Processing math: 0%
  • ISSN 1008-505X
  • CN 11-3996/S

基于叶片营养与重金属生态风险的栾树和金叶白蜡污泥产品施用阈值研究

朱坤, 彭祚登, 赵云, 孙振军, 刘武

朱坤, 彭祚登, 赵云, 孙振军, 刘武. 基于叶片营养与重金属生态风险的栾树和金叶白蜡污泥产品施用阈值研究[J]. 植物营养与肥料学报, 2025, 31(4): 789-799. DOI: 10.11674/zwyf.2024441
引用本文: 朱坤, 彭祚登, 赵云, 孙振军, 刘武. 基于叶片营养与重金属生态风险的栾树和金叶白蜡污泥产品施用阈值研究[J]. 植物营养与肥料学报, 2025, 31(4): 789-799. DOI: 10.11674/zwyf.2024441
ZHU Kun, PENG Zuo-deng, ZHAO Yun, SUN Zhen-jun, LIU Wu. Sludge product application thresholds for Koelreuteria paniculata and Fraxinus chinensis based on foliar nutrition and heavy metal ecological risk[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 789-799. DOI: 10.11674/zwyf.2024441
Citation: ZHU Kun, PENG Zuo-deng, ZHAO Yun, SUN Zhen-jun, LIU Wu. Sludge product application thresholds for Koelreuteria paniculata and Fraxinus chinensis based on foliar nutrition and heavy metal ecological risk[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(4): 789-799. DOI: 10.11674/zwyf.2024441

基于叶片营养与重金属生态风险的栾树和金叶白蜡污泥产品施用阈值研究

基金项目: 

国家发改委环境污染第三方治理项目(2017HXFWLXY023);北京城市排水集团委托项目(BJPS-2022-JT-NCB-SC-0037)。

详细信息
    作者简介:

    朱坤 E-mail: zk178932@163.com

    通讯作者:

    彭祚登 E-mail: zuodeng@sina.com

Sludge product application thresholds for Koelreuteria paniculata and Fraxinus chinensis based on foliar nutrition and heavy metal ecological risk

  • 摘要:
    目的 

    北京山区面积大,有巨大的消纳污泥产品的潜力。我们研究了污泥产品对石质山地景观生态林栾树(Koelreuteria paniculata)和金叶白蜡(Fraxinus chinensis)叶片中养分、渗透调节物质和重金属含量的影响,以及适宜的施用量,为提高景观生态林生长质量、防范可能的生态风险提供理论依据。

    方法 

    田间原位试验于2023年7月在北京市石质山地新造林地区开展,设置5个污泥产品施用量水平,分别为0、16、32、48、64 kg/株,依次记为CK、T1、T2、T3、T4,于2024年5月采集叶片样本,分析叶片养分、渗透调节物质及重金属含量,采用隶属函数−熵权法综合计算两种彩叶树的适宜污泥产品施用量。

    结果 

    栾树和金叶白蜡4个污泥产品处理的叶片N含量均显著高于CK,随污泥产品施用量的增加,N含量呈现出先增加后降低的趋势,且均在T3处理下达到最高值,分别为24.253、28.810 g/kg,而叶片P、K含量却无明显变化规律。栾树和金叶白蜡叶片的可溶性糖和可溶性蛋白含量随污泥产品施用量的增加大致呈现出先降低后升高的趋势,但均低于CK或与CK无显著差异,T3处理下栾树和T2处理下金叶白蜡叶片脯氨酸含量均达到最高,分别为CK的2.50和4.62倍。随污泥产品施用量的增加,栾树叶片Zn、Pb、Ni含量均有增加趋势,但与CK无显著差异,而Cu含量在T1、T2和T4处理下显著高于CK;金叶白蜡叶片的Cu、Zn、Pb、Ni含量均在T2处理下最低,Hg含量在T2处理下却是最高,其中Cu和Ni含量呈现出先升高后降低再升高的趋势,Pb、Hg含量变化趋势与其相反,Zn含量则先降低后升高。综合评价得出栾树叶片在T3处理下综合得分值最大(0.553),各项监测性状指标值较为均衡;金叶白蜡叶片在T2处理下综合得分值最大(0.620)。

    结论 

    施用污泥产品没有造成栾树和金叶白蜡叶片重金属的积累,也没有对其生长产生抑制作用,相反还在一定程度上改善了两树种叶片的营养状况。综合考虑两树种叶片的养分、渗透调节物质和重金属含量,确定栾树和金叶白蜡的污泥产品最适施用量分别为48和32 kg/株,在该施用量下,两树种生长状况最佳,且重金属污染风险最低。

    Abstract:
    Objectives 

    Beijing boasts a vast mountainous area with significant potential for sludge product assimilation. We investigated the effects of sludge products on nutrient content, osmoregulation substances, and heavy metal concentrations in the leaves of landscape ecological forest trees, namely Koelreuteria paniculata and Fraxinus chinensis (Golden Leaf Ash), as well as the appropriate application rates. This study aims to provide a theoretical basis for enhancing the growth quality of landscape ecological forests and mitigating potential ecological risks.

    Methods 

    Field experiments were carried out in a newly afforested areas of stony mountains in Beijing in July 2023. Five sludge product application amounts were set up, 0, 16, 32, 48, 64 kg/plant, which were denoted as CK, T1, T2, T3 and T4 in sequence. Leaf samples were collected in May 2024, and the contents of nutrients, osmoregulatory substances and heavy metals were analyzed. The appropriate sludge products application amounts for the two colored-leaf trees were comprehensively calculated using the membership function-entropy weight method.

    Results 

    The leaf N content of both Koelreuteria paniculata and Fraxinus chinensis treated with the four sludge products was significantly higher than that of the CK. With the increase in the application amount of sludge products, the N content showed a trend of first increasing and then decreasing, and both of them reached the highest under T3 treatment, which were 24.253 g/kg and 28.810 g/kg respectively. However, there was no obvious variation pattern in the contents of leaf P and K. The contents of soluble sugar and soluble protein in the leaves of Koelreuteria paniculata and Fraxinus chinensis generally showed a trend of first decreasing and then increasing with the increase in the application amount of sludge products, but they were all lower than CK or had no significant difference with CK. The proline contents in the leaves of Koelreuteria paniculata under the T3 treatment and Fraxinus chinensis under the T2 treatment reached the highest, which were 2.50 times and 4.62 times that of CK, respectively. With the increase in the application amount of sludge products, the Zn, Pb and Ni contents in the leaves of Koelreuteria paniculata all showed an increasing trend, but were not significantly different to those in CK, while Cu content was significantly higher than CK under T1, T2 and T4 treatments; the contents of Cu, Zn, Pb and Ni in the leaves of Fraxinus chinensis were the lowest under T2 treatment, while the Hg content was the highest under T2 treatment. Among them, the contents of Cu and Ni showed a trend of first increasing, then decreasing and then increasing again, the change trends of Pb and Hg contents were opposite to them, and the Zn content first decreasing and then increasing. Through comprehensive evaluation, it was concluded that the comprehensive score value of the leaves of Koelreuteria paniculata was the largest (0.553) under the T3 treatment, and the values of various monitored trait indexes were relatively balanced; the comprehensive score value of the leaves of Fraxinus chinensis was the largest (0.620) under the T2 treatment.

