Processing math: 100%
  • ISSN 1008-505X
  • CN 11-3996/S

外源6-BA缓解孕穗期低温胁迫对小麦光合性能、灌浆特性和产量的影响

栾佳萌, 欧星雨, 姜悦和, 王百稳, 熊燕玲, 汪吉祥, 黄正来, 马尚宇, 张文静

栾佳萌, 欧星雨, 姜悦和, 王百稳, 熊燕玲, 汪吉祥, 黄正来, 马尚宇, 张文静. 外源6-BA缓解孕穗期低温胁迫对小麦光合性能、灌浆特性和产量的影响[J]. 植物营养与肥料学报, 2025, 31(5): 845-860. DOI: 10.11674/zwyf.2024480
引用本文: 栾佳萌, 欧星雨, 姜悦和, 王百稳, 熊燕玲, 汪吉祥, 黄正来, 马尚宇, 张文静. 外源6-BA缓解孕穗期低温胁迫对小麦光合性能、灌浆特性和产量的影响[J]. 植物营养与肥料学报, 2025, 31(5): 845-860. DOI: 10.11674/zwyf.2024480
LUAN Jia-meng, OU Xing-yu, JIANG Yue-he, WANG Bai-wen, XIONG Yan-ling, WANG Ji-xiang, HUANG Zheng-lai, MA Shang-yu, ZHANG Wen-jing. Effects of exogenous 6-BA on alleviating the impacts of low-temperature stress during booting stage on photosynthetic performance, grain-filling characteristics, and yield of wheat[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(5): 845-860. DOI: 10.11674/zwyf.2024480
Citation: LUAN Jia-meng, OU Xing-yu, JIANG Yue-he, WANG Bai-wen, XIONG Yan-ling, WANG Ji-xiang, HUANG Zheng-lai, MA Shang-yu, ZHANG Wen-jing. Effects of exogenous 6-BA on alleviating the impacts of low-temperature stress during booting stage on photosynthetic performance, grain-filling characteristics, and yield of wheat[J]. Journal of Plant Nutrition and Fertilizers, 2025, 31(5): 845-860. DOI: 10.11674/zwyf.2024480

外源6-BA缓解孕穗期低温胁迫对小麦光合性能、灌浆特性和产量的影响

基金项目: 

国家自然科学基金项目(32372223);国家重点研发计划项目(2023YFD230020203);安徽省高等学校科学研究重大项目(2023AH040133);安徽省大学生创新创业计划项目(S202210364136)。

详细信息
    作者简介:

    栾佳萌 E-mail: 18856054114@163.com

    通讯作者:

    张文静 E-mail: zhangwenjing79@126.com

Effects of exogenous 6-BA on alleviating the impacts of low-temperature stress during booting stage on photosynthetic performance, grain-filling characteristics, and yield of wheat

  • 摘要:
    目的 

    探究外源6-BA对孕穗期低温胁迫后小麦光合性能及产量下降的缓解效果。

    方法 

    选用低温迟钝型品种烟农19和低温敏感型品种皖麦52进行盆栽试验。每盆装入 0—20 cm大田耕层土壤,然后将盆栽埋置于试验田内。于孕穗期,将盆栽小麦移入人工生长室内进行低温胁迫处理,设置两个处理温度:−2℃、0℃,低温处理时间为18:00—6:00,其余时段(6:00—18:00)温度均为5℃,处理周期为24 h,处理结束后移回大田。设置4个6-BA溶液喷施浓度处理:0 (CK)、10、20、30 mg/L,低温处理后1天进行喷施。在抽穗期、灌浆期和成熟期,取小麦旗叶样品,测定SPAD值、光合性能指标、光合相关酶活性。开花后10天起,取籽粒样品,测定灌浆特性、产量及其构成因素。

    结果 

    与CK相比,喷施6-BA均提高了两个低温胁迫小麦旗叶SPAD值、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)以及最大光化学效率(Fv/Fm);喷施6-BA处理的小麦旗叶RuBP羧化酶活性在花后10天提高12.72%~53.64%,PEP羧化酶活性提高6.40%~44.17%。低温胁迫处理后,外源6-BA溶液提高了籽粒千粒重和灌浆速率。与对照相比,烟农19喷施6-BA处理的灌浆平均速率和千粒重分别提高1.12%~25.00%和1.32%~20.84%,皖麦52分别提高了2.75%~28.42%和6.26%~27.67%。外源6-BA对低温敏感的小麦皖麦52产量的修复效果优于对低温迟钝型小麦品种烟农19。

    结论 

    外源6-BA能够显著改善孕穗期低温后小麦旗叶的光合特性,提高小麦籽粒灌浆能力,减轻低温胁迫造成的减产。在本试验条件下,20 mg/L的外源6-BA缓解低温胁迫的效果最好。

    Abstract:
    Objectives 

    We explored the alleviation effect of exogenous 6-benzylaminoadenine (6-BA) on the decline of photosynthetic performance and yield of wheat after low temperature (LT) stress at booting stage, and the appropriate spray concentration.

    Methods 

    A low temperature insensitive wheat variety ‘Yannong 19’ and a sensitive wheat variety ‘Wanmai 52’ were selected as the test materials in a pot experiment. The wheat pots were filled with the 0−20 cm layer soil, and then the potted plants were buried into soil during the wheat growing periods. At the boosting stage, wheat pots were dug out and subjected to low temperature stress in a growing chamber for one day. The designed low temperatures were −2°C, and 0°C during 18: 00−6: 00, and 5°C during 6: 00−18: 00. Then the wheat pots were moved back to the field and sprayed with 10, 20 and 30 mg/L 6-BA solution, and the same amount of distilled water as control, respectively. At the booting, grain filling and maturing stage of wheat, the flag leaf samples were collected for the measurements of SPAD, photosynthetic parameters and relative enzyme activities. Grain samples were collected since the 10th day of anthesis for the determination of grain filling rate, at maturing stage, yield and 1000-grain weight were investigated.

    Results 

    Compared with the control group, spraying 6-BA increased the SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and maximum photochemical efficiency (Fv/Fm) of flag leaves of wheat subjected to low temperature stress, and increased the RuBP carboxylase activity by 12.72%−53.64% and the PEP carboxylase activity by 6.40%−44.17%. Compared with the control, spraying 6-BA increased the average grain filling rate and 1000-grain weight of Yannong 19 by 1.12%−25.00% and 1.32%−20.84%, respectively, and increased the average grain filling rate and 1000-grain weight of Wanmai 52 by 2.75%−28.42% and 6.26%−27.67%, respectively. The recovery effect of exogenous 6-BA on the yield of sensitive wheat variety ‘Wanmai 52’ was superior to that on the low temperature insensitive wheat variety ‘Yannong 19’.

    Conclusions 

    Spraying 6-BA at booting stage can significantly improve the photosynthetic characteristics of wheat flag leaves after low temperature stress, speed up the grain filling rate and enhance the 1000-grain weight of wheat, thus reduce the yield loss caused by low temperature stress. In this experiment, 20 mg/L 6-BA solution shows the best mitigation effect on the effects of low temperature stress.

  • 春季低温严重影响着小麦的高产稳产[14],我国长江中下游地区春季低温常发生在3月底和4月初小麦孕穗期,对小麦花粉母细胞发育产生严重不良影响[56]。低温胁迫还会导致小麦旗叶受损,使旗叶RuBP羧化酶和PEP羧化酶活性下降[78],降低光合速率和光化学效率[910],进而影响籽粒灌浆能力,最终导致小麦减产[1112]

    6-苄氨基腺嘌呤(6-BA)是一种人工合成的细胞分裂素,可以促进细胞分裂,改善农作物生长,提高作物对环境胁迫的抵抗能力[1316]。研究表明,外源6-BA具有维持叶绿体结构稳定,延缓叶绿素降解,缓解叶片衰老的功能[1718]。喷施6-BA可以提高小麦RuBP羧化酶活性,进而增强光合能力,缓解逆境胁迫的影响[19]。Wang等[20]研究发现,涝渍前喷施6-BA溶液能够使旗叶保持较高的光合速率,从而减缓籽粒产量的损失。此外,喷施6-BA可以增加基部和中部小穗的可育小花数量,进而增加穗粒数,也可以提高小麦平均灌浆速率和最大灌浆速率,使籽粒更加饱满,进而增加千粒重,最终提高产量[2123]。Yang等[17]在小麦开花期喷施6-BA溶液,显著提高籽粒灌浆速率,增加粒重,有效缓解了高温胁迫造成的小麦减产。水稻孕穗期低温处理直接影响了花粉育性和籽粒结实率[2425]。而Wang等[26]发现,6-BA通过提高水稻穗粒数和粒重来提高产量,且对低温敏感型水稻品种的缓解效果比对低温迟钝型品种更好。

    6-BA已被证明能调节植物的生长,有效缓解多种非生物胁迫,如涝渍[27]、干旱[28]和盐胁迫[29]。我们前期研究发现,外源6-BA可以有效缓解小麦孕穗期低温对旗叶光合能力及产量的损伤,但其作用机理尚不清晰。本研究旨在分析低温胁迫后不同浓度的6-BA对小麦光合能力、灌浆特性和产量的影响,探究外源6-BA缓解小麦低温胁迫伤害的生理基础,为小麦减灾调控措施提供理论依据。

    选用低温迟钝型品种‘烟农19’ (山东省烟台市农业科学研究院选育)和低温敏感型品种‘皖麦52 ’(安徽省宿州市种子公司选育)为试验材料。

    试验于2021年11月—2023年6月在安徽农业大学校内试验基地农萃园(31.83°N,117.24°E)进行。土壤类型为黄棕壤,其有机质含量为14.21 g/kg,全氮含量为1.04 g/kg,速效氮含量为149.61 mg/kg,pH为7.25。盆栽试验采用聚乙烯塑料桶,高30 cm、直径30 cm,桶底中央有6个排水孔。每盆装0—20 cm大田耕作层土壤9 kg,将盆栽埋于试验田中,盆栽顶部边缘与盆外土壤高度持平。小麦播种前每盆施入有机肥75.00 g、N 2.23 g,P2O5 1.70 g,K2O 2.12 g,播种后再覆0.9 kg沙土。于拔节期,每盆追施N 2.07 g,待盆栽齐苗后间苗,每盆留苗10株。

    分别于2022年3月18日和2023年3月21日小麦幼穗发育至药隔期,将盆栽小麦移入人工气候室内进行低温处理,处理时间为当天18:00至次日早上6:00。设置−2℃、0℃两个低温处理,处理期间相对湿度70%、光照强度0 lx;次日早上6:00至18:00,温度设为5℃,相对湿度70%,光照强度12000 lx。处理24 h结束后移回大田,一天后分别喷施浓度为10、20及30 mg/L的6-BA溶液(记为B1、B2、B3),以喷施等量蒸馏水(CK)作为对照,每个浓度总喷施量为1.5 L,每个处理20盆,直至叶片正反两面均湿润为止。

    在小麦抽穗期、开花期和灌浆期,每个处理分别选取10盆生长发育一致的小麦,于天气晴朗的上午9:00—11:00测定旗叶SPAD值、光合参数和最大光化学效率。在小麦开花期选取同一天开花并且长势一致的小麦穗挂牌标记。从开花后第10天开始,每5天随机从标记的小麦中挑选出大小一致的10片旗叶和10个麦穗样品,将旗叶样品放到液氮(−80℃)中速冻保存,用于光合相关酶活性的测定。剥出麦穗样品中的籽粒,105℃下杀青30 min后烘干(烘箱75℃),用于灌浆特性的测定。

