Yield differences of modern maize varieties and typical biological characteristics of high-yield maize varieties
-
摘要:目的
通过对比分析不同玉米品种产量、农艺性状、干物质及养分累积利用能力的差异,明确高产玉米品种的典型生物学特征,从而为农业生产中优选高产玉米品种提供科学依据。
方法收集了冀中平原生产中主推和试推广的76个玉米品种,在河北省望都进行品种比较田间试验。在玉米完熟期,测定玉米植株高度、穗位高和茎粗,分析玉米不同部位的干物质及氮、磷、钾养分累积量,统计产量和产量构成因素。最后,采用相关分析和通径分析方法,明确影响玉米高产的主要性状指标。
结果供试76个玉米品种的产量变化范围为7.4~13.5 t/hm2,最大产量差达6.1 t/hm2。采用聚类分析方法,以1.8 t/hm2为欧氏距离,将76个玉米品种划分为高(50个)、中(21个)、低(5个)产3种类型。高产品种的穗长、行粒数和穗粒数分别显著高于低产品种11.6%、9.4%和11.0%,秃尖长显著低于低产品种50.0%。与中产和低产品种相比,高产品种的百粒重、籽粒干物质累积量、总干物质累积量分别显著提高6.1%和21.6%、25.1%和56.6%、16.6%和40.1%,叶片、籽粒和总的氮、磷、钾累积量及穗轴钾累积量、氮磷钾养分利用效率亦均显著提高。高产品种的穗粒数、百粒重、穗长、秃尖长、总干物质累积量、总氮和磷累积量、籽粒钾素累积量与产量均呈(极)显著相关,8个指标可解释玉米75.1%的产量变异,对产量的直接影响程度大小表现为:穗粒数>百粒重>总氮素累积量>秃尖长>穗长>籽粒钾素累积量>总磷素累积量>总干物质累积量。百粒重对产量的间接影响最大,其次为总干物质累积量。
结论玉米产量存在明显的基因型差异。高产玉米品种的穗粒数、百粒重、穗长、干物质累积量以及氮磷钾养分累积量均表现出明显优势,秃尖长明显较低。因此,在冀中平原进行高产玉米品种的筛选时,应注意穗粒数、百粒重、穗长、秃尖长等典型农艺性状指标,以及氮磷钾、干物质累积量等内在生理指标的协调。
Abstract:ObjectivesThe study compared the differences in yield, agronomic traits, dry matter accumulation, and nutrient utilization efficiency among various maize varieties, aiming to identify the typical biological characteristics of high-yielding maize varieties, and offer a scientific basis for the selection of high-yielding maize varieties.
MethodsA total of 76 maize varieties, which were widely promoted in the central Hebei Plain, were collected and tested in a field experiment in Wangdu, Hebei Province. At physiological maturity, plant height, ear height, and stem diameter were investigated. The accumulation of dry matter and nitrogen (N), phosphorus (P), and potassium (K) in different parts of maize were determined. Yield and yield components were also analyzed. Finally, we used the correlation and path analysis to identify the main traits influencing high-yielding maize.
ResultsThe yields of 76 maize varieties ranged from 7.4 t/hm2 to 13.5 t/hm2, with a maximum yield gap of 6.1 t/hm2. Using cluster analysis with a Euclidean distance of 1.8 t/hm2, the 76 varieties were classified into high-yield (50 varieties), medium-yield (21 varieties), and low-yield (5 varieties) types. Compared to low-yielding varieties, the high-yielding varieties exhibited significantly greater ear length, kernels per row, and kernels per ear by 11.6%, 9.4%, and 11.0%, respectively, and lower bald tip length by 50.0%. Compared to medium and low-yielding varieties, the high-yielding varieties showed significant increases in 100-kernel weight, grain and total dry matter accumulation by 6.1% and 21.6%, 25.1% and 56.6%, and 16.6% and 40.1%, respectively. Additionally, the accumulation of N, P, and K in leaves, grains, and overall, as well as the K accumulation in the cob, along with the nutrient use efficiency of N, P, and K, were all significantly improved. Kernels per ear, 100-kernel weight, ear length, bald tip length, total dry matter accumulation, total N and P accumulation, and grain K accumulation of high-yielding varieties were all (extremely) significantly correlated with yield. These eight indicators could explain 75.1% of the yield variation. The direct impact on yield ranked as follows kernels per ear>100-kernel weight>total N accumulation>bald tip length>ear length>grain K accumulation>total P accumulation>total dry matter accumulation. 100-kernel weight had the greatest indirect impact on yield, followed by total dry matter accumulation.
ConclusionsGenotype plays a significant role in determining the yield level of maize. High-yielding maize varieties demonstrated superior performance in terms of kernels per ear, 100-kernel weight, ear length, dry matter accumulation, and N, P, and K accumulation, along with notably shorter bald tip lengths. Therefore, for the selection of high-yielding maize in the central Hebei Plain, attention should be paid to the coordination of both apparent agronomic traits (e.g., kernels per ear, 100-kernel weight, ear length, and bald tip length) and internal physiological indicators (e.g., N, P, K, and dry matter accumulation).
