0.82 c 0.27 c 1.12 c S+P+A 1.17 c 7.32 c 0.62 a 0.75 d 0.30 b 1.02 d S+P+H 1.65 a 10.61 ab 0.58 b 0.85 c 0.31 b 1.16 c 方差分析 ANOVA C 25.67* 2.60 55.7* 115.1** 173.1** 284.3** T 44.8** 46.3** 18.2** 52.6** 36.6** 70.9** C×T 4.5** 4.7** 9.6** 17.1** 19.8** 25.5** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. LAI—Leaf area index, LAR—Leaf area ratio, LWR—Leaf dry weight ratio. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.2.2 喷施植物生长调节剂与叶面肥对拔节前叶片与分蘖节碳氮代谢的影响
2.2.1 喷施措施对叶片与分蘖节糖含量的影响
与CK相比,喷施HF处理的SM1963、SM133叶片可溶性糖含量分别提升32.1%、11.6%,分蘖节蔗糖含量分别提升27.8%、33.6%;喷施S-ABA处理的SM1963、SM133分蘖节可溶性糖含量分别提升29.8%、10.3%,分别增加蔗糖含量20.7%、16.0%;喷施PM处理的SM1963、SM133分蘖节可溶性糖含量分别提升25.6%、19.9%,蔗糖含量分别提升21.3%、50.1%;喷施AF提升SM1963分蘖节可溶性糖含量9.5%;喷施组合处理S+P+H分别提升SM1963、SM133叶片蔗糖含量70.0%、38.8%,SM1963、SM133分蘖节蔗糖含量分别提升39.2%、40.0%。对比单药剂施用处理,喷施组合处理S+P+H提升SM1963、SM133分蘖节可溶性糖含量8.7%以上,分别提升SM1963叶片可溶性糖、分蘖节蔗糖含量9.3%、8.9%以上;较喷施组合S+P+A的两品种叶片可溶性糖提升25.9%、26.5%,提升SM1963分蘖节可溶性糖含量16.2% (图2)。综上,喷施PM、HF、S-ABA及其组合S+P+H能有效促进叶片与分蘖节糖积累,喷施HF较AF更有助于促进糖代谢。
图 2 不同喷施措施下两个品种小麦叶片与分蘖节碳代谢物含量注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。Figure 2. Carbon metabolite content in leaves and tillering nodes of two wheat varieties under different spraying measuresNote: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).2.2.2 喷施措施对叶片与分蘖节氮代谢物的影响
与CK相比,喷施HF处理的SM1963、SM133叶片游离氨基酸含量分别提升9.6%、10.7%,分蘖节游离氨基酸含量分别提升24.2%、16.7%,叶片脯氨酸含量分别提升70.1%、34.4%,分蘖节可溶性蛋白含量分别提升25.6%、29.1%,有效促进了氮代谢与渗透调节能力;喷施S-ABA、AF均分别提升SM1963叶片与分蘖节脯氨酸含量39.1%、70.1%;喷施S-ABA、PM分别提升SM133叶片的脯氨酸含量59.3%、103.5%;喷施S+P+H处理提升SM1963、SM133叶片游离氨基酸含量16.7%、20.3%,分蘖节游离氨基酸含量24.2%、21.0%,叶片脯氨酸含量48.0%、71.5%。对比单试剂喷施处理,S+P+H 组合处理提升SM1963、SM133两品种叶片与分蘖节可溶性蛋白含量22.2%、6.2%以上;S+P+H比S+P+A组合处理分别提升SM1963、SM133叶片脯氨酸7.3%、28.3%。大穗型SM133叶片可溶性蛋白含量各处理均高于多穗型SM1963,其分蘖节的可溶性蛋白与游离氨基酸含量也有高于SM1963的趋势(图3)。综上,组合喷施S+P+H促进了叶片与分蘖节氮代谢物的积累与运移,其中起主要效果的为HF,但其与S-ABA、PM互作的提升效果更好。
图 3 不同喷施措施对两个品种小麦叶片与分蘖节氮代谢物的影响注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。Figure 3. Effects of different spraying measures on nitrogen metabolites in leaves and tillering nodes of two wheat varietiesNote: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).2.3 喷施植物生长调节剂与叶面肥对叶片与分蘖节丙二醛含量的影响
与CK相比,喷施S-ABA处理 SM1963叶片与分蘖节MDA含量分别降低36.6%、37.4%, SM133分蘖节MDA含量降低18.0%;喷施PM、HF处理SM1963叶片MDA含量分别降低37.8%、39.5%,分别降低SM133叶片MDA含量30%、13%;喷施AF处理SM1963叶片、分蘖节MDA含量分别降低14.1%、66.7%;喷施组合S+P+H处理SM1963、SM133叶片MDA含量分别下降43.2%、27.8%,分蘖节MDA含量分别下降51.1%、28.0%。与单试剂施用处理相比,组合S+P+H处理分别降低SM133叶片与分蘖节的MDA含量15.9%以上,较组合S+P+A处理分别降低叶片与分蘖节MDA含量11.7%、35.5%。大穗型SM133各处理叶片与分蘖节MDA含量整体高于多穗型SM1963 (图4)。综上,喷施S-ABA能降低渍害对叶片与分蘖节膜系统的破坏,PM、HF也能起到类似作用,上述试剂的组合S+P+H缓解膜损伤效果显著,大穗型SM133叶片与分蘖节的膜氧化水平整体高于多穗型SM1963。
图 4 不同喷施措施下两个品种小麦叶片与分蘖节丙二醛(MDA)含量注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。Figure 4. Malondialdehyde (MDA) content in leaves and tiller nodes of two wheat varieties under different spraying measuresNote: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).2.4 喷施植物生长调节剂与叶面肥对小麦抗氧化酶活性的影响
与CK相比,SM1963与SM133 喷施HF处理叶片APX活性分别提升64.1%、79.1%;喷施S-ABA处理SOD活性分别提升65.4%、49.8%,CAT活性分别提升31.5%、45.0%,SM1963叶片APX活性提升33.5%;喷施AF处理SM133的POD、CAT活性分别提升50.0%、47.2%;喷施PM处理SM133的POD活性有提升趋势但未达显著水平;喷施S+P+H组合处理SM1963、SM133 SOD活性分别提升70.7%、41.3%,CAT活性分别提升47.6%、68.5%,APX活性分别提升96.2%、89.9%,POD活性分别提升101.1%、38.7%,而多穗型SM1963喷施S+P+A后APX与CAT活性分别提升58.0%、68.6% (图5)。综上,喷施S+P+H能显著提升小麦抗氧化能力,降低叶片膜损伤。多穗型SM1963在喷施S-ABA、S+P+A后叶片抗氧化能力增加,大穗型SM133喷施AF与PM也能产生类似效果。
图 5 不同喷施措施下两个品种小麦叶片抗氧化酶活性注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。Figure 5. Antioxidant enzyme activity in leaves of two wheat varieties under different spraying measuresNote: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. SOD—Superoxide dismutase, APX—Ascorbate peroxidase, POD—Peroxidase, CAT—Catalase. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).2.5 喷施植物生长调节剂与叶面肥对小麦茎蘖动态的影响