    每个处理预留出6盆小麦,不对其进行破坏性取样,用于后续产量的测定。

    旗叶SPAD值采用叶绿素含量测定仪(SPAD-502 Konica Minolta,Japan)测定,分别在小麦抽穗期、开花期、灌浆期,每个叶片的上中下位置测3点,然后取平均值,同一处理重复10次。

    光合效率指标分别在小麦抽穗期、开花期、灌浆期测定。选择标记的小麦旗叶,用带有2 cm×3 cm标准叶室的光合作用−荧光系统(Li-6400XT, Li-Cor Inc,USA),测定旗叶的最大光化学效率(Fv/Fm)和净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)。

    称取0.1 g旗叶鲜样在冷冻研磨机上充分研磨,再加入1 mL pH 7.4 的PBS缓冲液,震荡后以4℃ 8000 r/min离心30 min,取上清液,暂存于4℃冰箱。RuBP羧化酶活性参考苌建峰等[30]方法测定,PEP羧化酶活性参考Behera等[31]的方法测定。

    开花后10天开始取样,每5天在每个处理中随机取出籽粒,籽粒杀青后称重计算千粒重。用Logistic方程拟合灌浆过程:Y=K/(1+ea+bt)其中Y为籽粒千粒重(g),K为拟合的最大千粒重,t为花后天数,a和b为参数,e (2.71828)为自然对数的底数,即可推导出下列参数。

    灌浆持续天数(T):

    T=(ln19a)/b

    平均灌浆速率(R):

    R=K/T

    最大灌浆速率(Rmax):

    Rmax=Kb/4

    灌浆渐增期持续时间(T1):

    T1=(a1.317)/b

    灌浆快增期持续时间(T2):

    T2=(a+1.317)/b(a1.317)b

    灌浆缓增期持续时间(T3):

    T3=TT1T2

    籽粒最大灌浆速率出现的时间(Tmax):

    Tmax=a/b

    待成熟期,测定提前预留的小麦的单株穗数、穗粒数、千粒重,并计算单盆产量。

    光合特性数据采用SPSS 26.0软件作统计分析,采用LSD法检验差异显著性。酶活性采用Origin 2018作图。

    图1可知,喷施6-BA提高了小麦旗叶SPAD值。低温−2℃和0℃处理下,B2处理对SPAD值的提升最显著,两年试验结果一致。以2023年开花期为例,−2℃低温胁迫后烟农19和皖麦52的SPAD值较对照分别提高了5.13%~9.89%和8.31%~11.52%,0℃低温胁迫后提升幅度分别是1.99%~5.61%和2.60%~6.59%。−2℃低温处理后,喷施6-BA的处理效果更为显著,且低温敏感型品种皖麦52旗叶SPAD值更高。

    图  1  6-BA对孕穗期低温胁迫后小麦旗叶SPAD值的影响
    注:CK为蒸馏水对照,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。柱上不同小写字母表示同一时期同一温度不同处理间差异显著(P<0.05)。
    Figure  1.  Effects of 6-BA on SPAD values of wheat flag leaves after low temperature stress at booting stage
    Note: CK is distilled water control, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments under the same stage and temperature (P<0.05).

    图2可知,喷施6-BA溶液显著提高了低温胁迫后小麦旗叶的Fv/Fm。低温胁迫后,B2处理的Fv/Fm显著高于B1和B3处理,B1、B3处理间差异不显著(除皖麦52灌浆期外)。以开花期B2处理为例,−2℃低温胁迫后烟农19和皖麦52的Fv/Fm较对照分别提升了6.67%和11.86%,0℃低温胁迫后,分别提升了3.70%和10.14%。在−2℃低温胁迫下,6-BA的处理效果更为显著,尤其是在低温敏感型品种皖麦52上,其Fv/Fm的提升幅度高于低温迟钝型品种烟农19。

    图  2  6-BA对孕穗期低温胁迫后小麦旗叶最大光化学效率(Fv/Fm)的影响
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。柱上不同小写字母表示同一时期同一温度不同处理间差异显著(P<0.05)。
    Figure  2.  Effects of 6-BA on maximum photochemical efficiency (Fv/Fm) of wheat flag leaves after low temperature stress at booting stage
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments under the same stage and temperature (P<0.05).

    表1可知,随着生育时期的推移,旗叶的净光合速率(Pn)和气孔导度(Gs)逐渐降低,蒸腾速率(Tr)先上升后下降,在开花期达到峰值。外源喷施不同浓度的6-BA溶液均能提高小麦旗叶的PnGsTr,以B2处理的提升效果最为显著,且对低温敏感型小麦品种皖麦52的修复效果更为明显,两年试验变化一致。以2022年开花期B2处理为例,−2℃低温处理下,烟农19的PnGsTr较对照分别提高了27.24%、33.33%、68.59%,皖麦52分别提升了38.73%、50.00%、75.32%;0℃低温处理下,烟农19的PnGsTr较对照分别提高了19.65%、26.67%、30.09%;皖麦52分别提升了32.35%、38.46%、38.57%。

    表  1  6-BA对孕穗期低温胁迫后小麦旗叶光合参数的影响
    Table  1.  Effects of 6-BA on photosynthetic parameters of wheat flag leaves after low temperature stress at booting stage
    年份
    Year
    品种
    Cultivar
    温度
    Temperature
    (℃)
    处理
    Treatment
    抽穗期 Heading stage 开花期 Anthesis stage 灌浆期 Grain filling stage
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    2022 烟农19
    Yannong 19
    0 CK 14.66±2.28 b 0.17±0.01 c 3.48±0.10 c 14.25±0.86 b 0.15±0.01 c 4.42±0.03 c 10.92±0.53 c 0.10±0.00 b 3.04±0.08 c
    B1 17.36±0.99 a 0.18±0.01 bc 4.56±0.17 b 14.83±1.12 b 0.18±0.01 b 4.71±0.22 bc 11.14±0.53 bc 0.14±0.00 ab 3.43±0.03 b
    B2 21.70±0.74 a 0.22±0.01 a 5.62±0.05 a 20.05±1.39 a 0.22±0.01 a 5.75±0.20 a 13.89±0.14 a 0.18±0.02 a 4.07±0.06 a
    B3 19.26±0.14 a 0.21±0.02 ab 5.08±0.16 b 19.98±0.72 ab 0.21±0.01 ab 5.20±0.21 ab 12.76±0.18 ab 0.15±0.02 a 3.57±0.07 b
    −2 CK 10.41±0.28 c 0.12±0.01 b 3.12±0.10 c 9.50±1.35 c 0.12±0.01 b 3.47±0.19 d 8.84±0.64 c 0.08±0.02 b 2.36±0.04 c
    B1 12.02±0.31 bc 0.13±0.02 ab 3.69±0.10 bc 10.03±0.16 bc 0.13±0.01 b 4.38±0.11 c 9.20±1.02 bc 0.11±0.01 ab 2.63±0.17 c
    B2 14.49±0.86 a 0.16±0.01 a 4.43±0.26 a 14.06±1.48 a 0.16±0.01 a 5.85±0.19 a 12.06±0.74 a 0.14±0.01 a 3.95±0.09 a
    B3 12.31±0.42 b 0.14±0.01 ab 4.10±0.24 ab 13.29±0.66 ab 0.15±0.01 a 4.94±0.31 b 11.20±0.18 ab 0.12±0.00 a 3.37±0.04 b
    皖麦52
    Wanmai 52
    0 CK 14.36±1.10 b 0.13±0.01 c 3.33±0.10 c 13.17±0.19 b 0.13±0.00 c 4.07±0.17 c 9.67±0.32 c 0.10±0.01 b 2.51±0.09 c
    B1 16.57±1.68 a 0.14±0.02 c 4.19±0.25 b 15.49±0.39 b 0.15±0.01 b 4.52±0.16 bc 10.31±0.27 bc 0.11±0.01 ab 3.01±0.32 b
    B2 18.84±0.53 a 0.23±0.01 a 5.10±0.13 a 17.43±0.04 a 0.21±0.00 a 5.64±0.24 a 12.29±0.69 a 0.15±0.01 a 4.68±0.20 a
    B3 17.66±0.20 a 0.20±0.01 b 4.66±0.36 b 16.31±1.47 ab 0.18±0.01 ab 5.06±0.25 ab 11.97±0.69 ab 0.14±0.00 a 3.78±0.02 b
    −2 CK 12.33±1.05 c 0.12±0.01 b 2.97±0.10 c 11.74±0.83 c 0.12±0.01 b 3.16±0.24 d 7.30±0.31 c 0.08±0.01 b 2.07±0.04 d
    B1 12.91±0.65 bc 0.13±0.01 b 3.47±0.27 bc 12.19±0.08 bc 0.12±0.01 b 4.14±0.09 c 8.81±0.96 bc 0.11±0.00 ab 2.51±0.10 c
    B2 15.50±0.69 a 0.19±0.01 a 4.24±0.08 a 14.90±1.60 a 0.18±0.02 a 5.54±0.17 a 11.91±0.59 a 0.14±0.00 a 3.86±0.01 a
    B3 14.49±2.00 a 0.18±0.01 a 3.51±0.23 ab 13.64±1.09 ab 0.17±0.01 a 4.66±0.14 b 10.08±0.36 ab 0.13±0.01 a 3.14±0.09 b
    下载: 导出CSV 
    | 显示表格
    续表 1 Table 1 continued
    年份
    Year
    品种
    Cultivar
    温度
    Temperature
    (℃)
    处理
    Treatment
    抽穗期 Heading stage 开花期 Anthesis stage 灌浆期 Grain filling stage
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    2023 烟农19
    Yannong 19
    0 CK 13.39±2.50 b 0.15±0.00 c 2.13±0.31 c 12.41±0.46 b 0.14±0.00 c 3.02±0.19 c 9.83±1.01 c 0.09±0.01 b 1.64±0.10 c
    B1 16.50±1.11 a 0.18±0.01 bc 2.84±0.24 b 14.01±0.90 b 0.15±0.01 bc 3.67±0.18 bc 10.14±0.28 bc 0.12±0.01 ab 1.95±0.03 b
    B2 19.74±0.63 a 0.21±0.01 a 3.95±0.02 a 18.61±0.04 a 0.18±0.01 a 4.59±0.18 a 14.55±0.94 a 0.15±0.02 a 2.98±0.01 a
    B3 16.45±2.24 a 0.19±0.00 ab 3.11±0.30 b 17.70±0.53 ab 0.17±0.01 ab 4.16±0.12 ab 12.63±0.41 ab 0.13±0.01 a 2.47±0.08 b
    −2 CK 12.78±1.41 c 0.13±0.01 c 2.27±0.20 c 9.54±0.21 c 0.12±0.01 b 2.85±0.07 d 7.01±0.54 c 0.07±0.00 b 1.27±0.05 d
    B1 13.89±0.20 bc 0.15±0.02 bc 2.65±0.26 bc 14.44±0.39 bc 0.13±0.01 b 3.25±0.02 c 8.64±0.64 bc 0.08±0.01 ab 1.83±0.02 c
    B2 17.78±0.03 a 0.19±0.01 a 3.64±0.21 a 16.65±0.48 a 0.17±0.00 a 4.80±0.02 a 11.43±0.95 a 0.14±0.00 a 2.46±0.09 a
    B3 16.09±0.88 a 0.17±0.01 ab 3.22±0.39 ab 15.87±0.79 ab 0.16±0.01 a 4.05±0.12 b 10.17±0.35 ab 0.13±0.01 a 2.05±0.03 b
    皖麦52
    Wanmai 52
    0 CK 9.88±0.35 b 0.12±0.01 c 2.02±0.35 c 9.17±0.39 b 0.11±0.01 c 2.98±0.05 c 7.08±0.05 c 0.08±0.01 b 1.38±0.09 c
    B1 12.57±0.67 a 0.15±0.01 bc 2.56±0.13 b 10.12±0.32 b 0.14±0.02 b 3.26±0.03 bc 8.28±0.63 bc 0.10±0.01 ab 1.86±0.09 b
    B2 14.94±0.46 a 0.18±0.01 a 3.76±0.18 a 13.72±1.44 a 0.16±0.01 a 4.39±0.18 a 11.66±0.47 a 0.13±0.02 a 2.80±0.02 a
    B3 13.19±0.60 a 0.16±0.00 ab 2.83±0.19 b 12.23±0.83 ab 0.15±0.01 ab 3.91±0.17 ab 10.12±0.52 ab 0.12±0.01 a 2.06±0.08 b
    −2 CK 8.24±1.21 c 0.11±0.00 b 1.85±0.21 c 8.06±0.40 c 0.10±0.01 b 2.03±0.12 d 6.03±0.04 c 0.07±0.01 b 1.42±0.01 c
    B1 9.51±0.14 bc 0.13±0.01 ab 2.10±0.04 bc 9.10±0.51 bc 0.11±0.00 b 3.14±0.04 c 6.21±0.87 bc 0.08±0.01 ab 1.53±0.06 c
    B2 12.26±0.63 a 0.16±0.02 a 3.22±0.06 a 11.62±1.28 a 0.15±0.01 a 4.42±0.14 a 10.20±0.35 a 0.12±0.01 a 2.46±0.08 a
    B3 11.55±0.51 ab 0.14±0.00 ab 2.61±0.09 ab 11.01±0.97 ab 0.14±0.01 a 3.94±0.10 b 9.75±0.65 ab 0.11±0.01 a 1.88±0.08 b
    注:Pn—净光合速率;Gs—气孔导度;Tr—蒸腾速率。CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。同列数据后不同小写字母表示同一品种同一温度不同处理间差异显著(P<0.05)。
    Note: Pn—Net photosynthetic rate; Gs—Stomatal conductance; Tr—Transpiration rate. Distilled water is sprayed in CK, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters after data in the same column indicate significant difference among treatments under the same stage and temperature (P<0.05).
    下载: 导出CSV 
    | 显示表格

