• ISSN 1008-505X
  • CN 11-3996/S

小麦高效吸收利用磷素机制研究进展

Progress on mechanism on the phosphorus-efficient absorption and utilization in wheat (Triticum aestivum L.)

  • 摘要: 小麦作为高需磷量的主要粮食作物,实现稳产高产高度依赖磷肥施用。然而,我国小麦当季磷肥利用率仅 19%,提升磷素吸收利用效率已成为小麦养分研究领域的核心科学问题。本文基于作者团队前期关于小麦磷高效利用的研究基础,首先剖析了土壤磷素利用效率低下的原因,梳理了小麦及其他作物实现磷素高效吸收利用的 5 条关键途径:根系形态重塑、根际微生物互作、有机酸分泌、体内磷再分配以及基因表达调控,并深入阐述了小麦高亲和磷转运蛋白基因(TaPHT1s) 的分类与功能特性。其次,详细介绍了磷素吸收效率与利用效率的计算方法,剖析了正向遗传学在定位与克隆小麦磷高效基因时进展缓慢的制约因素,同时阐述了利用反向遗传学手段挖掘出的磷高效候选基因。在分子调控机制层面,着重探讨了小麦磷信号转导通路中转录因子 TaPHR1TaMYB4 等的功能。最后,从小麦磷高效精准表型组高通量的研发、花后体内磷再分配关键 PHTs 基因的精准鉴定,以及全基因组测序与高通量芯片技术的综合应用等方面,对小麦磷高效利用研究的未来发展方向进行展望。

     

    Abstract: Wheat is a high phosphorus (P)-demanding cereal crop, and its stable and high yield relies heavily on substantial phosphorus fertilizer input. However, the seasonal utilization efficiency of phosphorus fertilizer in Chinese wheat production is only 19%, making the improvement of phosphorus absorption and use efficiency a critical scientific issue in wheat nutrient management research. Based on our previous research on wheat P use efficiency, in this review, we first analyze the reasons for the low P efficiency in soil and summarize five main pathways for uptake and utilizing P in wheat and other crops: root morphological remodeling, organic acid secretion, internal P redistribution and gene expression. Among the P-efficient genes, we emphasize the categories and functions of wheat high affinity P transporter genes (TaPHT1s). Subsequently, we introduce the calculation formulas for P absorption efficiency and utilization efficiencies, explain the main reasons for the slow progress in mapping and cloning P-efficient genes via forward genetics, and summarize the identified Pi-efficient candidate genes via reverse genetics approaches. On the wheat P-efficient molecular regulatory signaling pathway, we describe the functions and mechanisms of several transcription factors including TaPHR1, TaMYB4. Finally, we propose future directions to accelerate the cloning of P-efficient genes in wheat, including developing high-throughput phenotyping platforms for P efficiency; identifying key PHT genes involved in P utilization efficiency among tissues after anthesis; and leveraging wheat genome sequencing data and high-throughput microarrays

     

/

返回文章
返回