喷施处理对两种穗型小麦单株分蘖力、成穗能力、有效分蘖发生速率、分蘖消亡速率均有极显著影响(P<0.01),这些指标品种间也存在极显著差异(P<0.01)。对单株分蘖力与成穗率品种与喷施处理有极显著互作效应(P<0.01),对分蘖的发生与消亡的互作影响达极显著水平(表3,图6)。小麦遭受苗期渍害后分蘖力(TC)低于1表明较多麦苗不产生分蘖,大穗型SM133一半以上的麦苗不产生分蘖,产生的分蘖消亡率高、成穗率低。与CK相比,SM1963与SM133喷施PM处理TC分别提升9.0%、22.9%,TER1显著提升,对SM133的TSR提升显著;喷施S-ABA处理TC分别提升28.2%、22.9%,SM1963的EN显著提升还能保持与CK相近的TER2与TDR;喷施AF处理TC分别提升10.3%、35.4%,显著增加SM133的EN、TER1,显著降低SM133的TER2、TDR;喷施HF处理TC分别提升26.9%、52.0%;组合S+P+H处理分别增加TC 28.2%、58.3%,FTP 14.4%、17.3%,TER1 16.5%、274.2%,且能保持与CK相近的TDR,在群体总量更高的前提下保留更多的有效分蘖。组合S+P+A处理提升效果略低于S+P+H处理。综上,喷施S-ABA、HF、S+P+H能促进小麦有效分蘖的发生并减少分蘖消亡,喷施AF、S+P+A能增加前期茎蘖群体总数,对大穗型SM133提升更显著。
表 3 不同喷施措施下两个品种小麦分蘖发生与消亡速率Table 3. The occurrence and extinction rates of tillering in two wheat varieties under different spraying measures品种
Cultivar
(C)处理
Treatment
(T)单株分蘖力
TC成穗数
EN成穗率 (%)
SR有效分蘖发生速率
TER1
[No./(m2·d)]无效分蘖发生速率
TER2
[No./(m2·d)]分蘖消亡速率
TDR
[No./(m2·d)]SM1963 CK 0.78 c 1.45 d 80.28 bc 3.27 e 2.41 ab 0.57 ab S-ABA 1.00 a 1.58 bc 79.11 c 3.70 c 2.53 a 0.59 ab PM 0.85 b 1.47 d 79.66 c 3.51 d 2.59 a 0.60 a AF 0.87 b 1.53 c 81.81 ab 3.48 d 2.26 b 0.54 b HF 0.99 a 1.6 b 81.6 ab 3.92 b 2.4 ab 0.56 ab S+P+A 1.03 a 1.67 a 82.12 a 4.17 a 2.38 ab 0.54 b S+P+H 1.00 a 1.66 a 80.76 abc 3.81 bc 2.61 a 0.60 a SM133 CK 0.48 d 1.04 d 68.08 e 0.35 d 3.60 ab 0.85 a S-ABA 0.59 c 1.10 c 74.26 ab 0.74 c 2.87 c 0.65 c PM 0.59 c 1.10 c 70.48 d 0.78 c 3.40 b 0.85 a AF 0.65 b 1.16 bc 75.29 a 1.20 b 2.76 c 0.63 c HF 0.73 a 1.24 a 72.86 bc 1.56 a 3.6 ab 0.74 b S+P+A 0.66 b 1.19 ab 71.72 cd 1.30 b 3.42 b 0.78 b S+P+H 0.76 a 1.22 a 70.59 d 1.31 b 3.71 a 0.84 a 方差分析 ANOVA C 4793.3** 682.9** 184.3** 16180.1** 209.2** 351.6** T 43.7** 28.3** 13.3** 71.6** 11.5** 18.8** C×T 7.4** 3.3* 9.6** 11.9** 6.9** 10.4** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,**表示效应达到0.01显著水平。
Note: TC—Tillering capacity per plant; EN—Ear number per plant; SR—Spike rate; TER1—The rate of tiller emergence from the start to the end point of effective tiller; TER2—The rate of tiller emergence from the endpoint of effective tillers to the maximum tillers, TDR—Tiller death rate. CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, ** indicates the variable effect at 0.01 significant level.图 6 不同喷施措施下两个品种小麦茎蘖动态注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。图中横线及其连出的坐标为方法中提及的“有效分蘖临界点”。Figure 6. Stem and tiller dynamics of two wheat varieties under different spraying measuresNote: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. The horizontal lines and their associated coordinates are the “critical points of effective tillering” referred to in the method.2.6 喷施植物生长调节剂与叶面肥对小麦产量特性影响
2.6.1 喷施措施对小麦穗部性状的影响
两种穗型小麦主茎穗长有显著差异(P<0.05),品种与喷施处理对主茎与分蘖的穗重、结实小穗数、不育小穗数有极显著影响(P<0.01),且对穗长、穗重、不育小穗数互作效应极显著(表4)。与CK相比,SM1963、SM133喷施HF处理主茎、分蘖穗长显著提升,分蘖穗重分别增加120%、58.3%,分别增加0.6、1.5个主茎结实小穗,分别增加2.9、2.1个分蘖结实小穗;喷施S-ABA也显著提升主茎、分蘖穗长,分蘖穗重分别增加46.7%、25%,主茎分别增加0.9、1个结实小穗,分蘖分别增加1.2、0.8个结实小穗,显著降低不育小穗数;组合S+P+H处理分别提升主茎穗重21.5%、10.3%,分别提升分蘖穗重93.3%、75%,分别增加2.3、1.6个主茎结实小穗数,分别增加2.5、1.7个分蘖结实小穗数。相较于S+P+H处理,组合S+P+A处理SM1963分蘖穗重提升13.8%,但主茎穗重降低了14.5%,SM133分蘖穗重降低28.6%。总小穗数只受品种影响,大穗型SM133要高于多穗型SM1963。综上,S-ABA、HF、S+P+H有助于增加可育小穗数来促进小麦主茎的结实,HF与S+P+H能促进分蘖结实,总小穗数只受品种影响。
表 4 不同喷施措施下两个品种小麦茎蘖穗部性状Table 4. Characteristics of tillers and spikes in two wheat varieties under different spraying measures品种
Cultivar
(C)处理
Treatment
(T)穗长 (cm)
Spike length穗重 (×103 kg/hm2)
Spike weight结实小穗数
Fruiting spikelets不育小穗数
Sterile spikelets总小穗数
Total spikelets主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
