Distribution and properties of iron-bound organic carbon of aggregates in paddy soil under long-term straw incorporation
-
摘要:目的
土壤中的铁氧化物作为重要的胶结物质,通过吸附或共沉淀作用促进有机碳的固存,同时在团聚体形成过程中也发挥重要作用。我们研究了有机碳投入对铁氧化物结合态有机碳在团聚体中的含量及稳定性的影响,以深入理解稻田土壤中有机碳的固存机制。
方法依托湖南祁阳红壤实验站的双季稻长期定位试验,于试验的第11年,无扰动采集秸秆不还田(CK)、仅早稻秸秆还田(RS1)及早稻秸秆和晚稻秸秆均还田(RS2)处理小区的土样,采用干湿筛结合法将土壤团聚体分为大团聚体(>2 mm)、小团聚体(0.25~2 mm)、微团聚体(0.053~0.25 mm)和黏粉粒(<0.053 mm),分析了团聚体中有机碳含量和铁氧化物结合态有机碳(OCFe)含量,并进一步将OCFe分为络合铁结合态有机碳(OCPP)、非晶形铁氧化物结合态有机碳(OCHH)、晶形铁氧化物结合态有机碳(OCDH) 3个形态,测定其在各粒级团聚体OCFe中的占比及其芳香性。
结果各粒级团聚体中OCPP、OCHH、OCDH占该团聚体中有机碳的比例分别为16.0%~22.4%、1.6%~3.0%、0.5%~1.8%,说明团聚体中铁氧化物结合态有机碳以络合铁结合态有机碳为主。与CK相比,RS1和RS2处理土壤大团聚体中的OCFe含量分别提高了21.3%和36.2%;RS1处理还显著提高了微团聚体中OCFe含量,降低了黏粉粒中OCFe含量;RS1和RS2处理显著增加了大团聚体中OCPP及黏粉粒中OCDH含量,且这两种铁结合态有机碳含量与团聚体有机碳含量呈线性正相关,说明秸秆还田改变了团聚体中铁结合态有机碳的赋存形态。此外,秸秆还田还显著提高了小团聚体中OCHH及黏粉粒中OCDH的芳香性。
结论水稻土中秸秆还田促进了络合铁结合态有机碳在大团聚体中的积累,增加了晶形铁氧化物结合态有机碳在微团聚体和黏粉粒中的含量,提高了黏粉粒中晶形铁氧化物结合态有机碳的芳香性,进而增强了土壤团聚体中有机碳的稳定性。这可能是秸秆还田后土壤有机碳固存的重要机制之一。
Abstract:ObjectivesIron oxides in soil facilitate organic carbon sequestration through adsorption or coprecipitation and serve as critical cementing agents in aggregate formation. This study investigated the effects of carbon input on the content and stability of iron oxide-associated organic carbon within soil aggregates, in order to gain a deeper understanding of the soil organic carbon sequestration mechanism in paddy fields.
MethodsBased on the long-term positioning experiment of double-cropping rice in Qiyang Red Soil Experimental Station in Hunan Province, undisturbed soil samples were collected in treatment plots of the CK (no straw return), RS1 (only returning early rice straw to field), and RS2 (returning both early and late rice straw to field) continuously for 11 years. The dry-wet sieve method was used to separate soil aggregates into macro- aggregate (>2 mm), small- aggregate (0.25−2 mm), micro- aggregate (0.053−0.25 mm), and clay-silt particle (<0.053 mm). Organic carbon content and iron-bound organic carbon (OCFe) were analyzed across aggregates. OCFe was further partitioned into three fractions: complexed iron-bound organic carbon (OCPP), amorphous iron oxide-bound organic carbon (OCHH), and crystalline iron oxide-bound organic carbon (OCDH). Their proportions in OCFe and aromaticity were quantified.
ResultsThe proportions of OCPP, OCHH and OCDH in each particle size aggregate were 16.0%−22.4%, 1.6%−3.0%, and 0.5%−1.8%, respectively, indicating that the iron-bound organic carbon in the aggregate is mainly OCPP. Compared to CK, RS1 and RS2 increased OCFe content in macro-aggregates by 21.3% and 36.2%, respectively. RS1 significantly enhanced OCFe in micro-aggregates but reduced it in clay-silt particles. Both RS1 and RS2 elevated OCPP in macro-aggregates and OCDH in clay-silt particles, with linear correlations between these two forms of iron-bound organic carbon fractions and aggregate soil organic C (SOC) content, suggesting straw return altered iron-bound organic carbon distribution. Additionally, straw returning increased the aromaticity of OCHH in small-aggregates and OCDH in clay-silt particles.
ConclusionsStraw returning promotes the accumulation of OCPP in macro-aggregates and OCDH in micro-aggregates and clay-silt particles, while enhancing the aromaticity of OCDH in clay-silt fractions. These shifts in iron-bound organic carbon fractions and their stabilization within aggregates likely contribute to increased soil organic carbon sequestration under straw returning, highlighting a key mechanism for SOC preservation in paddy soils.