    Conclusions 

    Application of sludge products did not result in the accumulation of heavy metals in the leaves of Koelreuteria paniculata and Fraxinus chinensis, nor did it inhibit their growth. On the contrary, it improved the nutritional status of the leaves of both tree species to some extent. Comprehensively considering above indicators,the optimal sludge application rates were determined as 48 kg/plant for Koelreuteria paniculata and 32 kg/plant for Fraxinus chinensis. This dual-level optimization simultaneously maximizes growth performance while minimizing heavy metal bioaccumulation risks.

  • 随着城市化进程的加快和污水处理能力的提升,污泥的大量产生已成为一个亟待解决的问题。2019年中国年产含水率80%的污泥已超过6000万t,预计2025年将突破9 000 万 t[1]。研究表明,我国污泥无害化理论处置率达73.5%,与2025年城市污泥无害化处置率达到90%的要求仍存在一定差距[23]。在我国,污泥的土地利用率低于40%,与发达国家如美国、法国等存在较大差距[4]。鼓励厌氧消化和增加土地利用有助于控制碳排放,厌氧消化技术因其能有效处理污水污泥并产生具有显著农艺价值的污泥产品,已成为当前我国污泥稳定化处理的主流技术[57],但“厌氧消化+土地利用”技术仅占我国污泥处理处置市场的15.55%[2]。因此,拓宽污泥产品处置的出路将尤为重要。

    污泥产品因其富含有机质和植物所需营养元素常被用作农业肥料,可有效提高作物产量,但污泥产品中重金属的存在会构成潜在的健康风险[4]。相比较而言,污泥产品林地应用可在一定程度上避开食物链,降低重金属对人类的危害,然而,其造成的潜在生态风险仍不可忽视。目前,污泥产品在林业上的应用研究多在平原地区和控制试验下开展,并已制定出适用于平原新造林抚育管理的地方标准[8]。此前污泥产品在北京市平原生态林中的推广应用已证实其可改善土壤理化性质,促进林木生长,涉及树种包括油松 (Pinus tabulaeformis)、榆树 (Ulmus pumila) 等[910]。而北京市山区面积大于平原,且远离城市,将污泥产品应用于山区林地管理方面有望提高造林成活率、降低养护成本,还可为污泥产品处置提供新的方向,但目前研究与应用均不多。

    栾树 (Koelreuteria paniculata) 和金叶白蜡 (Fraxinus chinensis) 为北京山区景观生态林常见树种。已有研究表明,栾树与矿山污泥结合可用来修复重金属尾矿[11],具有较强的适应能力,而污泥产品在金叶白蜡中的应用较少,且污泥产品施用量对二者叶片养分、渗透调节物质及重金属含量的影响尚不明确,因此本研究选取北京市石质山地新造林地,通过施用厌氧消化处理的污泥产品进行原位试验,从二者叶片生理角度探究其对污泥产品的营养及重金属吸收能力,综合评估污泥产品在石质山地景观生态林中的应用效果,以期为北京地区城市污泥产品在石质山地人工林中的应用、推广提供理论依据。

    试验地位于北京市京西林场管理处木城涧分场(39°57′N,115°54′E),属温带大陆性季风气候,四季分明,年平均气温7°C~10°C,年降雨量500~600 mm。土壤类型为地带性褐土,有机质含量低,水系以永定河及其支流为主。森林植被丰富,垂直分布明显。

    研究对象为京西林场2020年浅山台地主要造林树种栾树 (Koelreuteria paniculata) 和金叶白蜡(Fraxinus chinensis),其林分基本信息如表1

    表  1  栾树和金叶白蜡样地林分基本信息
    Table  1.  Basic stand information of Koelreuteria paniculate and Fraxinus chinensis
    项目
    Item
    栾树
    Koelreuteria
    paniculata
    金叶白蜡
    Fraxinus
    chinensis
    林龄 Stand age (a) 7 8
    郁闭度 Canopy density 0.5~0.6 0.4~0.5
    株行距 Planting spacing (m) 3.0 × 3.0 2.7 × 2.7
    平均树高 Mean tree height (m) 6.92 4.51
    平均胸径 Mean DBH (cm) 12.55 8.92
    平均冠幅投影面积 (m2)
    Mean canopy projection
    5.01 4.81
    Note: DBH—Diameter at breast height.
    下载: 导出CSV 
    | 显示表格

    供试污泥产品取自北京城市排水集团有限责任公司高碑店再生水厂,为城市生活污水污泥经高温热水解、厌氧消化、板框脱水及破碎处理等一系列工艺制成的污泥产品,可作为有机肥料进行施用,其基本理化性质如表2

    表  2  供试污泥产品生理生化性质及林地使用限值[12]
    Table  2.  Physicochemical and biological properties of the tested sludge products and their usage limit values in forestland
    项目 Item 测定值
    Value
    林用限值
    Limit for forestland use
    pH 8.29 5.5~8.5
    有机质 Organic matter (g/kg) 392 ≥180
    含水率 Moisture (%) 57.1 ≤60
    N (g/kg) 30.0 ≥25.0
    P (g/kg) 32.0
    K (g/kg) 19.9
    Cu (mg/kg) 194 <1500
    Zn (mg/kg) 563 <3000
    Pb (mg/kg) 13.2 <1000
    Ni (mg/kg) 30.1 <200
    Hg (mg/kg) 7.56 <15
    Cd (mg/kg) <1 <20
    Cr (mg/kg) 42.6 <1000
    As (mg/kg) 12.4 <75
    粪大肠菌群菌值 (MPN/g)
    Faecal coliform bacteria
    >11.1 ≥0.01
    蛔虫卵死亡率 (%)
    Ascaris egg mortality
    100 ≥95
    Note: MPN—Most probable number.
    下载: 导出CSV 
    | 显示表格

    本试验将城市污泥产品施用量作为试验因素,参照《城镇污水处理厂污泥处置 林地用泥质》(CJ/T 362—2011)中的相关规定,以不施污泥产品为对照(CK),污泥产品施用量T1、T2、T3、T4分别设置为16、32、48、64 kg/株,各试验样地施用污泥产品前土壤基本理化性质如表3。在试验林内,每个树种选择长势基本一致的林木90株,面积约为200 m2,每个处理18株,两个树种共计180株进行污泥产品不同施用量处理试验。施污泥产品穴半径约为60~70 cm (以树干为圆心),深约为10~15 cm,各试验小区布设及施用污泥产品方式如图1所示。