TillerSM1963 CK 9.0 e 7.5 e 6.5 b 1.5 d 15.6 b 13.5 c 3.2 a 4.9 a 18.8 a 18.5 abc S-ABA 9.8 b 8.4 d 6.6 b 2.2 c 16.5 ab 14.7 bc 2.5 bc 3.1 bc 19.0 a 17.3 c PM 9.4 c 8.7 c 5.8 c 2.1 c 16.9 b 15.8 ab 2.5 bc 2.7 c 19.5 a 18.4 abc AF 9.1 de 8.4 d 6.4 b 2.1 c 16.2 ab 13.5 c 2.9 ab 3.9 b 19.1 a 17.5 bc HF 10.2 a 9.2 a 7.6 a 3.3 a 17.1 a 16.4 a 2.1 cd 3.1 bc 19.0 a 19.5 a S+P+A 9.3 cde 8.8 c 6.9 b 3.3 a 16.9 a 15.9 ab 2.7 abc 3.1 bc 19.7 a 19.1 ab S+P+H 9.3 cd 9.0 b 7.9 a 2.9 b 17.9 a 16 ab 1.7 d 3 bc 19.6 a 19 ab SM133 CK 9.0 d 8.4 c 7.8 c 1.2 d 17.9 c 14.7 b 3.4 ab 5 ab 21.7 a 20.2 b S-ABA 10.7 a 9.3 a 8.8 a 1.5 c 19.9 bc 15.9 ab 2.7 c 3.9 c 22.7 a 19.8 b PM 8.9 d 8.2 d 8.5 ab 1.0 e 17.9 ab 14.9 b 3.7 ab 4.7 abc 21.6 a 19.4 b AF 9.8 c 9.1 b 7.9 c 1.4 c 19.1 c 15.8 ab 3.4 ab 4.6 abc 22.7 a 20.4 ab HF 10.1 b 8.9 b 8.0 bc 1.9 b 18.7 a 16.8 a 3.8 a 5.0 ab 22.5 a 21.8 a S+P+A 9.8 c 8.4 cd 8.8 a 1.6 c 19.1 ab 16.7 a 3.1 bc 4.2 bc 22.2 a 20.9 ab S+P+H 9.9 c 8.9 b 8.6 a 2.1 a 19.5 ab 16.4 a 3.3 abc 5.5 a 22.7 a 21.9 a 方差分析 ANOVA C 32.4* 103.1** 251.7** 593.4** 114.0** 10.5** 76.5** 45.2** 192.5** 58.8** T 56.2** 73.9** 11.9** 115.7** 3.8** 5.8** 3.1** 4.4** 0.9 4.4** C×T 16.0** 49.8** 10.1** 26.6** 1.7 1.7 3.5** 3.3** 1.0 0.8 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著(P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.2.6.2 喷施措施对小麦产量的影响
两种穗型小麦主茎穗粒数、产量有显著差异(P<0.05),品种与喷施处理对单位面积有效穗数、千粒重、分蘖产量贡献率、产量有极显著影响(P<0.01),且互作效应均达极显著水平(表5)。与CK相比,SM1963、SM133喷施HF处理产量分别提升24.4%、16.6%,单位面积有效穗分别提升8.3%、10.4%,分蘖穗粒数分别增加7.3、2.1粒,千粒重分别提升1.8g、2.3g,分蘖产量贡献率分别提升12.2、5.6个百分点;喷施S-ABA分别提升产量13.3%、11.6%,分蘖数分别提升38.8%、31.0%,主茎穗粒数分别增加15.1%、4.6%,分蘖产量贡献率分别提升16.8%、30.1%,提升SM133分蘖穗粒数2.9粒;喷施PM显著提升SM1963分蘖数与穗粒数,分蘖对产量贡献率增加4.6个百分点,提升SM133千粒重;喷施AF处理SM133产量提升10.0%、分蘖数提升25.7%,千粒重显著增加。与单独喷施处理相比,组合S+P+A处理SM1963产量提升7.8%以上,分蘖产量贡献率提升9.0%以上,组合S+P+H处理SM1963、SM133单位面积有效穗分别提升4.1%、3.7%以上,主茎穗粒数分别提升2.4、4.7粒以上,SM1963产量提升9.5%以上。综上,喷施S+P+H、HF能提升主茎、分蘖数量与穗粒数、分蘖产量贡献率,S-ABA能促进主茎穗粒数提升,AF对大穗型蜀麦133千粒重提升效果更显著。限制产量提升最大因素仍为单位面积有效穗,增加有效分蘖数量才能更大限度提升分蘖贡献率。
表 5 不同喷施措施下两个品种小麦产量Table 5. Yield of two wheat varieties under different spraying measures品种
Cultivar
(C)处理
Treatment
(T)有效穗 (×104/hm2)
Fertile spikes穗粒数
Grain number per spike千粒重 (g)
1000-grain
weight分蘖产量贡献率 (%)
Contribution rate
of tillering yield产量
Yield
(kg/hm2)群体
Group分蘖
Tiller主茎
Stem分蘖
TillerSM1963 CK 334.2 d 77.6 e 40.5 e 31.0 d 52.3 d 17.8 e 5 515.2 e S-ABA 353.3 c 107.7 c 46.6 a 31.9 d 51.7 de 20.8 d 6 251.2 bc PM 348.3 c 92.2 d 41.7 de 35.2 bc 53.7 c 22.4 d 5 964.2 cd AF 345.0 c 95.0 d 43.7 bc 34.3 c 55.2 a 21.7 d 5 796.0 de HF 362.1 b 119.3 b 42.1 cde 38.3 a 54.1 bc 30.0 b 6 364.7 b S+P+A 376.3 a 141.3 a 43.2 bcd 37.6 a 50.9 e 32.7 a 6 862.4 a S+P+H 377.1 a 123.3 b 45.0 ab 36.6 ab 54.8 ab 26.6 c 6 967.3 a SM133 CK 267.9 e 45.2 c 43.2 d 35.0 cd 50.6 f 13.6 c 5 220.7 c S-ABA 280.4 cd 59.2 b 45.2 bc 37.9 b 54.9 d 17.7 ab 5 827.5 a PM 274.6 de 38.3 c 42.7 d 33.1 d 55.8 c 10.8 d 5 424.8 bc AF 280.8 cd 56.8 b 43.5 cd 36.2 bc 57.6 b 16.8 b 5 740.8 ab HF 295.8 b 71.1 a 46.2 b 37.1 b 52.9 e 19.2 a 6 086.8 a S+P+A 283.8 c 61.9 b 46.4 b 33.6 d 58.5 a 15.8 bc 5 375.1 bc S+P+H 304.6 a 76.6 a 50.9 a 39.9 a 53.7 e 19.7 a 5 910.6 a 方差分析 ANOVA C 2721.0** 1714.3** 35.0* 3.7 85.5** 165.3** 33.5* T 42.3** 72.4** 21.0** 15.0** 51.2** 40.2** 15.3** C×T 5.2** 15.1** 7.5** 14.2** 59.3** 18.8** 7.4** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种间差异显著(P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.2.7 抗逆代谢与有效穗形成相关性分析
从糖、氮代谢的角度可以发现,叶片的可溶性糖、蔗糖含量与单株分蘖力、有效分蘖形成速率、单位面积有效穗呈显著正相关,分蘖节蔗糖含量与单株分蘖力呈显著正相关,分蘖节可溶性糖含量与单株分蘖力、有效分蘖的发生速率、单位面积有效穗呈正相关但未达显著水平 (图7)。叶片的可溶性蛋白含量、分蘖节的游离氨基酸含量与有效分蘖发生速率、单位面积有效穗呈显著负相关,与分蘖消亡速率呈显著正相关。因此,叶片与分蘖节的糖代谢物积累量高、氮代谢物积累量低更有助于提高有效分蘖,降低分蘖消亡。
图 7 抗逆代谢与有效穗形成相关性分析注:L—叶片;T—分蘖节。蓝色表示指标间为负相关,红色表示正相关,颜色深度为相关性强度,*—P<0.05.Figure 7. Correlation analysis between stress resistance metabolism and effective panicle formationNote: L—leaf; T—tiller node; LAI—Leaf area index; SOD—Superoxide dismutase; CAT—Catalase; APX—Ascorbate peroxidase; POD—Peroxidase; TDR—Tiller death rate; TC—Tiller capacity per plant; TER1—The rate of tiller emergence from the start to the end point of effective. Blue indicates negative correlation between indicators, red indicates positive correlation, and color depth indicates correlation strength. *—P<0.05.从抗氧化代谢角度可以发现,叶片与分蘖节的MDA含量与单株分蘖力、有效分蘖发生速率、有效穗呈显著负相关,与分蘖消亡速率呈显著正相关。活性氧转化功能酶SOD活性、活性氧清除功能酶APX、POD活性与两个部位MDA含量呈负相关,与单株分蘖力、有效分蘖发生速率、单位面积有效穗呈正相关,与分蘖消亡速率呈负相关。即,叶片与分蘖节的膜氧化程度高会导致有效分蘖降低,分蘖消亡加剧,而提高SOD、APX、POD活性能有效促进分蘖成穗,确保稳产。