-
Keywords:
- paddy soil /
- organic carbon /
- aggregates /
- iron-bound organic carbon /
- aromaticity
-
土壤有机碳是陆地生态系统最大的碳库[1],在土壤肥力和气候变化等方面发挥着重要作用[2]。团聚体作为土壤固碳功能的载体[3],土壤有机碳大部分储存在团聚体中[4]。铁氧化物是土壤中重要的无机胶结剂,通过吸附或共沉淀与有机碳形成的铁结合态有机碳,稳定性较高[5−6],其多寡及形态关乎团聚体的形成和稳定,以及团聚体中有机碳的固定[7]。稻田土壤因其独特的水田生态系统和长期受到人类灌溉、耕作等活动的频繁干扰[8−9],氧化铁含量和形态变化远强于旱地土壤。Tian等[10]研究表明,团聚体中铁结合态有机碳含量随着团聚体粒级的减小而增加,并证实微团聚体和黏粉粒中的有机碳由于非晶形铁氧化物的保护而较少为微生物利用。张杰[11]研究表明,铁结合态有机碳在大团聚体中的含量高于微团聚体,晶形铁氧化物或有效保护了封存在大团聚体内的有机碳。可见,团聚体中不同类型铁氧化物对有机碳封存的重要性还需要进一步研究。
秸秆是土壤重要的有机质来源[12],秸秆还田在提高土壤碳储量方面具有巨大潜力。黄璐等[13]通过3年的试验发现,秸秆还田增加了团聚体中的有机碳含量,且其有机碳含量随着秸秆还田量的增加而增加。由于不同粒径团聚体内有机碳的积累和转化机制不同[14],导致其有机碳的分配存在差异。Xue等[15]的研究结果表明,秸秆还田后大团聚体(>0.25 mm)及黏粉粒中有机碳含量可分别提升4.45%~21.26%和8.42%。另有研究表明,秸秆还田可能会促进团聚体中铁结合态有机碳的形成[16],但国内外对团聚体内不同类型铁氧化物结合态有机碳的形态分布和含量的研究均较少。因此,我们研究了水稻土团聚体中不同形态铁氧化物结合态有机碳的分布特征及其与有机碳的关系,以深入理解稻田土壤中土壤有机碳的固存机制。
1. 材料与方法
1.1 试验地概况
试验地点位于中国农业科学院衡阳红壤试验站(E111°52′32″,N26°45′42″),属亚热带季风性气候,年平均温度17.8℃,年降雨量1 290 mm,年日照1613 h,无霜期293天 (数据来源于中国气象共享服务系统,http://cdc.cma.gov.cn/)。供试土壤为第四纪红色黏土发育的水稻土,土壤质地为壤质黏土,种植制度为早稻−晚稻一年两熟。秸秆还田定位试验开始于2012年,0—20 cm耕层土壤基本性质:pH 6.47、有机碳8.64 g/kg、全氮1.48 g/kg、有效磷12.6 mg/kg、速效钾49.0 mg/kg。
试验包括3个处理:秸秆不还田(CK),仅早稻秸秆还田(RS1),早稻秸秆和晚稻秸秆均还田(RS2),各处理重复3次,随机区组排列。小区面积为21 m2 (长7 m,宽3 m),小区间用深60 cm水泥埂隔开,防止串水串肥。早稻在4月下旬移栽,7月中旬收获,晚稻在7月中下旬移栽,10月中下旬收获,还田处理收获当日稻草即还田,CK处理的稻草全部移除。所有处理氮磷钾肥用量相同,均为N 165 kg/hm2、P2O5 90 kg/hm2、K2O 90 kg/hm2,磷肥作基肥一次性施入,氮肥9/11作基肥,2/11作追肥,钾肥5/6作基肥,1/6作追肥,基肥在水稻移栽前施用,追肥在水稻移栽后6~10天施用,其他管理措施按当地常规操作进行。
1.2 样品采集与团聚体分级
2023年10月下旬晚稻收获后,根据五点取样法,采集0—20 cm原状土壤样品,去除动植物残体、混匀,放入塑料盒中带回实验室。沿土壤自然结构面掰成小块后,过8 mm筛并去除细根、碎石和凋落物等杂质,风干备用。
风干土壤样品团聚体采用干湿筛混合的方法分级[17−18]:首先,称取160 g风干土壤样品,分别过孔径为2 mm、0.25 mm、0.053 mm的筛子,称量各粒级团聚体的质量,并计算其占土壤总质量的百分比。接着,根据各粒级团聚体的干筛比例,将风干土壤样品配制成100 g的混合样品。之后,采用团聚体湿筛法分离不同粒径的团聚体,具体操作如下:将100 g混合土壤样品均匀放置在套筛(孔径依次为2 mm、0.25 mm、0.053 mm)的上层,然后将套筛放入盛有蒸馏水的桶中浸泡10 min,随后在土壤团聚体分析仪上以30次/min的频率上下振荡20 min。湿筛结束后,依次将每个粒级筛子上的团聚体收集到铝盒中,在50℃下烘干并称重 。分别得到大团聚体(>2 mm)、小团聚体(0.25~2 mm)、微团聚体(0.053~0.25 mm)、黏粉粒(<0.053 mm),用于分析团聚体中有机碳与铁氧化物结合态有机碳。
1.3 测定方法
1.3.1 团聚体有机碳及铁氧化物结合态有机碳的测定
团聚体中有机碳用元素分析仪(EA 3000,意大利)测定,铁氧化物结合态有机碳用总有机碳分析仪(vario TOC,德国)测定。
采用不同的浸提液对铁结合态有机碳进行独立浸提试验,会导致一部分铁结合态有机碳被重复浸提[19],因此本试验采用连续浸提的方法,依次采用焦磷酸钠溶液、盐酸羟胺−盐酸溶液和连二亚硫酸钠−盐酸溶液对同一份土壤样品进行连续浸提。具体步骤如下[20−21]:称取0.5000 g过0.25 mm筛的土壤样品于50 mL离心管中,加入30 mL 0.1 mol/L的焦磷酸钠溶液,震荡16 h (25℃,180 r/min),依次离心、过滤,所得滤液即可测定络合铁结合态有机碳(OCPP);向上一步的离心管中加入30 mL 0.25 mol/L盐酸羟胺−盐酸溶液,在黑暗条件下震荡16 h (25℃,180 r/min),依次离心、过滤,滤液即可测定非晶形铁氧化物结合态有机碳(OCHH);继续向上一步的离心管中加入30 mL 0.0574 mol/L连二亚硫酸钠溶液,震荡16 h (25℃,180 r/min),离心过滤后继续向离心管中加入10 mL 0.05 mol/L盐酸溶液,震荡1 h (25℃,180 r/min),离心后过滤至连二亚硫酸钠滤液中,混合滤液即可测定晶形铁氧化物结合态有机碳(OCDH)。