    表  3  试验前各处理小区土壤基本理化性质
    Table  3.  Basic physicochemical properties of the soil in each treatment plot before application of sludge products
    项目 Item栾树 Koelreuteria paniculata金叶白蜡 Fraxinus chinensis
    CKT1T2T3T4CKT1T2T3T4
    pH8.588.528.558.478.598.168.438.428.418.40
    电导率 (μs/cm)
    Electrical conductivity
    49.0062.5061.0055.2060.4030.9034.9023.0041.6050.10
    有机质 Organic matter (g/kg)9.3615.8414.8810.229.602.522.912.102.713.12
    N (g/kg)0.1400.2300.1200.1400.2000.2300.3100.2200.2400.270
    P (g/kg)0.4460.6170.6830.5190.5100.4500.5780.6870.5050.457
    K (g/kg)7.1506.6725.9355.9426.3817.3817.3167.1577.2717.796
    Cu (mg/kg)14.02818.00016.43514.50315.87515.82817.36215.53015.53017.673
    Zn (mg/kg)49.34652.79758.36851.51651.75952.61458.05656.95457.55759.761
    Pb (mg/kg)14.71517.63121.72921.06514.55514.10414.68814.93914.34414.289
    Ni (mg/kg)18.39621.22120.43717.98420.26923.72324.02321.82421.48724.716
    Hg (mg/kg)0.1350.2050.2170.1160.1210.1110.1080.1010.1020.108
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。
    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively.
    下载: 导出CSV 
    | 显示表格
    图  1  各试验小区布设(a)及污泥产品施用方式(b)示意图
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。
    Figure  1.  Schematic diagram of experimental plot layout (a) and application method of sludge products (b)
    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively.

    于2023年7月进行污泥产品施用,2024年5月进行叶片采样。每个处理选取6株林木作为采样株,栾树林地每个小区每行选取2株,每小区有3行,3行共6株;金叶白蜡林地每个小区每行选取3株,每小区有2行,2行共6株,各小区所选采样树位置保持一致。利用高枝剪剪取树冠中部外侧东西南北4个方向枝条,采集每个枝条上完全伸展、无病虫害、长势良好的当年生叶片,以冠层中部叶片来代表整个冠层,叶片采集高度尽量一致。所有样品装入冰盒立即带回实验室进行清洗、晾干,一部分鲜样用锡纸包装后过液氮存于超低温冰箱(−80℃),另一部分样品装入信封于105℃杀青30 min,80℃烘干至恒重,用研磨仪研磨后过0.25 mm筛装入自封袋备用。

    烘干叶片样品经H2SO4−H2O2消煮后,凯氏定氮仪测定全氮,电感耦合等离子体发射光谱仪(ICP-OES)测定全磷,火焰原子吸收光谱仪测定全钾。

    叶片渗透调节物质含量选取可溶性糖(soluble sugars,SS)、可溶性蛋白(soluble proteins,SP)及脯氨酸(proline,Pro)作为测定指标。样品中的SS和Pro含量 (干样)分别用蒽酮法[13]和酸性茚三酮法测定[14],SP含量 (鲜样)采用考马斯亮蓝G-250法测定[13]

    烘干叶片样品采用HNO3-HClO4 (5∶1,v/v)消解后,采用火焰原子吸收光谱仪测定Cu和Zn含量,石墨炉原子吸收光谱仪测定Pb含量,电感耦合等离子体发射光谱仪(ICP-OES)测定Ni含量,采用电感耦合等离子体发射质谱仪(ICP-MS)测定Hg含量。

    本研究利用隶属函数−熵权法分析污泥产品处理下栾树和金叶白蜡叶片的营养和重金属吸收能力差异。根据林木叶片生理代谢特征,将指标分为正向指标和负向指标,正向指标包括叶片养分含量(N、P、K)和渗透调节物质含量(SS、SP、Pro),隶属函数值越大,表示在这一阶段叶片养分吸收和渗透调节能力越强;负向指标为重金属含量(Cu、Zn、Pb、Ni、Hg),隶属函数值越大,表示在这一阶段叶片重金属吸收能力较弱,叶片生长所遭受的胁迫越小。

    采用熵权法[1516]计算植物叶片养分(N、P、K)含量、渗透调节物质(SS、SP、Pro)含量及重金属(Cu、Zn、Pb、Ni、Hg)含量3个方面共11项指标的权重值,计算不同污泥产品处理的综合评价得分,所用公式如下:

    正向指标:

    R(Xij)=(XijXjmin)/(Xjmax (1)

    负向指标:

    {R} ( {X} _{ {ij} } )=( {X} _{ {j} {\max }} \mathrm- {X} _{ {ij} })/( {X} _{ {j} {\max }} {-X} _{ {j} \mathrm{min}} \mathrm{)} (2)
    P_{i j}= R(X_{ij})\left/ \sum _{{i}=1}^{{n}}R(X_{ij})\right. (3)
    e_{j }=- \frac{1}{\text{ln}\text{n}}\sum _{{i}=1}^{{n}}{P}_{ij}\text{ln}{P}_{ij} (4)
    {g} _{ {j} } =1- {e} _{ {j} } (5)
    W_{j}=g_{j}\left/ \sum _{\text{j}\text{=1}}^{{m}}{{g}}_{{j}}\right. (6)
    V_{i}= \sum _{{j}=1}^{{m}}{{W}}_{{j}}{R}({X}_{{ij}}) (7)

    式中,i (i=1, 2, ···, n)为不同污泥产品处理;j (j=1, 2, ···, m)为评价指标;Xij为第i个处理树种叶片第j个评价指标的实测值;XjmaxXjmin分别是评价指标(j)的最大值和最小值;R(Xij)为第i个处理的隶属函数值;Pij为第i个处理第j项指标的比重;ej为第j个指标的熵值;n为样本量;gj为信息效用值;Wj为各指标权重;Vi为各处理综合评价得分。

    试验数据均采用Excel 2016进行整理分析,利用SPSS 24.0进行单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA)和Duncan’s多重比较(P<0.05),用Origin 2021进行Pearson相关性分析及作图,图中数据为平均值±标准误(mean±SE)。

    不同树种、污泥产品处理及其交互作用对叶片的养分含量均有显著影响(表4)。栾树和金叶白蜡4个污泥产品处理的叶片N含量均显著高于CK (P<0.05) (图2),随污泥产品施用量的增加,N含量呈现出先增加后降低的趋势,且均在T3处理下达到最高值24.253、28.810 g/kg,分别是CK的1.50、1.19倍。不同污泥产品处理下两个树种叶片的P、K含量变化没有明显规律,表明在该试验条件下,P、K供给的影响因素较多,不能充分反映污泥产品处理的影响。