3. 讨论
3.1 植物生长调节剂与微肥组合喷施实现功效互补,促进叶片生长
小麦遭遇逆境胁迫后最为明显的田间表现为:叶片发黄、麦苗瘦弱、生长延缓。该现象是因为根际环境缺氧促使根细胞无氧呼吸[26],能量供应不足降低了氮素的吸收致使地上部生长延缓,也会降低水分的吸收能力导致蒸腾能力下降发生叶片萎蔫,光合受阻。武辉等[27]认为涝害下GA能促进叶绿素降解并加快碳水化合物消耗,S-ABA与PM能抑制GA的合成。在本研究中外施S-ABA、PM显著增加了总叶绿素含量且提升了叶片的净同化能力,与前人结论一致。但是,本试验发现,喷施S-ABA、PM虽提升了分蘖数量,却并未提升叶面积指数,推测二者在促进分蘖发生时也发挥生长延缓剂的功效,会导致叶片发育减缓,茎蘖叶片普遍较小。王彩虹等[28]认为长期施用HF能够促进小麦叶片生长,表现为叶片长度与数量增加,并促进同化物积累。刘伟等[29]也认为,HF可以促进小麦叶片生长,并提高光合能力。故本试验将HF与S-ABA、PM组合喷施,发现其在渍害环境下促使分蘖增加的同时促进叶片生长与物质积累,此外植物生长调节剂与叶面肥共施较单独喷施表现出互作提升功效,喷施组合S-ABA+PM+HF对多穗型蜀麦1963较单独施用HF、S-ABA对叶片同化能力、叶面积指数、叶绿素含量的提升效果更强,对大穗型蜀麦133较单独施用PM也有类似提升效果。即组合S-ABA+PM+HF具有互补增效作用,在渍害胁迫下提高小麦分蘖数量的同时增加叶片数量,提高叶片质量与叶绿素含量。
3.2 植物生长调节剂与微肥组合喷施调控抗逆代谢,增强冗余分蘖的可塑性
禾本科粮食作物的冗余生长普遍存在,形成的分蘖无效部分高达50%~70%,通过逆境胁迫、控水、刈割等方式可以激活补偿效应来促进分蘖成穗[7]。补偿效应与逆境下代谢密不可分,其中糖类、氨基酸类物质具有渗透调节功效,也与分蘖的形成、消亡有联系。有研究认为可溶性糖含量高促进水稻分蘖芽形成[30]。小麦拔节期可溶性糖/游离氨基酸比值下降,即氮代谢更旺盛有助于单株分蘖增加[31]。然而,盛坤[32]与郭天财等[33]却认为分蘖节与幼穗糖代谢旺盛,分蘖节可溶性总糖含量高、糖氮比大有助于幼穗分化与发育。本研究认为叶片与分蘖节可溶性糖、蔗糖含量高,可溶性蛋白、游离氨基酸含量相对较低,即促使碳代谢相较氮代谢更旺盛有助于分蘖成穗,结论与盛坤相近。大穗型蜀麦133氮代谢更旺盛但分蘖消亡率高,喷施组合S-ABA+PM+HF更有助于促进可溶性糖与蔗糖在叶片与分蘖节的积累,平衡碳氮代谢来增加有效分蘖。逆境下植物会产生自由基引发质膜过氧化促进MDA含量增加,而自由基的清除过程受SOD、CAT、APX 和 POD 等抗氧化酶协作完成[34−35]。丁美云等[36]在小麦苗期喷施芸苔素内酯降低了分蘖节MDA积累。本试验中喷施组合S-ABA+PM+HF较CK显著降低了两品种小麦MDA在叶片与分蘖节中的积累,既提升了转化功能的SOD活性又提升了清除功能的CAT、APX活性,有助于抗逆能力的提升。此外,通过相关性分析发现,提升APX活性有助于增加单株分蘖力、有效分蘖发生速率。综上,喷施组合S-ABA+PM+HF能协调小麦碳氮代谢并增强抗氧化能力,更有助于促进分蘖成穗,增加群体数量保稳产。
3.3 植物生长调节剂与微肥组合喷施提高小穗结实,实现稳产与增效
小麦穗粒数为产量构成的重要因素,减少逆境条件下的“空穗”与败育小穗对于保障小麦稳产十分重要。冬小麦拔节至开花是幼穗分化的关键阶段,该过程中可孕小花的退化和败育的减少能有效提升穗粒数,其受水肥条件、营养器官的生长状况和调控措施的共同影响[37−38]。例如拔节期干旱会提高小花的退化与败育率,喷施芸苔素内酯能有效缓解这一现象[39]。本研究中发现,喷施S-ABA能有效降低不同穗型的两品种小麦主茎与分蘖不育小穗数,显著提升主茎穗粒数与分蘖穗重,推测这种效果是其作为生长延缓剂,延长二棱期的幼穗分化持续时间,促进光合提高了同化物积累,增加了弱势穗位(穗基部与顶部)的存活。前人研究认为,补充氮素[40]、磷素[41]有助于延长穗花发育时间与提高小花结实率。本研究中,喷施HF来补充氮、磷等营养,也有效提升了不同穗型的两品种小麦茎蘖的结实小穗数,并提升了茎蘖穗粒数,与王彩虹等[28]结论一致。S-ABA+PM+HF组合具有互作效应,较试剂单独施用更能提升大穗型蜀麦133主茎与分蘖的穗粒数,然而,该组合处理下的千粒重相较于单独施用S-ABA时略有下降,这可能是由于在逆境条件下,为了保留更多的有效穗与穗粒数,单个籽粒的物质积累受到影响。此外,这种互作效应的提升在多穗型品种蜀麦1963的分蘖穗粒数增加上也得到了体现。综上,苗期渍害不利于小麦分蘖的形成,并影响后续茎蘖的发育与结实,喷施组合S-ABA+PM+HF有效提升了分蘖的数量与结实能力,提高分蘖对产量贡献率,有效缓解渍害胁迫对小麦产量的影响,具有减损、增效、稳产的功效。
4. 结论
三叶期喷施一种或者配合喷施几种植物生长调节剂和叶面肥,可从不同途径不同程度地缓解渍害对麦苗生长的不利影响,从生理角度看,可以促进小麦叶片生长和叶片叶绿素含量,提高叶片和分蘖节中糖氮代谢物的积累,增强抗氧化酶活性降低膜损伤,保护分蘖发生并增强第一分蘖的可塑性。从农学角度看,喷施植物生长调节剂和叶面肥可提升茎蘖群体数量,促进群体生长速率,提高成穗质量,最终提高产量。多穗型蜀麦1963喷施组合试剂后叶片、分蘖节糖代谢物含量及叶片SOD、APX活性较大穗型蜀麦133提升更多,其氮代谢物含量、MDA含量更低,成穗的分蘖多。总体而言,喷施腐植酸叶面肥的效果大于喷施氨基酸叶面肥,S-诱抗素和多效唑·甲哌鎓与腐植酸叶面肥的组合效应也大于与氨基酸叶面肥的组合效应。
-
图 2 不同喷施措施下两个品种小麦叶片与分蘖节碳代谢物含量
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 2. Carbon metabolite content in leaves and tillering nodes of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 3 不同喷施措施对两个品种小麦叶片与分蘖节氮代谢物的影响
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 3. Effects of different spraying measures on nitrogen metabolites in leaves and tillering nodes of two wheat varieties
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 4 不同喷施措施下两个品种小麦叶片与分蘖节丙二醛(MDA)含量
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 4. Malondialdehyde (MDA) content in leaves and tiller nodes of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 5 不同喷施措施下两个品种小麦叶片抗氧化酶活性
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。柱上不同小写字母表示同一品种不同处理间差异显著(P<0.05)。
Figure 5. Antioxidant enzyme activity in leaves of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. SOD—Superoxide dismutase, APX—Ascorbate peroxidase, POD—Peroxidase, CAT—Catalase. Different lowercase letters above the bars indicate significant difference among treatments of the same cultivar (P<0.05).
图 6 不同喷施措施下两个品种小麦茎蘖动态
注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。图中横线及其连出的坐标为方法中提及的“有效分蘖临界点”。
Figure 6. Stem and tiller dynamics of two wheat varieties under different spraying measures
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. The horizontal lines and their associated coordinates are the “critical points of effective tillering” referred to in the method.