1.3.2 土壤中不同类型铁氧化物结合态有机碳芳香性测定
将1.3.1中提取所获得的滤液稀释至合适浓度后,采用紫外分光光度计测定样品在254 nm波长下的吸光度UV254,由公式(1)[22]计算该波长下的特定紫外吸光度SUVA254,作为铁结合态有机碳的芳香性指标。
SUVA254[L/(mg⋅m)]=100×UV254(cm−1)DOC(mg/L) (1) 式中,DOC为可溶性有机碳。
1.4 数据计算
总铁氧化物结合态有机碳的计算:
OCFe=OCPP+OCHH+OCDH (2) 式中,OCFe为土壤中总铁氧化物结合态有机碳(g/kg),OCPP为焦磷酸钠溶液浸提的络合铁结合态有机碳(g/kg),OCHH为盐酸羟胺−盐酸混合溶液浸提的非晶形铁氧化物结合态有机碳(g/kg),OCDH为连二亚硫酸钠溶液浸提的晶形铁氧化物结合态有机碳(g/kg)。
1.5 统计分析
采用Excel 2020和IBM SPSS Statistics 26进行试验数据处理与统计分析,采用单因素方差分析(One-way ANOVA)结合邓肯(Ducan)法进行差异显著性检验(P<0.05为差异显著),用皮尔逊(Pearson)进行相关分析,采用Origin 2021绘制柱形图。
2. 结果与分析
2.1 秸秆还田下土壤及团聚体中的有机碳含量
早稻秸秆还田(RS1)和两季还田(RS2)均显著提高了土壤中总有机碳含量。与秸秆不还田对照(CK)相比,RS1和RS2处理土壤总有机碳含量分别显著提高19.4%和25.0%,RS1和RS2处理间无显著差异 (图1)。
图 1 不同处理土壤中有机碳含量和团聚体中有机碳含量注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理。柱上不同小写字母表示处理间差异显著(P<0.05)。Figure 1. Contents of organic carbon in soil and aggregates under different treatmentsNote: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).与CK相比,RS1处理土壤中小团聚体(0.25~2 mm)有机碳含量显著提高15.0%,RS2处理土壤大团聚体(>2 mm)和黏粉粒(<0.053 mm)中有机碳含量分别显著提高了17.2%和27.7%。与RS1相比,RS2处理土壤中仅黏粉粒有机碳含量显著提高了25.9%,大团聚体、小团聚体和微团聚体(0.053~0.25 mm)中有机碳含量与RS1无显著差异。
2.2 土壤团聚体中铁氧化物结合态有机碳的差异
土壤团聚体总铁结合有机碳(OCFe)含量为1.84~3.42 g/kg团聚体,分布规律如图2所示。与CK相比,RS1和RS2处理大团聚体中OCFe含量分别提高了21.3%和36.2%;RS1处理微团聚体中OCFe含量显著提高,而黏粉粒中显著降低。
图 2 不同处理下土壤团聚体中铁结合态有机碳含量注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理;OCFe—总铁结合态有机碳;OCPP—络合铁结合态有机碳;OCHH—非晶形铁氧化物结合态有机碳;OCDH—晶形铁氧化物结合态有机碳。柱上不同小写字母表示同一粒级处理间差异显著(P<0.05)。Figure 2. Content of iron-bound organic carbon in soil aggregates under different treatmentsNote: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. OCFe—Total iron oxide-bound organic carbon; OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).4个土壤团聚体中的铁氧化物结合有机碳均以络合铁结合态有机碳(OCPP)为主,其在秸秆处理间的差异与OCFe相近。在大团聚体中,OCPP含量在RS2处理中最高,RS1处理中其次,CK处理中最低。与CK处理相比,RS1处理的OCPP含量在小团聚体和微团聚体中分别显著提高了16.7%和41.3%,在黏粉粒中降低了15.5%。
4个粒级团聚体中非晶形铁氧化物结合态有机碳(OCHH)含量较为相近。与RS1处理相比,CK和RS2处理的大团聚体中OCHH含量分别显著降低了10.9%和10.8%,而小团聚体中OCHH含量分别显著增加了32.2%和36.9%,其他粒级中OCHH含量在各处理间无显著差异。
团聚体中晶形铁氧化物结合态有机碳(OCDH)含量在大团聚体和小团聚体中较高,且在不同处理下差异较为明显。与CK处理相比,秸秆还田处理显著提高了微团聚体及黏粉粒中的OCDH含量,而大团聚体中的OCDH含量降低。与RS1处理相比,RS2处理下OCDH含量在小团聚体中降低了0.11 g/kg,在黏粉粒中增加了0.02 g/kg。
2.3 团聚体中铁结合态有机碳占总有机碳的比例
团聚体中铁氧化物结合有机碳OCFe含量占该团聚体土壤有机碳(SOC)含量的比例在4个粒级中较为接近,为19.2%~25.8% (图3)。与CK处理相比,RS1、RS2秸秆还田处理下大团聚体中OCFe/SOC分别显著增加2.4和3.2个百分点,而黏粉粒中OCFe/SOC分别显著降低3.5和6.0个百分点。秸秆还田对小团聚体中OCFe/SOC比例无显著影响。在微团聚体中,仅RS1处理下OCFe/SOC较CK显著增加6.6个百分点,CK与RS2处理无显著差异。