    图3可知,小麦旗叶光合相关酶RuBP羧化酶活性在开花后逐渐下降,喷施6-BA溶液显著提高其活性(P<0.05)。低温胁迫后,B2处理的RuBP羧化酶活性显著高于B3处理,B1处理最低(0℃处理烟农19在开花后20~25天、−2℃处理烟农19在开花后25天、0℃处理皖麦52在开花后25天除外)。以B2处理花后10天为例,−2℃低温胁迫后,烟农19和皖麦52的旗叶RuBP羧化酶活性较对照分别提高了43.61%和53.64%;0℃低温胁迫后,分别提高了36.57%和43.58%。综合来看,花后10天喷施6-BA溶液可以使小麦旗叶RuBP羧化酶活性较对照提高12.72%~53.64%。喷施6-BA后−2℃低温处理下旗叶RuBP羧化酶活性的提升幅度更高,且皖麦52的RuBP羧化酶活性更高。

    图  3  6-BA对孕穗期低温胁迫后小麦旗叶RuBP羧化酶活性的影响
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。柱上不同小写字母表示同一天处理间差异显著(P<0.05)。
    Figure  3.  Effects of 6-BA on RuBPcase activity in flag leaves of wheat after low temperature stress at booting stage
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments on the same day (P<0.05).

    图4可知,小麦旗叶光合相关酶PEP羧化酶活性在开花后呈下降趋势,而6-BA喷施显著提高了PEP羧化酶活性(P<0.05)。低温处理后,B2处理的PEP羧化酶活性显著高于B3处理,B1处理最低(−2℃处理烟农19在开花后25天除外)。6-BA在−2℃低温处理后对旗叶PEP羧化酶活性的提升效果更为显著,且皖麦52喷施6-BA后PEP羧化酶活性高于烟农19。以B2处理花后10天为例,−2℃低温胁迫后,烟农19和皖麦52旗叶PEP羧化酶活性较对照分别提高了30.64%和44.17%;0℃低温胁迫后,烟农19和皖麦52分别提高了27.63%和34.40%。综合来看,花后10天喷施6-BA溶液可以使小麦旗叶PEP羧化酶活性较对照提高6.40%~44.17%。

    图  4  6-BA对孕穗期低温胁迫后小麦旗叶PEP羧化酶活性的影响
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。柱上不同小写字母表示同一天处理间差异显著(P<0.05)。
    Figure  4.  Effect of 6-BA on PEP carboxylase activity in flag leaves of wheat after low temperature stress at booting stage
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters above the bars indicate significant difference among treatments on the same day (P<0.05).

    图5可知,两年试验变化趋势相同,千粒重呈“S”形曲线增长。开花后10~15天烟农19各处理间千粒重无显著差异(2023年0℃处理花后15天除外),B2、B3处理下皖麦52的千粒重显著高于B1,B2、B3处理间无显著差异;开花后20~30天两品种B2处理的千粒重显著高于B1、B3处理(2023年烟农19花后20天除外);开花后35天两品种B2、B3处理的千粒重均显著高于B1处理,B2、B3处理间无显著差异(0℃处理烟农19和皖麦52除外)。以2022年开花后25天B2处理为例,−2℃低温处理后,烟农19和皖麦52的千粒重较对照分别提高了21.18%和24.64%;0℃低温处理后,分别提高了16.00%和23.20%。

    图  5  6-BA喷施对孕穗期低温胁迫后灌浆期小麦籽粒千粒重的影响
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。图中不同小写字母表示同一天处理间差异显著 (P<0.05)。
    Figure  5.  Effects of 6-BA on 1000-grain weight of wheat at grain-filling stage after low temperature stress at booting stage
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively.Different lowercase letters beside the lines in the figure indicate significant differences among treatments on the same day (P<0.05).

    图6可知,籽粒灌浆速率呈先增加后下降的趋势。开花后10~15天烟农19各处理间的灌浆速率无显著差异(0℃处理花后15天除外),B2、B3处理的皖麦52灌浆速率显著高于B1处理,B2、B3处理间无显著差异(0℃处理花后10天除外);开花后20~30天两品种B2处理的灌浆速率显著高于B1、B3处理(2023年−2℃处理皖麦52除外);开花后35天两品种B2、B3处理的灌浆速率显著高于B1处理,B2、B3处理间无显著差异(0℃处理烟农19和皖麦52除外)。以2022年开花后25天B2处理为例,−2℃低温处理后,烟农19和皖麦52的灌浆速率较对照分别提高了12.50%和20.00%;0℃低温处理后,分别提高了12.31%和16.39%。综合来看,喷施6-BA溶液可以使烟农19小麦籽粒灌浆速率较对照提高1.12%~25.00%,皖麦52小麦籽粒灌浆速率较对照提高2.75%~28.42%。

    图  6  6-BA对孕穗期低温胁迫后小麦籽粒灌浆速率的影响
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。图中不同小写字母表示同一天处理间差异显著 (P<0.05)。
    Figure  6.  Effects of 6-BA on grain-filling rate of wheat after low temperature stress at booting stage
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively.Different lowercase letters beside the lines in the figure indicate significant differences among treatments on the same day (P<0.05).

    表2可知,用Logistic方程拟合籽粒千粒重,决定系数均高于0.98。两年试验中均表现为快增期(T3)最长,缓增期(T2)次之,渐增期(T1)最短。喷施6-BA溶液延长了小麦籽粒的灌浆持续期(T)、T2T3,提高了灌浆平均速率(R)与最大灌浆速率(Rmax) (P<0.05)。其中,B2处理对小麦籽粒灌浆影响最大,尤其在−2℃低温处理后,6-BA的处理效果更为显著。以2022年B2处理的烟农19为例,−2℃低温处理后烟农19的TRRmax较对照分别增加了13.87%、16.36%和12.22%。