    表  4  污泥产品处理与树种互作对叶片营养及重金属含量的双因素方差分析
    Table  4.  Two-way ANOVA of sludge products application rates and tree species interaction on leaf nutrient and heavy metal contents
    指标
    Index
    树种 Tree species处理 Treatment树种×处理 Tree species × treatment
    FPFPFP
    N314.857<0.00145.206<0.0016.911<0.01
    P139.992<0.0014.437<0.055.333<0.01
    K1 386.155<0.0014.271<0.0514.923<0.001
    SS166.335<0.0017.078<0.014.514<0.01
    SP102.423<0.00111.951<0.00111.011<0.001
    Pro0.9250.34826.326<0.00128.848<0.001
    Cu6 157.155<0.00126.284<0.00111.221<0.001
    Zn45.657<0.0015.305<0.0110.927<0.001
    Pb4.766<0.050.6560.6290.9470.457
    Ni0.1020.7538.202<0.0011.8600.157
    Hg1.1270.3012.4710.0780.7930.544
    注:SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note: SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV 
    | 显示表格
    图  2  污泥产品处理对不同树种叶片养分含量的影响
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。
    Figure  2.  Effects of sludge products treatments on nutrient contents in leaves of different tree species
    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    树种和污泥产品处理的交互作用对叶片渗透调节物质含量影响显著(表4)。两树种叶片的可溶性糖含量随污泥产品施用量的增加均呈现出先降低后升高再降低的趋势(图3),不同处理对栾树叶片的可溶性糖含量无显著影响;金叶白蜡叶片在CK处理的可溶性糖含量显著高于T2 (P<0.05),CK、T2与其他处理无显著差异。栾树叶片的可溶性蛋白含量呈现出先降低后升高的趋势,CK显著高于其他处理(P<0.05),是最低处理T3的3.08倍;不同污泥产品处理对金叶白蜡叶片的可溶性蛋白含量无显著影响。两树种叶片的脯氨酸含量变化趋势与可溶性糖含量相似,栾树和金叶白蜡叶片脯氨酸含量分别在T3处理和T2处理达到最高,分别为CK的2.50和4.62倍。

    图  3  污泥产品处理对不同树种叶片渗透调节物质含量的影响
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。
    Figure  3.  Effects of sludge products treatments on the content of osmoregulatory substances in leaves of different tree species
    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    树种和污泥产品处理的交互作用仅对叶片的Cu和Zn含量影响显著 (P<0.05),对Pb、Ni和Hg含量影响不显著(表4)。

    图4可以看出,栾树施用污泥产品只显著增加了叶片Cu含量,其他重金属含量各处理以及与对照之间均无显著差异;金叶白蜡叶片中,Cu含量在T1和T4处理显著增加(P<0.05),Zn含量随污泥产品施用量增加先显著降低(P<0.05)后增加,在污泥产品施用量达T4时,恢复为与对照无显著差异。除T2处理的Ni含量外,Pb、Hg、Ni含量与对照均无显著差异,但T2处理Hg含量显著高于其他3个污泥产品施用量处理(P<0.05)。

    图  4  污泥产品处理对不同树种叶片重金属含量的影响
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。
    Figure  4.  Effects of sludge products treatments on heavy metal contents in leaves of different tree species
    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    通过对叶片养分含量、渗透调节物质含量及重金属含量等共11个指标进行综合计算,可得出不同污泥产品处理下栾树和金叶白蜡叶片营养状态和重金属吸收能力的综合评价结果(表5表6)。

    表  5  污泥产品处理下栾树叶片营养及重金属吸收的综合评价
    Table  5.  Comprehensive evaluation of nutrient and heavy metal absorption in koelreuteria paniculata leaves under sludge products treatments
    性状
    Trait
    指标
    Index
    隶属函数值
    Membership function value
    权重
    Weight
    加权隶属函数值
    Weighted membership function value
    CKT1T2T3T4CKT1T2T3T4
    养分含量
    Nutrient content
    N0.0620.5830.7390.9590.8410.0730.0410.1250.1240.1410.103
    P0.2610.7770.8280.6320.6740.047
    K0.4410.8130.5580.7420.1700.056
    渗透调节物质含量
    Osmoregulatory
    substance content
    SS0.7860.3400.7190.5020.2700.0880.2290.1000.0830.2010.119
    SP0.7670.3570.1260.0720.2270.149
    Pro0.2400.0870.0080.7600.3210.193
    重金属含量
    Heavy metal content
    Cu0.8790.2730.2380.6000.1760.0940.2690.1900.1650.2100.143
    Zn0.8050.4720.4660.5430.5420.049
    Pb0.7010.5840.3290.3900.3590.131
    Ni0.6220.4800.6730.4580.1680.056
    Hg0.3000.5730.5960.7770.6620.065
    综合得分 Comprehensive score0.5390.4140.3720.5530.364
    排序 Rank23415
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV 
    | 显示表格

    表5可知,栾树叶片指标权重较高的物质组成主要是渗透调节物质含量(0.088~0.193),其次是重金属含量中的Cu (0.094)以及Pb (0.131)。此外,养分含量中的N (0.073)权重也较高。从加权隶属函数值来看,污泥产品处理(T1~ T4)在养分含量方面均高于CK,而在渗透调节物质含量和重金属含量方面均低于CK,T3处理叶片养分含量为最大值(0.141),是CK处理的3.44倍,T4处理叶片重金属含量为最小值 (0.143),表明T4处理下栾树叶片重金属吸收能力较强,所遭受的胁迫最大。不同处理的综合评价得分排序为T3 (0.553)>CK (0.539)>T1 (0.414)>T2 (0.372)>T4 (0.364),表明栾树叶片在T3处理(48 kg/株)下生长状态较好。

    表6可知,金叶白蜡叶片指标权重较高的物质组成主要是渗透调节物质含量(0.083~0.193),渗透调节物质含量中权重较高的指标为SS (0.103)和Pro (0.193),养分含量中权重较高的指标为N (0.073)和P (0.094),重金属含量中权重较高的指标为Cu (0.088)、Zn (0.120)及Ni (0.093)。从加权隶属函数值来看,T4处理叶片养分含量为最大值(0.164),是CK处理的1.67倍,T2处理叶片渗透调节物质含量和重金属含量均为最大值,而养分含量却为最小值(0.081),表明T2处理下金叶白蜡叶片所遭受的重金属胁迫最小,养分含量综合最低可能是导致渗透调节物质含量高的主要原因。不同处理的综合评价得分排序为T2 (0.620)>T3 (0.548)>T4 (0.455)>CK (0.426)>T1 (0.352),表明金叶白蜡叶片在T2处理(32 kg/株)下生长状态较好。