图 3 不同处理下土壤团聚体中铁结合态有机碳比例注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理。柱上不同小写字母表示同一粒级处理间差异显著 (P<0.05)。Figure 3. The ratios of iron-bound organic carbon in soil aggregates under different treatmentsNote: CK—No straw return, RS1—Only returning early rice straw to field, RS2—Returning both early and late rice straw to field. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).团聚体中OCFe大部分为络合铁结合态有机碳OCPP,其占团聚体中SOC的比例为16.0%~22.4%。与OCFe/SOC相同,长期秸秆还田提高了大团聚体中的OCPP/SOC,显著降低了黏粉粒中的OCPP/SOC。
非晶形铁氧化物结合态有机碳在团聚体有机碳中的占比(OCHH/SOC)为1.6%~3.0%,在RS2处理的大团聚体和黏粉粒中显著下降,在RS1处理的小团聚体较CK显著降低0.8个百分点,在微团聚体中3个处理间无显著差异。
秸秆还田后晶形铁氧化物结合态有机碳与团聚体有机碳的比例(OCDH/SOC)变化显著,占比为0.5%~1.8%。与CK处理相比,长期秸秆还田后大团聚体及小团聚体中的OCDH/SOC降低了0.2~1.0个百分点,且随着秸秆还田量的增加而降低,而微团聚体及黏粉粒中OCDH/SOC显著增加0.3~0.5个百分点。
2.4 团聚体中各铁结合态有机碳组分与总有机碳的关系
通过线性拟合团聚体中不同铁结合态有机碳含量与总有机碳含量发现,OCFe含量仅在大团聚体中与总有机碳呈极显著正相关关系(P<0.01),其斜率为2.52 (图4)。大团聚体中OCPP含量与该粒级中SOC含量呈极显著正相关关系,小团聚体中OCPP含量与该粒级中SOC含量呈显著正相关关系(P<0.05),其斜率分别为2.38、3.56。黏粉粒中OCDH含量与该粒级中SOC含量呈显著正相关关系,其斜率为45.53。各粒级团聚体中OCHH含量与SOC含量均无显著相关关系。
图 4 各粒级团聚体中铁结合态有机碳与总有机碳的关系注:样本数为9。公式表示铁结合态有机碳与总有机碳的线性关系,R2为解释度,**和*分别表示在0.01和0.05水平上显著相关。Figure 4. Relationship between iron-bound organic carbon and total organic carbon in soil aggregates with different particle sizesNote: The number of samples is 9. The formula indicates the linear relationship between iron-bound organic carbon and total organic carbon, R2 indicates degree of explanation, ** and * indicate significant correlation at 0.01 and 0.05 levels, respectively. OCFe—Total iron oxide-bound organic carbon; OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon.2.5 秸秆还田对团聚体中各形态铁结合态有机碳芳香性的影响
有机碳的SUVA254值可以指示其芳香化程度,一般来说,有机碳的SUVA254值越大,芳香性越强,其稳定性越高[22]。稻田中不同铁氧化物结合态有机碳 SUVA254值顺序为OCHH (14.8~26.9)>OCPP (9.0~19.6)>OCDH (5.5~21.0) (图5)。与CK处理相比,RS1和RS2处理均显著增加了小团聚体中OCHH的芳香性,对其他粒级中OCHH的芳香性无显著影响。对于OCDH的芳香性,两个秸秆还田处理均显著增强了黏粉粒中OCDH芳香性,在小团聚体和微团聚体中,仅RS2处理OCDH的芳香性显著增强,CK与RS1处理无显著差异。
图 5 不同处理下土壤团聚体中铁结合态有机碳的芳香性注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理;OCPP—络合铁结合态有机碳;OCHH—非晶形铁氧化物结合态有机碳;OCDH—晶形铁氧化物结合态有机碳。柱上不同小写字母表示同一粒级处理间差异显著(P<0.05)。Figure 5. Aromaticity of iron-bound organic carbon in soil aggregates under different treatmentsNote: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).3. 讨论
3.1 秸秆还田对土壤团聚体中铁氧化物结合态有机碳及性质的影响