-
在全球粮食需求增加背景下,提升单位面积产量成为保障粮食安全的重要举措[1−2]。玉米作为我国重要的粮食作物,与其他作物相比产量提升潜力巨大[3]。但玉米产量受品种特性、气候条件、土壤肥力特性以及栽培管理措施等多方面因素的影响[4],其中品种对玉米产量的贡献达到了50%以上[5]。因此,明确不同玉米品种的产量差异,选择高产玉米品种成为提高玉米产量不容忽视的重要途径。
随着农业生产中对玉米高产的追求,以及高温、干旱、涝渍、病虫害等逆境的频繁发生,具有不同抗逆性能的高产玉米品种不断出现,而这些品种的差异不仅仅体现在其适应能力、抗逆能力、产量等方面,其外观农艺性状及内在的干物质、养分累积特征等也存在明显不同[6−7]。Ren等[5]研究发现,株高、穗位高等株型特征以及穗长、穗粗、穗行数、行粒数等穗部性状特征均与玉米产量密切相关,各农艺性状对产量的贡献率可以解释54.4%的产量变异。同时作物产量也受内在干物质和养分累积、转运、分配特性的显著影响,Liu等[8]通过meta分析发现,干物质累积对籽粒产量的平均贡献率达73.7%。氮、磷、钾作为玉米生长必需的营养元素,在籽粒中的累积主要源于生育后期根系的直接吸收和营养器官向籽粒的转运与再分配。齐文增等[9]和Ning等[10]发现,高产或超高产玉米品种在其整个生育期内的养分吸收和干物质累积速率均较高,尤其是开花后养分吸收分配到籽粒的比例显著高于低产玉米品种。因此,具有高养分吸收利用效率及合理的养分吸收与再分配能力的玉米品种更容易实现高产。有关玉米性状与产量之间的关系,前人从不同角度进行了大量研究,也得出了不少有价值的结果。但当前的研究多着重于单一性状,如高产品种的氮、磷利用效率差异、吐丝前后的干物质和养分累积特征等[8,10],而从株型性状、穗部性状、干物质和养分累积利用特征等可能影响玉米产量的多指标进行综合分析,并明确不同性状对高产玉米品种产量影响程度的研究相对缺乏。且随着育种技术的不断发展,新的玉米品种不断出现,针对现代不同产量水平的玉米品种,其生物学特性的差异研究也比较有限。基于此,本研究以冀中平原主推或正在试推广的76个玉米品种为供试材料,探讨不同玉米品种的产量差异,产量与株型及穗部性状、干物质及养分累积的关系,分析影响玉米产量潜力的主要性状特征,旨在为高产玉米品种的选育及生产一线高产玉米品种的优选提供科学依据。
1. 材料与方法
1.1 试验设计
本试验于2021年在河北省保定市望都县禾田丰现代农业园进行(N38°43′46.67″,E115°08′44.43″),该区域属于暖温带季风气候,年平均温度11.8℃,无霜期189d,年平均总日照时数2580 h,年均降雨量507.5 mm。供试土壤类型为轻壤质潮土,0—20 cm土壤基本化学性质如下:有机质8.22 g/kg,全氮0.58 g/kg,硝态氮8.05 mg/kg,铵态氮3.35 mg/kg,有效磷9.37 mg/kg,速效钾132 mg/kg,容重1.58 g/cm3,pH 8.27。土壤有机质及氮、磷含量明显偏低。供试玉米品种总计76个,均为生产一线主推或试推广的品种,分别是:HW、JH、QN、W1、D1、HY、SF、Y1、TO、W2、WY、Y2、TY、TH、LY、MK、H1、TS、W3、YY 、YF、W4、NH、JNK、W5、ZH、JF、LY、W6、DH、SP、KE、JR、JN、JZ、H1、N1、DD、D2、LY、W7、OS、H2、AZY、W8、NX、TH、W9、Y3、RF、D3、XY、AY、N1、H1、H2、LY、RH、Y4、FF、N2、JK、MC、K1、GL、DK、N3、HK、N4、K1、D4、H3、TE、LT、ES、DY。试验采用田间大区种植方式,每个品种种植面积为666.7 m2,种植密度根据审定品种系谱中作物最佳生长习性,采用各品种推荐的适种密度,以切实反映各品种的最佳产量水平。施肥采用统一管理,N−P2O5−K2O为28−11−6的掺混缓控释肥料按照600 kg/hm2的用量,于玉米播种时采用种肥同播机一次性施入土壤,生长期间不再追肥。水分及病虫草害管理同常规生产田。
1.2 样品采集与测定
1.2.1 农艺性状的测定
在玉米完熟期,每个玉米品种随机选取3个采样点,每个点选取5株长势基本一致的健壮植株,测量每株玉米的株高(使用卷尺测量地面到雄穗顶部的距离)、穗位高(使用卷尺测定地面到植株雌穗着生节的距离)和茎粗(使用游标卡尺测量茎秆基部直径)。
1.2.2 干物质和养分含量的测定
农艺性状测定完成后,将植株分为叶片(含叶鞘和苞叶)、茎秆(含雄穗)、籽粒及穗轴4部分,称重后选取代表性样品,置于烘箱,105℃下杀青30 min后调至65℃下烘干至恒重,据此折算干物质累积量。将烘干后的样品用粉碎机粉碎,采用H2SO4−H2O2消煮,凯氏定氮法测定全氮含量;钒钼黄比色法测定全磷含量;火焰光度法测定全钾含量[11]。
1.2.3 考种测产
每个玉米品种随机选取3个采样点,每个采样点连续掰取30穗玉米,现场称总鲜重,同时根据30穗的平均穗重选取长势均匀的5穗标准穗,称鲜重,带回实验室风干后考种,统计穗长、秃尖长、穗粗、穗行数、行粒数、穗粒数、百粒重,烘干籽粒后折算14%含水量的玉米产量和百粒重。
1.3 数据处理与分析
采用Microsoft Excel 2016和Origin Pro软件进行数据处理和相关图表绘制,使用SPSS 26.0软件进行统计分析,产量因素以欧式距离为指标,采用离差平方和法进行聚类分析[12],相关计算公式如下[13−15]:
粒叶比=籽粒干产量/叶片干物质量;
各器官养分累积量(kg/hm2)=各器官养分浓度×相应器官干物质量;
地上部总养分累积量(kg/hm2)=各器官养分累积量之和;
氮(磷、钾)养分利用效率(kg/kg)=产量/氮(磷、钾)养分累积量。
2. 结果与分析
2.1 不同品种玉米的产量水平差异
从供试的76个玉米品种的产量结果(图1-A)可知,所有供试玉米品种(AV)中产量最高的为13.5 t/hm2,最低的7.4 t/hm2,平均产量为11.1 t/hm2,最大产量差达6.1 t/hm2,变异系数为13.0%。由此可见,供试玉米的产量存在显著的基因型差异。
图 1 供试玉米品种的产量及产量聚类分析注:AV代表全部品种;HV代表高产品种组;MV代表中产品种组;LV代表低产品种组。图1-A中箱形图的上边界线和下边界线分别表示75%和25%的四分位数,中位线和正方形分别表示中位数和平均值,箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。Figure 1. Yield and yield clustering of the tested maize varietiesNote: AV, HV, MV and LV represent all varieties, high-, middle- and low-yielding varieties, respectively. In Fig. 1-A, the upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively; different lowercase letters above the boxes indicate significant difference among the varieties at different yield levels (P<0.05).将76个供试玉米品种依据产量水平,通过采用欧氏距离计算样本间距离系数进行聚类分析(图1-B),在欧氏距离为1.8 t/hm2时将76个玉米品种(AV)划分为高产(HV)、中产(MV)、低产(LV) 3类,其中产量水平在10.7 t/hm2及以上的高产品种有50个,产量变幅为10.9~13.5 t/hm2,最大产量差为2.62 t/hm2。产量水平在8.6 ~10.7 t/hm2的中等产量品种有21个,最大产量差为2.1 t/hm2。产量水平在8.6 t/hm2及以下的低产品种5个,产量变幅为7.4~8.2 t/hm2,最大产量差为0.8 t/hm2 (图1-A)。
2.2 不同产量水平的玉米品种农艺性状分析
2.2.1 不同产量水平下植株形态分析
高、中、低产玉米品种茎粗平均分别为23.4、22.9、22.8 mm;株高平均分别为275.9、259.5、263.2 cm;穗位高平均分别为97.9、93.7、88.4 cm。虽然玉米茎粗、株高和穗位高总体表现为高产品种>中产品种>低产品种的趋势,但3个指标在不同产量水平的玉米品种间的差异均未达到统计学上的显著水平(图2)。
图 2 不同产量水平的玉米植株形态特征注:HV、MV、LV分别代表高产、中产、低产品种组。箱形图的上、下边界线分别表示75%和25%的四分位数,箱体内短线和正方形分别表示中位数和平均值,箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。Figure 2. Plant morphological indicators of maize varieties at different yield levelsNote: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. The upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively. Different lowercase letters above the boxes indicate significant difference among the varieties at different yield levels (P<0.05).2.2.2 不同产量水平下玉米穗部性状特征