图 7 抗逆代谢与有效穗形成相关性分析
注:L—叶片;T—分蘖节。蓝色表示指标间为负相关,红色表示正相关,颜色深度为相关性强度,*—P<0.05.
Figure 7. Correlation analysis between stress resistance metabolism and effective panicle formation
Note: L—leaf; T—tiller node; LAI—Leaf area index; SOD—Superoxide dismutase; CAT—Catalase; APX—Ascorbate peroxidase; POD—Peroxidase; TDR—Tiller death rate; TC—Tiller capacity per plant; TER1—The rate of tiller emergence from the start to the end point of effective. Blue indicates negative correlation between indicators, red indicates positive correlation, and color depth indicates correlation strength. *—P<0.05.
表 1 不同喷施措施下两个品种小麦的生长速率
Table 1 The growth rate of two wheat cultivar populations under different spraying treatments
品种 Cultivar (C) 处理 Treatment (T) 相对生长速率 RGR [mg/(g·d)] 群体生长速率 CGR [g/(m2·d)] 净同化率 NAR [mg/(m2·d)] SM1963 CK 32.37 c 3.44 b 3.51 d S-ABA 34.22 bc 3.41 b 3.81 c PM 40.13 a 3.93 a 4.19 ab AF 32.33 c 3.15 b 3.81 c HF 35.77 b 4.01 a 3.97 bc S+P+A 39.84 a 4.07 a 4.17 ab S+P+H 37.92 a 4.29 a 4.31 a SM133 CK 28.18 d 2.61 c 2.93 c S-ABA 28.82 d 2.68 c 3.39 b PM 35.32 c 3.43 b 3.60 b AF 26.64 d 2.38 c 2.97 c HF 36.81 bc 3.63 ab 3.94 a S+P+A 39.81 a 3.94 a 4.23 a S+P+H 37.90 ab 4.09 a 4.10 a 方差分析 ANOVA C 32.9* 109.0** 81.8* T 59.3** 22.2** 29.5** C×T 7.3** 1.4 5.3** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. RGR—Relative growth rate, CGR—Crop growth rate, NAR—Net assimilation rate. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.表 2 不同喷施措施下两个品种小麦叶片性状和叶绿素含量
Table 2 The leaf traits and chlorophyll content of two wheat cultivars under different spraying treatments
品种
Cultivar (C)处理
Treatment (T)叶面积指数
LAI叶面积比率
LAR叶干重比
LWR叶绿素a (mg/g)
Chl a叶绿素b (mg/g)
Chl b总叶绿素 (mg/g)
Total chlorophyllSM1963 CK 1.34 d 5.02 d 0.62 b 0.71 d 0.25 c 0.96 d S-ABA 1.36 d 9.09 b 0.62 bc 0.77 c 0.26 c 1.02 c PM 1.45 cd 7.14 c 0.66 a 0.86 a 0.28 b 1.15 a AF 1.35 d 5.99 cd 0.59 c 0.71 d 0.29 ab 1.00 cd HF 1.66 b 9.70 ab 0.54 d 0.76 c 0.28 b 1.05 bc S+P+A 1.50 c 5.86 cd 0.65 a 0.82 ab 0.28 b 1.08 b S+P+H 1.83 a 11.01 a 0.61 bc 0.78 bc 0.31 a 1.15 a SM133 CK 1.22 c 5.31 d 0.62 a 0.77 d 0.27 c 1.05 d S-ABA 1.24 c 7.72 c 0.58 b 0.91 b 0.31 b 1.21 b PM 1.50 b 9.64 b 0.58 b 1.07 a 0.37 a 1.44 a AF 1.14 c 6.55 cd 0.55 c 0.73 d 0.27 c 1.00 d HF 1.56 ab 11.9 a 0.59 b 0.82 c 0.27 c 1.12 c S+P+A 1.17 c 7.32 c 0.62 a 0.75 d 0.30 b 1.02 d S+P+H 1.65 a 10.61 ab 0.58 b 0.85 c 0.31 b 1.16 c 方差分析 ANOVA C 25.67* 2.60 55.7* 115.1** 173.1** 284.3** T 44.8** 46.3** 18.2** 52.6** 36.6** 70.9** C×T 4.5** 4.7** 9.6** 17.1** 19.8** 25.5** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. LAI—Leaf area index, LAR—Leaf area ratio, LWR—Leaf dry weight ratio. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.表 3 不同喷施措施下两个品种小麦分蘖发生与消亡速率
Table 3 The occurrence and extinction rates of tillering in two wheat varieties under different spraying measures
品种
Cultivar
(C)处理
Treatment
(T)单株分蘖力
TC成穗数
EN成穗率 (%)
SR有效分蘖发生速率
TER1
[No./(m2·d)]无效分蘖发生速率
TER2
[No./(m2·d)]分蘖消亡速率
TDR
[No./(m2·d)]SM1963 CK 0.78 c 1.45 d 80.28 bc 3.27 e 2.41 ab 0.57 ab S-ABA 1.00 a 1.58 bc 79.11 c 3.70 c 2.53 a 0.59 ab PM 0.85 b 1.47 d 79.66 c 3.51 d 2.59 a 0.60 a AF 0.87 b 1.53 c 81.81 ab 3.48 d 2.26 b 0.54 b HF 0.99 a 1.6 b 81.6 ab 3.92 b 2.4 ab 0.56 ab S+P+A 1.03 a 1.67 a 82.12 a 4.17 a 2.38 ab 0.54 b S+P+H 1.00 a 1.66 a 80.76 abc 3.81 bc 2.61 a 0.60 a SM133 CK 0.48 d 1.04 d 68.08 e 0.35 d 3.60 ab 0.85 a S-ABA 0.59 c 1.10 c 74.26 ab 0.74 c 2.87 c 0.65 c PM 0.59 c 1.10 c 70.48 d 0.78 c 3.40 b 0.85 a AF 0.65 b 1.16 bc 75.29 a 1.20 b 2.76 c 0.63 c HF 0.73 a 1.24 a 72.86 bc 1.56 a 3.6 ab 0.74 b S+P+A 0.66 b 1.19 ab 71.72 cd 1.30 b 3.42 b 0.78 b S+P+H 0.76 a 1.22 a 70.59 d 1.31 b 3.71 a 0.84 a 方差分析 ANOVA C 4793.3** 682.9** 184.3** 16180.1** 209.2** 351.6** T 43.7** 28.3** 13.3** 71.6** 11.5** 18.8** C×T 7.4** 3.3* 9.6** 11.9** 6.9** 10.4** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著 (P<0.05)。方差分析中,**表示效应达到0.01显著水平。
Note: TC—Tillering capacity per plant; EN—Ear number per plant; SR—Spike rate; TER1—The rate of tiller emergence from the start to the end point of effective tiller; TER2—The rate of tiller emergence from the endpoint of effective tillers to the maximum tillers, TDR—Tiller death rate. CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different lowercase letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, ** indicates the variable effect at 0.01 significant level.表 4 不同喷施措施下两个品种小麦茎蘖穗部性状
Table 4 Characteristics of tillers and spikes in two wheat varieties under different spraying measures
品种
Cultivar
(C)处理
Treatment
(T)穗长 (cm)
Spike length穗重 (×103 kg/hm2)
Spike weight结实小穗数
Fruiting spikelets不育小穗数
Sterile spikelets总小穗数
Total spikelets主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
Tiller主茎
Stem分蘖