    表  2  6-BA对孕穗期低温胁迫后小麦灌浆特性的影响
    Table  2.  Effects of 6-BA on wheat filling characteristics after low temperature stress at booting stage
    品种
    Cultivar
    温度 (℃)
    Temperature
    处理
    Treatment
    拟合方程
    Fitting equation
    R2 T (d) T1 (d) T2 (d) T3 (d) Rmax R
    2022
    烟农19
    Yannong 19
    0 CK Y=36.8682/(1+e3.1753−0.1931t) 0.998 40.26 9.63 13.65 16.98 1.78 0.91
    B1 Y=40.0769/(1+e3.1864−0.1904t) 0.996 40.87 9.82 13.83 17.22 1.91 0.98
    B2 Y=43.9529/(1+e3.2330−0.1849t) 0.996 42.34 10.36 14.24 17.73 2.03 1.04
    B3 Y=41.7903/(1+e3.1128−0.1850t) 0.994 41.66 9.71 14.23 17.72 1.96 1.01
    −2 CK Y=33.8962/(1+e2.7298−0.1942t) 0.999 37.72 7.27 13.56 16.88 1.65 0.90
    B1 Y=39.0050/(1+e2.7668−0.1800t) 0.999 40.90 8.05 14.63 18.21 1.76 0.95
    B2 Y=43.7776/(1+e2.9300−0.1752t) 0.996 42.95 9.21 15.03 18.71 1.92 1.01
    B3 Y=41.8057/(1+e2.9443−0.1811t) 0.994 41.63 8.98 14.54 18.10 1.89 1.00
    皖麦52
    Wanmai 52
    0 CK Y=36.2853/(1+e2.8937−0.1809t) 0.999 41.40 8.71 14.56 18.12 1.64 0.88
    B1 Y=38.1406/(1+e2.8977−0.1782t) 0.997 42.05 8.87 14.78 18.39 1.70 0.91
    B2 Y=43.2076/(1+e2.9095−0.1719t) 0.988 43.66 9.26 15.32 19.07 1.86 0.99
    B3 Y=40.7062/(1+e2.8528−0.1732t) 0.998 43.00 8.87 15.21 18.93 1.76 0.95
    −2 CK Y=34.3716/(1+e3.0997−0.1977t) 0.999 38.92 9.02 13.32 16.58 1.70 0.88
    B1 Y=37.7547/(1+e3.1721−0.1961t) 0.999 39.61 9.46 13.43 16.72 1.85 0.95
    B2 Y=41.9431/(1+e3.0384−0.1814t) 0.995 42.08 9.49 14.52 18.07 1.90 1.00
    B3 Y=40.4914/(1+e3.0002−0.1821t) 0.992 41.71 9.24 14.46 18.00 1.84 0.97
    2023
    烟农19
    Yannong 19
    0 CK Y=36.5861/(1+e3.2287−0.1982t) 0.998 39.47 9.64 13.29 16.54 1.81 0.93
    B1 Y=38.6148/(1+e3.1796−0.1959t) 0.997 39.69 9.51 13.44 16.73 1.89 0.97
    B2 Y=43.8315/(1+e3.1750−0.1871t) 0.999 41.53 9.93 14.08 17.52 2.05 1.05
    B3 Y=40.6464/(1+e3.1677−0.1944t) 0.989 39.93 9.52 13.55 16.86 1.97 1.02
    −2 CK Y=35.0024/(1+e3.1250−0.2085t) 0.997 37.03 8.67 12.63 15.72 1.82 0.94
    B1 Y=39.0273/(1+e3.1505−0.2085t) 0.999 37.15 8.79 12.63 15.72 2.03 1.05
    B2 Y=43.9980/(1+e3.0699−0.1936t) 0.992 38.46 8.79 13.22 16.45 2.19 1.14
    B3 Y=43.1653/(1+e3.1953−0.2027t) 0.997 38.43 9.27 12.99 16.17 2.19 1.12
    皖麦52
    Wanmai 52
    0 CK Y=33.8227/(1+e3.6821−0.2286t) 0.994 36.21 10.35 11.52 14.34 1.93 0.93
    B1 Y=41.9173/(1+e3.2020−0.1853t) 0.992 42.08 10.17 14.21 17.69 1.94 1.00
    B2 Y=45.3649/(1+e3.1914−0.1828t) 0.984 42.59 10.25 14.41 17.93 2.07 1.06
    B3 Y=42.8722/(1+e3.1761−0.1843t) 0.985 42.19 10.09 14.30 17.80 1.97 1.02
    −2 CK Y=33.9618/(1+e3.2405−0.2117t) 0.983 37.01 9.08 12.44 15.48 1.80 0.92
    B1 Y=37.4071/(1+e3.2003−0.1987t) 0.983 39.23 9.48 13.26 16.50 1.86 0.95
    B2 Y=42.3934/(1+e3.0831−0.1868t) 0.990 41.10 9.45 14.10 17.55 1.98 1.03
    B3 Y=41.2833/(1+e3.1384−0.1910t) 0.980 40.49 9.54 13.79 17.16 1.97 1.02
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。方程中Y为千粒重,t为开花后天数,e (2.71828)为自然对数的底数。T为灌浆持续期;T1T2T3分别为灌浆渐增期、灌浆缓增期、灌浆快增期;Rmax为籽粒灌浆最大速率(mg/d);R为籽粒灌浆平均速率(mg/d)。
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 were 10, 20, and 30 mg/L, respectively. In the fitting equation, Y is 1000-grain weight, t is the days after anthesis, e (2.71828) is the base of the natural logarithm. T is duration of grouting; T1, T2, T3 are gradually increasing, slow increasing and fast increasing stages of grouting, respectively; Rmax is maximum grain filling rate (mg/d); R is mean grain filling rate (mg/d).
    下载: 导出CSV 
    | 显示表格

    表3可知,喷施6-BA溶液提高了低温处理后小麦单株穗数、穗粒数、千粒重和单盆产量。B2处理在穗粒数、千粒重和单盆产量方面显著高于B3处理,B1处理最低(2022年0℃处理烟农19的千粒重和单盆产量除外)。烟农19各处理间的单株穗数多无显著差异,B2处理下皖麦52的单株穗数显著高于B1、B3处理,B1、B3处理间无显著差异(2023年0℃处理除外)。6-BA处理对低温敏感型品种皖麦52的产量修复效果优于对低温迟钝型品种烟农19。以2023年−2℃低温处理后B2处理为例,烟农19和皖麦52的单盆产量较对照分别增加了60.79%和86.61%,千粒重分别增加了20.84%和17.18%,单株穗数分别增加了10.76%和13.40%,穗粒数分别增加了20.10%和40.46%。综合来看,与对照相比,烟农19喷施6-BA处理的单盆产量、千粒重、单株穗数、穗粒数分别提高14.37%~68.73%、1.32%~20.84%、1.57%~20.22%、4.76%~20.10%;皖麦52喷施6-BA处理的单盆产量、千粒重、单株穗数、穗粒数分别提高22.83%~86.61%、6.26%~27.67%、2.52%~17.11%、5.16%~40.46%。

    表  3  6-BA对孕穗期低温胁迫后小麦产量及其构成因素的影响
    Table  3.  Effects of 6-BA on wheat yield and its components after low temperature stress at booting stage
    年份
    Year
    品种
    Cultivar
    温度 (℃)
    Temperature
    处理
    Treatment
    单株穗数
    Spikes per plant
    千粒重 (g)
    1000-grain weight
    穗粒数
    Grain number per spike
    产量 (g/pot)
    Yield
    2022 烟农19
    Yannong 19
    0 CK 21.23±0.13 c 36.26±0.68 c 35.50±0.70 c 27.20±0.94 c
    B1 22.57±0.32 b 40.04±0.50 b 37.50±1.08 b 33.89±1.10 b
    B2 23.60±0.15 a 41.85±0.07 a 39.50±0.67 a 39.01±0.66 a
    B3 23.03±0.04 ab 40.42±0.52 b 37.67±1.01 b 35.07±0.55 b
    −2 CK 20.23±0.25 c 33.97±0.31 c 31.50±1.08 c 21.65±1.17 d
    B1 22.64±0.27 b 34.42±0.28 c 33.00±0.50 b 25.72±0.43 c
    B2 24.32±0.14 a 39.71±0.27 a 37.83±0.68 a 36.53±1.06 a
    B3 23.62±0.31 a 35.96±0.31 b 34.67±0.94 b 29.45±0.76 b
    皖麦52
    Wanmai 52
    0 CK 20.81±0.09 c 35.61±0.25 d 27.54±0.54 c 20.41±0.29 d
    B1 22.67±0.50 b 37.84±0.31 c 29.22±0.38 b 25.07±1.00 c
    B2 24.37±0.26 a 41.55±0.22 a 34.57±0.71 a 35.00±0.82 a
    B3 23.33±0.20 b 39.83±0.20 b 31.35±0.50 b 29.13±0.74 b
    −2 CK 20.23±0.23 c 34.19±0.54 d 21.68±1.23 c 15.00±1.14 d
    B1 20.74±0.21 b 37.63±0.25 c 24.94±0.42 b 19.46±0.45 c
    B2 22.03±0.18 a 41.27±0.22 a 29.46±0.69 a 26.78±1.03 a
    B3 21.30±0.12 b 39.79±0.17 b 25.07±0.15 b 21.25±0.51 b
    2023 烟农19
    Yannong 19
    0 CK 22.33±0.38 a 36.25±0.15 d 31.47±0.70 c 25.47±0.61 d
    B1 22.68±0.22 a 38.30±0.24 c 33.53±0.71 b 29.13±0.90 c
    B2 23.10±0.41 a 41.89±0.47 a 36.47±0.18 a 35.29±0.66 a
    B3 22.86±0.55 a 39.66±0.16 b 34.60±0.12 b 31.37±0.84 b
    −2 CK 20.17±0.26 c 34.88±0.35 d 26.87±0.85 c 18.90±0.27 d
    B1 21.29±0.06 b 38.92±0.05 c 28.65±0.13 b 23.74±0.09 c
    B2 22.34±0.25 a 42.15±0.19 a 32.27±0.24 a 30.39±0.27 a
    B3 21.96±0.22 ab 40.81±0.15 b 31.31±0.15 b 26.78±0.53 b
    皖麦52
    Wanmai52
    0 CK 19.45±0.20 d 33.54±0.22 d 25.80±0.72 d 16.82±0.37 d
    B1 20.23±0.30 c 39.97±0.16 c 27.13±0.37 c 21.94±0.44 c
    B2 21.87±0.22 a 42.82±0.24 a 30.27±0.18 a 28.34±0.19 a
    B3 21.14±0.16 b 41.13±0.21 b 29.33±0.18 b 25.50±0.31 b
    −2 CK 19.33±0.34 c 34.51±0.27 d 23.73±0.35 d 15.83±0.40 d
    B1 20.37±0.23 b 37.53±0.16 c 26.67±0.70 c 20.08±0.80 c
    B2 21.92±0.37 a 40.44±0.26 a 33.33±0.24 a 29.54±0.21 a
    B3 21.19±0.23 b 39.45±0.11 b 30.33±0.07 b 25.35±0.26 b
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。同列数据后不同小写字母表示同一品种同一温度处理不同6-BA处理间差异显著(P<0.05)。
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters after data in the same column indicate significant difference among 6-BA treatments for the same cultivar under the same temperature treatment (P<0.05).
    下载: 导出CSV 
    | 显示表格

    低温胁迫对小麦旗叶光合作用的抑制主要体现在光合同化能力下降,表现为SPAD值、PnTrGs降低,从而加速旗叶衰老[3234]。这一现象可能与部分气孔关闭导致的CO2供应减少(气孔限制)和RuBP羧化酶活性受限导致的CO2利用受阻(非气孔限制)有关[35]。叶绿素荧光参数,尤其是Fv/Fm,是评估光合作用中化学反应变化的重要指标[3637]。低温胁迫还会降低小麦旗叶Fv/Fm[38],表明光系统Ⅱ (PSⅡ)的完整性受损。前人研究表明,低温胁迫后,外源施用水杨酸[39]、褪黑素[40]、海藻糖[41]等植物生长调节剂能够提高冬小麦的光合作用。本研究发现,6-BA的应用显著减轻了低温胁迫带来的负面影响,提高了旗叶的SPAD值,缓解了PnGsTr的降低。这可能与6-BA促进叶绿素前体δ−氨基乙酰丙酸的合成,维持植物叶绿体结构的稳定有关。此外,6-BA通过增加内部叶片CO2浓度和Gs,促进CO2的固定,增加光合产物的积累,从而减轻了低温胁迫对植物光合能力的抑制。本研究还发现6-BA能提高小麦旗叶的Fv/Fm,说明6-BA能有效减轻低温胁迫对小麦叶片PSII造成的损伤,增强叶片中电子传递速率,从而维持光合作用的正常运行,这与吴雪霞等[42]研究结果相似。喷施6-BA显著减轻低温诱导的PSII损伤,通过提高叶绿素含量,增强叶绿体对光的吸收和利用能力,进而缓解低温胁迫对植物光合作用的破坏,提高了植株的抗寒能力。

    RuBP羧化酶和PEP羧化酶是参与碳代谢的关键酶,能够改善植物光合作用[43]。研究表明,低温胁迫通过抑制RuBP羧化酶活性和PEP羧化酶活性,降低小麦旗叶的光合能力,最终导致产量降低[4445]。小麦叶片RuBP羧化酶活性的增加有利于植物在逆境条件下生存[46]。本研究结果表明,6-BA能够提高孕穗期低温胁迫后小麦旗叶中RuBP羧化酶和PEP羧化酶活性,从而有效改善光合作用。6-BA的应用可能通过减轻类囊体膜损伤和促进ATP合成来提高RuBP羧化酶活性。另有研究发现,喷施6-BA可以提高小麦叶片RuBP羧化酶和PEP羧化酶活性,缓解产量损失[47]。Hu等[48]在涝渍胁迫下喷施6-BA,缓解了玉米叶片PEP羧化酶与RuBP羧化酶活性的下降。本试验中喷施6-BA显著提高了小麦叶片RuBP羧化酶和PEP羧化酶活性,增加了叶片Gs,促进了光合CO2同化,保护了PSII反应中心和光合暗反应,从而促进卡尔文循环。另外,低温胁迫后,6-BA对低温敏感型品种皖麦52的光合缓解效果优于对低温迟钝型品种烟农19,这可能是因为低温敏感型小麦的抗逆性较弱,外源6-BA的喷施可以通过促进小麦的细胞分裂和修复过程,增强其恢复能力。以上结果表明,外源喷施6-BA能够通过提高旗叶的SPAD值与RuBP羧化酶和PEP羧化酶的活性,缓解PnGsTr的降低,从而减轻低温胁迫对小麦旗叶光合作用的抑制,有利于减少产量损失。

