• ISSN 1008-505X
  • CN 11-3996/S

不同生物炭用量下锌肥提高冬小麦锌吸收及土壤供锌能力的效应

Effects of biochar application rates on zinc fertilizer efficacy: enhancing zinc uptake in winter wheat and soil zinc supply capacity

  • 摘要:
    目的 探究长期施用生物炭条件下,锌肥及其与有机肥配施对旱作麦田土壤锌含量及小麦锌累积量的影响。
    方法 生物炭的长期田间定位试验始于2012年,包括4个生物炭添加量处理:0 t/hm2 (C0)、10 t/hm2 (C10)、30 t/hm2 (C30)、50 t/hm2 (C50)。2020年在该定位试验的每个小区中设置不施锌(CK)、施锌(Zn)、锌肥配施有机肥(Zn+M) 3个微区。2021年冬小麦收获后,测定冬小麦地上部各部位生物量和锌含量,并采集土壤样品分析全锌、有效锌和各锌组分含量。
    结果 生物炭施用9年后,对土壤全锌(Total-Zn)和有效锌(DTPA-Zn)含量无显著影响。与CK 相比,施锌显著提高了土壤Total-Zn和DTPA-Zn含量,Zn和Zn+M处理土壤Total-Zn含量分别显著提高7.5%和12.5%,DTPA-Zn分别提高10.8%和14.8%。此外,与Zn处理相比,Zn+M处理土壤Total-Zn、DTPA-Zn含量分别提高了4.6%、12.7% (P<0.05)。CK条件下,施用生物炭降低了土壤交换态锌(Ex-Zn)含量,但提高了松结有机态锌(Lom-Zn)和氧化锰结合态锌(MnO-Zn)含量;在Zn处理下,生物炭施用提高了Lom-Zn、紧结有机态锌(Sbo-Zn)和碳酸盐结合态锌(Carb-Zn)含量,降低了MnO-Zn含量;Zn+M处理下,C50、C30的Lom-Zn含量显著高于C0 (P<0.05),其他形态锌含量在各处理间无显著差异。相较于CK,Zn和Zn+M处理提高了土壤Lom-Zn、Carb-Zn、Sbo-Zn和残余态锌(Res-Zn)含量,且Zn+M处理的提升效果更高。施用生物炭和锌肥显著提高了冬小麦籽粒干物质量,冬小麦各部位平均干物质量和锌含量大体表现为Zn+M>Zn>CK (P<0.05)。CK条件下,C30和C50处理提高了冬小麦茎锌含量,C50提高了叶片锌含量,但两个处理降低了籽粒锌含量。与CK相比,Zn和Zn+M处理显著提高了籽粒锌平均含量,增幅分别为13.7%和28.3%,且Zn+M的增幅显著高于Zn处理。相较于CK处理,Zn和Zn+M分别显著提高冬小麦茎+叶锌累积量203.0%和257.2%,籽粒+壳锌累积量40.0%和64.8%,地上部总锌累积量60.6%和89.1%,同样,Zn+M处理的提升效果大于Zn处理。相关性分析表明,小麦锌累积量与土壤所有形态的锌含量呈正相关(P<0.01),尤其与DTPA-Zn和Lom-Zn含量的相关性最强。随机森林分析表明,Sbo-Zn、Lom-Zn和DTPA-Zn对冬小麦锌累积量的贡献最大。
    结论 长期施用生物炭没有增加旱作麦田土壤全锌和有效锌含量,但提高了有效性较高的松结有机态锌含量。锌肥或锌肥与有机肥配施可显著提高土壤全锌和有效锌含量,特别是增加松结有机态锌、紧结有机态锌含量,进而提升锌的潜在供应能力。不施锌条件下,高量生物炭可提升冬小麦籽粒的生物量,但降低其锌含量;施锌条件下,生物炭可进一步提高冬小麦生物量,且在施用生物炭10~30 t/hm2范围内不影响小麦籽粒的锌含量。锌肥与有机肥配合施用提高土壤锌有效性、小麦籽粒锌含量的效果显著优于锌肥单施。