TillerSM1963 CK 9.0 e 7.5 e 6.5 b 1.5 d 15.6 b 13.5 c 3.2 a 4.9 a 18.8 a 18.5 abc S-ABA 9.8 b 8.4 d 6.6 b 2.2 c 16.5 ab 14.7 bc 2.5 bc 3.1 bc 19.0 a 17.3 c PM 9.4 c 8.7 c 5.8 c 2.1 c 16.9 b 15.8 ab 2.5 bc 2.7 c 19.5 a 18.4 abc AF 9.1 de 8.4 d 6.4 b 2.1 c 16.2 ab 13.5 c 2.9 ab 3.9 b 19.1 a 17.5 bc HF 10.2 a 9.2 a 7.6 a 3.3 a 17.1 a 16.4 a 2.1 cd 3.1 bc 19.0 a 19.5 a S+P+A 9.3 cde 8.8 c 6.9 b 3.3 a 16.9 a 15.9 ab 2.7 abc 3.1 bc 19.7 a 19.1 ab S+P+H 9.3 cd 9.0 b 7.9 a 2.9 b 17.9 a 16 ab 1.7 d 3 bc 19.6 a 19 ab SM133 CK 9.0 d 8.4 c 7.8 c 1.2 d 17.9 c 14.7 b 3.4 ab 5 ab 21.7 a 20.2 b S-ABA 10.7 a 9.3 a 8.8 a 1.5 c 19.9 bc 15.9 ab 2.7 c 3.9 c 22.7 a 19.8 b PM 8.9 d 8.2 d 8.5 ab 1.0 e 17.9 ab 14.9 b 3.7 ab 4.7 abc 21.6 a 19.4 b AF 9.8 c 9.1 b 7.9 c 1.4 c 19.1 c 15.8 ab 3.4 ab 4.6 abc 22.7 a 20.4 ab HF 10.1 b 8.9 b 8.0 bc 1.9 b 18.7 a 16.8 a 3.8 a 5.0 ab 22.5 a 21.8 a S+P+A 9.8 c 8.4 cd 8.8 a 1.6 c 19.1 ab 16.7 a 3.1 bc 4.2 bc 22.2 a 20.9 ab S+P+H 9.9 c 8.9 b 8.6 a 2.1 a 19.5 ab 16.4 a 3.3 abc 5.5 a 22.7 a 21.9 a 方差分析 ANOVA C 32.4* 103.1** 251.7** 593.4** 114.0** 10.5** 76.5** 45.2** 192.5** 58.8** T 56.2** 73.9** 11.9** 115.7** 3.8** 5.8** 3.1** 4.4** 0.9 4.4** C×T 16.0** 49.8** 10.1** 26.6** 1.7 1.7 3.5** 3.3** 1.0 0.8 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种不同处理间差异显著(P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively.表 5 不同喷施措施下两个品种小麦产量
Table 5 Yield of two wheat varieties under different spraying measures
品种
Cultivar
(C)处理
Treatment
(T)有效穗 (×104/hm2)
Fertile spikes穗粒数
Grain number per spike千粒重 (g)
1000-grain
weight分蘖产量贡献率 (%)
Contribution rate
of tillering yield产量
Yield
(kg/hm2)群体
Group分蘖
Tiller主茎
Stem分蘖
TillerSM1963 CK 334.2 d 77.6 e 40.5 e 31.0 d 52.3 d 17.8 e 5 515.2 e S-ABA 353.3 c 107.7 c 46.6 a 31.9 d 51.7 de 20.8 d 6 251.2 bc PM 348.3 c 92.2 d 41.7 de 35.2 bc 53.7 c 22.4 d 5 964.2 cd AF 345.0 c 95.0 d 43.7 bc 34.3 c 55.2 a 21.7 d 5 796.0 de HF 362.1 b 119.3 b 42.1 cde 38.3 a 54.1 bc 30.0 b 6 364.7 b S+P+A 376.3 a 141.3 a 43.2 bcd 37.6 a 50.9 e 32.7 a 6 862.4 a S+P+H 377.1 a 123.3 b 45.0 ab 36.6 ab 54.8 ab 26.6 c 6 967.3 a SM133 CK 267.9 e 45.2 c 43.2 d 35.0 cd 50.6 f 13.6 c 5 220.7 c S-ABA 280.4 cd 59.2 b 45.2 bc 37.9 b 54.9 d 17.7 ab 5 827.5 a PM 274.6 de 38.3 c 42.7 d 33.1 d 55.8 c 10.8 d 5 424.8 bc AF 280.8 cd 56.8 b 43.5 cd 36.2 bc 57.6 b 16.8 b 5 740.8 ab HF 295.8 b 71.1 a 46.2 b 37.1 b 52.9 e 19.2 a 6 086.8 a S+P+A 283.8 c 61.9 b 46.4 b 33.6 d 58.5 a 15.8 bc 5 375.1 bc S+P+H 304.6 a 76.6 a 50.9 a 39.9 a 53.7 e 19.7 a 5 910.6 a 方差分析 ANOVA C 2721.0** 1714.3** 35.0* 3.7 85.5** 165.3** 33.5* T 42.3** 72.4** 21.0** 15.0** 51.2** 40.2** 15.3** C×T 5.2** 15.1** 7.5** 14.2** 59.3** 18.8** 7.4** 注:CK—清水;S-ABA—S-诱抗素;PM—多效唑·甲哌鎓;AF—含氨基酸水溶肥;HF—含腐植酸水溶肥;S+P+A—S-诱抗素+多效唑·甲哌鎓+含氨基酸水溶肥;S+P+H—S-诱抗素+多效唑·甲哌鎓+含腐植酸水溶肥。同列数据后不同小写字母表示同一品种间差异显著(P<0.05)。方差分析中,*、**分别表示效应达到0.05、0.01显著水平。
Note: CK—Water; S-ABA—Abscisic acid; PM—Paclobutrazol and methylphenium; AF—Amino acid containing water-soluble fertilizer; HF—Humic acid water-soluble fertilizer; S+P+A—Abscisic acid + paclobutrazol and methylphenium + amino acid water-soluble fertilizer; S+P+H—Abscisic acid + paclobutrazol and methylphenium + humic acid containing water-soluble fertilizer. Different letters after data in a column indicate significant difference among treatments of the same cultivar (P<0.05). In ANOVA, *, and ** indicate the variable effect at 0.05, and 0.01 significant levels, respectively. -
[1] 王婷昱, 郭思敏, 畅倩, 等. 更高水平“天府粮仓”建设: 历史演进、现实挑战与未来展望[J]. 四川农业大学学报, 2024, 42(1): 207−214. Wang T Y, Guo S M, Chang Q, et al. Building higher level of "Tianfu Granary": Historical evolution realistic challenges and future prospects[J]. Journal of Sichuan Agricultural University, 2024, 42(1): 207−214.
[2] 汤永禄, 李朝苏, 吴春, 等. 成都平原周年耕作模式对稻茬小麦产量与品质性状的持续效应[J]. 中国农业科学, 2012, 45(18): 3721−3732. DOI: 10.3864/j.issn.0578-1752.2012.18.005 Tang Y L, Li C S, Wu C, et al. The sustained effects of annual tillage mode on yield and quality traits of wheat in rice stubble in Chengdu Plain[J]. Scientia Agricultura Sinica, 2012, 45(18): 3721−3732. DOI: 10.3864/j.issn.0578-1752.2012.18.005
[3] 曾晓珊, 汤国华, 谢红军, 等. 耐迟收水稻品种的筛选及其在淹水降镉中的应用[J]. 中国农业科学, 2021, 54(17): 3561−3572. DOI: 10.3864/j.issn.0578-1752.2021.17.001 Zeng X S, Tang G H, Xie H J, et al. Selection of PMS rice varieties and application in flooding irrigation for cadmium reduction[J]. Scientia Agricultura Sinica, 2021, 54(17): 3561−3572. DOI: 10.3864/j.issn.0578-1752.2021.17.001
[4] 姜东, 陶勤南, 张国平. 渍水对小麦扬麦5号旗叶和根系衰老的影响[J]. 应用生态学报, 2002, 13(11): 1519−1521. DOI: 10.3321/j.issn:1001-9332.2002.11.039 Jiang D, Tao Q N, Zhang G P. Effect of waterlogging on senescence of flag leaf and root of wheat Yangmai 5[J]. Chinese Journal of Applied Ecology, 2002, 13(11): 1519−1521. DOI: 10.3321/j.issn:1001-9332.2002.11.039
[5] 高敬文, 苏瑶, 沈阿林, 等. 渍害胁迫下小麦生长的响应机理及调控措施研究进展[J]. 应用生态学报, 2020, 31(12): 4321−4330. Gao J W, Su Y, Shen A L, et al. Research progress of the response mechanism of wheat growth to waterlogging stress and the related regulating managements[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4321−4330.