    综上所述,6-BA在提高小麦光合作用和抗逆性中具有重要作用。通过提高关键光合作用酶的活性,6-BA增强了小麦在低温胁迫下的光合作用,从而提高了产量。此外,6-BA的应用效果在不同品种间存在差异,这一发现为小麦品种改良和逆境管理提供了新的策略和依据。

    籽粒灌浆是决定小麦产量形成的重要过程,与最终产量密切相关。灌浆速率与持续天数决定了籽粒充实程度[4950]。研究表明,开花前温度胁迫对小麦粒重有显著影响[51],尤其在孕穗期,小麦对温度异常敏感[52]。孕穗期低温胁迫会导致花粉母细胞发育不良和花粉不育,从而造成小麦严重减产[7]。在逆境条件下,植物生长调节剂能够调节小麦生理反应以适应不利环境[5356]。6-BA作为一种有效的植物生长调节剂,已被证实能够缓解非生物胁迫对作物生长发育的抑制作用[27, 5758]。本研究发现,小麦经孕穗期低温处理后,喷施6-BA溶液提高了籽粒的灌浆速率,延长了籽粒灌浆持续时间,千粒重增加,产量较对照得以提高。这一结果与Zhang等[59]的研究结果相似。表明6-BA能够改善低温胁迫后小麦产量相关特性。也有研究在其他逆境胁迫中发现了6-BA缓解植物逆境胁迫的效果。Yang等[60]在热胁迫下发现,6-BA能够提高籽粒灌浆速率,增加粒重和产量。Zhang等[61]在渍水条件下发现,外源喷施6-BA能够提高小麦籽粒灌浆的持续时间和速率,增加淀粉积累量,减轻渍水对小麦产量的不利影响。此外,6-BA会影响光合产物的积累或运输[61]。水稻、玉米等作物的灌浆特性也受到6-BA的调控[6263]。本研究进一步证实,6-BA能够促进小麦旗叶的光合作用,缓解低温胁迫对籽粒灌浆的抑制作用,增加千粒重,减少产量损失。这可能是由于6-BA通过提高小麦的光合能力,维持光合产物的形成与转运能力,从而提高籽粒灌浆速率,延长灌浆天数,使千粒重增加,最终缓解低温胁迫对产量的抑制作用。因此,6-BA的应用是提高低温胁迫后小麦产量的一种有效手段。

    在实际生产中,应根据小麦的生长阶段和环境条件,合理搭配6-BA与正常肥料的使用,以实现最佳的产量和品质。

    孕穗期低温胁迫后喷施6-BA可以显著改善小麦旗叶的光合作用,增强光合作用相关酶活性,有效减轻低温对光合系统的损害。同时,外源6-BA增加了孕穗期低温后小麦籽粒平均灌浆速率和最大灌浆速率,延长了籽粒灌浆活跃期,增加穗粒数与千粒重,降低了低温对产量的影响。6-BA喷施浓度为20 mg/L时缓解低温胁迫的效果最好。

  • 图  1   6-BA对孕穗期低温胁迫后小麦旗叶SPAD值的影响

    注:CK为蒸馏水对照,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。柱上不同小写字母表示同一时期同一温度不同处理间差异显著(P<0.05)。

    Figure  1.   Effects of 6-BA on SPAD values of wheat flag leaves after low temperature stress at booting stage

    Note: CK is distilled water control, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments under the same stage and temperature (P<0.05).

    图  2   6-BA对孕穗期低温胁迫后小麦旗叶最大光化学效率(Fv/Fm)的影响

    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。柱上不同小写字母表示同一时期同一温度不同处理间差异显著(P<0.05)。

    Figure  2.   Effects of 6-BA on maximum photochemical efficiency (Fv/Fm) of wheat flag leaves after low temperature stress at booting stage

    Note: Distilled water is sprayed in CK, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments under the same stage and temperature (P<0.05).

    图  3   6-BA对孕穗期低温胁迫后小麦旗叶RuBP羧化酶活性的影响

    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。柱上不同小写字母表示同一天处理间差异显著(P<0.05)。

    Figure  3.   Effects of 6-BA on RuBPcase activity in flag leaves of wheat after low temperature stress at booting stage

    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different small letters above the bars indicate significant difference among treatments on the same day (P<0.05).

    图  4   6-BA对孕穗期低温胁迫后小麦旗叶PEP羧化酶活性的影响

    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。柱上不同小写字母表示同一天处理间差异显著(P<0.05)。

    Figure  4.   Effect of 6-BA on PEP carboxylase activity in flag leaves of wheat after low temperature stress at booting stage

    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters above the bars indicate significant difference among treatments on the same day (P<0.05).

    图  5   6-BA喷施对孕穗期低温胁迫后灌浆期小麦籽粒千粒重的影响

    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。图中不同小写字母表示同一天处理间差异显著 (P<0.05)。

    Figure  5.   Effects of 6-BA on 1000-grain weight of wheat at grain-filling stage after low temperature stress at booting stage

    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively.Different lowercase letters beside the lines in the figure indicate significant differences among treatments on the same day (P<0.05).

    图  6   6-BA对孕穗期低温胁迫后小麦籽粒灌浆速率的影响

    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。图中不同小写字母表示同一天处理间差异显著 (P<0.05)。

    Figure  6.   Effects of 6-BA on grain-filling rate of wheat after low temperature stress at booting stage

    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively.Different lowercase letters beside the lines in the figure indicate significant differences among treatments on the same day (P<0.05).

    表  1   6-BA对孕穗期低温胁迫后小麦旗叶光合参数的影响

    Table  1   Effects of 6-BA on photosynthetic parameters of wheat flag leaves after low temperature stress at booting stage

    年份
    Year
    品种
    Cultivar
    温度
    Temperature
    (℃)
    处理
    Treatment
    抽穗期 Heading stage 开花期 Anthesis stage 灌浆期 Grain filling stage
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    2022 烟农19
    Yannong 19
    0 CK 14.66±2.28 b 0.17±0.01 c 3.48±0.10 c 14.25±0.86 b 0.15±0.01 c 4.42±0.03 c 10.92±0.53 c 0.10±0.00 b 3.04±0.08 c
    B1 17.36±0.99 a 0.18±0.01 bc 4.56±0.17 b 14.83±1.12 b 0.18±0.01 b 4.71±0.22 bc 11.14±0.53 bc 0.14±0.00 ab 3.43±0.03 b
    B2 21.70±0.74 a 0.22±0.01 a 5.62±0.05 a 20.05±1.39 a 0.22±0.01 a 5.75±0.20 a 13.89±0.14 a 0.18±0.02 a 4.07±0.06 a
    B3 19.26±0.14 a 0.21±0.02 ab 5.08±0.16 b 19.98±0.72 ab 0.21±0.01 ab 5.20±0.21 ab 12.76±0.18 ab 0.15±0.02 a 3.57±0.07 b
    −2 CK 10.41±0.28 c 0.12±0.01 b 3.12±0.10 c 9.50±1.35 c 0.12±0.01 b 3.47±0.19 d 8.84±0.64 c 0.08±0.02 b 2.36±0.04 c
    B1 12.02±0.31 bc 0.13±0.02 ab 3.69±0.10 bc 10.03±0.16 bc 0.13±0.01 b 4.38±0.11 c 9.20±1.02 bc 0.11±0.01 ab 2.63±0.17 c
    B2 14.49±0.86 a 0.16±0.01 a 4.43±0.26 a 14.06±1.48 a 0.16±0.01 a 5.85±0.19 a 12.06±0.74 a 0.14±0.01 a 3.95±0.09 a
    B3 12.31±0.42 b 0.14±0.01 ab 4.10±0.24 ab 13.29±0.66 ab 0.15±0.01 a 4.94±0.31 b 11.20±0.18 ab 0.12±0.00 a 3.37±0.04 b
    皖麦52
    Wanmai 52
    0 CK 14.36±1.10 b 0.13±0.01 c 3.33±0.10 c 13.17±0.19 b 0.13±0.00 c 4.07±0.17 c 9.67±0.32 c 0.10±0.01 b 2.51±0.09 c
    B1 16.57±1.68 a 0.14±0.02 c 4.19±0.25 b 15.49±0.39 b 0.15±0.01 b 4.52±0.16 bc 10.31±0.27 bc 0.11±0.01 ab 3.01±0.32 b
    B2 18.84±0.53 a 0.23±0.01 a 5.10±0.13 a 17.43±0.04 a 0.21±0.00 a 5.64±0.24 a 12.29±0.69 a 0.15±0.01 a 4.68±0.20 a
    B3 17.66±0.20 a 0.20±0.01 b 4.66±0.36 b 16.31±1.47 ab 0.18±0.01 ab 5.06±0.25 ab 11.97±0.69 ab 0.14±0.00 a 3.78±0.02 b
    −2 CK 12.33±1.05 c 0.12±0.01 b 2.97±0.10 c 11.74±0.83 c 0.12±0.01 b 3.16±0.24 d 7.30±0.31 c 0.08±0.01 b 2.07±0.04 d
    B1 12.91±0.65 bc 0.13±0.01 b 3.47±0.27 bc 12.19±0.08 bc 0.12±0.01 b 4.14±0.09 c 8.81±0.96 bc 0.11±0.00 ab 2.51±0.10 c
    B2 15.50±0.69 a 0.19±0.01 a 4.24±0.08 a 14.90±1.60 a 0.18±0.02 a 5.54±0.17 a 11.91±0.59 a 0.14±0.00 a 3.86±0.01 a
    B3 14.49±2.00 a 0.18±0.01 a 3.51±0.23 ab 13.64±1.09 ab 0.17±0.01 a 4.66±0.14 b 10.08±0.36 ab 0.13±0.01 a 3.14±0.09 b
    下载: 导出CSV
    续表 1 Table 1 continued
    年份
    Year
    品种
    Cultivar
    温度
    Temperature
    (℃)
    处理
    Treatment
    抽穗期 Heading stage 开花期 Anthesis stage 灌浆期 Grain filling stage
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    Pn
    μmol/(m2·s)
    Gs
    mol/(m2·s)
    Tr
    mmol/(m2. s)
    2023 烟农19
    Yannong 19
    0 CK 13.39±2.50 b 0.15±0.00 c 2.13±0.31 c 12.41±0.46 b 0.14±0.00 c 3.02±0.19 c 9.83±1.01 c 0.09±0.01 b 1.64±0.10 c
    B1 16.50±1.11 a 0.18±0.01 bc 2.84±0.24 b 14.01±0.90 b 0.15±0.01 bc 3.67±0.18 bc 10.14±0.28 bc 0.12±0.01 ab 1.95±0.03 b
    B2 19.74±0.63 a 0.21±0.01 a 3.95±0.02 a 18.61±0.04 a 0.18±0.01 a 4.59±0.18 a 14.55±0.94 a 0.15±0.02 a 2.98±0.01 a
    B3 16.45±2.24 a 0.19±0.00 ab 3.11±0.30 b 17.70±0.53 ab 0.17±0.01 ab 4.16±0.12 ab 12.63±0.41 ab 0.13±0.01 a 2.47±0.08 b
    −2 CK 12.78±1.41 c 0.13±0.01 c 2.27±0.20 c 9.54±0.21 c 0.12±0.01 b 2.85±0.07 d 7.01±0.54 c 0.07±0.00 b 1.27±0.05 d
    B1 13.89±0.20 bc 0.15±0.02 bc 2.65±0.26 bc 14.44±0.39 bc 0.13±0.01 b 3.25±0.02 c 8.64±0.64 bc 0.08±0.01 ab 1.83±0.02 c
    B2 17.78±0.03 a 0.19±0.01 a 3.64±0.21 a 16.65±0.48 a 0.17±0.00 a 4.80±0.02 a 11.43±0.95 a 0.14±0.00 a 2.46±0.09 a
    B3 16.09±0.88 a 0.17±0.01 ab 3.22±0.39 ab 15.87±0.79 ab 0.16±0.01 a 4.05±0.12 b 10.17±0.35 ab 0.13±0.01 a 2.05±0.03 b
    皖麦52
    Wanmai 52
    0 CK 9.88±0.35 b 0.12±0.01 c 2.02±0.35 c 9.17±0.39 b 0.11±0.01 c 2.98±0.05 c 7.08±0.05 c 0.08±0.01 b 1.38±0.09 c
    B1 12.57±0.67 a 0.15±0.01 bc 2.56±0.13 b 10.12±0.32 b 0.14±0.02 b 3.26±0.03 bc 8.28±0.63 bc 0.10±0.01 ab 1.86±0.09 b
    B2 14.94±0.46 a 0.18±0.01 a 3.76±0.18 a 13.72±1.44 a 0.16±0.01 a 4.39±0.18 a 11.66±0.47 a 0.13±0.02 a 2.80±0.02 a
    B3 13.19±0.60 a 0.16±0.00 ab 2.83±0.19 b 12.23±0.83 ab 0.15±0.01 ab 3.91±0.17 ab 10.12±0.52 ab 0.12±0.01 a 2.06±0.08 b
    −2 CK 8.24±1.21 c 0.11±0.00 b 1.85±0.21 c 8.06±0.40 c 0.10±0.01 b 2.03±0.12 d 6.03±0.04 c 0.07±0.01 b 1.42±0.01 c
    B1 9.51±0.14 bc 0.13±0.01 ab 2.10±0.04 bc 9.10±0.51 bc 0.11±0.00 b 3.14±0.04 c 6.21±0.87 bc 0.08±0.01 ab 1.53±0.06 c
    B2 12.26±0.63 a 0.16±0.02 a 3.22±0.06 a 11.62±1.28 a 0.15±0.01 a 4.42±0.14 a 10.20±0.35 a 0.12±0.01 a 2.46±0.08 a
    B3 11.55±0.51 ab 0.14±0.00 ab 2.61±0.09 ab 11.01±0.97 ab 0.14±0.01 a 3.94±0.10 b 9.75±0.65 ab 0.11±0.01 a 1.88±0.08 b
    注:Pn—净光合速率;Gs—气孔导度;Tr—蒸腾速率。CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。同列数据后不同小写字母表示同一品种同一温度不同处理间差异显著(P<0.05)。
    Note: Pn—Net photosynthetic rate; Gs—Stomatal conductance; Tr—Transpiration rate. Distilled water is sprayed in CK, and the spraying concentration of 6-BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters after data in the same column indicate significant difference among treatments under the same stage and temperature (P<0.05).
    下载: 导出CSV