表1显示,3个产量水平的玉米穗粗和穗行数差异均不显著。高产品种穗长与中产品种无显著差异,但显著高于低产品种11.6%,而中、低产品种之间的穗长也无显著差异。高产品种的秃尖长和行粒数与中产品种无显著差异,但二者的秃尖长分别显著低于低产品种50.0%和47.2%,行粒数分别显著高于低产品种9.4%和8.8%。玉米穗粒数和百粒重总体也均表现为高产品种>中产品种>低产品种的趋势。其中高产品种与中产品种穗粒数无显著差异,但显著高于低产品种11.0%。高产品种百粒重分别显著高于中、低产品种6.1%和21.6%,中产品种百粒重显著高于低产品种14.6%。
表 1 不同产量水平的玉米穗部性状特征Table 1. Ear indicators of maize varieties at different yield levels产量水平
Yield level穗长
Ear length
(cm)穗粗
Ear diameter
(cm)秃尖长
Bald tip length
(cm)穗行数
Row number
per ear行粒数
Kernel number
per row穗粒数
Kernel number
per ear百粒重
100-kernel weight
(g)HV 17.82±1.68 a 4.25±0.46 a 0.18±0.16 b 15.88±1.14 a 37.40±2.20 a 592.06±41.13 a 36.93±2.62 a MV 17.06±1.20 ab 4.10±0.35 a 0.19±0.23 b 15.57±1.73 a 37.20±2.76 a 576.46±56.19 ab 34.80±1.78 b LV 15.97±1.91 b 3.81±0.30 a 0.36±0.27 a 15.57±2.22 a 34.20±3.33 b 533.25±107.88 b 30.37±3.19 c 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).2.3 不同产量水平的玉米品种干物质累积分配特征分析
玉米各部位及总干物质累积量均表现为高产品种>中产品种>低产品种(表2)。高产品种与中产品种的叶片和穗轴干物质累积量无显著性差异,但二者分别显著高于低产品种16.2%、13.0% (叶片)和31.8%、25.3% (穗轴)。高产品种茎秆干物质累积量与中产品种亦无显著差异,但显著高于低产品种34.1%,而中、低产品种间无显著差异。高、中、低产玉米品种的籽粒干物质累积量和总干物质累积量差异均达显著水平,其中高产品种籽粒干物质累积量分别显著高于中、低产品种25.1%和56.6%,中产品种显著高于低产品种25.2%,总干物质累积量分别显著高于中、低产品种16.6%和40.1%,中产品种显著高于低产品种20.2%。
表 2 不同产量水平的玉米各部位干物质累积量、分配及粒叶比Table 2. Dry matter accumulation, distribution and ratio of grain to leaf of maize varieties at different yield levels产量水平
Yield level干物质累积量 Dry matter accumulation (kg/hm2) 干物质分配 Dry matter distribution (%) 粒叶比
Ratio of grain
to leaf叶片
Leaves茎秆
Stalks籽粒
Grains穗轴
Cobs总量
Total叶片
Leaves茎秆
Stalks籽粒
Grains穗轴
CobsHV 4065.5 a 2954.8 a 9843.6 a 1132.0 a 17996.0 a 22.65 c 16.30 a 54.77 a 6.28 a 2.43 a MV 3955.0 a 2537.5 ab 7868.0 b 1076.0 a 15438.3 b 25.63 b 16.26 a 51.15 b 6.96 a 2.02 b LV 3499.7 b 2204.2 b 6285.9 c 859.1 b 12848.9 c 27.43 a 16.88 a 49.10 b 6.59 a 1.81 b 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).与中、低产品种相比,高产品种叶片干物质分配比例分别显著减少了11.8%和17.1%,但籽粒分配比例分别显著增加了7.3%和11.8%。中产品种叶片干物质分配比例也较低产品种显著降低了6.6%。高产品种的粒叶干物质量比分别显著高于中、低产品种20.3%和34.3%,而中、低产品种间无显著差异。
2.4 不同产量水平的玉米品种养分累积分配特征分析
2.4.1 氮素累积分配特征
不同产量水平玉米各部位及总氮素累积量结果如表3所示。高产品种叶片和籽粒氮素累积量与中产品种无显著差异,但二者分别高于低产品种27.6%和12.4%。3类产量水平的玉米品种茎秆和穗轴的氮素累积量差异不大,但总氮素累积量差异均达显著水平,与中、低产玉米品种相比,高产品种分别显著提高了16.2%和35.2%。但各部位的分配比例在3类品种间差异不大。
表 3 不同产量水平的玉米氮素累积量及在各部位的分配Table 3. Nitrogen accumulation and distribution in different parts of maize at different yield levels产量水平
Yield level氮素累积量 N accumulation (kg/hm2) 氮素分配 N distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 57.00 a 26.75 a 132.63 a 3.72 a 220.11 a 25.72 a 12.22 a 60.36 a 1.71 a MV 44.69 ab 23.49 a 117.98 ab 3.30 a 189.45 b 23.36 a 12.44 a 62.44 a 1.76 a LV 36.15 b 20.70 a 102.66 b 3.26 a 162.76 c 21.95 a 12.91 a 63.14 a 2.00 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).2.4.2 磷素累积分配特征
对磷素累积量进行分析可见(表4),不同产量水平玉米籽粒和总磷素累积量均表现为高产品种>中产品种>低产品种。其中,高产品种分别显著高于中、低产品种10.1%、11.7% (籽粒)和6.8%、11.4% (总量),而中、低产品种间无显著差异。高产和中产品种的玉米叶片磷素累积量基本相当,但分别显著高于低产品种20.2%和25.3%,茎秆和穗轴磷素累积量与氮素累积量结果相似,3个产量水平品种组之间差异均不显著。与低产品种相比,中产品种叶片分配比例显著提高2.83个百分点,而其他各部位的分配比例差异均不显著。
表 4 不同产量水平的玉米磷素累积量及在各部位的分配Table 4. Phosphorus accumulation and distribution in different parts of maize at different yield levels产量水平
Yield level磷素累积量 P accumulation (kg/hm2) 磷素分配 P distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 6.35 a 6.53 a 27.41 a 1.95 a 42.23 a 15.04 ab 15.45 a 64.89 a 4.62 a MV 6.63 a 6.07 a 24.90 b 1.95 a 39.56 b 16.77 a 15.35 a 62.95 a 4.93 a LV 5.29 b 6.34 a 24.54 b 1.77 a 37.93 b 13.94 b 16.71 a 64.69 a 4.66 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).2.4.3 钾素累积分配特征
对钾素累积量进行分析可见(表5),不同产量水平玉米叶片、籽粒、穗轴和总钾素累积量也均表现为高产品种>中产品种>低产品种。其中高产品种叶片和穗轴钾素累积量与中产品种无显著差异,但二者分别显著高于低产品种20.9%、16.7% (叶片)和26.2%、24.7% (穗轴)。茎秆钾素累积量明显高于其他部位累积量,但各产量水平的玉米品种间差异不显著。高产品种籽粒的钾素累积量显著高于中产品种(23.0%)和低产品种(30.5%),但中、低产品种间无显著差异。高产品种的总钾素累积量与中产品种间无显著差异,但显著高于低产品种13.0%,中产品种与低产品种间差异也不显著。不同产量水平的玉米钾素在各部位的分配均无显著差异。
表 5 不同产量水平的玉米钾素累积量及在各部位的分配Table 5. Potassium accumulation and distribution in different parts of maize at different yield levels产量水平
Yield level钾素累积量 K accumulation (kg/hm2) 钾素分配 K distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 45.47 a 131.01 a 33.74 a 10.70 a 220.93 a 20.58 a 59.30 a 15.27 a 4.84 a MV 43.90 a 131.63 a 27.44 b 10.57 a 213.54 ab 20.56 a 61.64 a 12.85 a 4.95 a LV 37.61 b 123.51 a 25.85 b 8.48 b 195.40 b 19.24 a 63.19 a 13.23 a 4.34 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).2.5 不同产量水平的玉米养分利用效率分析
