• ISSN 1008-505X
  • CN 11-3996/S

植物叶际微生物及其对施肥响应的研究进展

Research advances on plant phyllosphere microorganisms and their responses to fertilization

  • 摘要: 叶际微生物(phyllosphere microorganisms)作为定殖于植物地上部分的特殊微生物群落,在植物生态系统中扮演着至关重要的生态角色。随着高通量测序和宏基因组学等技术的快速发展,叶际微生物研究领域取得了显著进展。基于文献计量学分析,以“叶际微生物”和“phyllosphere microorganism”为主题词分别在“中国知网”和“Web of science”核心数据库对2000年1月至2023年6月发表文献进行检索,共检索到相关中文文献93篇,外文文献498篇。发现植物病害防控和生物防治相关研究呈现高共现强度和持续性研究热度,已成为该领域的核心研究方向之一。此外,土壤微生物、根际微生物与叶际微生物间的关系也是当前研究的重点。已有研究表明,叶际微生物不仅能够增强植物抗逆性、促进固氮作用,还与人类健康密切相关。其定殖过程受到宿主因素(如植株形态、物质组分)和环境因素(如气候条件、土壤特性)的双重调控。在集约化农业生产中,施肥作为关键栽培管理措施显著改变作物的生长状态和微环境,是作物叶际微生物群落构建不可忽视的因素。本文系统总结了肥料种类、用量及施用方式对作物叶际微生物群落结构和功能的影响,提出通过优化施肥策略调控叶片形态以定向塑造叶际微生物群落,以及通过施肥维持“叶际稳态”实现植物健康的新思路。基于当前研究现状,未来研究方向应着重关注:1)矿质养分对叶际微生物的调控机制;2)施肥驱动下微生物在土壤−植物连续体的传播规律;3)有机肥施用引发的叶际生物安全风险评估;4)具有提高养分利用效率和改善农产品品质功能的叶际微生物资源挖掘。这些研究将为深入理解叶际微生物生态功能及其农业应用提供新的理论依据和实践指导。

     

    Abstract: Phyllosphere microorganisms, constituting a distinct microbial assemblage colonizing the aerial surfaces of plants, perform pivotal ecological functions within plant-associated ecosystems. Advances in high-throughput sequencing and metagenomic technologies have revolutionized research into this unique microbial habitat. Using the “China National Knowledge Infrastructure (CNKI)” and “Web of Science”core databases, we searched literature published from January 2000 to June 2023, using “phyllosphere microorganism”as a keyword. A total of 93 relevant Chinese articles and 498 foreign articles were retrieved. The key findings by bibliometric analysis revealed that research on plant disease control and biological control, characterized by high co-occurrence intensity and sustained research interest, has become one of the core research directions in this field. In addition, the relationships among soil microorganisms, rhizosphere microorganisms, and phyllosphere microorganisms are also a current research focus. Emerging evidences highlighted the multifaceted roles of phyllosphere communities: enhancing host stress tolerance, contributing to nitrogen fixation, and impacting human health through microbial dissemination. Their colonization process is governed by complex interactions between host-specific traits (e.g., leaf structure and phytochemical profiles) and environmental variables (e.g., climatic regimes and edaphic conditions). In intensive agricultural production, fertilization practices represent crucial management levers that significantly reshape crop physiology and microenvironmental conditions, thereby exerting profound influences on phyllosphere community assembly. This review synthesizes current understanding of how fertilizer types, application dosages, and delivery methods modulate the structural and functional attributes of crop phyllosphere microbiota. Novel strategies are proposed for manipulating leaf traits via optimized fertilization regimes to engineer beneficial microbial consortia, while maintaining phyllosphere homeostasis for sustainable plant health. To advance the field, four priority research avenues are identified: 1) Mechanistic insights: Deciphering mineral nutrient-mediated regulation of phyllosphere microbial interactions; 2) Microbial transmission networks: Characterizing fertilizer-driven dispersal patterns across the soil-plant continuum; 3) Biosafety evaluations: Assessing risks associated with organic fertilizer-induced phyllosphere microbial introductions; 4) Agrobiotechnology innovation: Exploring phyllosphere microbial resources to enhance nutrient use efficiency and agricultural products quality. These investigative trajectories promise to deepen our ecological comprehension of phyllosphere microbiota while unlocking their biotechnological potential for sustainable agriculture. By integrating multi-omics approaches with field-scale validations, future studies can establish foundational principles for harnessing phyllosphere microbial diversity to address global food security challenges.

     

/

返回文章
返回