    表  2   6-BA对孕穗期低温胁迫后小麦灌浆特性的影响

    Table  2   Effects of 6-BA on wheat filling characteristics after low temperature stress at booting stage

    品种
    Cultivar
    温度 (℃)
    Temperature
    处理
    Treatment
    拟合方程
    Fitting equation
    R2 T (d) T1 (d) T2 (d) T3 (d) Rmax R
    2022
    烟农19
    Yannong 19
    0 CK Y=36.8682/(1+e3.1753−0.1931t) 0.998 40.26 9.63 13.65 16.98 1.78 0.91
    B1 Y=40.0769/(1+e3.1864−0.1904t) 0.996 40.87 9.82 13.83 17.22 1.91 0.98
    B2 Y=43.9529/(1+e3.2330−0.1849t) 0.996 42.34 10.36 14.24 17.73 2.03 1.04
    B3 Y=41.7903/(1+e3.1128−0.1850t) 0.994 41.66 9.71 14.23 17.72 1.96 1.01
    −2 CK Y=33.8962/(1+e2.7298−0.1942t) 0.999 37.72 7.27 13.56 16.88 1.65 0.90
    B1 Y=39.0050/(1+e2.7668−0.1800t) 0.999 40.90 8.05 14.63 18.21 1.76 0.95
    B2 Y=43.7776/(1+e2.9300−0.1752t) 0.996 42.95 9.21 15.03 18.71 1.92 1.01
    B3 Y=41.8057/(1+e2.9443−0.1811t) 0.994 41.63 8.98 14.54 18.10 1.89 1.00
    皖麦52
    Wanmai 52
    0 CK Y=36.2853/(1+e2.8937−0.1809t) 0.999 41.40 8.71 14.56 18.12 1.64 0.88
    B1 Y=38.1406/(1+e2.8977−0.1782t) 0.997 42.05 8.87 14.78 18.39 1.70 0.91
    B2 Y=43.2076/(1+e2.9095−0.1719t) 0.988 43.66 9.26 15.32 19.07 1.86 0.99
    B3 Y=40.7062/(1+e2.8528−0.1732t) 0.998 43.00 8.87 15.21 18.93 1.76 0.95
    −2 CK Y=34.3716/(1+e3.0997−0.1977t) 0.999 38.92 9.02 13.32 16.58 1.70 0.88
    B1 Y=37.7547/(1+e3.1721−0.1961t) 0.999 39.61 9.46 13.43 16.72 1.85 0.95
    B2 Y=41.9431/(1+e3.0384−0.1814t) 0.995 42.08 9.49 14.52 18.07 1.90 1.00
    B3 Y=40.4914/(1+e3.0002−0.1821t) 0.992 41.71 9.24 14.46 18.00 1.84 0.97
    2023
    烟农19
    Yannong 19
    0 CK Y=36.5861/(1+e3.2287−0.1982t) 0.998 39.47 9.64 13.29 16.54 1.81 0.93
    B1 Y=38.6148/(1+e3.1796−0.1959t) 0.997 39.69 9.51 13.44 16.73 1.89 0.97
    B2 Y=43.8315/(1+e3.1750−0.1871t) 0.999 41.53 9.93 14.08 17.52 2.05 1.05
    B3 Y=40.6464/(1+e3.1677−0.1944t) 0.989 39.93 9.52 13.55 16.86 1.97 1.02
    −2 CK Y=35.0024/(1+e3.1250−0.2085t) 0.997 37.03 8.67 12.63 15.72 1.82 0.94
    B1 Y=39.0273/(1+e3.1505−0.2085t) 0.999 37.15 8.79 12.63 15.72 2.03 1.05
    B2 Y=43.9980/(1+e3.0699−0.1936t) 0.992 38.46 8.79 13.22 16.45 2.19 1.14
    B3 Y=43.1653/(1+e3.1953−0.2027t) 0.997 38.43 9.27 12.99 16.17 2.19 1.12
    皖麦52
    Wanmai 52
    0 CK Y=33.8227/(1+e3.6821−0.2286t) 0.994 36.21 10.35 11.52 14.34 1.93 0.93
    B1 Y=41.9173/(1+e3.2020−0.1853t) 0.992 42.08 10.17 14.21 17.69 1.94 1.00
    B2 Y=45.3649/(1+e3.1914−0.1828t) 0.984 42.59 10.25 14.41 17.93 2.07 1.06
    B3 Y=42.8722/(1+e3.1761−0.1843t) 0.985 42.19 10.09 14.30 17.80 1.97 1.02
    −2 CK Y=33.9618/(1+e3.2405−0.2117t) 0.983 37.01 9.08 12.44 15.48 1.80 0.92
    B1 Y=37.4071/(1+e3.2003−0.1987t) 0.983 39.23 9.48 13.26 16.50 1.86 0.95
    B2 Y=42.3934/(1+e3.0831−0.1868t) 0.990 41.10 9.45 14.10 17.55 1.98 1.03
    B3 Y=41.2833/(1+e3.1384−0.1910t) 0.980 40.49 9.54 13.79 17.16 1.97 1.02
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度10、20、30 mg/L。方程中Y为千粒重,t为开花后天数,e (2.71828)为自然对数的底数。T为灌浆持续期;T1T2T3分别为灌浆渐增期、灌浆缓增期、灌浆快增期;Rmax为籽粒灌浆最大速率(mg/d);R为籽粒灌浆平均速率(mg/d)。
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 were 10, 20, and 30 mg/L, respectively. In the fitting equation, Y is 1000-grain weight, t is the days after anthesis, e (2.71828) is the base of the natural logarithm. T is duration of grouting; T1, T2, T3 are gradually increasing, slow increasing and fast increasing stages of grouting, respectively; Rmax is maximum grain filling rate (mg/d); R is mean grain filling rate (mg/d).
    下载: 导出CSV

    表  3   6-BA对孕穗期低温胁迫后小麦产量及其构成因素的影响

    Table  3   Effects of 6-BA on wheat yield and its components after low temperature stress at booting stage