[6] 吴元奇, 李朝苏, 樊高琼, 等. 渍水对四川小麦生理性状及产量的影响[J]. 应用生态学报, 2015, 26(4): 1162−1170. Wu Y Q, Li C S, Fan G Q, et al . Effect of waterlogging on physical traits and yield of wheat in Sichuan [J] Chinese Journal of Applied Ecology, 2015, 26(4): 1162−1170.
[7] 银敏华, 李援农, 周昌明, 等. 调亏灌水和分蘖干扰对冬小麦生长的补偿效应[J]. 应用生态学报, 2015, 26(10): 3011−3019. Yin M H, Li Y N, Zhou C M, et al. Compensation effects of regulated deficit irrigation and tillering interference to winter wheat[J]. Chinese Journal of Applied Ecology, 2015, 26(10): 3011−3019.
[8] 李小明, 龙惊惊, 周悦, 等. 叶面肥的应用及研究进展[J]. 安徽农业科学, 2017, 45(3): 127−130. DOI: 10.3969/j.issn.0517-6611.2017.03.043 Li X M, Long J J, Zhou Y, et al. Application and research progress of foliar fertilizer[J]. Journal of Anhui Agricultural Sciences, 2017, 45(3): 127−130. DOI: 10.3969/j.issn.0517-6611.2017.03.043
[9] Liu Y M, Chen S H, Wei P P, et al. A briefly overview of the research progress for the abscisic acid analogues[J]. Frontiers in Chemistry, 2022: 967404.
[10] 张亚琴, 李思佳, 邓秋林, 等. 化肥与植物生长延缓剂配施对麦冬产量形成和次生代谢产物的影响[J]. 草业科学, 2019, 36(6): 1544−1552. Zhang Y Q, Li S J, Deng Q L, et al. Effects of combined application of chemical fertilizers and plant growth retardants on yield and formation of secondary metabolites of Ophiopogon japonicus[J]. Pratacultural Science, 2019, 36(6): 1544−1552.
[11] 成臣, 雷凯, 程慧煌, 等. 苗期不同浓度多效唑对南方晚粳稻秧苗素质、茎蘖动态及产量的影响[J]. 中国水稻科学, 2020, 34(2): 150−158. Cheng C, Lei K, Cheng H H, et al. Different concentrations of paclobutrazol during seedling stage on the quality of southern late japonica rice seedlings[J]. Chinese Journal of Rice Science, 2020, 34(2): 150−158.
[12] 杨靖, 孙海燕, 李友勇. 11种非必需氨基酸对离体植物生长的胁迫作用[J]. 生物技术, 2008, (4): 72−74. Yang J, Sun H Y, Li Y Y. Stress on the growth of plants in vitro of non-essential amino acids[J]. Biotechnology Bulletin, 2008, (4): 72−74.
[13] 向胤春, 彭春华, 林立金, 等. 氨基酸水溶肥对枇杷幼苗生长及养分吸收的影响[J]. 四川农业大学学报, 2024, 42(1): 103−110. Xiang Y C, Peng C H, Lin L J et al. Effects of amino acid water-soluble fertilizer on growth and nutrient absorption of loquat seedlings[J]. Journal of Sichuan Agricultural University, 2024, 42(1): 103−110.
[14] 高纪超, 石元亮, 魏占波, 等. 腐殖酸与硝化抑制剂配施对油菜生长及品质的影响[J]. 中国土壤与肥料, 2021, (4): 208−223. DOI: 10.11838/sfsc.1673-6257.20246 Gao J C, Shi Y L, Wei Z B, et al. The effect of combined application of humic acid and nitrification inhibitor on the growth and quality of rapeseed[J]. Soil and Fertilizer Sciences in China, 2021, (4): 208−223. DOI: 10.11838/sfsc.1673-6257.20246
[15] Mora V, Nica, Eva B, et al. NO and IAA key regulators in the shoot growth promoting action of humic acid in Cucumis sativus L.[J]. Journal of Plant Growth Regulation, 2014, (2): 430−439.
[16] 李芳汀, 骆璐, 孙伟, 等. 活性腐殖酸肥对花生叶片光合特性及产量的影响[J]. 花生学报, 2023, 52(4): 40−46. Li F T, Luo L, Sun W, et al. Effects of active humic acid fertilizer on the photosynthetic characteristics and yield of peanut[J]. Journal of Peanut Science, 2023, 52(4): 40−46.
[17] 张沁怡, 李文蔚, 阳晶, 等. 腐殖酸对水稻剑叶光合特性、必需元素和产量的影响及其相关性研究[J]. 云南农业大学学报, 2015, 30(2): 185−191. Zhang Q Y, Li W W, Yang J, et al. Effects of humic acid on the photosynthetic characteristics, essential elements and yield of Oryza sativa and their correlation analysis[J]. Journal of Yunnan Agricultural University, 2015, 30(2): 185−191.
[18] 赵海燕, 甘淳丹, 兰汝佳, 等. 喷施新型腐殖酸型叶面肥对小麦旗叶抗氧化和产量及品质的影响[J]. 南京农业大学学报, 2018, 41(4): 685−690. DOI: 10.7685/jnau.201712019 Zhao H Y, Gan C D, Lan R J, et al. Effects of a new humic acid-foliar fertilizer on flag leaf senescence, yield and quality of spring wheat[J]. Journal of Nanjing Agricultural University, 2018, 41(4): 685−690. DOI: 10.7685/jnau.201712019
[19] GB/T 32752—2016, 农田渍涝气象等级[S]. GB/T 32752−2016, Meteorological grade of agricultural waterlogging[S].
[20] 肖云, 陈松鹤, 杨洪坤, 等. 优化栽培管理对四川丘陵旱地不同穗型小麦分蘖质量与产量形成的影响[J]. 核农学报, 2021, 35(11): 2616−2625. DOI: 10.11869/j.issn.100-8551.2021.11.2616 Xiao Y, Chen S H, Yang H K, et al. The effect of optimizing cultivation management on tillering quality and yield formation of different spike types of wheat in hilly and arid areas of Sichuan Province[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2616−2625. DOI: 10.11869/j.issn.100-8551.2021.11.2616
[21] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. Gao J F. Guidelines for plant physiology experiments[M]. Beijing: Higher Education Press, 2006.
[22] 由继红, 董春光, 史晓昆. 小麦叶片可溶性糖含量测定方法的研究[J]. 实验室科学, 2021, 24(2): 27−29. DOI: 10.3969/j.issn.1672-4305.2021.02.007 You J H, Dong C G, Shi X K. Study on determination method of soluble sugar content in wheat leaves[J]. Laboratory Science, 2021, 24(2): 27−29. DOI: 10.3969/j.issn.1672-4305.2021.02.007
[23] 董树刚, 吴以平. 植物生理学实验技术[M]. 北京: 中国海洋大学出版社, 2006. Dong S G, Wu Y P . Experimental techniques in plant physiology[M]. Beijing: Ocean University of China Press, 2006.
[24] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. Li H S . Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2000.
[25] Faiza G. Functional characterization of maize transcription factor ZmWRKY79 under drought stress[D]. 四川成都: 四川农业大学博士学位论文, 2022. Faiza G. Functional characterization of maize transcription factor ZmWRKY79 under drought stress[D]. Chengdu, Sichuan: PhD Dissertation of Sichuan Agricultural University, 2022.