不同产量水平玉米的养分利用效率差异见图3,高产玉米品种的氮素利用效率平均值为55.6 kg/kg,显著高于中产品种(48.3 kg/kg) 15.1%和低产品种(48.6 kg/kg) 14.3%,而中、低产品种间无显著差异。高、中、低产玉米品种的磷素利用效率平均值分别为286.7、249.8 、208.4 kg/kg,钾素利用效率平均值分别为55.1、46.6、41.0 kg/kg。3个产量水平品种的磷、钾素利用效率均表现出了随产量水平提高而显著提高的结果。与中、低产玉米品种相比,高产品种的磷素利用效率分别提高了14.7%和37.6%,钾素利用效率分别提高了18.3%和34.5%。
图 3 不同产量水平的玉米养分利用效率注:HV、MV、LV分别代表高产、中产、低产品种组。箱形图的上、下边界线分别表示75%和25%的四分位数,箱体内短线和正方形分别表示中位数和平均值。箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。Figure 3. Nutrient utilization efficiency of maize varieties at different yield levelsNote: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. The upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively. Different lowercase letters above the boxes indicate significant difference among varieties at different yield levels (P<0.05).2.6 高产玉米品种典型生物学特征与产量的相关性分析和通径分析
对上述表征高、中、低产玉米的株型特征、穗部性状特征、干物质及养分累积特征指标进一步比较发现,其中有20个性状指标高产品种显著高于中产、低产品种或仅高于低产品种,但考虑到穗粒数与行粒数之间及籽粒干物质与产量之间存在多重共线性,因此本研究对除去行粒数、籽粒干物质外的18个具有显著差异的指标进行相关性分析,结果(图4)表明,玉米产量与穗粒数、百粒重、穗长、总干物质累积量、总氮累积量、总磷累积量和籽粒钾累积量7个指标均呈显著或极显著正相关,与秃尖长呈显著负相关。此外,穗粒数与干物质和总氮累积量之间也均表现为显著或极显著正相关关系,百粒重与总干物质累积量、总氮累积量和籽粒钾累积量之间也呈显著正相关关系。
图 4 高产玉米品种典型生物学特征与产量的相关性分析注:Y—产量;KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;LDM—叶干物质累积量;SDM—茎秆干物质累积量;CDM—穗轴干物质累积量;DM—总干物质累积量;LN—叶片氮累积量;GN—籽粒氮累积量;TN—总氮累积量;LP—叶片磷累积量;GP—籽粒磷累积量;TP—总磷累积量;LK—叶片钾累积量;GK—籽粒钾累积量;CK—穗轴钾累积量;TK—总钾累积量。*—P<0.05;**—P<0.01;***—P<0.001。Figure 4. Correlationship between yield and typical biological characteristics of high-yielding maize varietiesNote: Y—Yield; KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; LDM—Leaf dry matter accumulation; SDM—Stalk dry matter accumulation; CDM—Cob dry matter accumulation; DM—Total dry matter accumulation; LN—Leaf nitrogen accumulation; GN—Grain nitrogen accumulation; TN—Total nitrogen accumulation; LP—Leaf phosphorus accumulation; GP—Grain phosphorus accumulation; TP—Total phosphorus accumulation; LK—Leaf potassium accumulation; GK—Grain potassium accumulation; CK—Cob potassium accumulation; TK—Total potassium accumulation. *—P<0.05; **—P<0.01; ***—P<0.001.对上述与玉米产量呈显著或极显著相关的8个指标与玉米产量进一步进行多元线性回归分析(表6),基于线性回归方程构建原则[方差膨胀因子(VIF, variance inflation factor)<5,自相关程度(DW, degree of autocorrelation)≈2],将各指标设为自变量,玉米产量设为因变量,所得回归方程为(表7):
表 6 高产玉米品种典型生物学特征的回归分析Table 6. Regression analysis of typical biological characteristics of high-yielding maize varieties指标
Index回归系数
Regression coefficient标准回归系数
Standard regression coefficient偏相关系数
Partial correlationt值
t-valuesSig值
Sig-valuesKN 3.833 0.268 0.568 2.506 0.000 HKW 58.740 0.241 0.598 2.262 0.000 EL 66.969 0.199 0.370 2.120 0.009 BTL −815.314 −0.218 −0.391 −2.142 0.006 DM 0.047 0.105 0.452 0.980 0.002 TN 4.428 0.234 0.556 2.167 0.000 TP 25.308 0.113 0.378 1.056 0.007 GK 12.890 0.181 0.415 1.829 0.003 注: KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;TN—总氮累积量;TP—总磷累积量;GK—籽粒钾累积量。
Note: KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; TN—Total nitrogen accumulation; TP—Total phosphorus accumulation; GK—Grain potassium accumulation.表 7 高产玉米品种典型生物学特征的方差分析Table 7. Variance analysis of typical biological characteristics of high-yielding maize varieties变异来源
Source of variation平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF值
F-valuesSig值
Sig -values回归 Regression 10450995.918 8 1306374.490 12.044 .000 b 残差 Residual error 3470904.268 32 108465.758 总计 Total variation 13921900.186 40 拟合方程 Fitted equation Y=3263.58+3.83×KN+58.74×HKW+66.97×EL−815.31×BTL+0.05×DM+4.43×N+25.31×P+12.89×GK R2 0.751 注:Y—产量;KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;N—氮累积量;P—磷累积量;GK—籽粒钾累积量。
Note: Y—Yield; KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; N—Nitrogen accumulation; P—Phosphorus accumulation; GK—Grain potassium accumulation.Y=3263.58+3.83×KN+58.74×HKW+66.97×EL−815.31×BTL+0.05×DM+4.43×N+25.31×P+12.89×GK (R2=0.751***)
式中,Y为产量(yield);KN为穗粒数(kernel number per ear);HKW为百粒重(100-kernel weight);EL为穗长 (ear length);BTL为秃尖长(bald tip length);DM为总干物质累积量(total dry matter accumulation);N为氮累积量(nitrogen accumulation);P为磷累积量(phosphorus accumulation);GK为籽粒钾累积量(grain potassium accumulation)。