铁氧化物结合态有机碳是土壤有机碳的重要组成部分,且会受到农田土壤管理措施的影响[21]。连续11年田间定位试验表明,秸秆还田改变了铁氧化物结合态有机碳在团聚体中的含量及分布。秸秆碳输入土壤可以通过以下途径影响铁碳化合物(Fe-OC)的形成,首先秸秆分解提供低分子量植物碳底物和微生物坏死物,作为Fe-OC形成的前体[23],然后铁氧化物通过吸附共沉淀的方式与有机碳结合[24],最后通过土壤团聚体的保护而稳定存在[25]。各粒级团聚体中3种铁氧化物结合态有机碳对秸秆还田的响应不同。与CK处理相比,秸秆还田后大团聚体中络合铁结合态有机碳含量显著增加(图3),可能是秸秆还田较秸秆不还田处理的土壤pH有所降低,而低pH促进胶体铁和有机碳间的螯合或团聚[26],从而促进络合铁结合态有机碳的形成。此外,秸秆还田后大团聚体中晶形铁氧化物结合态有机碳含量降低,而微团聚体及黏粉粒中晶形铁氧化物结合态有机碳含量显著增加。这可能是由于大团聚体中增加的有机物优先与其他活性较高的铁氧化物结合,以其他形式的铁结合态有机碳存在。有研究认为微团聚体及黏粉粒具有更小的孔隙,通气状况和微生物活性差[27],秸秆还田后被晶形铁氧化物保护的碳底物有更高的稳定性,因此可能导致其含量增加。两个秸秆还田(RS1、RS2)处理相比,团聚体中铁氧化物结合态有机碳含量也有不同程度的差异,可能是碳投入量的不同导致的。水稻秸秆一季还田和两季还田带入的碳量分别为2501、6023 kg/hm2,碳输入量的增加促进微生物活动,从而影响Fe-OC的含量和稳定性[28]。不同形态铁氧化物结合态有机碳在各团聚体中含量和分布不一致,可能与团聚体微环境中铁氧化物和碳源的含量和性质[29]等有关,其具体原因还有待进一步研究。
紫外分光光谱结果显示,稻田中不同铁氧化物结合态有机碳SUVA254值顺序为OCHH (14.8~26.9)较高,OCPP (9.0~19.6)、OCDH (5.5~21.0)次之(图5),表明与络合铁和晶形铁氧化物相比,盐酸羟胺浸提的非晶形铁氧化物更倾向于与芳香性较强的有机物结合。Chen等[5]对铁氧化物吸附、共沉淀形成的碳铁络合物(Fe-OM)的性质进行分析后发现,较低碳/铁摩尔比(C/Fe=1.5)的Fe-OM中更易富集芳香类化合物,本研究中OCHH的碳/铁摩尔比1.3~2.5,这可能是其芳香性较强的原因之一。除此之外,Coward等[30]发现焦磷酸钠提取的土壤有机碳主要由脂肪类物质和碳水化合物组成,而芳香类化合物占比很少。可见,浸提剂类型会影响有机物的芳香性。本试验中所用的3种浸提剂均是强氧化还原性试剂,可能也影响了3种铁氧化物结合有机碳的芳香性,这需要在今后的研究中予以关注。总体而言,微团聚体中的铁氧化物结合态有机碳比其他3个粒级团聚体中的铁氧化物结合态有机碳具有更强的芳香性,这表明微团聚体中铁结合态有机碳稳定性高于大团聚体,而秸秆还田提高了微团聚体中铁氧化物结合态有机碳的含量(图2),进一步说明秸秆还田提高了土壤有机碳的稳定性。秸秆还田后分解形成的芳香碳、羧基碳等化合物优先吸附在黏粒上,经土壤胶结−凝聚后被微团聚体包蔽[31−32],从而有利于秸秆还田处理下小团聚体、微团聚体及黏粉粒中晶形铁氧化物结合态有机碳芳香性的提升(图5)。另外,具有高C/Fe的Fe-OC,铁还原程度较高,而且被铁氧化物固持的有机碳不稳定[19]。本研究中,OCPP/FePP (3.2~10.3)远大于OCDH/FeDH (0.1~0.6) (Fepp和FeDH分别是络合铁和晶形铁氧化物),秸秆还田后微团聚体及黏粉粒增加的铁氧化物结合态有机碳以晶形铁氧化物结合态有机碳为主(图3),这可能也导致了秸秆还田后该团聚体中铁结合态有机碳稳定性的提升。
3.2 铁氧化物结合态有机碳在团聚体中的分布及其与总有机碳的关系
铁氧化物因其自身性质存在差异,对有机碳的固持能力也有所不同。在本研究中,不同秸秆处理下团聚体中铁氧化物结合态有机碳的含量均以络合铁结合态有机碳含量最高(图2),说明团聚体内的铁碳主要以络合铁结合态有机碳的形式存在,对团聚体有机碳稳定起到重要作用。我们前期研究发现,团聚体中铁氧化物含量在各处理中表现为晶形铁氧化物(1.8~3.6 g/kg)远高于非晶形铁氧化物(0.4~0.8 g/kg),而本研究中非晶形和晶形铁氧化物结合态有机碳的含量较为相近,说明非晶形铁氧化物比晶形铁氧化物具有更强的有机碳结合能力。这与非晶形铁氧化物表面活性强,具有丰富的活性位点[33]有关。
由于不同粒级团聚体大小差异所形成的微环境的差异[34],会直接对各粒级团聚体的物理、化学及生物学性质产生影响[35],因此不同粒级团聚体对有机碳的保护能力及其固定机理存在明显差异[36]。结合前期研究发现,在大团聚体中,秸秆还田提高了络合铁、络合铁结合态有机碳、有机碳含量及OCPP/SOC的比例,且这些指标随着秸秆还田量的增加而增加,而且相关分析表明该粒级中络合铁结合态有机碳与团聚体有机碳含量呈显著正相关关系(图4),这说明秸秆还田后大团聚体中络合铁结合态有机碳对总有机碳的贡献增加。因此我们猜测,在大团聚体中,秸秆还田主要是通过增加络合铁的含量,促进络合铁与碳的结合,进而保护有机碳。在黏粉粒中,秸秆还田后OCDH/SOC增加,且该粒级中晶形铁氧化物结合态有机碳含量与有机碳含量呈显著正相关关系(图4),这表明,黏粉粒中晶形铁氧化物结合态有机碳对有机碳的贡献增加。因此在黏粉粒中,秸秆还田主要促进晶形铁氧化物结合态有机碳的形成来积累有机碳。对于非晶形铁氧化物,虽然秸秆还田后团聚体中非晶形铁氧化物含量增加,但其结合的有机碳在各粒级团聚体中并未发生显著变化且与有机碳无相关关系,Coward等[20]同样发现土壤中非晶形铁氧化物与土壤总有机碳之间并没有显著相关性。因此,非晶形铁氧化物可能在土壤团聚体的形成和稳定中起着更重要的作用。
4. 结论
南方双季稻田中,团聚体中铁氧化物结合态有机碳含量占团聚体中总有机碳含量的比例为19.2%~25.8%。各粒级团聚体中铁氧化物结合态有机碳均以络合铁结合态有机碳为主,非晶形铁氧化物结合态有机碳和晶形铁氧化物结合态有机碳含量很低。