    表  6  污泥产品处理下金叶白蜡叶片营养及重金属吸收的综合评价
    Table  6.  Comprehensive evaluation of nutrient and heavy metal absorption in Fraxinus chinensis leaves under sludge products treatments
    性状
    Trait
    指标
    Index
    隶属函数值
    Membership function value
    权重
    Weight
    加权隶属函数值
    Weighted membership function value
    CKT1T2T3T4CKT1T2T3T4
    养分含量
    Nutrient content
    N0.0990.6010.7180.8090.4350.0730.0980.1230.0810.1350.164
    P0.4570.6790.0620.3770.9140.094
    K0.9460.3020.4400.7850.9130.051
    渗透调节物质含量
    Osmoregulatory
    substance content
    SS0.9360.5540.1000.6200.2450.1030.1600.0960.2290.1810.148
    SP0.6250.4050.6080.3410.9400.083
    Pro0.0580.0250.8740.4630.2300.193
    重金属含量
    Heavy metal content
    Cu0.7640.0780.8460.5870.2710.0880.1680.1340.3100.2320.144
    Zn0.0880.2990.8850.4450.1460.120
    Pb0.6100.8850.9360.6150.8250.038
    Ni0.4340.1820.8970.5660.2500.093
    Hg0.4150.6370.1640.7910.7450.064
    综合得分 Comprehensive score0.4260.3520.6200.5480.455
    排序 Rank45123
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV 
    | 显示表格

    污泥含有丰富的N、P、K等营养元素,能够用于生产具有潜在价值的产品[17]。其中基于养分回收的污泥产品可作为肥料用以改善土壤结构、肥力及林木生长状况[1819]。本研究中,施用污泥产品可显著提高栾树和金叶白蜡叶片的养分含量,除金叶白蜡叶片K含量外,污泥产品施用量对两个树种叶片的养分含量均表现为“低促高抑”,这与黄粱木(Neolamarckia cadamba)[20]、樟子松(Pinus sylvestris var. mongolica)[21]、油松和榆树[22]等植物施用污泥产品后叶片营养元素含量的变化相似。但杨英杰等[23]研究发现,不同污泥产品施用量下国槐和银杏叶片的N、P、K含量变化不显著,这可能与林木本身特性、污泥产品施用量及施用方式有关。金叶白蜡叶片的K含量在T1、T2处理下显著降低,T3、T4处理下逐渐升高,但仍低于CK,这一变化表明污泥产品可能抑制金叶白蜡叶片对K元素的吸收,污泥产品中有害物质的存在可能会破坏养分之间的平衡,并且离子之间的拮抗作用会加速有效养分(如K+)的淋失[24]。另一方面,取样时处于展叶初期,施用污泥产品后金叶白蜡叶片对于N和P的需求可能高于K,从而使得K元素在叶片中的分配处于劣势。而栾树叶片养分含量变化的相对一致性离不开植物中N、P、K间的协同调控[25]

    前人研究认为,林地施用污泥产品可能会引起植物中重金属浓度的升高,从而影响生物膜的通透性,使植物处于胁迫环境,诱导增加可溶性糖、可溶性蛋白、脯氨酸等物质含量来维持细胞正常代谢功能,这些渗透压调节物质的积累和合成是植物对抗潜在有毒元素胁迫的初始反应[2627]。而本研究发现,无论是栾树还是金叶白蜡,低污泥产品施用量(T1、T2)并不会造成叶片渗透调节物质含量的上升,反而会出现显著降低的趋势,其中可溶性糖和可溶性蛋白含量即使在T3、T4处理下有所升高,但仍低于CK或与CK无显著差异,表明低污泥产品施用量不会对栾树和金叶白蜡叶组织产生较高的胁迫,Wyrwicka等[28]研究也表明,在污泥产品改良土壤上生长的蒿柳(Salix viminalis)叶组织表现出更少的脂质氧化损伤,表明污泥产品应用对植物脂质氧化损伤具有保护作用。相反,对照土壤中养分的缺乏可能是一种胁迫因素[28],导致氧化胁迫发生,所以CK处理叶片渗透调节物质含量要高于污泥产品处理。另外,养分含量的增加可能通过促进植物生长来消耗叶片的非结构性碳水化合物(non-structural carbohydrates,NSC),也可能导致叶片多余的NSC重新分配到其他器官以便储存或利用[29],这也是栾树和金叶白蜡叶片可溶性糖含量降低的原因之一。栾树T3处理和金叶白蜡T2处理下叶片脯氨酸含量急剧增加,可能是由于污泥产品所带来的重金属胁迫引起氧自由基的大量累积,从而造成脯氨酸应激性升高[30],表明中高污泥产品施用量下脯氨酸是比可溶性糖、可溶性蛋白更能反映胁迫程度的敏感指标,在清除活性氧、维持细胞稳态、渗透调节和氧化还原平衡方面[31]发挥着主要作用。此外,脯氨酸具有金属螯合剂特性,可与重金属形成无毒的金属−脯氨酸复合物,从而提高植物的抗逆性[3132]

    重金属在植物体内的积累倾向于发生在活跃生长的组织中,如嫩枝和幼叶[33]。因此,植物生长初期的叶片重金属含量可以作为反映植物是否遭受重金属胁迫的重要指标。本研究中,不同重金属在栾树和金叶白蜡叶片中的含量表现有所差异,栾树叶片除Cu含量外,其他4种重金属含量虽有增加但均与CK无显著差异,而金叶白蜡叶片受污泥产品施用量的影响大致表现出“低促高抑”,或是先降低后升高但低于CK的趋势,表明污泥产品并不会对栾树和金叶白蜡叶片产生明显的毒害作用。Cu和Zn是植物生长必需的微量元素,它们的适量增加可促进植物对营养元素的吸收[3435]。栾树和金叶白蜡叶片重金属含量之间的动态变化关系表明,不同重金属之间存在拮抗或协同作用,某种重金属的刺激可以影响植物对其他重金属的敏感性[36]

    从综合评价结果来看,栾树和金叶白蜡叶片渗透调节物质含量平均权重最大,其中脯氨酸含量权重最大,表明渗透调节物质尤其是脯氨酸是影响栾树和金叶白蜡叶片对污泥产品营养及重金属吸收能力的主要因素。这可能因为脯氨酸是一种对植物体内各种变化都较为敏感的指标,其在植物矿物质营养及重金属氧化损伤方面均发挥着重要作用[27]。从综合得分来看,栾树叶片在T3处理下最大,这主要依赖于T3处理下较高的养分含量、渗透调节物质含量以及较低的重金属含量;而金叶白蜡叶片在T2处理下最大,这主要依赖于T2处理下较高的渗透调节物质含量和最低的重金属含量,这一现象表明栾树叶片在T3处理下3方面的性状能够均衡发展,而金叶白蜡叶片在T2处理下渗透调节能力及重金属低敏感性方面则表现突出。

    综合考虑两树种叶片的养分和重金属吸收能力,栾树和金叶白蜡分别施用污泥产品48和32 kg/株时的综合得分最高,表明该污泥产品施用量下不仅最适合叶片生长,且叶片中重金属含量低,因此,长期施用不仅为污泥产品的资源化利用拓宽新的方向,也不会影响景观生态林的生长。

  • 图  1   各试验小区布设(a)及污泥产品施用方式(b)示意图

    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。

    Figure  1.   Schematic diagram of experimental plot layout (a) and application method of sludge products (b)

    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively.