此结果表明,上述8个指标可解释玉米产量75.1%的变异。继续采用通径分析方法,对产量及其生物学性状的相关性进行分解,进一步估算各指标对玉米产量以及各指标之间的直接和间接效应。由表8可见,上述8个指标对高产玉米品种产量的直接作用从大到小依次为穗粒数(0.268)>百粒重(0.241)>总氮素累积量(0.234)>秃尖长(−0.218)>穗长(0.199)>籽粒钾素累积量(0.181)>总磷素累积量(0.113)>总干物质累积量(0.105)。通过分析各农艺性状、干物质及养分累积的间接系数合计值发现,百粒重对产量的间接影响最大(合计值为0.357),其次为总干物质累积量(合计值为0.346)。
表 8 高产玉米品种典型生物学特征的通径分析Table 8. Path analysis of typical biological characteristics of high-yielding maize varieties指标
Index直接系数
Direct coefficient间接系数 Indirect coefficient KN HKW EL BTL DM TN TP GK 合计 Total KN 0.268 0.076 0.011 0.028 0.036 0.113 0.020 0.015 0.300 HKW 0.241 0.085 0.041 0.038 0.038 0.074 0.013 0.069 0.357 EL 0.199 0.015 0.049 0.039 0.005 0.027 0.027 0.008 0.172 BTL −0.218 −0.035 −0.042 −0.036 0.000 0.002 −0.047 −0.016 −0.174 DM 0.105 0.092 0.087 0.010 −0.001 0.081 0.036 0.039 0.346 TN 0.234 0.129 0.076 0.023 −0.002 0.036 0.007 0.052 0.322 TP 0.113 0.046 0.028 0.048 0.091 0.034 0.015 0.003 0.265 GK 0.181 0.022 0.092 0.009 0.020 0.023 0.067 0.002 0.234 注:KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;TN—总氮累积量;TP—总磷累积量;GK—籽粒钾累积量。
Note: KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; TN—Total nitrogen accumulation; TP—Total phosphorus accumulation; GK—Grain potassium accumulation.3. 讨论
3.1 高产玉米品种的农艺性状特征分析
玉米产量与品种特性具有很大的相关性,良好的穗部性状是保证产量形成的关键。已有研究结果表明,玉米穗长、穗粗、穗粒数、百粒重随品种更新均呈现逐渐增加的趋势,其中穗长、穗粗变化趋势明显,穗粒数、百粒重变化相对平缓[16]。而本研究结果表明,穗粗和穗行数在不同产量水平品种组间并无显著差异,但高产品种的穗长、行粒数、穗粒数和百粒重均显著高于低产品种,而秃尖长则显著低于低产品种。可见,与低产品种相比,高产品种的穗部性状表现出明显优势。与中产品种相比,高产品种的穗长、行粒数、穗粒数和秃尖长差异不显著,但百粒重显著高于中产品种6.1%。可见,与中产品种相比,高产品种的产量差异主要是百粒重提高的结果。对高产品种的产量和各性状指标进一步进行通径分析发现,穗粒数对产量的直接通径系数最大,说明对高产玉米品种而言,穗粒数是影响产量的关键因素。Huang等[17]研究也得出了相似的结果。由此可见,通过保证较长的穗长和较短的秃尖长实现较高的行粒数,进而实现较高的穗粒数是现代玉米品种获得高产的关键所在。株高、茎粗和穗位高是玉米植株重要的株型性状,其对玉米的增产形式主要表现在与密度的合理配合[18−19]。平衡这三者关系,前人已有诸多研究[20−21]。本研究结果发现,不同产量水平的玉米品种间株高、茎粗、穗位高均无明显差异,说明株高、茎粗、穗位高可能不是制约现代玉米品种产量潜力的关键性状。
3.2 高产玉米品种的干物质累积特征分析
地上部干物质累积量是作物产量形成的基础[22]。本研究结果表明,玉米各部位干物质累积量总体均呈现出高产品种>中产品种>低产品种的结果,特别是籽粒和总的干物质累积量,高产品种分别显著高于中、低产品种25.1%、56.6% (籽粒)和16.6%、40.1% (总),中产品种显著高于低产品种25.2%和20.2%。从干物质在各部位的分配来看,不同产量水平的玉米品种表现出了共同的特征,即籽粒(49.1%~54.7%)>叶片(22.7%~27.4%)>茎秆(16.3%~16.9%)>穗轴(6.28%~6.96%),但高产品种籽粒干物质分配比例显著高于中、低产品种,而叶片中的分配比例显著低于中、低产品种(表2)。此结果可以由叶片中的干物质在生殖生长阶段更多向籽粒中转运分配导致[23],但收获期高产品种的玉米叶片干物质累积量明显高于中、低产品种的结果(表2),说明了高产品种较高的籽粒干物质分配比例和较低的叶片干物质分配比例,应该是由于玉米较强的花后干物质累积能力导致籽粒和总的干物质累积量明显提高的结果[24]。而已有研究表明,玉米植株干物质总累积量的50%以上是在吐丝后获得的[25],吐丝后的干物质累积对籽粒产量的贡献要比花前干物质累积对籽粒的贡献大得多[26−27]。对粒叶比进一步分析发现,高产品种的粒叶比分别显著高于中、低产品种20.3%和34.3%。粒叶比是反映库、源协调程度的重要指标[28]。粒叶比高说明单位叶片所承载的籽粒多、库容足,而库容足对光合产物的拉动作用能进一步促进光合生产和同化物运输[29]。这进一步证实了高产品种能够获得高产的原因所在。通径分析结果发现,虽然总干物质累积量的直接通径系数较低,但间接通径系数合计值很高,说明总干物质累积量可以通过影响其他因素最终影响玉米产量。此结果同时也说明各部位较低的干物质累积能力可能正是制约低产品种产量突破的关键。
3.3 高产玉米品种的养分累积特征分析
玉米产量不仅与总的干物质累积及向籽粒的分配有关,还受养分吸收、利用和分配的影响。本研究结果表明,玉米收获期地上部各器官氮、磷的累积量大小均表现为籽粒>叶片,茎秆>穗轴,但钾素在各器官中的累积量则表现为茎秆>叶片>籽粒>穗轴。对总的累积量进行分析发现,不同产量水平之间养分累积量的差异主要表现在叶片和籽粒上。高产品种叶片和籽粒的氮累积量分别高于中、低产品种27.6%~57.7%和12.4%~29.2%,由此导致高产品种地上部总氮累积量分别显著高于中、低产品种16.2%~35.2%;磷素累积特征与氮相似,高产品种籽粒磷累积量分别高于中、低产品种10.1%、11.7%,总磷累积量则分别显著高于中、低产品种6.8%、11.4%。钾素累积情况与氮、磷有所差异,高产品种叶片和穗轴中的累积量均表现出了明显优势,分别高于中、低产品种3.6%~20.9%和1.3%~26.2%,籽粒的钾累积量高产品种显著高于中、低产品种23.0%~30.5%,由此导致总钾素累积量高于中、低产品种3.5%~13.0%。此结果说明保证籽粒中较高的养分累积量和较高的总养分累积量,对保证玉米高产至关重要。但氮、磷、钾在各器官中的分配比例在不同产量水平品种组间的表现差异基本不明显,说明产量水平的变化不会对养分在各器官中的分配产生本质上的影响。养分利用效率是玉米累积的单位养分所能获得籽粒产量的能力[30],本研究结果表明,高产品种氮、磷、钾利用效率均显著高于中、低产品种,而高的氮(磷、钾)利用效率可有效满足生育后期籽粒灌浆对养分的需求[31],最终促进籽粒产量的形成。
4. 结论
玉米产量存在明显的基因型差异,高产玉米品种获得较高产量的主要性状特征为较高的百粒重和穗粒数,而穗粒数通过较长的穗型和较短的秃尖长度来实现;各部位干物质和养分累积量应协同提高,特别是要具备较高的籽粒干物质量累积能力以及较高的叶片和籽粒养分累积能力。因此,在冀中平原进行高产品种选育以及生产一线品种优选时,应注意穗粒数、百粒重、穗长、秃尖长等典型农艺性状指标,以及氮磷钾和干物质累积量等内在生理指标的协调。
-
图 1 供试玉米品种的产量及产量聚类分析
注:AV代表全部品种;HV代表高产品种组;MV代表中产品种组;LV代表低产品种组。图1-A中箱形图的上边界线和下边界线分别表示75%和25%的四分位数,中位线和正方形分别表示中位数和平均值,箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。
Figure 1. Yield and yield clustering of the tested maize varieties
Note: AV, HV, MV and LV represent all varieties, high-, middle- and low-yielding varieties, respectively. In Fig. 1-A, the upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively; different lowercase letters above the boxes indicate significant difference among the varieties at different yield levels (P<0.05).