秸秆还田促进了络合铁结合态有机碳在大团聚体中的积累,同时增加了晶形铁氧化物结合态有机碳在微团聚体及黏粉粒中的含量,提高了黏粉粒中晶形铁氧化物结合态有机碳的芳香性,进而提升了土壤团聚体中有机碳的稳定性。可见,未来还需深入探讨有机碳含量与其化学性质之间的关系,以深化对土壤有机碳储存机制的认识。
-
图 1 不同处理土壤中有机碳含量和团聚体中有机碳含量
注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 1. Contents of organic carbon in soil and aggregates under different treatments
Note: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).
图 2 不同处理下土壤团聚体中铁结合态有机碳含量
注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理;OCFe—总铁结合态有机碳;OCPP—络合铁结合态有机碳;OCHH—非晶形铁氧化物结合态有机碳;OCDH—晶形铁氧化物结合态有机碳。柱上不同小写字母表示同一粒级处理间差异显著(P<0.05)。
Figure 2. Content of iron-bound organic carbon in soil aggregates under different treatments
Note: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. OCFe—Total iron oxide-bound organic carbon; OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).
图 3 不同处理下土壤团聚体中铁结合态有机碳比例
注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理。柱上不同小写字母表示同一粒级处理间差异显著 (P<0.05)。
Figure 3. The ratios of iron-bound organic carbon in soil aggregates under different treatments
Note: CK—No straw return, RS1—Only returning early rice straw to field, RS2—Returning both early and late rice straw to field. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).
图 4 各粒级团聚体中铁结合态有机碳与总有机碳的关系
注:样本数为9。公式表示铁结合态有机碳与总有机碳的线性关系,R2为解释度,**和*分别表示在0.01和0.05水平上显著相关。
Figure 4. Relationship between iron-bound organic carbon and total organic carbon in soil aggregates with different particle sizes
Note: The number of samples is 9. The formula indicates the linear relationship between iron-bound organic carbon and total organic carbon, R2 indicates degree of explanation, ** and * indicate significant correlation at 0.01 and 0.05 levels, respectively. OCFe—Total iron oxide-bound organic carbon; OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon.
图 5 不同处理下土壤团聚体中铁结合态有机碳的芳香性
注:CK—秸秆不还田处理;RS1—仅早稻秸秆还田处理;RS2—早稻晚稻秸秆均还田处理;OCPP—络合铁结合态有机碳;OCHH—非晶形铁氧化物结合态有机碳;OCDH—晶形铁氧化物结合态有机碳。柱上不同小写字母表示同一粒级处理间差异显著(P<0.05)。
Figure 5. Aromaticity of iron-bound organic carbon in soil aggregates under different treatments
Note: CK—No straw return; RS1—Only returning early rice straw to field; RS2—Returning both early and late rice straw to field. OCPP—Complex iron-bound organic carbon; OCHH—Amorphous iron oxide-bound organic carbon; OCDH—Crystalline iron oxide-bound organic carbon. Different lowercase letters above the bars indicate significant difference among treatments for the same particle size (P<0.05).