     

    Abstract:
    Objectives This study aimed to investigate the effects of zinc (Zn) fertilizer and its combination with organic fertilizer on soil Zn content and wheat Zn accumulation in dryland wheat fields under long-term different biochar application rates.
    Methods A long-term field experiment investigating biochar application was established in 2012 with four treatment levels: 0 t/hm2 (C0), 10 t/hm2 (C10), 30 t/hm2 (C30), and 50 t/hm2 (C50). In 2020, three subplot treatments were implemented within each main plot: no Zn application (CK), Zn fertilizer alone (Zn), and Zn fertilizer combined with organic manure (Zn+M). Following the 2021 winter wheat harvest, we measured aboveground biomass and Zn concentrations in plant tissues. Soil samples were collected to analyze total Zn content, bioavailable Zn, and Zn fraction distribution.
    Results After nine years of biochar application, no significant effect was observed on total Zn (Total-Zn) or available Zn (DTPA-Zn) in the soil. Zn application significantly increased soil Total-Zn and DTPA-Zn levels. Compared to the control (CK), Zn and Zn+M treatments elevated Total-Zn by 7.5% and 12.5%, respectively, and DTPA-Zn by 10.8% and 14.8%. Furthermore, Zn+M enhanced Total-Zn and DTPA-Zn by 4.6% and 12.7% compare to Zn alone (P<0.05). Under CK treatment, biochar reduced exchangeable Zn (Ex-Zn) but increased loosely organic-bound (Lom-Zn) and manganese oxide-bound Zn (MnO-Zn). In Zn-treated soils, biochar raised Lom-Zn, tightly organic-bound Zn (Sbo-Zn), and carbonate-bound Zn (Carb-Zn), while reducing MnO-Zn. With Zn+M, Lom-Zn levels under C50 and C30 biochar treatments were significantly higher than C0 (P<0.05), though no difference was observed for other Zn fractions. Compared to CK, both Zn and Zn+M enhanced Lom-Zn, Carb-Zn, Sbo-Zn, and residual Zn (Res-Zn), with Zn+M demonstrating greater efficacy. The combined application of biochar and Zn significantly increased winter wheat grain biomass. Across plant tissues, biomass and Zn content followed the order: Zn+M > Zn > CK (P<0.05). Under no Zn application (CK), C30 and C50 treatments increased Zn content in wheat stems, with C50 also enhancing leaf Zn content. However, both treatments reduced Zn levels in grains. Compared to CK, Zn and Zn+M treatments increased average grain Zn content by 13.7% and 28.3%, respectively, with Zn+M demonstrating significantly greater enhancement than Zn alone. Compared to CK, stem+leaf Zn accumulation increased by 203.0% and 257.2%, grain+shell Zn accumulation increased by 40.0% and 64.8%, and total aboveground Zn accumulation increased by 60.6% and 89.1%. Zn+M again outperformed Zn in enhancement effects. Correlation analysis revealed significant positive relation (P<0.01) between wheat Zn accumulation and all measured soil Zn fractions, with the strongest relationships observed for DTPA-Zn and Lom-Zn. Random forest analysis identified Sbo-Zn, Lom-Zn, and DTPA-Zn as the primary contributors to Zn accumulation in winter wheat.
    Conclusions Long-term biochar application did not increase total or available Zn in rainfed wheat field soils but elevated more bioavailable Lom-Zn fractions. Zn fertilizer application, particularly when combined with organic manure, significantly enhanced total Zn, available Zn, and organic-bound Zn fractions (loosely- and tightly-bound), thereby enhancing its potential availability. Without Zn fertilization, high biochar rates increased winter wheat grain biomass but reduced grain Zn content. When Zn fertilizer was applied, biochar further boosted grain biomass without compromising Zn content at application rates of 10−30 t/hm2. The combined use of Zn fertilizer and organic manure proved significantly more effective than Zn fertilizer alone in improving soil Zn availability and grain Zn enrichment.

     

/

返回文章
返回