图 2 不同产量水平的玉米植株形态特征
注:HV、MV、LV分别代表高产、中产、低产品种组。箱形图的上、下边界线分别表示75%和25%的四分位数,箱体内短线和正方形分别表示中位数和平均值,箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。
Figure 2. Plant morphological indicators of maize varieties at different yield levels
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. The upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively. Different lowercase letters above the boxes indicate significant difference among the varieties at different yield levels (P<0.05).
图 3 不同产量水平的玉米养分利用效率
注:HV、MV、LV分别代表高产、中产、低产品种组。箱形图的上、下边界线分别表示75%和25%的四分位数,箱体内短线和正方形分别表示中位数和平均值。箱体上不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。
Figure 3. Nutrient utilization efficiency of maize varieties at different yield levels
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. The upper and lower boundaries of the box plots represent the quartile of 75% and 25%, respectively; the short lines and the squares inside the box plots represent the median and the mean of yield, respectively. Different lowercase letters above the boxes indicate significant difference among varieties at different yield levels (P<0.05).
图 4 高产玉米品种典型生物学特征与产量的相关性分析
注:Y—产量;KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;LDM—叶干物质累积量;SDM—茎秆干物质累积量;CDM—穗轴干物质累积量;DM—总干物质累积量;LN—叶片氮累积量;GN—籽粒氮累积量;TN—总氮累积量;LP—叶片磷累积量;GP—籽粒磷累积量;TP—总磷累积量;LK—叶片钾累积量;GK—籽粒钾累积量;CK—穗轴钾累积量;TK—总钾累积量。*—P<0.05;**—P<0.01;***—P<0.001。
Figure 4. Correlationship between yield and typical biological characteristics of high-yielding maize varieties
Note: Y—Yield; KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; LDM—Leaf dry matter accumulation; SDM—Stalk dry matter accumulation; CDM—Cob dry matter accumulation; DM—Total dry matter accumulation; LN—Leaf nitrogen accumulation; GN—Grain nitrogen accumulation; TN—Total nitrogen accumulation; LP—Leaf phosphorus accumulation; GP—Grain phosphorus accumulation; TP—Total phosphorus accumulation; LK—Leaf potassium accumulation; GK—Grain potassium accumulation; CK—Cob potassium accumulation; TK—Total potassium accumulation. *—P<0.05; **—P<0.01; ***—P<0.001.
表 1 不同产量水平的玉米穗部性状特征
Table 1 Ear indicators of maize varieties at different yield levels
产量水平
Yield level穗长
Ear length
(cm)穗粗
Ear diameter
(cm)秃尖长
Bald tip length
(cm)穗行数
Row number
per ear行粒数
Kernel number
per row穗粒数
Kernel number
per ear百粒重
100-kernel weight
(g)HV 17.82±1.68 a 4.25±0.46 a 0.18±0.16 b 15.88±1.14 a 37.40±2.20 a 592.06±41.13 a 36.93±2.62 a MV 17.06±1.20 ab 4.10±0.35 a 0.19±0.23 b 15.57±1.73 a 37.20±2.76 a 576.46±56.19 ab 34.80±1.78 b LV 15.97±1.91 b 3.81±0.30 a 0.36±0.27 a 15.57±2.22 a 34.20±3.33 b 533.25±107.88 b 30.37±3.19 c 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).表 2 不同产量水平的玉米各部位干物质累积量、分配及粒叶比
Table 2 Dry matter accumulation, distribution and ratio of grain to leaf of maize varieties at different yield levels
产量水平
Yield level干物质累积量 Dry matter accumulation (kg/hm2) 干物质分配 Dry matter distribution (%) 粒叶比
Ratio of grain
to leaf叶片
Leaves茎秆
Stalks籽粒
Grains穗轴
Cobs总量
Total叶片
Leaves茎秆
Stalks籽粒
Grains穗轴
CobsHV 4065.5 a 2954.8 a 9843.6 a 1132.0 a 17996.0 a 22.65 c 16.30 a 54.77 a 6.28 a 2.43 a MV 3955.0 a 2537.5 ab 7868.0 b 1076.0 a 15438.3 b 25.63 b 16.26 a 51.15 b 6.96 a 2.02 b LV 3499.7 b 2204.2 b 6285.9 c 859.1 b 12848.9 c 27.43 a 16.88 a 49.10 b 6.59 a 1.81 b 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著(P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).表 3 不同产量水平的玉米氮素累积量及在各部位的分配
Table 3 Nitrogen accumulation and distribution in different parts of maize at different yield levels
产量水平
Yield level氮素累积量 N accumulation (kg/hm2) 氮素分配 N distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 57.00 a 26.75 a 132.63 a 3.72 a 220.11 a 25.72 a 12.22 a 60.36 a 1.71 a MV 44.69 ab 23.49 a 117.98 ab 3.30 a 189.45 b 23.36 a 12.44 a 62.44 a 1.76 a LV 36.15 b 20.70 a 102.66 b 3.26 a 162.76 c 21.95 a 12.91 a 63.14 a 2.00 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).表 4 不同产量水平的玉米磷素累积量及在各部位的分配
Table 4 Phosphorus accumulation and distribution in different parts of maize at different yield levels
产量水平
Yield level磷素累积量 P accumulation (kg/hm2) 磷素分配 P distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 6.35 a 6.53 a 27.41 a 1.95 a 42.23 a 15.04 ab 15.45 a 64.89 a 4.62 a MV 6.63 a 6.07 a 24.90 b 1.95 a 39.56 b 16.77 a 15.35 a 62.95 a 4.93 a LV 5.29 b 6.34 a 24.54 b 1.77 a 37.93 b 13.94 b 16.71 a 64.69 a 4.66 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).表 5 不同产量水平的玉米钾素累积量及在各部位的分配
Table 5 Potassium accumulation and distribution in different parts of maize at different yield levels
产量水平
Yield level钾素累积量 K accumulation (kg/hm2) 钾素分配 K distribution (%) 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs 总量 Total 叶片 Leaves 茎秆 Stalks 籽粒 Grains 穗轴 Cobs HV 45.47 a 131.01 a 33.74 a 10.70 a 220.93 a 20.58 a 59.30 a 15.27 a 4.84 a MV 43.90 a 131.63 a 27.44 b 10.57 a 213.54 ab 20.56 a 61.64 a 12.85 a 4.95 a LV 37.61 b 123.51 a 25.85 b 8.48 b 195.40 b 19.24 a 63.19 a 13.23 a 4.34 a 注:HV、MV、LV分别代表高产、中产、低产品种组。同列数据后不同小写字母表示不同产量水平品种组间差异显著 (P<0.05)。