-
[1] Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304: 1623−1627. DOI: 10.1126/science.1097396
[2] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478: 49−56.
[3] 闫桂菀, 董文斌, 李忠义, 等. 绿肥覆盖对果园土壤团聚体及有机碳组分的影响[J]. 应用生态学报, 2024, 35(12): 3427−3434. Yan G W, Dong W B, Li Z Y, et al. Effects of green manure mulching on soil aggregates and organic carbon fractions in orchards[J]. Chinese Journal of Applied Ecology, 2024, 35(12): 3427−3434.
[4] Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter[J]. Soil Biology and Biochemistry, 1996, 28(4−5): 665−676.
[5] Chen C, Dynes J J, Wang J, et al. Properties of Fe-organic matter associations via coprecipitation versus adsorption[J]. Environmental Science & Technology, 2014, 48(23): 13751−13759.
[6] Kramer M G, Chadwick O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104−1108.
[7] Huang X L, Tang H Y, Kang W J, et al. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice-wheat cropping system[J]. Soil Biology and Biochemistry, 2018, 12012-23.
[8] Amin M N, Hossain M S, de Bruyn L L, et al. A systematic review of soil carbon management in Australia and the need for a social-ecological systems framework[J]. Science of the Total Environment, 2020, 719: 135182.
[9] Balasubramanian D, Zhou W J, Ji H L, et al. Environmental and management controls of soil carbon storage in grasslands of southwestern China[J]. Journal of Environmental Management, 2020, 254: 109810.
[10] Tian Y, Lu S. Amorphous iron oxides protect aggregate-associated organic carbon from microbial utilization and decomposition evidenced from the natural abundance of 13C[J]. Soil and Tillage Research, 2023, 227: 105623.
[11] 张杰. 铁氧化物对土壤有机碳稳定和团聚体铁碳结合的影响[D]. 浙江: 浙江大学硕士学位论文, 2021. Zhang J. Effect of iron oxides on soil organic carbon stability and iron-carbon binding in aggregate[D]. Zhejiang: MS Thesis of Zhejiang University, 2021.
[12] Li S, Zhang S, Pu Y, et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain[J]. Soil and Tillage Research, 2016, 155: 289−297.
[13] 黄璐, 赵国慧, 李廷亮, 等. 秸秆还田对黄土旱塬麦田土壤团聚体有机碳组分的影响[J]. 农业工程学报, 2022, 38(13): 123−132. DOI: 10.11975/j.issn.1002-6819.2022.13.014 Huang L, Zhao G H, Li T L, et al. Effects of straw returning on the organic carbon components of soil aggregates in wheat fields on the loess plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(13): 123−132. DOI: 10.11975/j.issn.1002-6819.2022.13.014
[14] 黄圣杰, 陈俊朴, 陈涛, 等. 不同覆盖模式对樱桃园土壤团聚体及碳氮的影响[J]. 水土保持研究, 2022, 29(1): 44−50. DOI: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201007 Huang S J, Chen J P, Chen T, et al. Effects of different coverage modes on aggregates and carbon and nitrogen of soil in cherry orchard[J]. Research of Soil and Water Conservation, 2022, 29(1): 44−50. DOI: 10.3969/j.issn.1005-3409.2022.1.stbcyj202201007
[15] Xue B, Huang L, Huang Y N, et al. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice-rape cropping system[J]. Catena, 2019, 177: 1−12.
[16] Xue B, Huang L, Huang Y N, et al. Straw management influences the stabilization of organic carbon by Fe (oxyhydr) oxides in soil aggregates[J]. Geoderma, 2020, 358: 113987.
[17] 甘雅芬, 徐永昊, 周富忠, 等. 紫云英还田与氮肥减施对水稻土团聚体中各形态铁锰含量的影响[J]. 植物营养与肥料学报, 2022, 28(7): 1238−1248. DOI: 10.11674/zwyf.2021535 Gan Y F, Xu Y H, Zhou F Z, et al. Effects of Chinese milk vetch incorporation and nitrogen reduction on different forms of Fe and Mn in aggregates of paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1238−1248. DOI: 10.11674/zwyf.2021535
[18] 吴嘉俊, 童文彬, 江建锋, 等. 水稻秸秆炭施用对水稻土团聚体稳定性及其碳氮分布的影响[J]. 植物营养与肥料学报, 2024, 30(3): 457−468. DOI: 10.11674/zwyf.2023432 Wu J J, Tong W B, Jiang J F, et al. Application of rice straw biochar increases soil aggregate stability and carbon and nitrogen distribution in paddy soil[J]. Journal of Plant Nutrition and Fertilizers, 2024, 30(3): 457−468. DOI: 10.11674/zwyf.2023432
[19] 段勋. 赤铁矿和褐煤添加对湿地土壤碳汇及细菌群落结构的影响[D]. 吉林长春: 中国科学院大学硕士学位论文, 2021. Duan X. Effect of wetlands soil organic carbon sink and bacterial community structure respond to hematite and lignite addition[D]. Changchun, Jilin: MS Thesis of University of Chinese Academy of Sciences, 2021.