    图  2   污泥产品处理对不同树种叶片养分含量的影响

    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。

    Figure  2.   Effects of sludge products treatments on nutrient contents in leaves of different tree species

    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    图  3   污泥产品处理对不同树种叶片渗透调节物质含量的影响

    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。

    Figure  3.   Effects of sludge products treatments on the content of osmoregulatory substances in leaves of different tree species

    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    图  4   污泥产品处理对不同树种叶片重金属含量的影响

    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。柱上不同小写字母表示相同树种不同处理间差异显著(P<0.05)。

    Figure  4.   Effects of sludge products treatments on heavy metal contents in leaves of different tree species

    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. Different lowercase letters above the bars indicate significant difference among treatments for the same tree species (P<0.05).

    表  1   栾树和金叶白蜡样地林分基本信息

    Table  1   Basic stand information of Koelreuteria paniculate and Fraxinus chinensis

    项目
    Item
    栾树
    Koelreuteria
    paniculata
    金叶白蜡
    Fraxinus
    chinensis
    林龄 Stand age (a) 7 8
    郁闭度 Canopy density 0.5~0.6 0.4~0.5
    株行距 Planting spacing (m) 3.0 × 3.0 2.7 × 2.7
    平均树高 Mean tree height (m) 6.92 4.51
    平均胸径 Mean DBH (cm) 12.55 8.92
    平均冠幅投影面积 (m2)
    Mean canopy projection
    5.01 4.81
    Note: DBH—Diameter at breast height.
    下载: 导出CSV

    表  2   供试污泥产品生理生化性质及林地使用限值[12]

    Table  2   Physicochemical and biological properties of the tested sludge products and their usage limit values in forestland

    项目 Item 测定值
    Value
    林用限值
    Limit for forestland use
    pH 8.29 5.5~8.5
    有机质 Organic matter (g/kg) 392 ≥180
    含水率 Moisture (%) 57.1 ≤60
    N (g/kg) 30.0 ≥25.0
    P (g/kg) 32.0
    K (g/kg) 19.9
    Cu (mg/kg) 194 <1500
    Zn (mg/kg) 563 <3000
    Pb (mg/kg) 13.2 <1000
    Ni (mg/kg) 30.1 <200
    Hg (mg/kg) 7.56 <15
    Cd (mg/kg) <1 <20
    Cr (mg/kg) 42.6 <1000
    As (mg/kg) 12.4 <75
    粪大肠菌群菌值 (MPN/g)
    Faecal coliform bacteria
    >11.1 ≥0.01
    蛔虫卵死亡率 (%)
    Ascaris egg mortality
    100 ≥95
    Note: MPN—Most probable number.
    下载: 导出CSV

    表  3   试验前各处理小区土壤基本理化性质

    Table  3   Basic physicochemical properties of the soil in each treatment plot before application of sludge products

    项目 Item栾树 Koelreuteria paniculata金叶白蜡 Fraxinus chinensis
    CKT1T2T3T4CKT1T2T3T4
    pH8.588.528.558.478.598.168.438.428.418.40
    电导率 (μs/cm)
    Electrical conductivity
    49.0062.5061.0055.2060.4030.9034.9023.0041.6050.10
    有机质 Organic matter (g/kg)9.3615.8414.8810.229.602.522.912.102.713.12
    N (g/kg)0.1400.2300.1200.1400.2000.2300.3100.2200.2400.270
    P (g/kg)0.4460.6170.6830.5190.5100.4500.5780.6870.5050.457
    K (g/kg)7.1506.6725.9355.9426.3817.3817.3167.1577.2717.796
    Cu (mg/kg)14.02818.00016.43514.50315.87515.82817.36215.53015.53017.673
    Zn (mg/kg)49.34652.79758.36851.51651.75952.61458.05656.95457.55759.761
    Pb (mg/kg)14.71517.63121.72921.06514.55514.10414.68814.93914.34414.289
    Ni (mg/kg)18.39621.22120.43717.98420.26923.72324.02321.82421.48724.716
    Hg (mg/kg)0.1350.2050.2170.1160.1210.1110.1080.1010.1020.108
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。
    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively.
    下载: 导出CSV

    表  4   污泥产品处理与树种互作对叶片营养及重金属含量的双因素方差分析

    Table  4   Two-way ANOVA of sludge products application rates and tree species interaction on leaf nutrient and heavy metal contents

    指标
    Index
    树种 Tree species处理 Treatment树种×处理 Tree species × treatment
    FPFPFP
    N314.857<0.00145.206<0.0016.911<0.01
    P139.992<0.0014.437<0.055.333<0.01
    K1 386.155<0.0014.271<0.0514.923<0.001
    SS166.335<0.0017.078<0.014.514<0.01
    SP102.423<0.00111.951<0.00111.011<0.001
    Pro0.9250.34826.326<0.00128.848<0.001
    Cu6 157.155<0.00126.284<0.00111.221<0.001
    Zn45.657<0.0015.305<0.0110.927<0.001
    Pb4.766<0.050.6560.6290.9470.457
    Ni0.1020.7538.202<0.0011.8600.157
    Hg1.1270.3012.4710.0780.7930.544
    注:SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note: SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV

    表  5   污泥产品处理下栾树叶片营养及重金属吸收的综合评价

    Table  5   Comprehensive evaluation of nutrient and heavy metal absorption in koelreuteria paniculata leaves under sludge products treatments

    性状
    Trait
    指标
    Index
    隶属函数值
    Membership function value
    权重
    Weight
    加权隶属函数值
    Weighted membership function value
    CKT1T2T3T4CKT1T2T3T4
    养分含量
    Nutrient content
    N0.0620.5830.7390.9590.8410.0730.0410.1250.1240.1410.103
    P0.2610.7770.8280.6320.6740.047
    K0.4410.8130.5580.7420.1700.056
    渗透调节物质含量
    Osmoregulatory
    substance content
    SS0.7860.3400.7190.5020.2700.0880.2290.1000.0830.2010.119
    SP0.7670.3570.1260.0720.2270.149
    Pro0.2400.0870.0080.7600.3210.193
    重金属含量
    Heavy metal content
    Cu0.8790.2730.2380.6000.1760.0940.2690.1900.1650.2100.143
    Zn0.8050.4720.4660.5430.5420.049
    Pb0.7010.5840.3290.3900.3590.131
    Ni0.6220.4800.6730.4580.1680.056
    Hg0.3000.5730.5960.7770.6620.065
    综合得分 Comprehensive score0.5390.4140.3720.5530.364
    排序 Rank23415
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note:CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV

    表  6   污泥产品处理下金叶白蜡叶片营养及重金属吸收的综合评价

    Table  6   Comprehensive evaluation of nutrient and heavy metal absorption in Fraxinus chinensis leaves under sludge products treatments

    性状
    Trait
    指标
    Index
    隶属函数值
    Membership function value
    权重
    Weight
    加权隶属函数值
    Weighted membership function value
    CKT1T2T3T4CKT1T2T3T4
    养分含量
    Nutrient content
    N0.0990.6010.7180.8090.4350.0730.0980.1230.0810.1350.164
    P0.4570.6790.0620.3770.9140.094
    K0.9460.3020.4400.7850.9130.051
    渗透调节物质含量
    Osmoregulatory
    substance content
    SS0.9360.5540.1000.6200.2450.1030.1600.0960.2290.1810.148
    SP0.6250.4050.6080.3410.9400.083
    Pro0.0580.0250.8740.4630.2300.193
    重金属含量
    Heavy metal content
    Cu0.7640.0780.8460.5870.2710.0880.1680.1340.3100.2320.144
    Zn0.0880.2990.8850.4450.1460.120
    Pb0.6100.8850.9360.6150.8250.038
    Ni0.4340.1820.8970.5660.2500.093
    Hg0.4150.6370.1640.7910.7450.064
    综合得分 Comprehensive score0.4260.3520.6200.5480.455
    排序 Rank45123
    注:CK、T1、T2、T3、T4表示污泥产品施用量分别为0、16、32、48、64 kg/株。SS—可溶性糖;SP—可溶性蛋白;Pro—脯氨酸。
    Note: CK, T1, T2, T3, T4 represent the application rates of sludge product as 0, 16, 32, 48, and 64 kg/plant, respectively. SS—Soluble sugars; SP—Soluble protein; Pro—Proline.
    下载: 导出CSV
  • [1]

    Guo Y Q, Guo Y L, Gong H, et al. Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion-solar drying-land utilization process”: Case study in China[J]. Science of the Total Environment, 2021, 801: 149609.

    [2] 柴宝华, 李文涛, 亓伟, 等. 我国市政污泥处理处置现状研究[J]. 新能源进展, 2023, 11(1): 38−44. DOI: 10.3969/j.issn.2095-560X.2023.01.006

    Chai B H, Li W T, Qi W, et al. Status of municipal sludge treatment and disposal in China[J]. Advances in New and Renewable Energy, 2023, 11(1): 38−44. DOI: 10.3969/j.issn.2095-560X.2023.01.006

    [3] 韩景超, 张振洲, 李金波, 等. 我国污泥处理处置行业政策及标准发展现状研究及建议[J]. 环境与发展, 2024, 36(3): 1−6.

    Han J C, Zhang Z Z, Li J B, et al. Research and suggestions on the development of policies and standards for sludge treatment and disposal industry in China[J]. Environment and Development, 2024, 36(3): 1−6.

    [4]

    Gao S T, Dong Y M, Jia Q Q, et al. Hazards of toxic metal(loid)s: Exploring the ecological and health risk in soil–crops systems with long-term sewage sludge application[J]. Science of the Total Environment, 2024, 948: 174988.

    [5]

    Zhou X, Yang J X, Zhao X Y, et al. Towards the carbon neutrality of sludge treatment and disposal in China: A nationwide analysis based on life cycle assessment and scenario discovery[J]. Environment International, 2023, 174: 107927.

    [6]

    Hoang S A, Bolan N, Madhubashani A M P, et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review[J]. Environmental Pollution, 2022, 293: 118564.

    [7] 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 47(3): 1−5.

    Dai X H, Zhang C, Zhang L W, et al. Thoughts on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 47(3): 1−5.

    [8] DB11/T 2124—2023. 污泥产品林地施用技术规范[S].

    DB11/T 2124−2023. Technical specifications for forestland application of sludge products[S].

    [9] 孙昱. 城市排水污泥林地施用效果研究[D]. 北京: 北京林业大学硕士学位论文, 2020.

    Sun Y. Studies on effects of municipal sewage sludge on forestland[D]. Beijing: MS Thesis of Beijing Forestry University, 2020.

    [10] 刘毅. 城市达标污泥施用对人工林生长和土壤的影响[D]. 北京: 北京林业大学硕士学位论文, 2022.

    Liu Y. Effects of municipal standard sludge application on planted forest growth and soil[D]. Beijing: MS Thesis of Beijing Forestry University, 2022.

    [11]

    Huang Z H, Xiang W H, Ma Y E, et al. Growth and heavy metal accumulation of Koelreuteria paniculata seedlings and their potential for restoring manganese mine wastelands in Hunan, China[J]. International Journal of Environmental Research and Public Health, 2015, 12(2): 1726−1744.

    [12] CJ/T 362—2011城镇污水处理厂污泥处置 林地用泥质[S].

    CJ/T 362−2011 Disposal of sludge from municipal wastewater treatment plant-Quality of sludge used in forestland[S].

    [13] 王三根. 植物生理学实验教程[M]. 北京: 科学出版社, 2017.

    Wang S G. Plant physiology experiment tutorial[M]. Beijing: Science Press, 2017.

    [14] 石连旋, 颜宏. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2013.

    Shi L X, Yan H. Plant physiology experiment guidance[D]. Beijing: Higher Education Press, 2013.

    [15] 马宁, 刘艳霞, 李想, 等. 基于熵权法综合评价植物根际促生菌对烟草的促生作用[J]. 南京农业大学学报, 2020, 43(5): 887−895. DOI: 10.7685/jnau.201910046

    Ma N, Liu Y X, Li X, et al. Comprehensive evaluation of growth promotion effect of PGPR strains on tobacco based on entropy weight method[J]. Journal of Nanjing Agricultural University, 2020, 43(5): 887−895. DOI: 10.7685/jnau.201910046

    [16] 王亚萍, 刘庆安, 庞军柱, 等. 秦岭南坡不同林分类型枯落物层和土壤层水文功能综合评价[J]. 西北林学院学报, 2024, 39(3): 50−58. DOI: 10.3969/j.issn.1001-7461.2024.03.07

    Wang Y P, Liu Q A, Pang J Z, et al. Comprehensive evaluation of hydrological function of litter and soil layers in different stand types in the south slope of the Qinling Mountains[J]. Journal of Northwest Forestry University, 2024, 39(3): 50−58. DOI: 10.3969/j.issn.1001-7461.2024.03.07

    [17]

    Ding A, Zhang R R, Ngo H H, et al. Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: A review[J]. Science of the Total Environment, 2021, 769: 144451. DOI: 10.1016/j.scitotenv.2020.144451

    [18]

    Chu S S, Yang W J, Xia D D, et al. Changes in potentially toxic element concentration and potential ecological risk in topsoil caused by sewage sludge application on forestland: A 3-year field trial[J]. Forest Ecology and Management, 2021, 500: 119657. DOI: 10.1016/j.foreco.2021.119657

    [19]

    Rigueiro-Rodríguez A, Mosquera-Losada M R, Ferreiro-Domínguez N. Use of sewage sludge in silvopastoral systems under Pinus radiata D. Don: Soil, tree growth, and pasture production[J]. Agroforestry Systems, 2021, 95(5): 867−880. DOI: 10.1007/s10457-018-0293-8

    [20] 储双双, 童馨, 王文瑞, 等. 污泥堆肥对黄梁木幼苗生长和元素吸收的影响[J]. 应用生态学报, 2017, 28(5): 1550−1556.