Note: HV, MV and LV represent high-, middle- and low-yielding varieties, respectively. Different lowercase letters after data in a column indicate significant difference among varieties at different yield levels (P<0.05).表 6 高产玉米品种典型生物学特征的回归分析
Table 6 Regression analysis of typical biological characteristics of high-yielding maize varieties
指标
Index回归系数
Regression coefficient标准回归系数
Standard regression coefficient偏相关系数
Partial correlationt值
t-valuesSig值
Sig-valuesKN 3.833 0.268 0.568 2.506 0.000 HKW 58.740 0.241 0.598 2.262 0.000 EL 66.969 0.199 0.370 2.120 0.009 BTL −815.314 −0.218 −0.391 −2.142 0.006 DM 0.047 0.105 0.452 0.980 0.002 TN 4.428 0.234 0.556 2.167 0.000 TP 25.308 0.113 0.378 1.056 0.007 GK 12.890 0.181 0.415 1.829 0.003 注: KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;TN—总氮累积量;TP—总磷累积量;GK—籽粒钾累积量。
Note: KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; TN—Total nitrogen accumulation; TP—Total phosphorus accumulation; GK—Grain potassium accumulation.表 7 高产玉米品种典型生物学特征的方差分析
Table 7 Variance analysis of typical biological characteristics of high-yielding maize varieties
变异来源
Source of variation平方和
Sum of squares自由度
Degree of freedom均方
Mean squareF值
F-valuesSig值
Sig -values回归 Regression 10450995.918 8 1306374.490 12.044 .000 b 残差 Residual error 3470904.268 32 108465.758 总计 Total variation 13921900.186 40 拟合方程 Fitted equation Y=3263.58+3.83×KN+58.74×HKW+66.97×EL−815.31×BTL+0.05×DM+4.43×N+25.31×P+12.89×GK R2 0.751 注:Y—产量;KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;N—氮累积量;P—磷累积量;GK—籽粒钾累积量。
Note: Y—Yield; KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; N—Nitrogen accumulation; P—Phosphorus accumulation; GK—Grain potassium accumulation.表 8 高产玉米品种典型生物学特征的通径分析
Table 8 Path analysis of typical biological characteristics of high-yielding maize varieties
指标
Index直接系数
Direct coefficient间接系数 Indirect coefficient KN HKW EL BTL DM TN TP GK 合计 Total KN 0.268 0.076 0.011 0.028 0.036 0.113 0.020 0.015 0.300 HKW 0.241 0.085 0.041 0.038 0.038 0.074 0.013 0.069 0.357 EL 0.199 0.015 0.049 0.039 0.005 0.027 0.027 0.008 0.172 BTL −0.218 −0.035 −0.042 −0.036 0.000 0.002 −0.047 −0.016 −0.174 DM 0.105 0.092 0.087 0.010 −0.001 0.081 0.036 0.039 0.346 TN 0.234 0.129 0.076 0.023 −0.002 0.036 0.007 0.052 0.322 TP 0.113 0.046 0.028 0.048 0.091 0.034 0.015 0.003 0.265 GK 0.181 0.022 0.092 0.009 0.020 0.023 0.067 0.002 0.234 注:KN—穗粒数;HKW—百粒重;EL—穗长;BTL—秃尖长;DM—总干物质累积量;TN—总氮累积量;TP—总磷累积量;GK—籽粒钾累积量。
Note: KN—Kernel number per ear; HKW—100-kernel weight; EL—Ear length; BTL—Bald tip length; DM—Total dry matter accumulation; TN—Total nitrogen accumulation; TP—Total phosphorus accumulation; GK—Grain potassium accumulation. -
[1] Parco M, Ciampitti I A, D'Andrea K E, Maddonni G A. Prolificacy and nitrogen internal efficiency in maize crops[J]. Field Crops Research, 2020, 256: 107912. DOI: 10.1016/j.fcr.2020.107912
[2] Foley J A, Ramankutty N, Brauman K A, et al. Solutions for a cultivated planet[J]. Nature, 2011, 478: 337−342. DOI: 10.1038/nature10452
[3] 高鸣, 魏佳朔. 新一轮千亿斤粮食产能提升的源泉: 全要素生产率的增长与贡献[J]. 华中农业大学学报(社会科学版), 2024, 19(1): 15−27. Gao M, Wei J S. The source of a new round of 100 billion kilograms of grain production capacity improvement: The growth and contribution of total factor productivity[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2024, 19(1): 15−27.
[4] Cerrudo A, Martinez D, Izquierdo N G, et al. Environment, management, and genetic contributions to maize kernel hardness and grain yield[J]. Crop Science, 2017, 57(5): 2788−2798. DOI: 10.2135/cropsci2016.12.0997
[5] Ren H, Liu M Y, Zhang J B, et al. Effects of agronomic traits and climatic factors on yield and yield stability of summer maize (Zea mays L) in the Huang-Huai-Hai Plain in China[J]. Frontiers in Plant Science, 2022, 13: 1050064. DOI: 10.3389/fpls.2022.1050064
[6] Gou L, Xue J, Qi B Q, et al. Morphological variation of maize cultivars in response to elevated plant densities[J]. Agronomy Journal, 2017, 109(4): 1443−1453. DOI: 10.2134/agronj2016.11.0675
[7] 米国华, 陈范骏, 春亮, 等. 玉米氮高效品种的生物学特征[J]. 植物营养与肥料学报, 2007, 13(1): 155−159. DOI: 10.3321/j.issn:1008-505X.2007.01.026 Mi G H, Chen F J, Chun L, et al. Biological characteristics of nitrogen efficient maize genotypes[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(1): 155−159. DOI: 10.3321/j.issn:1008-505X.2007.01.026
[8] Liu W M, Hou P, Liu G Z, et al. Contribution of total dry matter and harvest index to maize grain yield: A multisource data analysis[J]. Food and Energy Security, 2020, 9(4): e256. DOI: 10.1002/fes3.256
[9] 齐文增, 陈晓璐, 刘鹏, 等. 超高产夏玉米干物质与氮、磷、钾养分积累与分配特点[J]. 植物营养与肥料学报, 2013, 19(1): 26−36. Qi W Z, Chen X L, Liu P, et al. Characteristics of dry matter, accumulation and distribution of N, P and K of super-high-yield summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(1): 26−36.
[10] Ning P, Li S, Yu P, et al. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity[J]. Field Crops Research, 2013, 144: 19−27. DOI: 10.1016/j.fcr.2013.01.020
[11] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. Bao S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Press, 2000.