    年份
    Year
    品种
    Cultivar
    温度 (℃)
    Temperature
    处理
    Treatment
    单株穗数
    Spikes per plant
    千粒重 (g)
    1000-grain weight
    穗粒数
    Grain number per spike
    产量 (g/pot)
    Yield
    2022 烟农19
    Yannong 19
    0 CK 21.23±0.13 c 36.26±0.68 c 35.50±0.70 c 27.20±0.94 c
    B1 22.57±0.32 b 40.04±0.50 b 37.50±1.08 b 33.89±1.10 b
    B2 23.60±0.15 a 41.85±0.07 a 39.50±0.67 a 39.01±0.66 a
    B3 23.03±0.04 ab 40.42±0.52 b 37.67±1.01 b 35.07±0.55 b
    −2 CK 20.23±0.25 c 33.97±0.31 c 31.50±1.08 c 21.65±1.17 d
    B1 22.64±0.27 b 34.42±0.28 c 33.00±0.50 b 25.72±0.43 c
    B2 24.32±0.14 a 39.71±0.27 a 37.83±0.68 a 36.53±1.06 a
    B3 23.62±0.31 a 35.96±0.31 b 34.67±0.94 b 29.45±0.76 b
    皖麦52
    Wanmai 52
    0 CK 20.81±0.09 c 35.61±0.25 d 27.54±0.54 c 20.41±0.29 d
    B1 22.67±0.50 b 37.84±0.31 c 29.22±0.38 b 25.07±1.00 c
    B2 24.37±0.26 a 41.55±0.22 a 34.57±0.71 a 35.00±0.82 a
    B3 23.33±0.20 b 39.83±0.20 b 31.35±0.50 b 29.13±0.74 b
    −2 CK 20.23±0.23 c 34.19±0.54 d 21.68±1.23 c 15.00±1.14 d
    B1 20.74±0.21 b 37.63±0.25 c 24.94±0.42 b 19.46±0.45 c
    B2 22.03±0.18 a 41.27±0.22 a 29.46±0.69 a 26.78±1.03 a
    B3 21.30±0.12 b 39.79±0.17 b 25.07±0.15 b 21.25±0.51 b
    2023 烟农19
    Yannong 19
    0 CK 22.33±0.38 a 36.25±0.15 d 31.47±0.70 c 25.47±0.61 d
    B1 22.68±0.22 a 38.30±0.24 c 33.53±0.71 b 29.13±0.90 c
    B2 23.10±0.41 a 41.89±0.47 a 36.47±0.18 a 35.29±0.66 a
    B3 22.86±0.55 a 39.66±0.16 b 34.60±0.12 b 31.37±0.84 b
    −2 CK 20.17±0.26 c 34.88±0.35 d 26.87±0.85 c 18.90±0.27 d
    B1 21.29±0.06 b 38.92±0.05 c 28.65±0.13 b 23.74±0.09 c
    B2 22.34±0.25 a 42.15±0.19 a 32.27±0.24 a 30.39±0.27 a
    B3 21.96±0.22 ab 40.81±0.15 b 31.31±0.15 b 26.78±0.53 b
    皖麦52
    Wanmai52
    0 CK 19.45±0.20 d 33.54±0.22 d 25.80±0.72 d 16.82±0.37 d
    B1 20.23±0.30 c 39.97±0.16 c 27.13±0.37 c 21.94±0.44 c
    B2 21.87±0.22 a 42.82±0.24 a 30.27±0.18 a 28.34±0.19 a
    B3 21.14±0.16 b 41.13±0.21 b 29.33±0.18 b 25.50±0.31 b
    −2 CK 19.33±0.34 c 34.51±0.27 d 23.73±0.35 d 15.83±0.40 d
    B1 20.37±0.23 b 37.53±0.16 c 26.67±0.70 c 20.08±0.80 c
    B2 21.92±0.37 a 40.44±0.26 a 33.33±0.24 a 29.54±0.21 a
    B3 21.19±0.23 b 39.45±0.11 b 30.33±0.07 b 25.35±0.26 b
    注:CK为喷施蒸馏水,B1、B2、B3分别为6-BA溶液喷施浓度 10、20、30 mg/L。同列数据后不同小写字母表示同一品种同一温度处理不同6-BA处理间差异显著(P<0.05)。
    Note: Distilled water is sprayed in CK, and the spraying concentration of 6- BA in B1, B2 and B3 are 10, 20, and 30 mg/L, respectively. Different lowercase letters after data in the same column indicate significant difference among 6-BA treatments for the same cultivar under the same temperature treatment (P<0.05).
    下载: 导出CSV
  • [1]

    Barlow K M, Christy B P, O’Leary G J, et al. Simulating the impact of extreme heat and frost events on wheat crop production: A review[J]. Field Crops Research, 2015, 171: 109−119. DOI: 10.1016/j.fcr.2014.11.010

    [2]

    Olesen J E, Bindi M. Consequences of climate change for European agricultural productivity, land use and policy[J]. European Journal of Agronomy, 2002, 16(4): 239−262. DOI: 10.1016/S1161-0301(02)00004-7

    [3]

    Song Y L, Chen D L, Dong W J. Influence of climate on winter wheat productivity in different climate regions of China, 1961−2000[J]. Climate Research, 2006, 32(3): 219−227.

    [4]

    Huzsvai L, Zsembeli J, Kovács E, et al. Response of winter wheat (Triticum aestivum L.) yield to the increasing weather fluctuations in a continental region of four-season climate[J]. Agronomy, 2022, 12(2): 314. DOI: 10.3390/agronomy12020314

    [5]

    Subedi K D, Floyd C N, Budhathoki C B. Cool temperature-induced sterility in spring wheat (Triticum aestivum L.) at high altitudes in Nepal: Variation among cultivars in response to sowing date[J]. Field Crops Research, 1998, 55(1−2): 141−151. DOI: 10.1016/S0378-4290(97)00073-7

    [6]

    Barton D A, Cantrill L C, Law A M K, et al. Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L.[J]. Plant, Cell & Environment, 2014, 37(12): 2781−2794.

    [7] 由继红, 陆静梅, 杨文杰. 钙对低温胁迫下小麦幼苗光合作用及相关生理指标的影响[J]. 作物学报, 2002, 28(5): 693−696. DOI: 10.3321/j.issn:0496-3490.2002.05.021

    You J H, Lu J M, Yang W J. Effects of calcium on photosynthesis and related physiological indexes of wheat seedlings under low temperature stress[J]. Acta Agronomica Sinica, 2002, 28(5): 693−696. DOI: 10.3321/j.issn:0496-3490.2002.05.021

    [8]

    Chen X, Weng Y, Chen T T, et al. Spraying KH2PO4 alleviates the damage of spring low-temperature stress by improving the physiological characteristics of wheat flag leaves[J]. International Journal of Molecular Sciences, 2024, 25(21): 11542. DOI: 10.3390/ijms252111542

    [9]

    Li X N, Topbjerg H B, Jiang D, et al. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage[J]. Plant and Soil, 2015, 393: 307−318. DOI: 10.1007/s11104-015-2499-0

    [10] 刘蕾蕾, 纪洪亭, 刘兵, 等. 拔节期和孕穗期低温处理对小麦叶片光合及叶绿素荧光特性的影响[J]. 中国农业科学, 2018, 51(23): 4434−4448. DOI: 10.3864/j.issn.0578-1752.2018.23.004

    Liu L L, Ji H T, Liu B, et al. Effects of low temperature treatment at jointing stage and booting stage on photosynthesis and chlorophyll fluorescence characteristics of wheat leaves[J]. Scientia Agricultura Sinica, 2018, 51(23): 4434−4448. DOI: 10.3864/j.issn.0578-1752.2018.23.004

    [11]

    Zhang W J, Zhao Y, Li L Y, et al. The effects of short-term exposure to low temperatures during the booting stage on starch synthesis and yields in wheat grain[J]. Frontiers in Plant Science, 2021, 12: 684784. DOI: 10.3389/fpls.2021.684784

    [12]

    Liu L L, Xia Y M, Liu B, et al. Individual and combined effects of jointing and booting low-temperature stress on wheat yield[J]. European Journal of Agronomy, 2020, 113: 125989. DOI: 10.1016/j.eja.2019.125989

    [13]

    Wang Y, Lu J W, Ren T, et al. Effects of exogenous cytokinin on photosynthesis, senescence, and yield performance of inferior rice tillers grown under different nitrogen regimes[J]. Photosynthetica, 2020, 58(1): 137−145. DOI: 10.32615/ps.2019.170

    [14]

    Yu T, Xin Y N, Liu P. Effects of 6-benzyladenine (6-BA) on the filling process of maize grains placed at different ear positions under high planting density[J]. Plants, 2023, 12(20): 3590. DOI: 10.3390/plants12203590

    [15]

    Rivero R M, Kojima M, Gepstein A, et al. Delayed leaf senescence induces extreme drought tolerance in a flowering plant[J]. Proceedings of the National Academy of Sciences, 2007, 104(49): 19631−19636. DOI: 10.1073/pnas.0709453104

    [16]

    Li S N, Song M, Duan J Z, et al. Regulation of spraying 6-BA in the late jointing stage on the fertile floret development and grain setting in winter wheat[J]. Agronomy, 2019, 9(9): 546. DOI: 10.3390/agronomy9090546

    [17]

    Yang D Q, Luo Y L, Dong W H, et al. Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin[J]. Photosynthetica, 2018, 56(2): 567−577. DOI: 10.1007/s11099-017-0708-1

    [18]

    Ren B Z, Zhu Y L, Zhang J W, et al. Effects of spraying exogenous hormone 6-benzyladenine (6-BA) after waterlogging on grain yield and growth of summer maize[J]. Field Crops Research, 2016, 188: 96−104. DOI: 10.1016/j.fcr.2015.10.016

    [19] 董永华, 史吉平, 周慧欣. 6-BA对小麦幼苗抗旱性的影响[J]. 植物营养与肥料学报, 1999, 5(1): 72−75. DOI: 10.11674/zwyf.1999.0113

    Dong Y H, Shi J P, Zhou H X. Effects of 6-BA on drought resistance of wheat seedlings[J]. Journal of Plant Nutrition and Fertilizers, 1999, 5(1): 72−75. DOI: 10.11674/zwyf.1999.0113

    [20]

    Wang X Y, Liu D M, Wei M M, et al. Spraying 6-BA could alleviate the harmful impacts of waterlogging on dry matter accumulation and grain yield of wheat[J]. PeerJ, 2020, 8: e8193. DOI: 10.7717/peerj.8193

    [21]

    Zheng C F, Zhu Y J, Wang C Y, et al. Wheat grain yield increase in response to pre-anthesis foliar application of 6-benzylaminopurine is dependent on floret development[J]. PLoS ONE, 2016, 11(6): e0156627. DOI: 10.1371/journal.pone.0156627

    [22] 杨东清, 李玉玲, 倪英丽, 等. 外源ABA和6-BA对不同持绿型小麦籽粒灌浆进程及蛋白质含量影响[J]. 作物学报, 2014, 40(2): 301−312. DOI: 10.3724/SP.J.1006.2014.00301

    Yang D Q, Li Y L, Ni Y L, et al. Effects of exogenous ABA and 6-BA on grain filling process and protein content of different stay-green wheat cultivars[J]. Acta Agronomica Sinica, 2014, 40(2): 301−312. DOI: 10.3724/SP.J.1006.2014.00301

    [23]

    Gulzar F, Yang H K, Chen J B, et al. 6-BA reduced yield loss under waterlogging stress by regulating the phenylpropanoid pathway in wheat[J]. Plants, 2024, 13(14): 1991. DOI: 10.3390/plants13141991

    [24]

    Susanti Z, Snell P, Fukai S, et al. Importance of anther dehiscence for low-temperature tolerance in rice at the young microspore and flowering stages[J]. Crop and Pasture Science, 2019, 70(2): 113−120. DOI: 10.1071/CP18212

    [25] 郭震华, 蔡丽君, 潘国君, 等. 低温胁迫下水稻孕穗期幼穗的转录组动态分析[J]. 种子, 2024, 43(8): 60−68, 78.

    Guo Z H, Cai L J, Pan G J, et al. Transcriptome dynamic analysis of young panicles at booting stage of rice under low temperature stress[J]. Seed, 2024, 43(8): 60−68, 78.