    Chu S S, Tong X, Wang W R, et al. Effects of sewage sludge compost on the growth and element uptake of Neolamarckia cadamba seedlings[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1550−1556.

    [21] 彭丽曼. 城市污泥对沙地樟子松生长及土壤营养状况的影响[D]. 辽宁沈阳: 辽宁大学硕士学位论文, 2013.

    Peng L M. Effect of municipal sewage sludge on Mongolian pine (Pinus sylvestris var. mongolica) growth and soil nutrient status[D]. Shenyang, Liaoning: MS Thesis of Liaoning University, 2013.

    [22] 孙昱, 彭祚登, 熊建军, 等. 高级厌氧消化制污泥有机肥对油松和榆树林木生长及养分积累的影响[J]. 中南林业科技大学学报, 2019, 39(10): 55−63.

    Sun Y, Peng Z D, Xiong J J, et al. Effects of advanced anaerobic digestion sewage sludge as an organic fertilizer on growth and nutrient accumulation of Pinus tabulaeformis and Ulmus pumila[J]. Journal of Central South University of Forestry & Technology, 2019, 39(10): 55−63.

    [23] 杨英杰, 唐胶, 崔超, 等. 城镇生活污泥产品对国槐和银杏生长及氮磷钾含量的影响[J]. 西南林业大学学报(自然科学), 2022, 42(4): 15−23.

    Yang Y J, Tang J, Cui C, et al. Effects of urban sewage sludge products on the growth and nitrogen, phosphorus and potassium contents of Sophora japonica and Ginkgo biloba[J]. Journal of Southwest Forestry University (Natural Science), 2022, 42(4): 15−23.

    [24] 冯嘉仪, 阮可瑾, 苏思宁, 等. 构树的污泥适应性及养分和重金属吸收累积特征[J]. 应用生态学报, 2022, 33(6): 1629−1638.

    Feng J Y, Ruan K J, Su S N, et al. Adaptability of Broussonetia papyrifera to sewage sludge and its characteristics of nutrient and heavy metal uptake and accumulation[J]. Chinese Journal of Applied Ecology, 2022, 33(6): 1629−1638.

    [25] 储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学(生命科学), 2021, 51(10): 1415−1423.

    Chu C C, Wang Y, Wang E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: Current situation and future perspectives[J]. Scientia Sinica (Vitae), 2021, 51(10): 1415−1423.

    [26] 葛坤, 王培军, 邵海林, 等. 城市典型绿化树种叶片重金属积累及抗性生理特征[J]. 山西农业大学学报(自然科学版), 2022, 42(4): 96−104.

    Ge K, Wang P J, Shao H L, et al. Physiological characteristics of heavy metal accumulation and resistance in leaves of typical urban greening tree species[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2022, 42(4): 96−104.

    [27]

    Ahmad Z, Khan S M, Page S E, et al. Environmental sustainability and resilience in a polluted ecosystem via phytoremediation of heavy metals and plant physiological adaptations[J]. Journal of Cleaner Production, 2023, 385: 135733. DOI: 10.1016/j.jclepro.2022.135733

    [28]

    Wyrwicka A, Urbaniak M. The biochemical response of willow plants (Salix viminalis L.) to the use of sewage sludge from various sizes of wastewater treatment plant[J]. Science of the Total Environment, 2018, 615: 882−894.

    [29]

    Mou R, Jian Y, Zhou D J, et al. Divergent responses of woody plant leaf and root non-structural carbohydrates to nitrogen addition in China: Seasonal variations and ecological implications[J]. Science of the Total Environment, 2024, 950: 175425.

    [30] 朱成豪, 唐健民, 高丽梅, 等. 重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响[J]. 广西植物, 2019, 39(6): 752−760. DOI: 10.11931/guihaia.gxzw201803009

    Zhu C H, Tang J M, Gao L M, et al. Effects of combined stress of heavy metals Cu, Zn and Cd on physiology and biochemistry of Jatropha curcas seedlings[J]. Guihaia, 2019, 39(6): 752−760. DOI: 10.11931/guihaia.gxzw201803009

    [31]

    Ghosh U K, Islam M N, Siddiqui M N, et al. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms[J]. Plant Biology, 2022, 24(2): 227−239. DOI: 10.1111/plb.13363

    [32] 张林, 陈翔, 吴宇, 等. 脯氨酸在植物抗逆中的研究进展[J]. 江汉大学学报(自然科学版), 2023, 51(1): 42−51.

    Zhang L, Chen X, Wu Y, et al. Research progress of proline in plant stress resistance[J]. Journal of Jianghan University (Natural Science Edition), 2023, 51(1): 42−51.

    [33]

    Pulford I D, Watson C. Phytoremediation of heavy metal-contaminated land by trees−a review[J]. Environment International, 2003, 29(4): 529−540. DOI: 10.1016/S0160-4120(02)00152-6

    [34] 王子诚, 陈梦霞, 杨毓贤, 等. 铜胁迫对植物生长发育影响与植物耐铜机制的研究进展[J]. 植物营养与肥料学报, 2021, 27(10): 1849−1863. DOI: 10.11674/zwyf.2021164

    Wang Z C, Chen M X, Yang Y X, et al. Effects of copper stress on plant growth and advances in the mechanisms of plant tolerance research[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(10): 1849−1863. DOI: 10.11674/zwyf.2021164

    [35]

    Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metals, occurrence and toxicity for plants: A review[J]. Environmental Chemistry Letters, 2010, 8(3): 199−216. DOI: 10.1007/s10311-010-0297-8

    [36] 袁浏欢, 万鹏伟, 李强, 等. 富营养条件下水培旱柳对锌和铜的富集特性[J]. 应用与环境生物学报, 2019, 25(3): 491−500.

    Yuan L H, Wan P W, Li Q, et al. Accumulation characteristics of Zn and Cu in cuttings of Salix matsudana Koidz under hydroponic eutrophication condition[J]. Chinese Journal of Applied and Environmental Biology, 2019, 25(3): 491−500.

图(4)  /  表(6)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  13
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 录用日期:  2024-12-02
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回