[12] 梁永波, 李浩然, 张志慧, 等. 黄淮北部不同小麦品种(系)株型性状与产量关系研究[J]. 麦类作物学报, 2022, 42(5): 546−555. DOI: 10.7606/j.issn.1009-1041.2022.05.04 Liang Y B, Li H R, Zhang Z H, et al. Study on the relationship between plant architecture characters and yield of different wheat varieties (lines) in the North of Huang-Huai Plain[J]. Journal of Triticeae Crops, 2022, 42(5): 546−555. DOI: 10.7606/j.issn.1009-1041.2022.05.04
[13] 范虹, 殷文, 胡发龙, 等. 绿洲灌区密植对氮肥减量玉米产量的补偿潜力[J]. 中国农业科学, 2024, 57(9): 1709−1721. DOI: 10.3864/j.issn.0578-1752.2024.09.007 Fan H, Yin W, Hu F L, et al. Compensation potential of dense planting for nitrogen fertilizer reduction maize yield in oasis irrigation area[J]. Scientia Agricultura Sinica, 2024, 57(9): 1709−1721. DOI: 10.3864/j.issn.0578-1752.2024.09.007
[14] 李刘霞. 氮磷钾配施对砂姜黑土冬小麦干物质生产、养分吸收利用及土壤酶活性的影响[D]. 河南郑州: 河南农业大学硕士学位论文, 2015. Li L X. Effects of combined application of nitrogen, phosphorus and potassium on dry matter production, nutrient absorption and utilization of winter wheat and soil enzyme activity in lime concretion black soil[D]. Zhengzhou, Henan: MS Thesis of Henan Agricultural University, 2015.
[15] 王永宏, 王克如, 赵如浪, 等. 高产春玉米源库特征及其关系[J]. 中国农业科学, 2013, 46(2): 257−269. DOI: 10.3864/j.issn.0578-1752.2013.02.005 Wang Y H, Wang K R, Zhao R L, et al. Relationship between the source and sink of spring maize with high yield[J]. Scientia Agricultura Sinica, 2013, 46(2): 257−269. DOI: 10.3864/j.issn.0578-1752.2013.02.005
[16] 石红良. 我国不同年代玉米品种及其亲本自交系产量和氮效率的变化趋势[D]. 北京: 中国农业科学院博士学位论文, 2014. Shi H L. Trends of yield and nitrogen efficiency of maize varieties and their parental inbred lines in different years in China[D]. Beijing: PhD Dissertation of Chinese Academy of Agricultural Sciences, 2014.
[17] Huang C, Gao Y, Qin A Z, et al. Effects of waterlogging at different stages and durations on maize growth and grain yields[J] Agricultural Water Management, 2022, 261: 107334.
[18] Winans E T, Beyrer T A, Below F E. Managing density stress to close the maize yield gap[J]. Frontiers in Plant Science, 2021, 12: 767465. DOI: 10.3389/fpls.2021.767465
[19] Gong F P, Wu X L, Zhang H Y, et al. Making better maize plants for sustainable grain production in a changing climate[J]. Frontiers in Plant Science, 2015, 6: 835.
[20] 王祥宇, 魏珊珊, 董树亭, 等. 种植密度对熟期不同夏玉米群体光合性能及产量的影响[J]. 玉米科学, 2015, 23(1): 134−138. Wang X Y, Wei S S, Dong S T, et al. Effects of planting densities on canopy apparent photosynthesis characteristics of summer maize in different maturity periods[J]. Journal of Maize Sciences, 2015, 23(1): 134−138.
[21] Jiang L, Zhang J Z, Chen D Y. Relationship between yield and lodging traits of maize under different planting densities[J]. Agronomy Journal, 2022, 114(4): 2140−2146. DOI: 10.1002/agj2.21096
[22] 徐祥玉, 张敏敏, 翟丙年, 李生秀. 施氮对不同基因型夏玉米干物质累积转移的影响[J]. 植物营养与肥料学报, 2009, 15(4): 786−792. DOI: 10.3321/j.issn:1008-505X.2009.04.008 Xu X Y, Zhang M M, Zhai B N, Li S X. Effects of nitrogen application on dry matter accumulation and translocation of different genotypes of summer maize[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 786−792. DOI: 10.3321/j.issn:1008-505X.2009.04.008
[23] 崔超, 高聚林, 于晓芳, 等. 不同氮效率基因型高产春玉米花粒期干物质与氮素运移特性的研究[J]. 植物营养与肥料学报, 2013, 19(6): 1337−1345. DOI: 10.11674/zwyf.2013.0607 Cui C, Gao J L, Yu X F, et al. Dry matter accumulation and nitrogen migration of high-yield spring maize for different nitrogen efficiency in the flowering and milking stages[J]. Journal of Plant Nutrition and Fertilizers, 2013, 19(6): 1337−1345. DOI: 10.11674/zwyf.2013.0607
[24] 李刚, 李超, 王焱栋, 等. 外源L-谷氨酸对花后干旱胁迫下小麦干物质积累分配、籽粒灌浆特性及品质形成的调控效应[J]. 植物营养与肥料学报, 2024, 30(5): 848−862. DOI: 10.11674/zwyf.2024001 Li G, Li C, Wang Y D, et al. Effects of exogenous L-glutamic acid on dry matter accumulation distribution, grain filling characteristis and quality formation under post-anthesis drought stress in wheat[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 848−862. DOI: 10.11674/zwyf.2024001
[25] Lee E A, Tollenaar M. Physiological basis of successful breeding strategies for maize grain yield[J]. Crop Science, 2007, 47: S202−S215.
[26] Liu G Z, Hou P, Xie R Z, et al. Nitrogen uptake and response to radiation distribution in the canopy of high-yield maize[J]. Crop Science, 2019, 59(3): 1236−1247. DOI: 10.2135/cropsci2018.09.0567
[27] Zhou B Y, Yue Y, Sun X F, et al. Maize grain yield and dry matter production responses to variations in weather conditions[J]. Agronomy Journal, 2016, 108(1): 196−204. DOI: 10.2134/agronj2015.0196
[28] 卢百关, 杜永, 李筠, 等. 黄淮地区稻茬小麦超高产群体特征研究[J]. 中国生态农业学报(中英文), 2015, 23(1): 43−51. Lu B G, Du Y, Li J, et al. Population characteristics of super-high-yield wheat under rice stubble in Huanghuai area[J]. Chinese Journal of Eco-Agriculture, 2015, 23(1): 43−51.
[29] 许蓓蓓, 尤翠翠, 丁艳锋, 王绍华. 源库调节对常规粳稻花后营养器官碳水化合物及氮磷钾转运的影响[J]. 中国农业科学, 2016, 49(4): 643−656. Xu B B, You C C, Ding Y F, Wang S H. Effect of source-sink manipulation on translocation of carbohydrate and nitrogen, phosphors, potassium in vegetative organs of conventional Japonica rice after anthesis[J]. Scientia Agricultura Sinica, 2016, 49(4): 643−656.
[30] 初金鹏, 朱文美, 尹立俊, 等. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响[J]. 应用生态学报, 2018, 29(8): 2517−2524. Chu J P, Zhu W M, Yin L J, et al. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2517−2524.
[31] 刘正, 高佳, 高飞, 等. 综合农艺管理提高夏玉米产量和养分利用效率的潜力[J]. 植物营养与肥料学报, 2019, 25(11): 1847−1855. Liu Z, Gao J, Gao F, et al. Potential of integrated agronomic practices to increase grain yield and utilization efficiency of fertilizers in summer maize production[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1847−1855.