[20] Coward E K, Thompson A T, Plante A F. Iron-mediated mineralogical control of organic matter accumulation in tropical soils[J]. Geoderma, 2017, 306: 206−216.
[21] 万丹, 王伯仁, 张璐, 等. 红壤铁氧化物对有机碳的固定及其对长期施肥的响应[J]. 中国生态农业学报 (中英文), 2022, 30(4): 694−701. Wan D, Wang B R, Zhang L, et al. Effect of long-term fertilization on the stabilization of soil organic carbon by iron oxides in red soil[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 694−701.
[22] 陈琦, 李富翠, 彭钰梅, 等. 青藏公路对沿线草地生态系统土壤可溶性有机碳及其特征的影响[J]. 草地学报, 2022, 30(8): 2158−2166. Chen Q, Li F C, Peng Y M et al. Effects of Qinghai-Tibet highway on soil dissolved organic carbon content and characteristics in grassland ecosystems along the route[J]. Acta Agrestia Sinica, 2022, 30(8): 2158−2166.
[23] Sokolova T A. Low-molecular-weight organic acids in soils: Sources, composition, concentrations, and functions: A review[J]. Eurasian Soil Science, 2020, 53: 580−594. DOI: 10.1134/S1064229320050154
[24] Chen C, Hall S J, Coward E, Thompson A. Iron-mediated organic matter decomposition in humid soils can counteract protection[J]. Nature Communications. 2020, 11(1), 2255.
[25] Song X, Wang P, Van Zwieten L, et al. Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation[J]. Carbon Research, 2022, 1: 5. DOI: 10.1007/s44246-022-00008-2
[26] Wagai R, Mayer L M, Kitayama K, et al. Association of organic matter with iron and aluminum across a range of soils determined via selective dissolution techniques coupled with dissolved nitrogen analysis[J]. Biogeochemistry, 2013, 112: 95−109. DOI: 10.1007/s10533-011-9652-5
[27] Diba F, Shimizu M, Hatano R. Effects of soil aggregate size, moisture content and fertilizer management on nitrous oxide production in a volcanic ash soil[J]. Soil Science and Plant Nutrition, 2011, 57(5): 733−747. DOI: 10.1080/00380768.2011.604767
[28] Bai J, Zong M, Li S, et al. Nitrogen, water content, phosphorus and active iron jointly regulate soil organic carbon in tropical acid red soil forest[J]. European Journal of Soil Science, 2021, 72(1): 446−459. DOI: 10.1111/ejss.12966
[29] 宋旭昕, 刘同旭. 土壤铁矿物形态转化影响有机碳固定研究进展[J]. 生态学报, 2021, 41(20): 7928− 7938. Song X X, Liu T X. Effects of soil iron mineral transformation on organic carbon sequestration: A review[J]. Acta Ecologica Sinica, 2021, 41(20): 7928− 7938.
[30] Coward E K, Ohno T, Plante A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036−1044.
[31] 宋佳, 黄晶, 高菊生, 等. 冬种绿肥和秸秆还田对双季稻区土壤团聚体和有机质官能团的影响[J]. 应用生态学报, 2021, 32(2): 564−570. Song J, Huang J, Gao J S, et al. Effects of green manure planted in winter and straw returning on soil aggregates and organic matter functional groups in double cropping rice area[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 564−570.
[32] Dick D P, Gonçalves C N, Dalmolin R S D, et al. Characteristics of soil organic matter of different Brazilian Ferralsols under native vegetation as a function of soil depth[J]. Geoderma, 2005, 124(3−4): 319−333.
[33] 段勋, 李哲, 刘淼, 等. 铁介导的土壤有机碳固持和矿化研究进展[J]. 地球科学进展, 2022, 37(2): 202−211. DOI: 10.11867/j.issn.1001-8166.2021.114 Duan X, Li Z, Liu M, et al. Progress of the iron-mediated soil organic carbon preservation and mineralization[J]. Advances in Earth Science, 2022, 37(2): 202−211. DOI: 10.11867/j.issn.1001-8166.2021.114
[34] Rabbi S M F, Wilson B R, Lockwood P V, et al. Aggregate hierarchy and carbon mineralization in two Oxisols of New South Wales, Australia[J]. Soil and Tillage Research, 2015, 146: 193−203. DOI: 10.1016/j.still.2014.10.008
[35] 李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究[J]. 生态环境学报, 2013, 22(9): 1625−1632. Li N, Han X Z, You M Y, et al. Research review on soil aggregates and microbes[J], Ecology and Environmental Sciences, 2013, 22(9): 1625−1632.
[36] 毛霞丽. 亚热带不同母质发育土壤有机碳的积累特征及其稳定机理研究[D]. 浙江杭州: 浙江大学博士学位论文, 2020. Mao X L. Accumulation characterisitcs and stabilization mechanisms of organic carbon in soils developed from different parent materials in subtropical regions[D]. Hangzhou, Zhejiang: PhD Dissertation of Zhejiang University, 2020.