[26] Mohd I, Hayat S, Hayat Q, et al. Physiological and biochemical changes in plants under waterlogging[J]. Protoplasma, 2010, (1): 14.
[27] 武辉, 向镜, 陈惠哲, 等. 外源调节剂对淹涝水稻幼苗株高及碳水化合物消耗的影响[J]. 应用生态学报, 2018, 29(1): 149−157. Wu H, Xiang J, Chen H Z, et al. Effects of exogenous growth regulators on plant elongation and carbohydrate consumption of rice seedlings under submergence[J]. Chinese Journal of Applied Ecology, 2018, 29(1): 149−157.
[28] 王彩虹, 郝水源. 长期施用腐殖酸复合微生物肥对小麦生长及产量的影响[J]. 江苏农业科学, 2022, 50(7): 100−105. Wang C H, Hao S Y, Effects of long-term application of humic acid compound microbial fertilizer on wheat growth and yield[J]. Jiangsu Agricultural Sciences, 2022, 50(7): 100−105.
[29] 刘伟, 刘景辉, 萨如拉, 等. 腐殖酸水溶肥料对水分胁迫下小麦光合特性及产量的影响[J]. 中国农学通报, 2014, 30(3): 196−200. DOI: 10.11924/j.issn.1000-6850.2013-0789 Liu W, Liu J H, Sa R L, et al. Effect of humic acid water-soluble fertilizer on wheat photosynthetic characteristics and yield under water stress[J]. Chinese Agricultural Science Bulletin, 2014, 30(3): 196−200. DOI: 10.11924/j.issn.1000-6850.2013-0789
[30] 涂雯, 安琪, 何永刚, 等. 水稻低节位早发分蘖与秧苗叶片形态、碳氮代谢的关系[J]. 湖北农业科学, 2019, 58(21): 22−29. Tu W, An Q, He Y G, et al. The relationship between early tillers at low-nodes and leaf morphological characters, carbon and nitrogen metabolism in rice[J]. Chinese Agricultural Science Bulletin, 2019, 58(21): 22−29.
[31] 赵会杰, 任琴, 郭天财, 等. 大穗型小麦兰考906分蘖发育的生理特征及其调控[J]. 麦类作物学报, 2001, 21(4): 69−71. DOI: 10.7606/j.issn.1009-1041.2001.04.106 Zhao H J, Ren Q, Guo T C, et al. Physiological characteristics and the regulation of tiller growth of large-ear cultivar Lankao 906[J]. Journal of Triticeae Crops, 2001, 21(4): 69−71. DOI: 10.7606/j.issn.1009-1041.2001.04.106
[32] 盛坤. 两种穗型冬小麦品种碳氮代谢与分蘖成穗关系的研究[D]. 河南郑州: 河南农业大学博士论文, 2009. Sheng K. Study on the relationship between carbon and nitrogen metabolism and tillering and panicle formation in two winter wheat varieties with different spike types[D]. Zhengzhou, Henan: PhD Dissertation of Henan Agricultural University, 2009.
[33] 郭天财, 徐丽娜, 冯伟, 等. 种植密度对兰考矮早八幼穗分化和碳氮代谢的影响[J]. 华北农学报, 2009, 24(1): 194−198. DOI: 10.7668/hbnxb.2009.01.043 Guo T C, Xu L N, Feng W, et al. Effects of plant density on spike differentiation and C/N metabolism of Lankao Aizao 8[J]. Acta Agriculturae Boreali-Sinica, 2009, 24(1): 194−198. DOI: 10.7668/hbnxb.2009.01.043
[34] 刘畅, 杜羽晨, 李宁辉, 等. 不同抗寒性小麦品种生长点发育进程及生理指标差异分析[J]. 麦类作物学报, 2023, 43(6): 721−728. Liu C, Du Y C, Li N H, et al. Difference analysis of development process of growing point and physiological index in wheats with different cold resistance[J]. Journal of Triticeae Crops, 2023, 43(6): 721−728.
[35] 董成武, 张叶子, 石岩. 新型复合保水剂对干旱胁迫下小麦幼苗生长和生理特性的影响[J]. 中国土壤与肥料, 2021, (6): 255−261. DOI: 10.11838/sfsc.1673-6257.20442 Dong C W, Zhang Y Z, Shi Y. The effect of a new composite water retaining agent on the growth and physiological characteristics of wheat seedlings under drought stress[J]. Chinese Soil and Fertilizer, 2021, (6): 255−261. DOI: 10.11838/sfsc.1673-6257.20442
[36] 丁美云, 刘丽杰, 于梦迪, 等. 油菜素内酯对寒地冬小麦越冬期生理代谢的影响[J]. 麦类作物学报, 2022, 42(7): 864−871. DOI: 10.7606/j.issn.1009-1041.2022.07.10 Ding Y M, Liu L J, Yu M D, et al. Effect of brassinolide on physiological metabolism of winter wheat in cold area[J]. Journal of Triticeae Crops, 2022, 42(7): 864−871. DOI: 10.7606/j.issn.1009-1041.2022.07.10
[37] 丁锦峰, 苏盛楠, 梁鹏, 等. 拔节期和花后渍水对小麦产量、干物质及氮素积累和转运的影响[J]. 麦类作物学报, 2017, 37(11): 1473−1479. DOI: 10.7606/j.issn.1009-1041.2017.11.10 Ding J F, Su S N, Liang P, et al. Effect of waterlogging at elongation or after anthesis on grain yield and accumulation and remobilization of dry matter and nitrogen in wheat[J]. Journal of Triticeae Crops, 2017, 37(11): 1473−1479. DOI: 10.7606/j.issn.1009-1041.2017.11.10
[38] 田中伟, 王妮妮, 李怡香, 等. 分蘖期和拔节期干旱对小麦主茎和分蘖穗粒形成的影响[J]. 麦类作物学报, 2018, 38(6): 734−741. DOI: 10.7606/j.issn.1009-1041.2018.06.14 Tian Z W, Wang N N, Li Y X, et al. Effect of water deficit on main stem and tiller grain number formation of wheat during tillering stage and jointing stage[J]. Journal of Triticeae Crops, 2018, 38(6): 734−741. DOI: 10.7606/j.issn.1009-1041.2018.06.14
[39] 刘北城, 张艳艳, 戎亚思, 等. 干旱胁迫下喷施14-羟基芸苔素甾醇对冬小麦穗花发育及碳氮代谢的调控[J]. 植物营养与肥料学报, 2021, 27(6): 4−12. DOI: 10.11674/zwyf.20584 Liu B C, Zhang Y Y, Rong Y S, et al. Regulation of spraying 14-hydroxylated brassinosteroid on spike and fertile floret development and carbon and nitrogen metabolism of winter wheat under drought stress[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(6): 4−12. DOI: 10.11674/zwyf.20584
[40] 王玉竹, 尹燕枰, 李勇, 等. 雨养条件下施氮水平对冬小麦小花发育与结实的影响[J]. 山东农业科学, 2016, 48(9): 77−83. Wang Y Z, Yin Y P, Li Y, et al. Nitrogen levels on floret development and grain setting of winter wheat under rain fed conditions[J]. Shandong Agricultural Sciences, 2016, 48(9): 77−83.
[41] 张艳艳, 关涵文, 刘淋茹, 等. 不同水分条件下施磷对冬小麦穗花发育及产量的影响[J]. 作物学报, 2023, 49(10): 2753−2765. Zhang Y Y, Guan H W, Liu L R, et al. Effects of phosphorus application on spike and fertile floret development and yield of winter wheat under different water treatments[J]. Acta Agronomica Sinica, 2023, 49(10): 2753−2765.