    [26]

    Wang S Q, Yang S W, He D M, et al. Exogenous 6-benzyladenine treatment alleviates cold stress in early japonica rice at booting in Northeast China[J]. Agronomy Journal, 2022, 114(5): 2905−2919. DOI: 10.1002/agj2.21137

    [27]

    Wang J, Wang D Y, Zhu M, et al. Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle[J]. Frontiers in Plant Science, 2021, 12: 680376. DOI: 10.3389/fpls.2021.680376

    [28]

    Li H, Wang J Q, Liu Q. Photosynthesis product allocation and yield in sweet potato with spraying exogenous hormones under drought stress[J]. Journal of Plant Physiology, 2020, 253: 153265. DOI: 10.1016/j.jplph.2020.153265

    [29]

    Fukao T, Barrera-Figueroa B E, Juntawong P, et al. Submergence and waterlogging stress in plants: A review highlighting research opportunities and understudied aspects[J]. Frontiers in Plant Science, 2019, 10: 340. DOI: 10.3389/fpls.2019.00340

    [30] 苌建峰, 董朋飞, 王秀玲, 等. 氮肥运筹对不同夏玉米品种碳氮代谢协调性的影响[J]. 中国农业科学, 2017, 50(12): 2282−2293. DOI: 10.3864/j.issn.0578-1752.2017.12.009

    Chang J F, Dong P F, Wang X L, et al. Effects of nitrogen application on carbon and nitrogen metabolism coordination of different summer maize varieties[J]. Scientia Agricultura Sinica, 2017, 50(12): 2282−2293. DOI: 10.3864/j.issn.0578-1752.2017.12.009

    [31]

    Behera D, Swain A, Karmakar S, et al. Overexpression of Setaria italica phosphoenolpyruvate carboxylase gene in rice positively impacts photosynthesis and agronomic traits[J]. Plant Physiology and Biochemistry, 2023, 194: 169−181. DOI: 10.1016/j.plaphy.2022.11.011

    [32]

    Li X N, Cai J, Liu F L, et al. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat[J]. Plant Physiology and Biochemistry, 2014, 82: 34−43. DOI: 10.1016/j.plaphy.2014.05.005

    [33]

    Xiao L J, Asseng S, Wang X T, et al. Simulating the effects of low-temperature stress on wheat biomass growth and yield[J]. Agricultural and Forest Meteorology, 2022, 326: 109191. DOI: 10.1016/j.agrformet.2022.109191

    [34] 王瑞霞, 闫长生, 张秀英, 等. 春季低温对小麦产量和光合特性的影响[J]. 作物学报, 2018, 44(2): 288−296. DOI: 10.3724/SP.J.1006.2018.00288

    Wang R X, Yan C S, Zhang X Y, et al. Effects of low temperature in spring on yield and photosynthetic characteristics of wheat[J]. Acta Agronomica Sinica, 2018, 44(2): 288−296. DOI: 10.3724/SP.J.1006.2018.00288

    [35]

    Bhattacharya A. Physiological processes in plants under low temperature stress[M]. Singapore: Springer, 2022.

    [36]

    Liang Y, Urano D, Liao K L, et al. A nondestructive method to estimate the chlorophyll content of Arabidopsis seedlings[J]. Plant Methods, 2017, 13: 1−10. DOI: 10.1186/s13007-016-0152-4

    [37]

    He Q, Li D. Assessing shade stress in leaves of turf-type tall fescue (Festuca arundinacea Schreb.)[J]. Photosynthetica, 2021, 59(4): 478−485. DOI: 10.32615/ps.2021.037

    [38] 葛君, 刘震. 低温胁迫对拔节期小麦光合色素、光合参数及叶绿素荧光特性的影响[J]. 山西农业科学, 2021, 49(11): 1253−1256. DOI: 10.3969/j.issn.1002-2481.2021.11.01

    Ge J, Liu Z. Effects of low temperature stress on photosynthetic pigments, photosynthetic parameters and chlorophyll fluorescence characteristics of wheat at jointing stage[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(11): 1253−1256. DOI: 10.3969/j.issn.1002-2481.2021.11.01

    [39]

    Yu J, Cang J, Li Y P, et al. Salicylic acid-induced antioxidant protection against low temperature in cold-hardy winter wheat[J]. Acta Physiologiae Plantarum, 2016, 38: 1−10. DOI: 10.1007/s11738-015-2023-4

    [40]

    Sun L Y, Li X N, Wang Z S, et al. Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat[J]. Molecules, 2018, 23(5): 1091. DOI: 10.3390/molecules23051091

    [41] 魏彬. 孕穗期低温胁迫下海藻糖对小麦小花退化的影响及生理机制[D]. 陕西杨凌: 西北农林科技大学硕士学位论文, 2020.

    Wei B. Effects of trehalose on floret degeneration of wheat under low temperature stress at booting stage and its physiological mechanism [D]. Yangling, Shaanxi: MS Thesis of Northwest A&F University, 2020.

    [42] 吴雪霞, 杨晓春, 朱宗文, 等. 外源6-BA对低温胁迫下茄子幼苗光合作用、叶绿素荧光参数及光能分配的影响[J]. 植物生理学报, 2013, 49(11): 1181−1188.

    Wu X X, Yang X C, Zhu Z W, et al. Effects of exogenous 6-BA on photosynthesis, chlorophyll fluorescence parameters and light energy distribution of eggplant seedlings under low temperature stress[J]. Plant Physiology Journal, 2013, 49(11): 1181−1188.

    [43]

    Amaral J, Lobo A K M, Carmo-Silva E. Regulation of rubisco activity in crops[J]. New Phytologist, 2024, 241(1): 35−51. DOI: 10.1111/nph.19369

    [44] 范琼花, 孙万春, 李兆君, 等. 硅对短期低温胁迫小麦叶片光合作用及其主要相关酶的影响[J]. 植物营养与肥料学报, 2009, 15(3): 544−550. DOI: 10.3321/j.issn:1008-505X.2009.03.008

    Fan Q H, Sun W C, Li Z J, et al. Effects of silicon on photosynthesis and its main related enzymes in wheat leaves under short-term low temperature stress[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(3): 544−550. DOI: 10.3321/j.issn:1008-505X.2009.03.008

    [45]

    Holaday A S, Martindale W, Alred R, et al. Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature[J]. Plant Physiology, 1992, 98(3): 1105−1114. DOI: 10.1104/pp.98.3.1105

    [46]

    Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat[J]. Plant Physiology, 2011, 155(1): 125−129. DOI: 10.1104/pp.110.165076

    [47]

    Zhang Y Q, Li J, Xu Q J, et al. Cytokinin modulates the inhibitory effect of shade stress on photosynthesis, antioxidant capacity and hormone homeostasis to regulate the grain yield in wheat[J]. Frontiers in Plant Science, 2024, 15: 1498123. DOI: 10.3389/fpls.2024.1498123

    [48]

    Hu J, Ren B Z, Dong S T, et al. Phosphoproteomic and physiological analysis revealed 6-benzyladenine improved the operation of photosynthetic apparatus in waterlogged summer maize[J]. Environmental and Experimental Botany, 2022, 193: 104679. DOI: 10.1016/j.envexpbot.2021.104679

    [49]

    Sayed H I, Gadallah A M. Variation in dry matter and grain filling characteristics in wheat cultivars[J]. Field Crops Research, 1983, 7: 61−71. DOI: 10.1016/0378-4290(83)90007-2

    [50] 曹树青, 赵永强, 温家立, 等. 高产小麦旗叶光合作用及与籽粒灌浆进程关系的研究[J]. 中国农业科学, 2000, 33(6): 19−25. DOI: 10.3321/j.issn:0578-1752.2000.06.004

    Cao S Q, Zhao Y Q, Wen J L, et al. Study on photosynthesis of flag leaves and its relationship with grain filling process in high-yield wheat[J]. Scientia Agricultura Sinica, 2000, 33(6): 19−25. DOI: 10.3321/j.issn:0578-1752.2000.06.004

    [51]

    Ugarte C, Calderini D F, Slafer G A. Grain weight and grain number responsiveness to pre-anthesis temperature in wheat, barley and triticale[J]. Field Crops Research, 2007, 100(2-3): 240−248. DOI: 10.1016/j.fcr.2006.07.010

    [52]

    Ji H T, Xiao L J, Xia Y M, et al. Effects of jointing and booting low temperature stresses on grain yield and yield components in wheat[J]. Agricultural and Forest Meteorology, 2017, 243: 33−42. DOI: 10.1016/j.agrformet.2017.04.016

    [53]

    Wang W L, Wang X, Huang M, et al. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid[J]. Journal of Plant Growth Regulation, 2021, 40: 811−823. DOI: 10.1007/s00344-020-10144-x

    [54]

    Bharati S P, Kant R, Sharma V K, et al. Study of effect of plant growth regulating hormones for mitigating heat stress in wheat[J]. Current Journal of Applied Science and Technology, 2018, 31(2): 1−11.

    [55]

    Fan Y H, Lv Z Y, Li Y X, et al. Salicylic acid reduces wheat yield loss caused by high temperature stress by enhancing the photosynthetic performance of the flag leaves[J]. Agronomy, 2022, 12(6): 1386. DOI: 10.3390/agronomy12061386

    [56]

    Wang X, Zhang J, Song M, et al. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticum aestivum L.)[J]. Plant Biology, 2020, 22(6): 1113−1122. DOI: 10.1111/plb.13143

    [57]

    Li Y T, Han X T, Ren H, et al. Exogenous SA or 6-BA maintains photosynthetic activity in maize leaves under high temperature stress[J]. The Crop Journal, 2023, 11(2): 605−617. DOI: 10.1016/j.cj.2022.08.006

    [58] 董永华, 史吉平, 周慧欣. 6-BA对小麦幼苗抗旱性的影响[J]. 植物营养与肥料学报, 2021, 5(1): 72−75.

    Dong Y H, Shi J P, Zhou H X. Effect of 6-BA on drought resistance in wheat seedlings[J]. Journal of Plant Nutrition and Fertilizers, 2021, 5(1): 72−75.

    [59]

    Zhang W J, Huang Z L, Xu K F, et al. The effect of plant growth regulators on recovery of wheat physiological and yield-related characteristics at booting stage following chilling stress[J]. Acta Physiologiae Plantarum, 2019, 41: 1−10. DOI: 10.1007/s11738-018-2785-6

    [60]

    Yang D Q, Li Y, Shi Y H, et al. Exogenous cytokinins increase grain yield of winter wheat cultivars by improving stay-green characteristics under heat stress[J]. PLoS ONE, 2016, 11(5): e0155437. DOI: 10.1371/journal.pone.0155437

    [61]

    Zhang W J, Wang B B, Zhang A M, et al. Exogenous 6-benzylaminopurine enhances waterlogging and shading tolerance after anthesis by improving grain starch accumulation and grain filling[J]. Frontiers in Plant Science, 2022, 13: 1003920. DOI: 10.3389/fpls.2022.1003920

    [62]

    Zhu K Y, Ren W C, Yan J Q, et al. Grain yield and nitrogen use efficiency are increased by exogenous cytokinin application through the improvement in root physiological traits of rice[J]. Plant Growth Regulation, 2022, 97(1): 157−169. DOI: 10.1007/s10725-022-00808-x

    [63]

    Ren B Z, Hu J, Zhang J W, et al. Spraying exogenous synthetic cytokinin 6-benzyladenine following the waterlogging improves grain growth of waterlogged maize in the field[J]. Journal of Agronomy and Crop Science, 2019, 205(6): 616−624. DOI: 10.1111/jac.12355

图(6)  /  表(4)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  34
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-11
  • 录用日期:  2025-02-02
  • 网络出版日期:  2025-04-27
  • 刊出日期:  2025-05-24

目录

/

返回文章
返回